JP2006066519A - Wiring circuit board for light-emitting element and the light-emitting device - Google Patents

Wiring circuit board for light-emitting element and the light-emitting device Download PDF

Info

Publication number
JP2006066519A
JP2006066519A JP2004245507A JP2004245507A JP2006066519A JP 2006066519 A JP2006066519 A JP 2006066519A JP 2004245507 A JP2004245507 A JP 2004245507A JP 2004245507 A JP2004245507 A JP 2004245507A JP 2006066519 A JP2006066519 A JP 2006066519A
Authority
JP
Japan
Prior art keywords
emitting element
light emitting
wiring board
metal body
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004245507A
Other languages
Japanese (ja)
Inventor
Tetsuya Kimura
哲也 木村
Tomohide Hasegawa
智英 長谷川
Minako Izumi
美奈子 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004245507A priority Critical patent/JP2006066519A/en
Publication of JP2006066519A publication Critical patent/JP2006066519A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring circuit board for light emitting-element that is excellent in heat radiating property and mounting reliability, and to provide a light-emitting device. <P>SOLUTION: The wiring circuit board for light-emitting element 11 is provided with at least a plate-shaped main body 1, a through hole 2 formed through the body 1, and conductor layers 3, 5, and 7 formed at least either one of the surface and inside of the body 1. The wiring circuit board is also provided with a mounting section 9 for mounting a light-emitting element 21 on one main surface 1a of the body 1. A metallic body 8, having heat conductivity higher than that of the body 1 and a relative density of ≥99.8% with respect to the theoretical specific gravity, is inserted into the through hole 2 formed in the body 1 and jointed to the body 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光ダイオード等の発光素子を搭載するための発光素子用配線基板ならびに発光装置に関する。   The present invention relates to a light emitting element wiring board and a light emitting device for mounting a light emitting element such as a light emitting diode.

従来、LEDを用いた発光装置は、非常に発光効率が高く、しかも、白熱電球などと比較すると発光に伴い発生する熱量が小さいために様々な用途に用いられてきた。しかしながら、白熱電球や蛍光灯などと比較すると発光量が小さいために、照明用ではなく、表示用の光源として用いられ、通電量も30mA程度と非常に小さいものであった。そして、その実装形態は通電量が小さく、発熱が小さいことから発光素子を樹脂に埋め込んだ、いわゆる砲弾型が主流を占めている(特許文献1参照)。   Conventionally, light emitting devices using LEDs have been used for various applications because of their extremely high luminous efficiency and the small amount of heat generated with light emission compared to incandescent bulbs. However, since the amount of emitted light is small compared to incandescent bulbs, fluorescent lamps, etc., it is used not for illumination but as a display light source, and the energization amount is very small at about 30 mA. And since the mounting form has a small energization amount and a small amount of heat generation, a so-called shell type in which a light emitting element is embedded in a resin dominates (see Patent Document 1).

そして、近年では、発光素子を用いた発光装置の高輝度、白色化に伴い、携帯電話や大型液晶TV等のバックライトに発光装置が多く用いられてきている。しかしながら、発光素子の高輝度化に伴い、発光装置から発生する熱も増加しており、発光素子の輝度の低下をなくす為には、このような熱を素子より速やかに放散する高い熱放散性を有する発光素子用配線基板が必要となっている(特許文献2、3参照)。
特開2002−124790号公報 特開平11−112025号公報 特開2003−347600号公報
In recent years, with the increase in brightness and whiteness of light-emitting devices using light-emitting elements, light-emitting devices have been frequently used for backlights of mobile phones, large liquid crystal TVs, and the like. However, as the brightness of light emitting elements increases, the heat generated from the light emitting device also increases, and in order to eliminate the decrease in the brightness of the light emitting elements, such heat dissipation that dissipates such heat more quickly than the elements is high. A wiring board for a light emitting element having the above is required (see Patent Documents 2 and 3).
JP 2002-124790 A Japanese Patent Laid-Open No. 11-112025 JP 2003-347600 A

しかしながら、従来から配線基板の絶縁基体に用いられてきたアルミナ材料では、熱伝導率が約15W/m・Kと低いことからそれに代わるものとして高い熱伝導率を有する窒化アルミニウムが注目され始めた。しかし、窒化アルミニウムは原料コスト高や、難焼結性のため高温での焼成が必要であり、プロセスコストが高く、また、熱膨張係数が4〜5×10−6/℃と小さいため、汎用品である10×10−6/℃以上の熱膨張係数を持つプリント基板へ実装した際に、熱膨張差により接続信頼性が損なわれるという問題があった。 However, the alumina material conventionally used for the insulating substrate of the wiring board has a low thermal conductivity of about 15 W / m · K, so aluminum nitride having a high thermal conductivity has begun to attract attention as an alternative. However, since aluminum nitride has high raw material costs and is difficult to sinter, it needs to be fired at a high temperature, has a high process cost, and has a low coefficient of thermal expansion of 4 to 5 × 10 −6 / ° C. When mounted on a printed circuit board having a thermal expansion coefficient of 10 × 10 −6 / ° C. or higher, which is a product, there is a problem that connection reliability is impaired due to a difference in thermal expansion.

一方、樹脂系の配線基板を用いた場合には、熱膨張係数はプリント基板に近づくため、樹脂系の配線基板とプリント基板の実装信頼性の問題は発生しないが、樹脂系の配線基板は、熱伝導率が0.05W/m・Kと非常に低く、熱に対する問題に全く対処することができず、輝度が低下するという問題があり、安価で、熱伝導に優れ、実装信頼性に優れた配線基板は未だ提供されていないのである。   On the other hand, when a resin-based wiring board is used, the thermal expansion coefficient approaches that of the printed circuit board, so there is no problem of mounting reliability between the resin-based wiring board and the printed circuit board. Thermal conductivity is very low at 0.05 W / m · K, and it is impossible to deal with the problem of heat at all, and there is a problem that the brightness is lowered, it is inexpensive, excellent in heat conduction, and excellent in mounting reliability. The wiring board has not been provided yet.

従って本発明は、安価で、熱放散性及び実装信頼性に優れた発光素子用配線基板ならびに発光装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a light-emitting element wiring board and a light-emitting device that are inexpensive and excellent in heat dissipation and mounting reliability.

本発明の発光素子用配線基板は、少なくとも、平板状の絶縁基体と、該絶縁基体を貫通して設けられた貫通孔と、前記絶縁基体の表面又は内部のうち少なくとも一方に形成された導体層と、前記絶縁基体の一方の主面に発光素子を搭載する搭載部と、を具備してなる発光素子用配線基板であって、前記絶縁基体よりも高い熱伝導率を有するとともに理論比重に対する相対密度が99.8%以上の金属体が、前記絶縁基体に設けられた貫通孔に挿入され、前記絶縁基体に接合されていることを特徴とする。   A wiring board for a light emitting element according to the present invention includes at least a flat insulating base, a through hole provided through the insulating base, and a conductor layer formed on at least one of the surface and the inside of the insulating base. And a mounting portion for mounting the light emitting element on one main surface of the insulating base, the wiring board for a light emitting element having a higher thermal conductivity than the insulating base and relative to the theoretical specific gravity. A metal body having a density of 99.8% or more is inserted into a through-hole provided in the insulating base and joined to the insulating base.

また、本発明の発光素子用配線基板は、前記絶縁基体がセラミックスからなることが望ましい。   In the light-emitting element wiring board according to the present invention, the insulating base is preferably made of ceramics.

また、本発明の発光素子用配線基板は、前記絶縁基体が樹脂を含有してなることが望ましい。   In the light-emitting element wiring board of the present invention, the insulating base preferably contains a resin.

また、本発明の発光素子用配線基板は、前記金属体が、該発光素子用配線基板に搭載される発光素子の搭載面積よりも大きな断面積を有することが望ましい。   In the light-emitting element wiring board of the present invention, it is preferable that the metal body has a cross-sectional area larger than a mounting area of the light-emitting element mounted on the light-emitting element wiring board.

また、本発明の発光素子用配線基板は、前記金属体の一方の端面が、他方の端面よりも大きいことが望ましい。   In the light emitting element wiring board of the present invention, it is desirable that one end face of the metal body is larger than the other end face.

また、本発明の発光素子用配線基板は、前記金属体の搭載部側と反対の端面が、前記金属体の搭載部側の端面よりも大きいことが望ましい。   In the light-emitting element wiring board according to the present invention, it is preferable that an end surface opposite to the mounting portion side of the metal body is larger than an end surface on the mounting portion side of the metal body.

また、本発明の発光素子用配線基板は、前記絶縁基体と前記金属体とが、接合層により接合されていることが望ましい。   In the light-emitting element wiring board of the present invention, it is preferable that the insulating base and the metal body are bonded together by a bonding layer.

また、本発明の発光素子用配線基板は、前記接合層が、金属を含有することが望ましい。   Moreover, as for the wiring board for light emitting elements of this invention, it is desirable for the said joining layer to contain a metal.

また、本発明の発光素子用配線基板は、前記接合層が、樹脂を含有することが望ましい。   Moreover, as for the wiring board for light emitting elements of this invention, it is desirable for the said joining layer to contain resin.

また、本発明の発光素子用配線基板は、前記接合層が、セラミックスを含有することが望ましい。   Moreover, as for the wiring board for light emitting elements of this invention, it is desirable for the said joining layer to contain ceramics.

また、本発明の発光素子用配線基板は、前記発光素子用配線基板の主面に形成された、前記絶縁基体と前記金属体との境界を、被覆層により被覆することが望ましい。   In the light-emitting element wiring board of the present invention, it is preferable that the boundary between the insulating base and the metal body formed on the main surface of the light-emitting element wiring board is covered with a coating layer.

また、本発明の発光素子用配線基板は、前記金属体が、電気回路を形成していることが望ましい。   In the light-emitting element wiring board of the present invention, the metal body preferably forms an electric circuit.

また、本発明の発光素子用配線基板は、前記金属体の少なくとも一方の端面が絶縁膜で覆われていることが望ましい。   In the light emitting element wiring board of the present invention, it is desirable that at least one end face of the metal body is covered with an insulating film.

また、本発明の発光素子用配線基板は、前記導体層および金属体がW、Mo、Cu、Ag、Alのうち少なくとも1種を主成分とすることが望ましい。   In the light-emitting element wiring board of the present invention, it is desirable that the conductor layer and the metal body have at least one of W, Mo, Cu, Ag, and Al as a main component.

また、本発明の発光素子用配線基板は、前記発光素子用配線基板の搭載部が形成された側の主面に、発光素子を収容するための枠体が形成されてなることが望ましい。   In the light-emitting element wiring board according to the present invention, it is preferable that a frame for housing the light-emitting element is formed on the main surface on the side where the mounting portion of the light-emitting element wiring board is formed.

また、本発明の発光装置は、以上説明した発光素子用配線基板の搭載部に発光素子を搭載してなることを特徴とする。   The light-emitting device of the present invention is characterized in that the light-emitting element is mounted on the mounting portion of the wiring board for a light-emitting element described above.

本発明の発光素子用配線基板は、絶縁基体よりも、更に高い熱伝導率を有する理論比重に対する相対密度が99.8%以上とした金属体を、絶縁基体を貫通して設けられた貫通孔に挿入して、接合することで、発光素子用配線基板の熱伝導率を向上させることができ、発光素子から発生する熱を更に速やかに発光素子用配線基板外へ放散することができるため、発光素子が過剰に加熱されることを防止でき、輝度低下を防ぐ、あるいは、また、さらに高輝度にすることが可能となる。なお、この相対密度が99.8%以上というのは、殆どボイドが無い状態で、また、内部に金属以外のセラミック粉末やガラス成分などを含有しないものであり、通常の配線基板に用いられるペースト状の金属導体を焼結させる方法では得ることはできない値である。すなわち、本発明は、例えば、金属箔や金属板を加工することで得た緻密で金属以外の成分を実質的に含有しない金属体を用いるものである。   The wiring board for a light-emitting element of the present invention has a through-hole formed by penetrating a metal body having a relative density with respect to the theoretical specific gravity having a higher thermal conductivity than that of an insulating base to 99.8% or more. The thermal conductivity of the light emitting element wiring substrate can be improved by inserting and bonding to, and the heat generated from the light emitting element can be dissipated more quickly to the outside of the light emitting element wiring substrate. It is possible to prevent the light emitting element from being heated excessively, to prevent a decrease in luminance, or to further increase the luminance. Note that the relative density of 99.8% or more means that there is almost no void, and that the inside does not contain ceramic powder or glass components other than metal, and is a paste used for ordinary wiring boards. This value cannot be obtained by the method of sintering the metal conductor. That is, the present invention uses, for example, a dense metal body that is obtained by processing a metal foil or a metal plate and does not substantially contain components other than metal.

また、絶縁基体として、樹脂よりも高熱伝導なセラミックを用いることで、更に、発光素子用配線基板の高輝度化が可能となる。   Further, by using a ceramic having a higher thermal conductivity than the resin as the insulating base, it is possible to further increase the luminance of the light emitting element wiring board.

また、本発明によればセラミックスと比較して、熱伝導率の低い樹脂により形成される絶縁基体を用いた場合であっても、実用上、十分な熱放散性を有する発光素子用配線基板を得ることができる。そして、このように絶縁基体を安価な樹脂により形成した場合には、発光素子用配線基板の低コスト化が可能となる。   Further, according to the present invention, a wiring board for a light-emitting element having practically sufficient heat dissipation can be obtained even when an insulating base formed of a resin having low thermal conductivity is used as compared with ceramics. Obtainable. When the insulating base is formed of an inexpensive resin in this way, the cost of the light emitting element wiring board can be reduced.

また、金属体を、該発光素子用配線基板に搭載される発光素子の搭載面積よりも大きな断面積とすることにより、放熱部分が増加し、更に発光素子から発生する熱を速やかに放散することができる。   In addition, by making the metal body have a cross-sectional area larger than the mounting area of the light emitting element mounted on the wiring board for the light emitting element, the heat dissipation portion increases, and heat generated from the light emitting element can be quickly dissipated. Can do.

また、金属体の一方の端面を、他方の端面よりも大きくすることにより、金属体の側面の面積が増し、絶縁基体と金属体との接触面積が増すことにより、絶縁基体と金属体との接合性が向上する。   Also, by making one end surface of the metal body larger than the other end surface, the area of the side surface of the metal body is increased, and the contact area between the insulating substrate and the metal body is increased, so that the insulating substrate and the metal body are Bondability is improved.

また、金属体の搭載部側と反対側の端面を、金属体の搭載部側の端面よりも大きくすることで、放熱面が大きくなり放熱性が向上する。   Moreover, by making the end surface on the opposite side to the mounting portion side of the metal body larger than the end surface on the mounting portion side of the metal body, the heat dissipation surface becomes larger and the heat dissipation is improved.

また、発光素子用配線基板の主面に形成された、絶縁基体と金属体とを、接合層により接合することで、金属体と絶縁基体とを容易に固定することができる。   Moreover, the metal body and the insulating substrate can be easily fixed by bonding the insulating base and the metal body formed on the main surface of the wiring board for light emitting element by the bonding layer.

この接合層として金属を用いた場合には、金属体と絶縁基体との間の熱伝導も向上するため、発光素子用配線基板の放熱性がさらに向上する。   When a metal is used as the bonding layer, the heat conduction between the metal body and the insulating base is also improved, so that the heat dissipation of the light emitting element wiring board is further improved.

また、接合層を樹脂とすることにより、接合時の温度が低くなるため、金属体と絶縁基体間の熱応力が小さくなり、更には、低コストな発光素子用配線基板を得ることができる。   Further, when the bonding layer is made of resin, the temperature at the time of bonding is lowered, so that the thermal stress between the metal body and the insulating substrate is reduced, and furthermore, a low-cost wiring board for a light emitting element can be obtained.

また、接合層を化学的に安定度の高いセラミックスにより形成することにより、金属体と絶縁基体との接合部分の耐熱性、耐水性等の信頼性がより向上する。   Further, by forming the bonding layer with a chemically stable ceramic, the reliability such as the heat resistance and water resistance of the bonded portion between the metal body and the insulating base is further improved.

また、発光素子用配線基板の主面に形成された、絶縁基体と金属体との境界を、被覆層により被覆することで境界でのクラックの発生を抑制できる。   In addition, the generation of cracks at the boundary can be suppressed by covering the boundary between the insulating base and the metal body formed on the main surface of the wiring board for the light emitting element with a coating layer.

また、金属体に、電気回路としての機能を付与することにより、導通端子を別途設ける必要がなくなり、発光素子用配線基板の小型化、作製工程数の低減、コストの低減をともに達成することができる。   Further, by providing the metal body with a function as an electric circuit, there is no need to separately provide a conduction terminal, and it is possible to achieve both a reduction in the size of the wiring board for the light emitting element, a reduction in the number of manufacturing steps, and a reduction in cost. it can.

また、金属体の少なくとも一方の端面を絶縁膜で覆うことにより、外部端子との短絡が防止でき、また、発光装置をプリント板などに実装する際に金属体直下に配線を配すことが可能となるため機器を小型化することができる。また、絶縁膜を発光素子搭載側に形成した場合には、発光素子電極間の短絡を防止でき、発光素子のフリップチップ実装を簡便にすることができる。   In addition, by covering at least one end face of the metal body with an insulating film, it is possible to prevent a short circuit with an external terminal, and wiring can be arranged directly under the metal body when the light emitting device is mounted on a printed board or the like. Therefore, the device can be miniaturized. In addition, when the insulating film is formed on the light emitting element mounting side, a short circuit between the light emitting element electrodes can be prevented, and flip chip mounting of the light emitting element can be simplified.

また、W、Mo、Cu、Ag、Alのうち少なくとも1種を主成分として導体層および金属体を形成することで、電気特性に優れ且つ、放熱性にも優れたより高輝度な発光素子用配線基板を得ることができる。   In addition, by forming a conductor layer and a metal body with at least one of W, Mo, Cu, Ag, and Al as a main component, a wiring for a light-emitting element having higher electrical characteristics and excellent heat dissipation is provided. A substrate can be obtained.

また、発光素子用配線基板の搭載部の主面に、発光素子を収納するための枠体を設けることで、発光素子を保護できるとともに、発光素子の周辺に蛍光体などを容易に配置することができる。また、枠体により発光素子の発する光を反射させて所定の方向に誘導することもできる。   In addition, by providing a frame for housing the light emitting element on the main surface of the mounting portion of the wiring board for the light emitting element, the light emitting element can be protected and a phosphor or the like can be easily disposed around the light emitting element. Can do. In addition, the light emitted from the light emitting element can be reflected by the frame and guided in a predetermined direction.

以上説明した本発明の発光素子用配線基板に発光素子を搭載した本発明の発光装置によれば、発光素子からの発熱を速やかに装置外に放出することができるため、発熱による輝度低下を抑制できる。   According to the light emitting device of the present invention in which the light emitting element is mounted on the wiring substrate for the light emitting element of the present invention described above, the heat generation from the light emitting element can be quickly discharged outside the device, so that the luminance reduction due to the heat generation is suppressed. it can.

本発明の発光素子用配線基板は、例えば、図1(a)、(b)に示すように、平板状の絶縁基体1と、この絶縁基体1の表裏面を貫通するように形成された貫通孔2と、絶縁基体1の主面1aに形成された発光素子との接続端子3、絶縁基体1の他方の主面1bに形成された外部電極端子5、接続端子3と外部電極端子5とを電気的に接続するように絶縁基体1を貫通して設けられた貫通導体7と、絶縁基体1を貫通して設けられた貫通孔2に挿入され、絶縁基体1に接合された絶縁基体1よりも熱伝導率が高い金属体8から構成されている。   The light emitting element wiring board of the present invention has, for example, a flat insulating base 1 and a through hole formed so as to penetrate the front and back surfaces of the insulating base 1 as shown in FIGS. 1 (a) and 1 (b). A connection terminal 3 between the hole 2 and the light emitting element formed on the main surface 1 a of the insulating base 1, an external electrode terminal 5 formed on the other main surface 1 b of the insulating base 1, a connection terminal 3 and an external electrode terminal 5 The insulating base 1 is inserted into the through-hole 7 provided through the insulating base 1 so as to be electrically connected to the through-hole 2 provided through the insulating base 1 and joined to the insulating base 1. It is comprised from the metal body 8 with higher heat conductivity.

そして、絶縁基体1と金属体8とを接合させるため、両者の間には、金属、樹脂、セラミックスの群から選ばれる少なくとも1種を含有する接合層18が形成されている。   And in order to join the insulation base | substrate 1 and the metal body 8, the joining layer 18 containing at least 1 sort (s) chosen from the group of a metal, resin, and ceramics is formed between both.

そして、一方の接続端子3aと他方の接続端子3bとの間には、発光素子を搭載するための搭載部9が形成されている。   A mounting portion 9 for mounting a light emitting element is formed between one connection terminal 3a and the other connection terminal 3b.

また、例えば、本発明の発光素子用配線基板11には、図1(a)、(b)に示すように、搭載部9側に、搭載される発光素子を収納するための枠体13が形成されて構成されていることが望ましい。   In addition, for example, in the light emitting element wiring substrate 11 of the present invention, as shown in FIGS. 1A and 1B, a frame 13 for housing a light emitting element to be mounted is provided on the mounting portion 9 side. It is desirable to be formed and configured.

このような本発明の発光素子用配線基板11によれば、絶縁基体1よりも高い熱伝導率を有する金属体8が、絶縁基体1に形成された貫通孔2に挿入されていることが重要であり、また、この金属体8の相対密度が99.8%以上であることが特に重要なのである。   According to such a light emitting element wiring substrate 11 of the present invention, it is important that the metal body 8 having a higher thermal conductivity than the insulating base 1 is inserted into the through-hole 2 formed in the insulating base 1. In addition, it is particularly important that the relative density of the metal body 8 is 99.8% or more.

即ち、絶縁基体1より高い熱伝導率を有する金属体8を設けることにより、本発明の発光素子用配線基板に搭載される発光素子から発生する熱を速やかに放散することができるため、発光素子の輝度低下を防ぐことが可能となる。   That is, by providing the metal body 8 having a higher thermal conductivity than the insulating base 1, heat generated from the light emitting element mounted on the light emitting element wiring board of the present invention can be quickly dissipated. It is possible to prevent a decrease in luminance.

つまり、この金属体8の相対密度を99.8%以上とすることで、言い換えると、無垢の金属により形成された金属体8を用いることで、内部に、気泡や、セラミックス粉末、ガラスなどを含有する複合体を用いる場合に比べて、金属体8の熱伝導率を格段に高くすることができ、さらに放熱性に優れた発光素子用配線基板11となるのである。   In other words, by setting the relative density of the metal body 8 to 99.8% or more, in other words, by using the metal body 8 formed of a solid metal, air bubbles, ceramic powder, glass, and the like are contained inside. Compared with the case of using the contained composite, the thermal conductivity of the metal body 8 can be remarkably increased, and the wiring board 11 for a light-emitting element is further excellent in heat dissipation.

そして、このような金属体8は、例えば、高熱伝導で、低抵抗で、比較的安価なCuからなる金属板や、金属箔をプレス機などにより、所望の形状に打ち抜き加工するなどして容易に作製することができる。   Such a metal body 8 can be easily obtained by, for example, punching a metal plate made of Cu having a high thermal conductivity, a low resistance, and a relatively low cost, or a metal foil into a desired shape by a press machine. Can be produced.

また、複雑な形状の金属体8は、プレス加工や、鋳込みや、研磨加工、粉末冶金などの手法により形成することができる。また、このほかの従来周知の加工方法を用いて金属体8を作製してもよいことは言うまでもない。   The metal body 8 having a complicated shape can be formed by a technique such as pressing, casting, polishing, powder metallurgy, or the like. Needless to say, the metal body 8 may be manufactured by using other conventionally known processing methods.

また、金属板8の素材としては、Cu以外にも、Alや、あるいは、Cu−Wなどの複合材を用いることができる。この2種以上の金属を含有するCu−Wなどの複合材を用いる場合には、用いる金属とその比率を制御することで、所望の特性を有する金属体8を作製することができる。また、金属体8が合金により形成されていてもよいのは勿論である。また、金属体8が複数の部材を組み合わせて構成されていてもよい。   Further, as the material of the metal plate 8, in addition to Cu, a composite material such as Al or Cu-W can be used. In the case of using a composite material such as Cu-W containing two or more kinds of metals, the metal body 8 having desired characteristics can be produced by controlling the metal used and its ratio. Of course, the metal body 8 may be made of an alloy. Moreover, the metal body 8 may be configured by combining a plurality of members.

なお、金属体8は、発光素子の搭載部9を平坦にするため絶縁基体1と実質的に同一厚みであることが望ましい。   In addition, it is desirable that the metal body 8 has substantially the same thickness as the insulating base 1 in order to flatten the mounting portion 9 of the light emitting element.

このような金属体8は、安価に容易に入手できるだけでなく、種々の形態の絶縁基体1に容易に取り付けることができるため、搭載される発光素子の性能に応じて、種々の形態の絶縁基体1を用い、性能とコストをふまえて最適の組み合わせとすることができる。   Such a metal body 8 can be easily obtained at low cost and can be easily attached to various forms of the insulating base 1, so that various forms of the insulating base can be used according to the performance of the mounted light emitting element. 1 can be used to achieve an optimal combination based on performance and cost.

また、図1(a)に示すように、この金属体8の形状を、金属体8の側面が貫通方向に対して平行になるようにした場合には、安価な金属体8となる。   Further, as shown in FIG. 1A, when the shape of the metal body 8 is such that the side surface of the metal body 8 is parallel to the penetration direction, the metal body 8 is inexpensive.

それに対して、図1(b)に示すように、金属体8の側面のうち少なくとも一部が、貫通方向に対して非平行になるようにした場合には、言い換えると、金属体8の側面に凹凸を設けた場合には、わずかに金属体8のコストは上昇するものの、絶縁基体1と金属体8との接触面積が増加するために、両者の接合強度を向上させることができる。なお、金属体8の側面に凹凸を設ける場合には、図1(b)のように金属体8の一方の端面と、他方の端面との大きさが異なっている必要はない。例えば、金属体8の一方の端面と、他方の端面との大きさが同じであっても、金属体8の挿入に支障のない範囲の凹凸を金属体8の側面に設けることができるのは言うまでもない。   On the other hand, as shown in FIG. 1B, when at least a part of the side surface of the metal body 8 is non-parallel to the penetration direction, in other words, the side surface of the metal body 8 When the projections and depressions are provided, the cost of the metal body 8 slightly increases, but the contact area between the insulating base 1 and the metal body 8 increases, so that the bonding strength between the two can be improved. In addition, when providing an unevenness | corrugation in the side surface of the metal body 8, the magnitude | size of the one end surface of the metal body 8 and the other end surface does not need to be different like FIG.1 (b). For example, even if the size of one end surface of the metal body 8 is the same as that of the other end surface, the side surface of the metal body 8 can be provided with irregularities in a range that does not hinder the insertion of the metal body 8. Needless to say.

また、図1(b)のように、金属体8に鍔部を形成したり、金属体8の一方の端面を他方の端面よりも大きくすることで、金属体8を貫通孔2に挿入する際の位置決めが容易になるために、組立性が格段に向上するという利点もある。   Further, as shown in FIG. 1B, the metal body 8 is inserted into the through-hole 2 by forming a flange on the metal body 8 or by making one end face of the metal body 8 larger than the other end face. Since positioning at the time becomes easy, there is an advantage that assemblability is remarkably improved.

さらに、図1(b)のように、搭載部9と逆側の金属体8の端面の面積を大きくした場合には、熱の伝達経路が広くなり、発光素子用配線基板の放熱性がさらに向上する。特に、金属体8の一方の端面が、他方の端面の1.1倍以上の面積を有することが望ましく、更に好適には1.2倍以上とすることが望ましい。   Further, as shown in FIG. 1B, when the area of the end face of the metal body 8 opposite to the mounting portion 9 is increased, the heat transfer path becomes wider, and the heat dissipation of the light emitting element wiring board is further increased. improves. In particular, it is desirable that one end surface of the metal body 8 has an area that is 1.1 times or more that of the other end surface, and more preferably 1.2 times or more.

また、例えば、金属体8に形成された鍔部が貫通孔2の外側に形成されていてもよい。   Further, for example, the flange portion formed in the metal body 8 may be formed outside the through hole 2.

また、この金属体8には、例えば、搭載される発光素子に電気を供給する電気回路としての機能を付与することもでき、小型で、しかも放熱性に優れた発光素子用配線基板11となる。   In addition, the metal body 8 can be provided with a function as an electric circuit for supplying electricity to a light emitting element to be mounted, for example, and becomes a light emitting element wiring substrate 11 having a small size and excellent heat dissipation. .

また、図2(a)、(b)に示すように、金属体8の少なくとも一方の端面を絶縁膜6で覆うことにより、外部端子3や、外部電極端子5との短絡が防止でき、また、図2(b)に示すように、絶縁膜6を発光素子用配線基板11の発光素子搭載側と逆側の主面1bに形成することにより、発光装置をプリント板などの外部電気回路基板に実装する際に金属体8直下に配線を配すことが可能となるため機器の小型化を実現することができる。   Further, as shown in FIGS. 2A and 2B, by covering at least one end face of the metal body 8 with the insulating film 6, a short circuit with the external terminal 3 or the external electrode terminal 5 can be prevented, As shown in FIG. 2B, the insulating film 6 is formed on the main surface 1b opposite to the light emitting element mounting side of the light emitting element wiring substrate 11, whereby the light emitting device is an external electric circuit board such as a printed board. Since the wiring can be arranged immediately below the metal body 8 when mounted on the device, downsizing of the device can be realized.

また、図2(a)に示すように、絶縁膜6を発光素子用配線基板11の発光素子搭載側の主面1aに形成することにより、発光素子の電極間の短絡を防止でき、発光素子のフリップチップ実装信頼性を向上させることができる。   Further, as shown in FIG. 2A, by forming the insulating film 6 on the main surface 1a on the light emitting element mounting side of the light emitting element wiring substrate 11, a short circuit between the electrodes of the light emitting element can be prevented. The flip chip mounting reliability can be improved.

この絶縁膜6は、例えば、ソルダレジストに用いられる樹脂や、樹脂系配線基板に用いられる絶縁性の樹脂により容易に形成することができる。   The insulating film 6 can be easily formed from, for example, a resin used for a solder resist or an insulating resin used for a resin wiring board.

特に、耐水性に優れた絶縁膜6とするために、絶縁膜6にセラミック粉末を5〜60体積%の割合で含有させることが望ましい。   In particular, in order to make the insulating film 6 excellent in water resistance, it is desirable to contain the ceramic powder in the insulating film 6 at a ratio of 5 to 60% by volume.

また、図3に示すように、仮に、絶縁基体1と金属体8との境界にクラックが発生したとしても、クラックが発光素子用配線基板11の表層に進展することを防止することができることから絶縁基体1の主面に形成された絶縁基体1と金属体8との境界を、例えば、樹脂を主成分とする被覆層12により被覆することが望ましい。これらの被覆層12で金属体8と絶縁基体1との境界を被覆することにより、両者の熱膨張差を緩衝し、境界でのクラックの発生を抑制することができる。   Further, as shown in FIG. 3, even if a crack occurs at the boundary between the insulating base 1 and the metal body 8, the crack can be prevented from progressing to the surface layer of the light emitting element wiring substrate 11. It is desirable to cover the boundary between the insulating substrate 1 and the metal body 8 formed on the main surface of the insulating substrate 1 with, for example, a coating layer 12 mainly composed of a resin. By covering the boundary between the metal body 8 and the insulating substrate 1 with these coating layers 12, the difference in thermal expansion between them can be buffered, and the occurrence of cracks at the boundary can be suppressed.

また、絶縁基体1と金属体8との間に形成された接着層18を貫通孔2から、はみ出させて絶縁基体1と金属体8との境界を塞ぐようにしてもよい。その場合には、樹脂以外にも接着層18を形成する素材により被覆層12が形成される。   Further, an adhesive layer 18 formed between the insulating base 1 and the metal body 8 may be protruded from the through hole 2 so as to close the boundary between the insulating base 1 and the metal body 8. In that case, the covering layer 12 is formed of a material for forming the adhesive layer 18 other than the resin.

つぎに、絶縁基体1について説明する。この発光素子用配線基板11に用いる絶縁基体1は、例えば、MgOやAlなどのセラミックス基板や、有機系の樹脂基板を好適に用いることができる。 Next, the insulating base 1 will be described. For example, a ceramic substrate such as MgO or Al 2 O 3 or an organic resin substrate can be suitably used as the insulating base 1 used for the light emitting element wiring substrate 11.

そして、絶縁基体1として、セラミック基板を用いた場合には、高剛性である点、発光素子の発する光や熱による変質がない点、比較的高熱伝導性の素材が多い点で、高性能で長寿命の発光素子用配線基板11となる。   When a ceramic substrate is used as the insulating substrate 1, it has high performance because it is highly rigid, does not change in quality due to light or heat emitted from the light emitting element, and has a relatively large number of materials with relatively high thermal conductivity. The light-emitting element wiring substrate 11 has a long life.

また、絶縁基体1として、低温焼成基板、いわゆるガラスセラミックスを用いた場合には、熱伝導率や、強度や、剛性こそAlなどの1050℃以上の温度域で焼成されるセラミックスには劣るものの、熱膨張係数を容易に制御することができるため、容易に金属体8との熱膨張係数の整合を図ることができる。また、配線層として低抵抗のCuや、Agなどを同時焼成することができるため、発光素子以外の部分の電気的な損失や発熱を抑制することができる。 In addition, when a low-temperature fired substrate, so-called glass ceramics, is used as the insulating substrate 1, the thermal conductivity, strength, and rigidity are not limited to ceramics fired in a temperature range of 1050 ° C. or higher such as Al 2 O 3. Although it is inferior, since the thermal expansion coefficient can be easily controlled, it is possible to easily match the thermal expansion coefficient with the metal body 8. Further, since low resistance Cu, Ag, or the like can be simultaneously fired as the wiring layer, electrical loss and heat generation in portions other than the light emitting element can be suppressed.

また、絶縁基体1として、樹脂を用いた場合には、安価な発光素子用配線基板11となる。なお、絶縁基体1の剛性や、強度ならびに吸湿性や、耐熱性を向上させるため、セラミック粉末や、ガラスクロスを含有する樹脂基板を用いることが望ましい。   Moreover, when resin is used as the insulating substrate 1, an inexpensive light emitting element wiring substrate 11 is obtained. In order to improve the rigidity, strength, hygroscopicity, and heat resistance of the insulating substrate 1, it is desirable to use a ceramic substrate or a resin substrate containing glass cloth.

これらの絶縁基体1として用いられる素材について、以下に詳細に説明する。   The materials used as these insulating bases 1 will be described in detail below.

たとえば、MgOを主結晶とする絶縁基体1は、例えば、平均粒径0.1〜8μmの純度99%以上のMgO粉末に、平均粒径0.1〜8μmのYやYbなどの希土類元素酸化物、Al、SiO、CaO、SrO、BaO、B、ZrOの群から選ばれる少なくとも1種の焼結助剤を添加した成形体を1300〜1700℃の温度範囲で焼成することによって得られる。 For example, the insulating substrate 1 having MgO as the main crystal is, for example, an MgO powder having an average particle diameter of 0.1 to 8 μm and a purity of 99% or more, Y 2 O 3 or Yb 2 O having an average particle diameter of 0.1 to 8 μm. rare earth oxides such as 3, Al 2 O 3, SiO 2, CaO, SrO, BaO, and B 2 O 3, the molded body obtained by adding at least one sintering aid selected from the group consisting of ZrO 2 1300 to It is obtained by firing in a temperature range of 1700 ° C.

また、あるいは、MgOを含有するMgAlやMgO・SiO系の複合酸化物を添加してもよい。そして、焼結助剤などのMgO以外の組成物の添加量については、MgOを主結晶とする緻密体を得るために、望ましくは30質量%以下、更に望ましくは、20質量%以下とすることが望ましい。特に、焼結助剤などのMgO以外の組成物の添加量が10質量%以下とした場合には、得られる絶縁基体1の大部分をMgO結晶により形成することができる。また、これらの焼結助剤は、焼成温度を低くするために3質量%以上、さらには5質量%以上添加することが望ましい。 Alternatively, MgAl 2 O 4 containing MgO or MgO · SiO 2 based composite oxide may be added. The amount of the composition other than MgO, such as a sintering aid, is desirably 30% by mass or less, and more desirably 20% by mass or less in order to obtain a dense body having MgO as the main crystal. Is desirable. In particular, when the addition amount of a composition other than MgO, such as a sintering aid, is 10% by mass or less, most of the obtained insulating substrate 1 can be formed of MgO crystals. These sintering aids are desirably added in an amount of 3% by mass or more, and more preferably 5% by mass or more in order to lower the firing temperature.

なお、MgOを主結晶相とするMgO質焼結体とは、例えば、X線回折によって、MgOのピークが主ピークとして検出されるようなもので、MgOの結晶を体積比率として、50体積%以上含有していることが望ましい。   The MgO-based sintered body having MgO as the main crystal phase is such that, for example, the peak of MgO is detected as the main peak by X-ray diffraction, and the volume ratio of MgO crystals is 50% by volume. It is desirable to contain above.

また、この絶縁基体1として、Alを主結晶相とするAl質焼結体を用いた場合には、安価な原料を使用でき、安価な発光素子用配線基板11を得ることができる。 Further, when an Al 2 O 3 sintered body having Al 2 O 3 as a main crystal phase is used as the insulating base 1, an inexpensive raw material can be used, and an inexpensive light-emitting element wiring substrate 11 is obtained. be able to.

なお、Alを主結晶相とするAl質焼結体とは、例えば、X線回折によって、Alのピークが主ピークとして検出されるようなもので、Alの結晶を体積比率として、50体積%以上含有していることが望ましい。 Note that the Al 2 O 3 and Al 2 O 3 quality sintered body composed mainly crystalline phase, for example, by X-ray diffraction, is like the peak of Al 2 O 3 is detected as the main peak, Al 2 It is desirable to contain 50% or more by volume of O 3 crystals.

このようなAl質焼結体は、例えば、平均粒径0.1〜8μm、望ましくは1.0〜2.0μmの純度99%以上のAl粉末に、平均粒径1.0〜2.0μmのMn、SiO、MgO、SrO、CaOの群から選ばれる少なくとも1種の焼結助剤を添加した成形体を1300〜1500℃の温度範囲で焼成することによって得られるものである。 Such an Al 2 O 3 sintered body has, for example, an average particle size of 0.1 to 8 μm, preferably 1.0 to 2.0 μm and an Al 2 O 3 powder with a purity of 99% or more and an average particle size of 1 Firing a molded body to which at least one kind of sintering aid selected from the group of Mn 2 O 3 , SiO 2 , MgO, SrO, and CaO of 0 to 2.0 μm is added in a temperature range of 1300 to 1500 ° C. Is obtained.

そして、焼結助剤などのAl以外の組成物の添加量については、Alを主結晶とする緻密体を得るために、望ましくは15質量%以下、更に望ましくは、10質量%以下とすることが望ましい。特に、焼結助剤などのAl以外の組成物の添加量が15質量%以下とした場合には、得られる絶縁基体1の大部分をAl結晶により形成することができる。また、これらの焼結助剤は、焼成温度を低くするために5質量%以上、さらには7質量%以上添加することが望ましい。なお、絶縁基体1に用いるセラミックスとして、AlNやSiなどを主結晶とする焼結体を用いても良い。 And, for the addition amount of Al 2 O 3 other than the compositions, such as sintering aids, in order to obtain a dense body of the Al 2 O 3 as a main crystal, preferably 15 wt% or less, more desirably, 10 It is desirable to set it as mass% or less. In particular, when the amount of a composition other than Al 2 O 3 such as a sintering aid is set to 15% by mass or less, most of the obtained insulating substrate 1 can be formed of Al 2 O 3 crystals. . These sintering aids are desirably added in an amount of 5% by mass or more, and more preferably 7% by mass or more in order to lower the firing temperature. Note that as the ceramic used for the insulating substrate 1, a sintered body having AlN, Si 3 N 4 or the like as a main crystal may be used.

このようなMgOやAlを主成分とする組成物に、さらに、バインダー、溶剤を添加して、スラリーを作製し、例えば、ドクターブレード法により、シート状の成形体を作製し、さらに、その表面や、シート状の成形体に設けた貫通孔などに、少なくとも金属粉末を含有する導体ペーストを印刷、充填したのち、このシートを積層し、酸化雰囲気、還元雰囲気、あるいは不活性雰囲気で焼成することで、表面や内部に接続端子3や外部電極端子5や貫通導体7などの配線層が形成された絶縁基体1を作製することができる。また、配線層は、薄膜法により絶縁基体1の表面に形成したり、金属箔を成形体の表面に転写するなどして形成できることはいうまでもない。 To such a composition containing MgO or Al 2 O 3 as a main component, a binder and a solvent are further added to prepare a slurry. For example, a sheet-like molded body is prepared by a doctor blade method, Then, after printing and filling a conductive paste containing at least a metal powder on the surface or through holes provided in the sheet-like molded body, the sheet is laminated and then laminated in an oxidizing atmosphere, a reducing atmosphere, or an inert atmosphere. By firing, the insulating base body 1 in which wiring layers such as the connection terminals 3, the external electrode terminals 5, and the through conductors 7 are formed on the surface or inside can be manufactured. Needless to say, the wiring layer can be formed on the surface of the insulating substrate 1 by a thin film method or by transferring a metal foil onto the surface of the molded body.

なお、シート状の成形体には、焼成工程の前に、金属体8を挿入するための貫通孔2となる孔を予め形成しておく必要があるのは言うまでもない。   Needless to say, it is necessary to previously form a hole to be the through hole 2 for inserting the metal body 8 in the sheet-like molded body before the firing step.

また、絶縁基体1として、低温焼成基板を用いる場合についても、素材と焼成温度の点で異なるものの、基本的に同様の手順で、貫通孔2や配線層を備えた絶縁基体1を作製することができる。   Further, even when a low-temperature fired substrate is used as the insulating substrate 1, the insulating substrate 1 provided with the through-holes 2 and the wiring layer is basically manufactured in the same manner, although the materials and the firing temperature are different. Can do.

また、絶縁基体1として、樹脂を用いる場合には、従来周知のプリント配線基板等に用いられるガラス−エポキシ基板を用いるのが望ましい。ガラス−エポキシ基板に対して、通常のプリント配線基板の製造方法により、接続端子3、外部電極端子5、貫通導体7を形成し、更に、金属体8を形成するための貫通孔をドリル、レーザー等で形成する。   Further, when a resin is used as the insulating substrate 1, it is desirable to use a glass-epoxy substrate used for a conventionally known printed wiring board or the like. On the glass-epoxy substrate, the connection terminal 3, the external electrode terminal 5, and the through conductor 7 are formed by a normal method for manufacturing a printed wiring board, and further, a through hole for forming the metal body 8 is drilled, laser Etc.

次に、以上説明した貫通孔2を設けた種々の絶縁基体1に対して、理論比重に対する相対密度が99.8%以上の金属体8を準備し、貫通孔2内に金属体8を挿入して、接合層により絶縁基体1と金属体8を接合させ、発光素子用配線基板11を得ることができる。   Next, a metal body 8 having a relative density with respect to the theoretical specific gravity of 99.8% or more is prepared for the various insulating bases 1 provided with the through holes 2 described above, and the metal body 8 is inserted into the through holes 2. Thus, the insulating substrate 1 and the metal body 8 can be bonded together by the bonding layer to obtain the light emitting element wiring substrate 11.

ここで用いる接合層18は、金属、セラミックス、樹脂のいずれかもしくは複合体からなる接着剤が好適に用いられる。   As the bonding layer 18 used here, an adhesive made of metal, ceramics, resin, or a composite is suitably used.

接合層18に関して、金属を用いる場合には、半田等の低融点の金属を用いることで工程を簡略化できる。用いられる半田としては、従来周知の錫60〜10%−鉛40〜90%や、鉛を含まない鉛フリー半田が挙げられる。   When a metal is used for the bonding layer 18, the process can be simplified by using a low melting point metal such as solder. Examples of the solder used include conventionally known tin 60 to 10% -lead 40 to 90% and lead-free solder containing no lead.

そして、半田を用いた場合には、窒素雰囲気のリフロー炉へ230℃×10秒の条件で処理して、絶縁基体1と金属体8とを接合することができる。   When solder is used, the insulating substrate 1 and the metal body 8 can be joined by processing in a reflow furnace in a nitrogen atmosphere under conditions of 230 ° C. × 10 seconds.

また、半田以外にも活性金属を用いて、いわゆる活性金属法により絶縁基体1と金属体8とを接合することもできる。   In addition to solder, an active metal can be used to join the insulating substrate 1 and the metal body 8 by a so-called active metal method.

なお、接合層18として、金属を用いる場合には、貫通孔2の内壁には、接合層18との濡れ性を向上させるために金属層を形成する必要がある。   When a metal is used as the bonding layer 18, it is necessary to form a metal layer on the inner wall of the through hole 2 in order to improve wettability with the bonding layer 18.

また、接合層18として、樹脂を用いる場合には、一般的に用いられるエポキシ樹脂系の接合剤を用いることが望ましい。   Further, when a resin is used as the bonding layer 18, it is desirable to use a generally used epoxy resin-based bonding agent.

そして、それぞれの接合剤の硬化温度に応じて、例えば、80〜150℃、20〜40分の条件で接合剤を硬化し、接合層18を介して絶縁基体1と金属体8とを接合することができる。   And according to the curing temperature of each bonding agent, for example, the bonding agent is cured under conditions of 80 to 150 ° C. and 20 to 40 minutes, and the insulating base 1 and the metal body 8 are bonded via the bonding layer 18. be able to.

この樹脂を用いた接合は、安価で、しかも容易である点で優れている。特に、樹脂からなる絶縁基体1と組み合わせた場合には、接合力が高くなるとともに、比較的低温での処理が可能であることから、絶縁基体1に与えるダメージがほとんどなく、界面等にクラックの無い信頼性の高い発光素子用配線基板11を作製することができる。   Bonding using this resin is excellent in that it is inexpensive and easy. In particular, when combined with the insulating base 1 made of resin, the bonding strength becomes high and processing at a relatively low temperature is possible, so there is almost no damage to the insulating base 1 and there is no crack at the interface. A highly reliable wiring board 11 for a light emitting element can be manufactured.

また、接合層18として、セラミックスを用いる場合として、例えば、低融点のガラスを例示できる。このような低融点のガラスを用いることで、比較的低温(600℃以下)での接合が可能となり、接合により発生する応力を小さくすることができる。   Moreover, as a case where ceramics are used as the bonding layer 18, for example, a glass having a low melting point can be exemplified. By using such a low-melting glass, bonding at a relatively low temperature (600 ° C. or less) is possible, and the stress generated by the bonding can be reduced.

また、接合層18として、金属、セラミックス、樹脂を複合化して用いることができるのは言うまでもない。たとえば、金属粉末、セラミック粉末、樹脂とを混合することで接合層の熱膨張係数を制御することもでき、絶縁基体1の特性に応じた接合を行うことができる。   Needless to say, the bonding layer 18 may be a composite of metal, ceramics, and resin. For example, the thermal expansion coefficient of the bonding layer can be controlled by mixing metal powder, ceramic powder, and resin, and bonding according to the characteristics of the insulating substrate 1 can be performed.

このような発光素子用配線基板11に形成された配線回路に用いる導体および金属体8を、W、Mo、Cu、Ag、Alのうち少なくとも1種を主成分として形成することで、電気特性、放熱性に優れた、安価な発光素子用配線基板11を得ることができる。   By forming the conductor and metal body 8 used in the wiring circuit formed on the light emitting element wiring substrate 11 as a main component of at least one of W, Mo, Cu, Ag, and Al, the electrical characteristics, An inexpensive light-emitting element wiring substrate 11 having excellent heat dissipation can be obtained.

また、接続端子3および金属体8の表面にAlめっきやAgめっきを施すことにより、腐食に対する抵抗力が向上し、発光素子用配線基板11の信頼性が向上するとともに、接続端子3および金属体8の反射率を向上させることができる。   Further, by applying Al plating or Ag plating to the surfaces of the connection terminal 3 and the metal body 8, the resistance to corrosion is improved, the reliability of the wiring board 11 for the light emitting element is improved, and the connection terminal 3 and the metal body are improved. The reflectance of 8 can be improved.

このような発光素子用配線基板11の搭載部9側の主面には、枠体13を設けることが望ましく、例えば、セラミックスからなる絶縁基体1を用いる場合には、枠体13を、セラミックスにより形成することで、絶縁基体1と枠体13とを同時焼成することができ、工程が簡略化されるため、安価な発光素子用配線基板11を容易に作製することができる。   It is desirable to provide a frame 13 on the main surface of the light emitting element wiring substrate 11 on the mounting portion 9 side. For example, when the insulating base 1 made of ceramics is used, the frame 13 is made of ceramics. By forming, the insulating base 1 and the frame 13 can be fired at the same time, and the process is simplified. Therefore, the inexpensive light-emitting element wiring substrate 11 can be easily manufactured.

また、セラミックスは耐熱性、耐湿性に優れているため、セラミック製の枠体13を用いることで長期間の使用や、悪条件での使用にも、優れた耐久性を有する発光素子用配線基板11となる。   Further, since ceramics are excellent in heat resistance and moisture resistance, a wiring board for a light emitting device having excellent durability even when used for a long period of time or under adverse conditions by using a ceramic frame 13. 11

また、安価で、加工性に優れた金属により枠体13を形成することで、複雑な形状の枠体13であっても、容易に安価に製造することができ、安価な発光素子用配線基板11を供給することができる。この金属製の枠体13は、例えば、AlやFe−Ni−Co合金等などにより好適に形成することができる。また、枠体13の内壁面13aには、反射率を向上させるため、Ni、Au、Ag、Alなどからなるめっき層(図示せず)を形成してもよい。   In addition, by forming the frame body 13 from a metal that is inexpensive and excellent in workability, even the frame body 13 having a complicated shape can be easily manufactured at low cost, and an inexpensive wiring board for a light-emitting element. 11 can be supplied. This metal frame 13 can be suitably formed by Al, Fe-Ni-Co alloy, etc., for example. Further, a plating layer (not shown) made of Ni, Au, Ag, Al or the like may be formed on the inner wall surface 13a of the frame 13 in order to improve the reflectance.

なお、このように枠体13を金属により形成する場合には、予め、絶縁基体1の主面1aに金属層17を形成し、この金属層17と枠体13とを、例えば、共晶Ag−Cuろう材等からなるろう材(図示せず)を介してのろう付けや、半田による接合をすることができる。   When the frame body 13 is formed of a metal in this way, a metal layer 17 is previously formed on the main surface 1a of the insulating base 1, and the metal layer 17 and the frame body 13 are, for example, eutectic Ag. -Brazing via a brazing material (not shown) made of Cu brazing material or the like, or joining by soldering can be performed.

また、樹脂系の接着剤を用いてもよいことはいうまでもなく、素材としては、樹脂系の接合層18と同様のものを用いることができる。   Needless to say, a resin-based adhesive may be used, and the same material as the resin-based bonding layer 18 can be used.

そして、以上説明した本発明の発光素子用配線基板11に、例えば、図4(a)、(b)に示すように発光素子21として、LEDチップ21などを搭載し、ボンディングワイヤ23により、発光素子21と接続端子3とを電気的に接続し、発光素子21に給電することにより、発光素子21を機能させることができ、発光素子21からの発熱を金属体8から速やかに放出することができるため、ヒートシンク等の放熱部材が不要となり、実装される電気機器の小型化に寄与できるとともに、安価な発光装置25ができる。なお、ヒートシンクを設けることで、更に放熱性が向上することはもちろんであり、例えば、ヒートシンクのような冷却装置を設けることを排除するものではない。   Then, for example, as shown in FIGS. 4A and 4B, an LED chip 21 or the like is mounted as the light emitting element 21 on the wiring board 11 for the light emitting element of the present invention described above, and the bonding wire 23 emits light. By electrically connecting the element 21 and the connection terminal 3 and supplying power to the light emitting element 21, the light emitting element 21 can function, and heat generated from the light emitting element 21 can be quickly emitted from the metal body 8. Therefore, a heat radiating member such as a heat sink is not necessary, and it is possible to contribute to downsizing of an electric device to be mounted, and the inexpensive light emitting device 25 can be obtained. In addition, by providing a heat sink, it is needless to say that heat dissipation is further improved, and for example, provision of a cooling device such as a heat sink is not excluded.

また、発光素子用配線基板11に形成された搭載部9に、例えば発光素子21として、LEDチップ21などを搭載し、ボンディングワイヤ23により、LEDチップ21と接続端子3と電気的に接続して、給電することにより、発光素子21の放射する光を絶縁基体1や枠体13に反射させ、所定の方向へと誘導することができるため、高効率の発光装置25となる。また、金属体8の熱伝導率が高いため、発光素子21からの発熱を速やかに放出することができ、発熱による輝度低下を抑制できる。   Further, an LED chip 21 or the like is mounted on the mounting portion 9 formed on the light emitting element wiring substrate 11 as, for example, the light emitting element 21, and the LED chip 21 and the connection terminal 3 are electrically connected by the bonding wire 23. By supplying power, the light emitted from the light emitting element 21 can be reflected by the insulating base 1 and the frame 13 and guided in a predetermined direction, so that the highly efficient light emitting device 25 is obtained. In addition, since the metal body 8 has a high thermal conductivity, heat generated from the light emitting element 21 can be quickly released, and a reduction in luminance due to heat generation can be suppressed.

また、図4(a)、(b)に示すように、発光素子21を搭載した側の発光素子用配線基板11の主面1aに、枠体13を搭載した発光装置25では、枠体13の内側に発光素子21を収納することで、容易に発光素子21を保護することができる。   4A and 4B, in the light emitting device 25 in which the frame 13 is mounted on the main surface 1a of the light emitting element wiring substrate 11 on the side where the light emitting element 21 is mounted, the frame 13 By storing the light emitting element 21 inside the light emitting element 21, the light emitting element 21 can be easily protected.

なお、図4(a)、(b)に示した例では、発光素子21は、接合剤29により発光素子用配線基板11に固定され、電力の供給はワイヤボンド23によりなされているが、発光素子用配線基板11との接続形態は、フリップチップ接続であってもよいことはいうまでもない。   In the example shown in FIGS. 4A and 4B, the light emitting element 21 is fixed to the light emitting element wiring substrate 11 by the bonding agent 29, and power is supplied by the wire bond 23. Needless to say, the connection form with the element wiring substrate 11 may be flip-chip connection.

また、発光素子21は、モールド材31により被覆されているが、モールド材31を用いずに、蓋体(図示せず)を用いて封止してもよく、また、モールド材31と蓋体とを併用してもよい。なお、蓋体としては、ガラスなどの透光性の素材を用いることが望ましい。   Moreover, although the light emitting element 21 is covered with the molding material 31, it may be sealed using a lid (not shown) without using the molding material 31, or the molding material 31 and the lid. And may be used in combination. In addition, as a cover body, it is desirable to use translucent materials, such as glass.

なお、発光素子21を搭載する場合には、必要に応じて、このモールド材31に発光素子21が放射する光を波長変換するための蛍光体(図示せず)を添加してもよい。   In addition, when mounting the light emitting element 21, you may add the fluorescent substance (not shown) for wavelength-converting the light which the light emitting element 21 radiates | emits to this molding material 31 as needed.

また、以上説明した例では、貫通導体7を設けた例について説明したが、貫通導体7を設けない場合であってもよく、また、絶縁基体1が多層に積層されている形態であってもよいことは勿論である。   In the example described above, the example in which the through conductor 7 is provided has been described. However, the through conductor 7 may not be provided, and the insulating base 1 may be laminated in multiple layers. Of course it is good.

また、以上説明した例では、全て、枠体13を設けた形態について説明しているが、枠体13を具備しない形態であってもよいのはいうまでもない。   Moreover, in the example demonstrated above, although the form which provided the frame 13 was demonstrated, it cannot be overemphasized that the form which does not comprise the frame 13 may be sufficient.

発光素子用配線基板の絶縁基体の原料粉末として純度99%以上、平均粒径が1μmのMgO粉末、純度99%以上、平均粒子径1μmのY粉末を用いて、MgO粉末95質量%、Y5質量%の割合で原料粉末を混合し、成形用有機樹脂(バインダ)としてアクリル系バインダと、トルエンを溶媒として混合し、スラリーを調整した。 Using MgO powder with a purity of 99% or more and an average particle diameter of 1 μm, and Y 2 O 3 powder with a purity of 99% or more and an average particle diameter of 1 μm as a raw material powder for an insulating substrate of a wiring board for a light emitting device, 95% by mass of MgO powder The raw material powder was mixed at a ratio of 5% by mass of Y 2 O 3 , an acrylic binder as a molding organic resin (binder), and toluene as a solvent were mixed to prepare a slurry.

しかる後に、ドクターブレード法にてセラミックグリーンシートを作製した。   Thereafter, a ceramic green sheet was prepared by a doctor blade method.

また、平均粒子径2μmのW、Cu粉末、平均粒径1.0μmのAlを用いて、W50質量%、Cu50質量%、Al5質量%の割合で金属粉末とアクリル系バインダとアセトンとを溶媒として混合し、導体ペーストを調製した。 Further, using W and Cu powder having an average particle diameter of 2 μm and Al 2 O 3 having an average particle diameter of 1.0 μm, the metal powder and the acrylic system at a ratio of W 50 mass%, Cu 50 mass%, and Al 2 O 3 5 mass% A binder and acetone were mixed as a solvent to prepare a conductor paste.

そして、上記のセラミックグリーンシートに対して、打ち抜き加工を施し、貫通導体を形成するための直径が100μmのビアホールを形成し、このビアホール内に、導体ペーストをスクリーン印刷法によって充填するとともに、配線パターン状に印刷塗布した。また、打ち抜き加工時にビアホールとともに、金属体を挿入するための貫通孔を形成した。   The ceramic green sheet is punched to form a via hole having a diameter of 100 μm for forming a through conductor, and the via hole is filled with a conductive paste by a screen printing method. Was printed and applied. In addition, a through hole for inserting a metal body was formed together with a via hole during punching.

このようにして作製したグリーンシートを組み合わせ、位置合わせし、積層圧着し、焼成後の寸法が、外形10mm×10mm×厚み0.6mmとなる積層体を作製した。   The green sheets thus produced were combined, aligned, laminated and pressure-bonded, and a laminate having dimensions after firing of 10 mm × 10 mm × 0.6 mm in thickness was produced.

なお、この積層体は、枠体を設けないもの、セラミック製の枠体を設けるもの、金属製の枠体を設けるものの3種類を作製した。   In addition, this laminated body produced three types, the thing which does not provide a frame, the thing which provides a ceramic frame, and the thing which provides a metal frame.

セラミック製の枠体を設けるものについては、積層体の発光素子が搭載される搭載部側には、10mm×10mm×2mmの外形寸法を有し、前記積層体と接する側の内径が4mm、逆側の内径が8mmのテーパー状の貫通穴を有する絶縁基体と同様の材質からなる枠体を形成した。なお、この枠体となる成形体は前記積層体と熱圧着にて一体物として形成した。   For the ceramic frame body, the mounting portion side on which the light emitting element of the laminated body is mounted has an outer dimension of 10 mm × 10 mm × 2 mm, and the inner diameter on the side in contact with the laminated body is 4 mm. A frame made of the same material as that of the insulating substrate having a tapered through hole with an inner diameter of 8 mm on the side was formed. In addition, the molded object used as this frame was formed as an integral body by thermocompression bonding with the laminate.

また、金属製の枠体を設けるものについては、積層体の搭載部側の枠体と接する部分に導体ペーストをスクリーン印刷して金属層を形成した。   Moreover, about what provides a metal frame, the metal paste was screen-printed in the part which contact | connects the frame by the side of the mounting part of a laminated body, and the metal layer was formed.

そして、枠体となる成形体と一体化した積層体を露点+25℃の窒素水素混合雰囲気にて900℃で脱脂を行った後、引き続き、露点+25℃の窒素水素混合雰囲気にて表1に示す最高温度で2時間保持して焼成した。   And after degreasing the laminated body integrated with the molded body to be a frame body at 900 ° C. in a nitrogen-hydrogen mixed atmosphere at a dew point of + 25 ° C., it is shown in Table 1 in a nitrogen-hydrogen mixed atmosphere at a dew point of + 25 ° C. It was fired by holding at the maximum temperature for 2 hours.

その後、接続端子並びに外部電極端子の表面にNi、Auめっきを順次施した。なお、MgOの耐薬品性がAlなどと比較すると低いため、めっき処理液の濃度を薄くし、めっき処理温度を低くして、発光素子用配線基板の表面状態が劣化しないようにして、本発明の発光素子用配線基板のめっき処理を行った。 Thereafter, Ni and Au plating were sequentially applied to the surfaces of the connection terminal and the external electrode terminal. Since the chemical resistance of MgO is lower than that of Al 2 O 3 or the like, the concentration of the plating treatment solution is reduced and the plating treatment temperature is lowered so that the surface state of the wiring board for light emitting elements does not deteriorate. Then, the plating treatment of the wiring board for light emitting device of the present invention was performed.

次に、金属製の枠体を設けた試料については、熱膨張係数が23×10−6/℃、熱伝導率が238W/m・KのAl製金属枠体を、半田を用いて枠体を絶縁基体に接合して作製した。 Next, for a sample provided with a metal frame, an Al metal frame having a thermal expansion coefficient of 23 × 10 −6 / ° C. and a thermal conductivity of 238 W / m · K is used to form a frame using solder. Was bonded to an insulating substrate.

なお、金属体を挿入するための貫通孔は、表2並びに図5に示すように、貫通孔の壁面に凹凸を設け、階段状としたものと、凹凸を設けない2種類の形状となるように加工した。   As shown in Table 2 and FIG. 5, the through holes for inserting the metal body are formed in two types of shapes, in which the wall surface of the through holes is provided with irregularities and stepped, and in which no irregularities are provided. It was processed into.

次に、この貫通孔の内壁に対して、金属体を挿入したときに金属体と貫通孔との間に50μmの隙間ができるような形状の金属体を準備した。なお、金属体の厚みは絶縁基体と略同一となるように加工した。なお、表2に用いた金属体の組成を示しているが、単独の金属元素を用いたものについては、純度99%以上の無垢金属体を用いている。また、Cu−Wと記載した金属体については、Cu20質量%、W質量80%の組成を用いた。また、表2に、この金属体の相対密度と熱膨張係数、熱伝導率を示す。なお、焼成後の絶縁基体の熱膨張係数は10×10−6/℃であった。なお、熱膨張係数の測定は、TMAを用いて、25〜400℃の温度範囲で行った。 Next, a metal body having a shape such that a gap of 50 μm was formed between the metal body and the through hole when the metal body was inserted into the inner wall of the through hole was prepared. The metal body was processed so that its thickness was substantially the same as that of the insulating base. In addition, although the composition of the metal body used in Table 2 is shown, a solid metal body having a purity of 99% or more is used for those using a single metal element. Moreover, about the metal body described as Cu-W, the composition of Cu 20 mass% and W mass 80% was used. Table 2 shows the relative density, thermal expansion coefficient, and thermal conductivity of the metal body. The thermal expansion coefficient of the insulating substrate after firing was 10 × 10 −6 / ° C. In addition, the measurement of the thermal expansion coefficient was performed in the temperature range of 25-400 degreeC using TMA.

次に、金属体の表面にエポキシ樹脂系接着剤をディスペンサーにて塗布し、このエポキシ樹脂系接着剤が塗布された金属体を絶縁基体の貫通孔に挿入した。その後、120℃、30分の条件で接着剤を硬化させて金属体と絶縁基体とを接合し、発光素子用配線基板を得た。   Next, an epoxy resin adhesive was applied to the surface of the metal body with a dispenser, and the metal body coated with the epoxy resin adhesive was inserted into the through hole of the insulating substrate. Thereafter, the adhesive was cured at 120 ° C. for 30 minutes to bond the metal body and the insulating substrate to obtain a wiring board for a light emitting element.

更に、これらの発光素子用配線基板の搭載部にエポキシ樹脂系接着剤をディスペンサーを用いて塗布し、出力1.5Wの発光素子であるLEDチップを実装し、ボンディングワイヤによりLEDチップと接続端子とを結線し、さらに、LEDチップと接続端子とを熱膨張係数が40×10−6/℃のエポキシ樹脂からなるモールド材で覆い、発光装置を得た。 Further, an epoxy resin adhesive is applied to the mounting portion of the wiring board for these light emitting elements using a dispenser, an LED chip which is a light emitting element with an output of 1.5 W is mounted, and the LED chip and the connection terminals are connected by bonding wires. Then, the LED chip and the connection terminal were covered with a molding material made of an epoxy resin having a thermal expansion coefficient of 40 × 10 −6 / ° C. to obtain a light emitting device.

得られた発光装置を用いて、−55℃〜125℃の温度サイクル試験を1000サイクル行い、試験後、金属体と絶縁基体間の接合界面の剥離状況を確認した。   Using the obtained light emitting device, a temperature cycle test of −55 ° C. to 125 ° C. was performed 1000 cycles, and after the test, the peeling state of the bonding interface between the metal body and the insulating substrate was confirmed.

また、発光装置に0.4Aの電流を通電し、1時間後に全放射束測定を行った。   Further, a current of 0.4 A was passed through the light emitting device, and the total radiant flux was measured after 1 hour.

また、比較例として、金属体を貫通孔に挿入し、接合する工程にかえて、ビアホールとともに形成した金属体を挿入するための貫通孔に、導体ペーストを充填する工程、積層体と貫通孔に充填した導体ペーストとを同時焼成する工程とを行い、相対密度が99.8%未満の金属体を形成した発光素子用配線基板を作製し、実施例と同様の試験を行った。   Further, as a comparative example, in place of the step of inserting and joining the metal body into the through hole, the step of filling the through hole for inserting the metal body formed together with the via hole with the conductive paste, the laminate and the through hole A step of co-firing the filled conductor paste was performed to produce a wiring board for a light emitting element on which a metal body having a relative density of less than 99.8% was formed, and the same test as in the example was performed.

なお、比較例の金属体の相対密度については、この金属体の断面SEM観察により、明らかに、ボイド、セラミック粉末の占める割合が0.2%を越えており、正確な値は定かではないものの、99.8%未満であることは議論の余地がなく、この金属体の断面SEM観察により99.8%未満と判断した。   As for the relative density of the metal body of the comparative example, the ratio of voids and ceramic powder clearly exceeds 0.2% by cross-sectional SEM observation of this metal body, although the exact value is not certain. The content of less than 99.8% was not debatable, and the metal body was judged to be less than 99.8% by cross-sectional SEM observation.

原料粉末として純度99%以上、平均粒径が1.0μmのAl粉末、純度99%以上、平均粒子径1.3μmのMn粉末、純度99%以上、平均粒径1.0μmのSiO粉末を用いて、Al粉末90質量%、Mn粉末5質量%、SiO粉末5質量%の割合で原料粉末を混合し、成形用有機樹脂(バインダ)としてアクリル系バインダと、トルエンを溶媒として混合し、スラリーを調整した。しかる後に、ドクターブレード法にてセラミックグリーンシートを作製した。 Al 2 O 3 powder having a purity of 99% or more and an average particle size of 1.0 μm as a raw material powder, Mn 2 O 3 powder having a purity of 99% or more and an average particle size of 1.3 μm, a purity of 99% or more, an average particle size of 1. using SiO 2 powder 0 .mu.m, Al 2 O 3 powder 90 wt%, Mn 2 O 3 powder 5% by weight, mixing the raw material powder at a ratio of SiO 2 powder 5% by weight, as molding organic resin (binder) An acrylic binder and toluene were mixed as a solvent to prepare a slurry. Thereafter, a ceramic green sheet was prepared by a doctor blade method.

また、導体ペーストは、MgOを主成分とする場合に用いたものと同じ原料を用いて、同じ工程、同じ割合で調整して作製した。   The conductor paste was prepared by using the same raw material as that used when MgO was the main component and adjusting the same process at the same rate.

そして、上記のセラミックグリーンシートに対して、打ち抜き加工を施し、貫通導体を形成するための直径が100μmのビアホールを形成し、このビアホール内に、導体ペーストをスクリーン印刷法によって充填するとともに、配線パターン状に印刷塗布した。また、打ち抜き加工時にビアホールとともに、金属体を挿入するための貫通孔を形成した。   The ceramic green sheet is punched to form a via hole having a diameter of 100 μm for forming a through conductor, and the via hole is filled with a conductive paste by a screen printing method. Was printed and applied. In addition, a through hole for inserting a metal body was formed together with a via hole during punching.

このようにして作製したグリーンシートを組み合わせ、位置合わせし、積層圧着し、焼成後の寸法が、外形10mm×10mm×厚み0.6mmの積層体を作製した。   The green sheets thus produced were combined, aligned, laminated and pressure-bonded, and a laminate having dimensions after firing of 10 mm × 10 mm × 0.6 mm in thickness was produced.

そして、露点+25℃の窒素水素混合雰囲気にて900℃で脱脂を行った後、引き続き、露点+25℃の窒素水素混合雰囲気にて表1に示す最高温度で2時間保持して焼成した。   And after performing degreasing | defatting at 900 degreeC in nitrogen-hydrogen mixed atmosphere with dew point +25 degreeC, it continued and baked by hold | maintaining at the maximum temperature shown in Table 1 for 2 hours in nitrogen-hydrogen mixed atmosphere with dew point +25 degreeC.

その後、接続端子並びに外部電極端子の表面にNi、Auめっきを順次施した。   Thereafter, Ni and Au plating were sequentially applied to the surfaces of the connection terminal and the external electrode terminal.

実施例2においては金属製の枠体を用いた。用いた枠体の材質としては、熱膨張係数が23×10−6/℃、熱伝導率が238W/m・KのAl製金属枠体を用いた。また、金属製の枠体については、接続端子並びに外部電極端子を形成する導体ペーストを用いて、絶縁基体の搭載部側の枠体が搭載される部分に金属層を形成したのち、半田を用いて枠体を絶縁基体に接合して作製した。 In Example 2, a metal frame was used. As the material of the frame used, an Al metal frame having a thermal expansion coefficient of 23 × 10 −6 / ° C. and a thermal conductivity of 238 W / m · K was used. In addition, for the metal frame, a conductive paste that forms connection terminals and external electrode terminals is used to form a metal layer on the portion where the frame on the mounting portion side of the insulating base is mounted, and then solder is used. The frame body was bonded to an insulating substrate.

また、金属体に関してもMgOを主成分とする場合と同様に、表2に示す材料を用いた。そして、実施例1と同様の工程で、絶縁基体と金属体をエポキシ樹脂系の接着剤にて接合し発光素子用配線基板を得た。金属体の熱膨張係数については表2に示す。なお、絶縁基体の熱膨張係数は7.5×10−6であった。 Moreover, the material shown in Table 2 was used also about the metal body similarly to the case where MgO is the main component. Then, in the same process as in Example 1, the insulating substrate and the metal body were joined with an epoxy resin adhesive to obtain a wiring board for a light emitting element. Table 2 shows the thermal expansion coefficient of the metal body. The thermal expansion coefficient of the insulating substrate was 7.5 × 10 −6 .

これらの発光素子用配線基板に接合剤としてエポキシ樹脂をディスペンサーを用いて塗布し、出力1.5Wの発光素子であるLEDチップを搭載部に実装し、ボンディングワイヤによりLEDチップと接続端子とを結線し、さらに、LEDチップと接続端子とを熱膨張係数が40×10−6/℃のエポキシ樹脂からなるモールド材で覆い、発光装置を得た。 An epoxy resin as a bonding agent is applied to these light emitting element wiring boards using a dispenser, an LED chip that is a light emitting element with an output of 1.5 W is mounted on the mounting portion, and the LED chip and the connection terminal are connected by a bonding wire. Further, the LED chip and the connection terminal were covered with a molding material made of an epoxy resin having a thermal expansion coefficient of 40 × 10 −6 / ° C. to obtain a light emitting device.

得られた発光装置を、−55℃〜125℃の温度サイクル試験を1000サイクル行い、試験後、金属体と絶縁基体間の接合界面の剥離状況を確認した。   The obtained light-emitting device was subjected to a temperature cycle test of −55 ° C. to 125 ° C. for 1000 cycles, and after the test, the peeling state of the bonding interface between the metal body and the insulating substrate was confirmed.

また、発光装置に0.4Aの電流を通電し、1時間後に全放射束測定を行った。   Further, a current of 0.4 A was passed through the light emitting device, and the total radiant flux was measured after 1 hour.

絶縁基体として樹脂を用いる場合には、まず、ガラス−エポキシ基板からなる熱膨張係数は16×10−6/℃、厚み0.6mmのプリント配線基板の両面に銅箔が形成された銅貼り基板を用いて、従来周知のサブトラクティブ法により、接続端子、外部電極端子、貫通導体、貫通孔を形成した。なお、貫通導体は、銅めっきにより形成した。また、貫通孔の内壁にも銅めっき層を形成した。なお、このガラス−エポキシ基板の熱膨張係数は16×10−6/℃であった。 When using a resin as the insulating substrate, first, a copper-clad substrate in which a copper foil is formed on both sides of a printed wiring board having a thermal expansion coefficient of 16 × 10 −6 / ° C. and a thickness of 0.6 mm made of a glass-epoxy substrate. Were used to form connection terminals, external electrode terminals, through conductors, and through holes by a conventionally known subtractive method. The through conductor was formed by copper plating. A copper plating layer was also formed on the inner wall of the through hole. The glass-epoxy substrate had a thermal expansion coefficient of 16 × 10 −6 / ° C.

また、枠体は金属製の枠体を用い、熱膨張係数が23×10−6/℃、熱伝導率が238W/m・KのAl製金属枠体を用いた。また、金属製の枠体を設けた発光素子用配線基板については、接続端子並びに外部電極端子を形成する銅箔を用いて、絶縁基体の搭載部側の枠体が搭載される部分に金属層を形成したのち、半田を用いて枠体を絶縁基体に接合して作製した。半田は従来周知の錫40%−鉛60%を用い、窒素雰囲気のリフロー炉へ230℃×10秒の条件で枠体と絶縁基体を接合した。 Further, a metal frame was used as the frame, and an Al metal frame having a thermal expansion coefficient of 23 × 10 −6 / ° C. and a thermal conductivity of 238 W / m · K was used. In addition, for a light emitting element wiring board provided with a metal frame, a copper layer is used to form a connection terminal and an external electrode terminal. After forming the frame, the frame was joined to the insulating substrate using solder. As the solder, conventionally known tin 40% -lead 60% was used, and the frame and the insulating substrate were joined to a reflow furnace in a nitrogen atmosphere at 230 ° C. for 10 seconds.

次に、この貫通孔の内壁に対して、金属体を挿入したときに金属体と貫通孔との間に50μmの隙間ができるような形状の金属体を準備した。なお、金属体の厚みは絶縁基体と略同一となるように加工した。なお、表2に用いた金属体の組成を示しているが、単独の金属元素を用いたものについては、純度99%以上の無垢金属体を用いている。また、Cu−Wと記載した金属体については、Cu質量20%、W80質量%の組成を用いた。また、表2に、この金属体の相対密度と熱膨張係数、熱伝導率を示す。この金属体を貫通孔に挿入後、半田ペーストをディスペンサーで隙間に充填し、窒素雰囲気のリフロー炉へ230℃×10秒の条件で金属体と絶縁基体を接合した。半田は従来周知の錫40%−鉛60%を用いた。また、金属体の熱膨張係数については表2に示す。   Next, a metal body having such a shape that a gap of 50 μm was formed between the metal body and the through hole when the metal body was inserted into the inner wall of the through hole was prepared. The metal body was processed so that its thickness was substantially the same as that of the insulating base. In addition, although the composition of the metal body used in Table 2 is shown, a solid metal body having a purity of 99% or more is used for those using a single metal element. Moreover, about the metal body described as Cu-W, the composition of 20 mass% of Cu and 80 mass% of W was used. Table 2 shows the relative density, thermal expansion coefficient, and thermal conductivity of this metal body. After inserting this metal body into the through hole, the solder paste was filled in the gap with a dispenser, and the metal body and the insulating substrate were joined to a reflow furnace in a nitrogen atmosphere at 230 ° C. × 10 seconds. The solder used heretofore known tin 40% -lead 60%. Moreover, it shows in Table 2 about the thermal expansion coefficient of a metal body.

これらの発光素子用配線基板に接合剤としてエポキシ樹脂をディスペンサーを用いて塗布し、出力1.5Wの発光素子であるLEDチップを搭載部に実装し、ボンディングワイヤによりLEDチップと接続端子とを結線し、さらに、LEDチップと接続端子とを熱膨張係数が40×10−6/℃のエポキシ樹脂からなるモールド材で覆い、発光装置を得た。 Epoxy resin as a bonding agent is applied to these light-emitting element wiring boards using a dispenser, LED chips that are light-emitting elements with an output of 1.5 W are mounted on the mounting portion, and the LED chips and connection terminals are connected by bonding wires. Further, the LED chip and the connection terminal were covered with a molding material made of an epoxy resin having a thermal expansion coefficient of 40 × 10 −6 / ° C., to obtain a light emitting device.

得られた発光装置を、−55℃〜125℃の温度サイクル試験を1000サイクル行い、試験後、金属体と絶縁基体間の接合界面の剥離状況を確認した。   The obtained light-emitting device was subjected to a temperature cycle test of −55 ° C. to 125 ° C. for 1000 cycles, and after the test, the peeling state of the bonding interface between the metal body and the insulating substrate was confirmed.

また、発光装置に0.4Aの電流を通電し、1時間後に全放射束測定を行った。   Further, a current of 0.4 A was passed through the light emitting device, and the total radiant flux was measured after 1 hour.

以上の工程により作製した発光素子用配線基板の特性と、試験結果を表2に示す。

Figure 2006066519
Table 2 shows the characteristics and test results of the light-emitting element wiring substrate manufactured through the above steps.
Figure 2006066519

Figure 2006066519
Figure 2006066519

表2に示すように、金属体の相対密度が99.8%に満たない本発明の範囲外である試料No.1では、同形状で相対密度が99.8%を越える金属体を用いた本発明の試料No.2よりも、金属体の熱伝導率が低く、発光素子用配線基板としての放熱性、光特性に劣ることがわかる。   As shown in Table 2, the sample Nos. With a relative density of the metal body of less than 99.8% and outside the scope of the present invention. 1, sample No. 1 of the present invention using a metal body having the same shape and a relative density exceeding 99.8%. It can be seen that the thermal conductivity of the metal body is lower than 2, and the heat dissipation and optical characteristics of the wiring board for a light emitting element are poor.

一方、本発明の発光素子用配線基板である試料No.2〜26は、絶縁基体の熱伝導率の影響は受けるものの、ボイドや、セラミック粉末などの熱伝導を阻害する要因を排除した緻密な金属体を用いることで、優れた放熱性、光特性を有する発光素子用配線基板となった。   On the other hand, Sample No. which is a wiring board for a light emitting element of the present invention. Nos. 2 to 26 are affected by the thermal conductivity of the insulating substrate, but by using a dense metal body that eliminates the factors that hinder thermal conduction such as voids and ceramic powder, excellent heat dissipation and optical characteristics can be obtained. It became the wiring board for light emitting elements which has.

は、本発明の発光素子用配線基板の断面図である。These are sectional drawings of the wiring board for light emitting elements of this invention. は、被覆膜を設けた本発明の発光素子用配線基板の断面図である。These are sectional drawings of the wiring board for light emitting elements of this invention which provided the coating film. は、被覆層を設けた本発明の発光素子用配線基板の断面図である。These are sectional drawings of the wiring board for light emitting elements of this invention which provided the coating layer. は、本発明の発光装置の断面図である。These are sectional views of the light-emitting device of the present invention. は、金属体の形状を示す断面図である。These are sectional drawings which show the shape of a metal body.

符号の説明Explanation of symbols

1・・・絶縁基体
2・・・貫通孔
3・・・接続端子
5・・・外部電極端子
6・・・絶縁膜
7・・・貫通導体
8・・・金属体
9・・・搭載部
11・・発光素子用配線基板
12・・被覆層
13・・枠体
13a・・枠体の内壁面
17・・・金属層
18・・・ 接合層
21・・・発光素子
23・・・ワイヤボンド
25・・・発光装置
29・・・接合剤
31・・・モールド材
DESCRIPTION OF SYMBOLS 1 ... Insulation base | substrate 2 ... Through-hole 3 ... Connection terminal 5 ... External electrode terminal 6 ... Insulating film 7 ... Through-conductor 8 ... Metal body 9 ... Mounting part 11 ..Light-emitting element wiring board 12 ..Coating layer 13 ..Frame body 13a ..Inner wall surface 17 of frame body ... Metal layer 18 ... Junction layer 21 ... Light-emitting element 23 ... Wire bond 25 ... Light emitting device 29 ... Binder 31 ... Mold material

Claims (16)

少なくとも、平板状の絶縁基体と、該絶縁基体を貫通して設けられた貫通孔と、前記絶縁基体の表面又は内部のうち少なくとも一方に形成された導体層と、前記絶縁基体の一方の主面に発光素子を搭載する搭載部と、を具備してなる発光素子用配線基板であって、前記絶縁基体よりも高い熱伝導率を有するとともに理論比重に対する相対密度が99.8%以上の金属体が、前記絶縁基体に設けられた貫通孔に挿入され、前記絶縁基体に接合されていることを特徴とする発光素子用配線基板。 At least a flat insulating base, a through hole provided through the insulating base, a conductor layer formed on at least one of the surface and the inside of the insulating base, and one main surface of the insulating base A metal substrate having a higher thermal conductivity than the insulating base and having a relative density with respect to the theoretical specific gravity of 99.8% or more. Is inserted into a through-hole provided in the insulating base and bonded to the insulating base. 前記絶縁基体がセラミックスからなることを特徴とする請求項1に記載の発光素子用配線基板。 The light-emitting element wiring board according to claim 1, wherein the insulating base is made of ceramics. 前記絶縁基体が樹脂を含有してなることを特徴とする請求項1に記載の発光素子用配線基板。 The light-emitting element wiring board according to claim 1, wherein the insulating substrate contains a resin. 前記金属体が、該発光素子用配線基板に搭載される発光素子の搭載面積よりも大きな断面積を有することを特徴とする請求項1乃至3のうちいずれかに記載の発光素子用配線基板。 The light emitting element wiring board according to any one of claims 1 to 3, wherein the metal body has a cross-sectional area larger than a mounting area of a light emitting element mounted on the light emitting element wiring board. 前記金属体の一方の端面が、他方の端面よりも大きいことを特徴とする請求項1乃至4のうちいずれかに記載の発光素子用配線基板。 5. The wiring board for a light emitting element according to claim 1, wherein one end face of the metal body is larger than the other end face. 前記金属体の搭載部側と反対の端面が、前記金属体の搭載部側の端面よりも大きいことを特徴とする請求項1乃至5のうちいずれかに記載の発光素子用配線基板。 6. The wiring board for a light emitting element according to claim 1, wherein an end surface opposite to the mounting portion side of the metal body is larger than an end surface on the mounting portion side of the metal body. 前記絶縁基体と前記金属体とが、接合層により接合されていることを特徴とする請求項1乃至6に記載の発光素子用配線基板。 The light-emitting element wiring board according to claim 1, wherein the insulating base and the metal body are bonded together by a bonding layer. 前記接合層が、金属を含有することを特徴とする請求項7記載の発光素子用配線基板。 The light-emitting element wiring board according to claim 7, wherein the bonding layer contains a metal. 前記接合層が、樹脂を含有することを特徴とする請求項7記載の発光素子用配線基板。 The light-emitting element wiring board according to claim 7, wherein the bonding layer contains a resin. 前記接合層が、セラミックスを含有することを特徴とする請求項7記載の発光素子用配線基板。 The light-emitting element wiring board according to claim 7, wherein the bonding layer contains ceramics. 前記発光素子用配線基板の主面に形成された、前記絶縁基体と前記金属体との境界を、被覆層により被覆したことを特徴とする請求項1乃至10のうちいずれかに記載の発光素子用配線基板。 The light emitting element according to claim 1, wherein a boundary between the insulating base and the metal body formed on a main surface of the wiring board for the light emitting element is covered with a coating layer. Wiring board. 前記金属体が、電気回路を形成していることを特徴とする請求項1乃至11のうちいずれかに記載の発光素子用配線基板。 The light emitting element wiring board according to claim 1, wherein the metal body forms an electric circuit. 前記金属体の少なくとも一方の端面が絶縁膜で覆われていることを特徴とする請求項1乃至12のうちいずれかに記載の発光素子用配線基板。 The light emitting element wiring board according to claim 1, wherein at least one end face of the metal body is covered with an insulating film. 前記導体層および金属体がW、Mo、Cu、Ag、Alのうち少なくとも1種を主成分とすることを特徴とする請求項1乃至13のうちいずれかに記載の発光素子用配線基板。 The light-emitting element wiring board according to claim 1, wherein the conductor layer and the metal body contain at least one of W, Mo, Cu, Ag, and Al as a main component. 前記発光素子用配線基板の搭載部が形成された側の主面に、発光素子を収容するための枠体が形成されてなることを特徴とする請求項1乃至14のうちいずれかに記載の発光素子用配線基板。 The frame body for accommodating a light emitting element is formed in the main surface at the side in which the mounting part of the said wiring board for light emitting elements was formed, The Claim 1 thru | or 14 characterized by the above-mentioned. Wiring board for light emitting element. 請求項1乃至15のうちいずれかに記載の発光素子用配線基板の搭載部に発光素子を搭載してなることを特徴とする発光装置。

A light emitting device comprising a light emitting element mounted on the mounting portion of the wiring board for a light emitting element according to claim 1.

JP2004245507A 2004-08-25 2004-08-25 Wiring circuit board for light-emitting element and the light-emitting device Pending JP2006066519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245507A JP2006066519A (en) 2004-08-25 2004-08-25 Wiring circuit board for light-emitting element and the light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245507A JP2006066519A (en) 2004-08-25 2004-08-25 Wiring circuit board for light-emitting element and the light-emitting device

Publications (1)

Publication Number Publication Date
JP2006066519A true JP2006066519A (en) 2006-03-09

Family

ID=36112744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245507A Pending JP2006066519A (en) 2004-08-25 2004-08-25 Wiring circuit board for light-emitting element and the light-emitting device

Country Status (1)

Country Link
JP (1) JP2006066519A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100730772B1 (en) 2006-10-11 2007-06-21 주식회사 쎄라텍 Package for high power light emission device
JP2007266172A (en) * 2006-03-28 2007-10-11 Kyocera Corp Wiring board for light emitting elelemnt, and light emitting device
JP2007273602A (en) * 2006-03-30 2007-10-18 Kyocera Corp Wiring board for light emitting element, and light emitting device
JP2007273603A (en) * 2006-03-30 2007-10-18 Kyocera Corp Wiring board for light emitting element, and light emitting device
KR100775922B1 (en) * 2006-05-10 2007-11-15 한솔엘씨디 주식회사 Led module and process of manufacture for back light unit
JP2007311510A (en) * 2006-05-18 2007-11-29 Ngk Spark Plug Co Ltd Wiring board
JP2009049197A (en) * 2007-08-20 2009-03-05 Denki Kagaku Kogyo Kk Method of manufacturing substrate for light emitting element package, and light emitting element package
JP2009105153A (en) * 2007-10-22 2009-05-14 Denki Kagaku Kogyo Kk Manufacturing method of substrate for light emitting element package, and light emitting element package
EP2109156A4 (en) * 2007-01-30 2010-02-24 Denki Kagaku Kogyo Kk Led light source unit
EP2202809A1 (en) * 2007-10-15 2010-06-30 Foshan Nationstar Optoelectronics Co., Ltd A structure of heat dissipation substrate for power led and a device manufactured by it
JP2010183079A (en) * 2009-02-03 2010-08-19 Yiguang Electronic Ind Co Ltd Light emitting device and method for fabricating the same
JP2010245120A (en) * 2009-04-01 2010-10-28 Hitachi Kokusai Electric Inc Wiring board
JP2010541219A (en) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Arrangement structure with optoelectronic components
JP2011009716A (en) * 2009-05-28 2011-01-13 Denka Agsp Kk Method of manufacturing substrate for light emitting element mounting
WO2012067203A1 (en) * 2010-11-19 2012-05-24 旭硝子株式会社 Substrate for light-emitting element, and light-emitting device
WO2012067204A1 (en) * 2010-11-19 2012-05-24 旭硝子株式会社 Substrate for light-emitting element, and light-emitting device
CN102610709A (en) * 2011-01-19 2012-07-25 旭德科技股份有限公司 Package carrier and method for manufacturing the same
JP2012523678A (en) * 2009-04-10 2012-10-04 佛山市国星光電股▲ふん▼有限公司 Power LED heat dissipation substrate, method for manufacturing power LED product, and product by the method
JP2013222959A (en) * 2012-04-13 2013-10-28 Kyokutoku Kagi Kofun Yugenkoshi Package carrier and manufacturing method thereof
CN103999210A (en) * 2011-12-22 2014-08-20 京瓷株式会社 Wiring board and electronic device
JP2016001756A (en) * 2009-09-17 2016-01-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Led module with high index lens
US9812624B2 (en) 2008-01-17 2017-11-07 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211972A (en) * 1986-03-13 1987-09-17 Oki Electric Ind Co Ltd Manufacture of optical print head
JPH05267722A (en) * 1992-03-18 1993-10-15 Oki Electric Ind Co Ltd Light receiving and emitting element
JP2001185763A (en) * 1999-12-27 2001-07-06 Toshiba Electronic Engineering Corp Optical semiconductor package
JP2003168829A (en) * 2001-09-19 2003-06-13 Matsushita Electric Works Ltd Light emitting device
JP2004140150A (en) * 2002-08-20 2004-05-13 Tanaka Kikinzoku Kogyo Kk Substrate for light emitting diode device
JP2004221520A (en) * 2002-10-03 2004-08-05 Kyocera Corp Package for storing light-emitting element and light-emitting device
JP2004228239A (en) * 2003-01-21 2004-08-12 Kyocera Corp Package for storing light emitting element and light emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211972A (en) * 1986-03-13 1987-09-17 Oki Electric Ind Co Ltd Manufacture of optical print head
JPH05267722A (en) * 1992-03-18 1993-10-15 Oki Electric Ind Co Ltd Light receiving and emitting element
JP2001185763A (en) * 1999-12-27 2001-07-06 Toshiba Electronic Engineering Corp Optical semiconductor package
JP2003168829A (en) * 2001-09-19 2003-06-13 Matsushita Electric Works Ltd Light emitting device
JP2004140150A (en) * 2002-08-20 2004-05-13 Tanaka Kikinzoku Kogyo Kk Substrate for light emitting diode device
JP2004221520A (en) * 2002-10-03 2004-08-05 Kyocera Corp Package for storing light-emitting element and light-emitting device
JP2004228239A (en) * 2003-01-21 2004-08-12 Kyocera Corp Package for storing light emitting element and light emitting device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266172A (en) * 2006-03-28 2007-10-11 Kyocera Corp Wiring board for light emitting elelemnt, and light emitting device
JP2007273602A (en) * 2006-03-30 2007-10-18 Kyocera Corp Wiring board for light emitting element, and light emitting device
JP2007273603A (en) * 2006-03-30 2007-10-18 Kyocera Corp Wiring board for light emitting element, and light emitting device
KR100775922B1 (en) * 2006-05-10 2007-11-15 한솔엘씨디 주식회사 Led module and process of manufacture for back light unit
JP2007311510A (en) * 2006-05-18 2007-11-29 Ngk Spark Plug Co Ltd Wiring board
KR100730772B1 (en) 2006-10-11 2007-06-21 주식회사 쎄라텍 Package for high power light emission device
EP2109156A4 (en) * 2007-01-30 2010-02-24 Denki Kagaku Kogyo Kk Led light source unit
JP2009049197A (en) * 2007-08-20 2009-03-05 Denki Kagaku Kogyo Kk Method of manufacturing substrate for light emitting element package, and light emitting element package
JP2010541219A (en) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Arrangement structure with optoelectronic components
EP2202809A1 (en) * 2007-10-15 2010-06-30 Foshan Nationstar Optoelectronics Co., Ltd A structure of heat dissipation substrate for power led and a device manufactured by it
EP2202809A4 (en) * 2007-10-15 2013-03-20 Foshan Nationstar Optoelectronics Co Ltd A structure of heat dissipation substrate for power led and a device manufactured by it
JP2010532925A (en) * 2007-10-15 2010-10-14 フォーシャン・ネーションスター・オプトエレクトロニクス・カンパニー・リミテッド Power LED heat dissipation substrate structure and apparatus manufactured by the structure
JP2009105153A (en) * 2007-10-22 2009-05-14 Denki Kagaku Kogyo Kk Manufacturing method of substrate for light emitting element package, and light emitting element package
US11652197B2 (en) 2008-01-17 2023-05-16 Nichia Corporation Method for producing an electronic device
US10950770B2 (en) 2008-01-17 2021-03-16 Nichia Corporation Method for producing an electronic device
US10573795B2 (en) 2008-01-17 2020-02-25 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
US9812624B2 (en) 2008-01-17 2017-11-07 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, light-emitting device, and method for producing light-emitting device
JP2010183079A (en) * 2009-02-03 2010-08-19 Yiguang Electronic Ind Co Ltd Light emitting device and method for fabricating the same
JP2010245120A (en) * 2009-04-01 2010-10-28 Hitachi Kokusai Electric Inc Wiring board
JP2012523678A (en) * 2009-04-10 2012-10-04 佛山市国星光電股▲ふん▼有限公司 Power LED heat dissipation substrate, method for manufacturing power LED product, and product by the method
JP2011009716A (en) * 2009-05-28 2011-01-13 Denka Agsp Kk Method of manufacturing substrate for light emitting element mounting
JP2016001756A (en) * 2009-09-17 2016-01-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Led module with high index lens
JP5862574B2 (en) * 2010-11-19 2016-02-16 旭硝子株式会社 Light emitting element substrate and light emitting device
WO2012067204A1 (en) * 2010-11-19 2012-05-24 旭硝子株式会社 Substrate for light-emitting element, and light-emitting device
WO2012067203A1 (en) * 2010-11-19 2012-05-24 旭硝子株式会社 Substrate for light-emitting element, and light-emitting device
CN102610709B (en) * 2011-01-19 2014-12-24 旭德科技股份有限公司 Package carrier and method for manufacturing the same
JP2012151473A (en) * 2011-01-19 2012-08-09 Kyokutoku Kagi Kofun Yugenkoshi Package carrier and manufacturing method thereof
CN102610709A (en) * 2011-01-19 2012-07-25 旭德科技股份有限公司 Package carrier and method for manufacturing the same
CN103999210A (en) * 2011-12-22 2014-08-20 京瓷株式会社 Wiring board and electronic device
JP2013222959A (en) * 2012-04-13 2013-10-28 Kyokutoku Kagi Kofun Yugenkoshi Package carrier and manufacturing method thereof
CN103378014A (en) * 2012-04-13 2013-10-30 旭德科技股份有限公司 Package carrier and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4789671B2 (en) WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
JP2006066519A (en) Wiring circuit board for light-emitting element and the light-emitting device
JP4804109B2 (en) LIGHT EMITTING DEVICE WIRING BOARD, LIGHT EMITTING DEVICE, AND LIGHT EMITTING DEVICE WIRING BOARD MANUFACTURING METHOD
US8314346B2 (en) Wiring board for light-emitting element
JP2006093565A (en) Wiring board for light emitting element, light emitting device and method for manufacturing it
JP2008109079A (en) Wiring board for surface mounting type light-emitting element, and light-emitting device
JP4841284B2 (en) WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
JP2006339559A (en) Led and its manufacturing method
JP2007273602A (en) Wiring board for light emitting element, and light emitting device
JP4780939B2 (en) Light emitting device
JP2007227737A (en) Wiring board for light-emitting element, and light-emitting device
JP2006147999A (en) Wiring board for light emitting device, and light emitting equipment
JP2007227738A (en) Wiring board for light-emitting element, and light-emitting device
JP2007273603A (en) Wiring board for light emitting element, and light emitting device
JP2007273592A (en) Light emitting element wiring board and light emitting device
JP2007250899A (en) Light-emitting module, and display device and lighting device using the same
JP5046507B2 (en) WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
JP2006128265A (en) Wiring board for light emitting element and light emitting device
WO2018181523A1 (en) Composite ceramic multilayer substrate, heat-generating element mounting module, and method for manufacturing composite ceramic multilayer substrate
JP2006156447A (en) Wiring board for light emitting element, light emitting device and its manufacturing method
JP2007123481A (en) Light emitting device and wiring board for light emitting element
JP2007149811A (en) Wiring board for light emitting element and light emitting device
JP2007227728A (en) Led (light emitting diode) component, and its manufacturing method
JP2006066409A (en) Wiring board for light emitting element, manufacturing method thereof and light emitting device
JP2011205009A (en) Wiring circuit board for surface-mounting light emitting element and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130