JP2011004598A - Piezoelectric generator and electronic apparatus using piezoelectric generator - Google Patents

Piezoelectric generator and electronic apparatus using piezoelectric generator Download PDF

Info

Publication number
JP2011004598A
JP2011004598A JP2010197476A JP2010197476A JP2011004598A JP 2011004598 A JP2011004598 A JP 2011004598A JP 2010197476 A JP2010197476 A JP 2010197476A JP 2010197476 A JP2010197476 A JP 2010197476A JP 2011004598 A JP2011004598 A JP 2011004598A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric body
support portion
electrode
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010197476A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ono
泰弘 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010197476A priority Critical patent/JP2011004598A/en
Publication of JP2011004598A publication Critical patent/JP2011004598A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric generator for collecting oscillation energy in d 15 mode which achieves high electric power generation efficiency.SOLUTION: The piezoelectric generator includes: a support part 1 made of a non-piezoelectric material, a piezoelectric body 2 which is formed on the support part 1 and whose direction of polarization is perpendicular to the support part 1, electrodes 5 and 6 formed on the facing surface parallel to the direction of polarization of the piezoelectric body 2, and a weight part 3 formed on the side opposite to the support part 1 in the piezoelectric body 2. The piezoelectric generator can generate electric power in d15 mode by generating electric power with vibration energy in a direction orthogonal to the direction of polarization of the piezoelectric body 2 and facing the electrodes 5 and 6, so that the power generation efficiency can be improved. The distortion generated in the piezoelectric body 2 can be enlarged by making the width of the surface on which the electrodes 5 and 6 of the piezoelectric body 2 are formed larger than the width of the surface on which no electrode 5 and 6 is formed, so that the power generation efficiency can be improved further.

Description

本発明は、圧電体を用いた圧電型発電機に関するものである。   The present invention relates to a piezoelectric generator using a piezoelectric body.

このような圧電型発電機としては、例えば下記特許文献1に記載されるものが挙げられる。この圧電型発電機では、圧電セラミック板を燐青銅板の両面に張り付けた圧電変換素子が用いられており、この圧電変換素子は、固定端部を基板に固定して当該基板から片持ち梁状に突出している。圧電変換素子の突出端部には錘が取付けられており、固定端部を基準として、錘に断続的に振動を加えることで圧電変換素子を円滑に振動し、圧電セラミック板に歪みを生じさせることで交流電圧を発生させる。   Examples of such a piezoelectric generator include those described in Patent Document 1 below. In this piezoelectric generator, a piezoelectric conversion element in which a piezoelectric ceramic plate is bonded to both sides of a phosphor bronze plate is used. This piezoelectric conversion element has a fixed end fixed to a substrate and is cantilevered from the substrate. Protruding. A weight is attached to the protruding end portion of the piezoelectric transducer, and the piezoelectric transducer is smoothly vibrated by intermittently applying vibration to the weight with reference to the fixed end, causing distortion in the piezoelectric ceramic plate. AC voltage is generated.

特開平7−107752号公報JP-A-7-107752

しかしながら、前記特許文献1に記載される圧電型発電機は、発電に寄与する振動モードが、圧電変換素子の分極方向と直交方向で且つ電極の対向方向とも直交方向の振動エネルギーを用いる、所謂d31モードであり、発電効率がよくない。
本発明は、上記のような問題点に着目してなされたものであり、発電効率のよいd15モードの振動エネルギーを回収することが可能な圧電型発電機を提供することを目的とするものである。
However, the piezoelectric generator described in Patent Document 1 uses so-called d31 in which the vibration mode contributing to power generation uses vibration energy in a direction orthogonal to the polarization direction of the piezoelectric transducer and in a direction orthogonal to the opposing direction of the electrodes. Mode and power generation efficiency is not good.
The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a piezoelectric generator capable of recovering d15 mode vibration energy with good power generation efficiency. is there.

上記課題を解決するために、本発明の圧電型発電機は、外部から加わる振動エネルギーを回収して電気エネルギーに変換するための発電機であって、非圧電材料からなる支持部と、前記支持部上に形成され且つ分極方向が当該支持部に対して垂直な圧電体と、前記圧電体の分極方向と平行な向かい合う面に形成された電極と、前記圧電体上で、前記支持部と反対側に形成された錘部とを有し、前記圧電体の分極方向と直交方向で且つ電極の対向方向の振動エネルギーで発電することを特徴とするものである。
この圧電型発電機によれば、錘部が圧電体を挟んで支持部と反対側に形成され、圧電体の分極方向が支持部に対して垂直な方向に一致し、電極が圧電体の分極方向と平行な向かい面に形成されているため、圧電体の分極方向と直交方向で且つ電極の対向方向の振動エネルギー、即ちd15モードで発電することができ、発電効率がよい。
In order to solve the above-described problems, a piezoelectric generator according to the present invention is a generator for recovering vibration energy applied from the outside and converting it into electric energy, and a support portion made of a non-piezoelectric material and the support A piezoelectric body formed on the surface and having a polarization direction perpendicular to the support section, an electrode formed on an opposing surface parallel to the polarization direction of the piezoelectric body, and on the piezoelectric body, opposite to the support section And a weight portion formed on the side, and generates electricity with vibration energy in a direction orthogonal to the polarization direction of the piezoelectric body and in a direction opposite to the electrodes.
According to this piezoelectric generator, the weight portion is formed on the opposite side of the support portion across the piezoelectric body, the polarization direction of the piezoelectric body coincides with the direction perpendicular to the support portion, and the electrode is the polarization of the piezoelectric body. Since it is formed on the opposite surface parallel to the direction, it is possible to generate power in the vibration energy in the direction orthogonal to the polarization direction of the piezoelectric body and in the opposite direction of the electrode, that is, the d15 mode, and the power generation efficiency is good.

また、前記圧電体は、電極の形成されている面の幅が電極の形成されていない面の幅より大きいことを特徴とするものである。
この圧電型発電機によれば、圧電体に発生する歪みを大きくすることができ、発電効率をより一層よくすることができる。
また、前記錘部の厚さは圧電体の厚さの同厚以上2倍以下であることを特徴とするものである。
この圧電型発電機によれば、共振周波数を下げつつ、エネルギー効率を高めることが可能となる。
Further, the piezoelectric body is characterized in that the width of the surface where the electrode is formed is larger than the width of the surface where the electrode is not formed.
According to this piezoelectric generator, distortion generated in the piezoelectric body can be increased, and the power generation efficiency can be further improved.
Further, the thickness of the weight portion is equal to or greater than twice the thickness of the piezoelectric body.
According to this piezoelectric generator, it is possible to increase energy efficiency while lowering the resonance frequency.

本発明の圧電型発電機の一実施形態を示す製造工程図である。It is a manufacturing process figure which shows one Embodiment of the piezoelectric generator of this invention. 図1の次の工程の製造工程図である。It is a manufacturing-process figure of the next process of FIG. 図2の次の工程の製造工程図である。FIG. 3 is a manufacturing process diagram for the next process of FIG. 2. 図3の次の工程の製造工程図である。FIG. 4 is a manufacturing process diagram for the next process of FIG. 3. 図4の次の工程の製造工程図である。FIG. 5 is a manufacturing process diagram for the next process of FIG. 4. 図5の次の工程の製造工程図である。FIG. 6 is a manufacturing process diagram for the next process of FIG. 5. 図6の次の工程の製造工程図である。FIG. 7 is a manufacturing process diagram for the next process of FIG. 6. 図7の次の工程の製造工程図である。FIG. 8 is a manufacturing process diagram for the next process of FIG. 7. 振動モードの説明図である。It is explanatory drawing of a vibration mode.

次に、本発明の圧電型発電機の一実施形態について図面を参照しながら説明する。
図1〜図8は、本実施形態の圧電型発電機の製造工程図である。図1は、本実施形態の圧電型発電機の支持部1である。この支持部1は、非圧電材料からなり、本実施形態では直方形のアルミナを用いた。非圧電材料としては、アルミナの他、ジルコニア、シリコン、窒化シリコン、シリコンカーバイト、石英、有機ポリマーなどが挙げられる。
Next, an embodiment of a piezoelectric generator according to the present invention will be described with reference to the drawings.
1 to 8 are manufacturing process diagrams of the piezoelectric generator of the present embodiment. FIG. 1 shows a support portion 1 of the piezoelectric generator according to this embodiment. The support portion 1 is made of a non-piezoelectric material, and rectangular alumina is used in this embodiment. Examples of the non-piezoelectric material include alumina, zirconia, silicon, silicon nitride, silicon carbide, quartz, and organic polymer.

図2は、支持部1の上に、圧電体2を積層した状態を示している。圧電体2の分極方向は、支持部1から遠ざかる方向或いは支持部1に近づく方向、つまり支持部1に対して垂直な方向とした。本実施形態では、圧電体2に厚さ3mmのPZTを用い、これを支持部1の上方に2液性エポキシなどの接着剤で接着した。圧電体2としては、PZTの他、PZTN、BaTiO3、ZnO、AlN、LiNbO3、LiTaO3などが挙げられる。圧電体2の厚さは0.1〜10mm。圧電体2は、同種、異種を問わず、2層以上の圧電材料から形成されていてもよい。また、内部に電極を配設してもよい。但し、後述する外部電極に接触してはならない。 FIG. 2 shows a state in which the piezoelectric body 2 is laminated on the support portion 1. The polarization direction of the piezoelectric body 2 was set to be a direction away from the support portion 1 or a direction approaching the support portion 1, that is, a direction perpendicular to the support portion 1. In the present embodiment, PZT having a thickness of 3 mm is used for the piezoelectric body 2, and this is bonded to the upper portion of the support portion 1 with an adhesive such as a two-component epoxy. Examples of the piezoelectric body 2 include PZT, PZTN, BaTiO 3 , ZnO, AlN, LiNbO 3 , and LiTaO 3 . The thickness of the piezoelectric body 2 is 0.1 to 10 mm. The piezoelectric body 2 may be formed of two or more layers of piezoelectric materials regardless of the same type or different types. Moreover, you may arrange | position an electrode inside. However, it must not contact an external electrode described later.

図3は、圧電体2の上に、錘部3を積層した状態を示している。本実施形態では、錘部3にジルコニアを用いた。錘部3は、絶縁性を有する材料であれば、特に限定されない。錘部3の厚さは、圧電体2の厚さと同厚〜2倍厚とする。錘部3の厚さが圧電体2の厚さの2倍厚以上であると、共振周波数は下がるものの、エネルギー効率がよくない。錘部3は、2液性エポキシなどの接着剤を用いて圧電体2の上方に接着する。
図4は、支持部1から錘部3までの外周にマスク4a、4bを形成した状態を示している。錘部3、圧電体2は、この後、分割加工するので、錘部3の上方には加工及び保護用のマスク4aを形成し、錘部3、圧電体2、支持部1の図示側方及び支持部1の下面には保護用のマスク4bを形成する。マスク4a、4bは、ドライフィルムやフォトレジストを用いることができる。
FIG. 3 shows a state in which the weight portion 3 is laminated on the piezoelectric body 2. In this embodiment, zirconia is used for the weight portion 3. The weight portion 3 is not particularly limited as long as it is an insulating material. The thickness of the weight portion 3 is the same as or twice the thickness of the piezoelectric body 2. If the thickness of the weight portion 3 is twice or more the thickness of the piezoelectric body 2, the resonance frequency is lowered, but the energy efficiency is not good. The weight portion 3 is bonded to the upper side of the piezoelectric body 2 using an adhesive such as a two-component epoxy.
FIG. 4 shows a state in which masks 4 a and 4 b are formed on the outer periphery from the support portion 1 to the weight portion 3. Since the weight portion 3 and the piezoelectric body 2 are divided thereafter, a mask 4a for processing and protection is formed above the weight portion 3, and the weight portion 3, the piezoelectric body 2, and the support portion 1 are shown in the side view. A protective mask 4 b is formed on the lower surface of the support portion 1. For the masks 4a and 4b, a dry film or a photoresist can be used.

図5は、錘部3、圧電体2に溝を形成し、それらを4つに分割加工した状態を示している。分割された圧電体2、錘部3で素子が形成される。溝は、ワイヤーソーで加工した。溝の深さは支持部1と圧電体2との接合面までとしたが、圧電体2を少し残してもよい。振動エネルギーの方向は図の左右方向とする。溝加工の際、圧電体2の振動方向の長さ(後述する電極の形成されていない面の幅)aを、それと直交方向の長さ(後述する電極の形成されている面の幅)bより小さくする。この場合は、a=0.1mm、b=1mmとした。このように圧電体2の振動方向の長さ(電極の形成されていない面の幅)aを、それと直交方向の長さ(電極の形成されている面の幅)bより小さくすることで、圧電体2そのものを振動しやすくし、振動エネルギーに対する圧電体2の歪みを大きくして発電効率を高める。   FIG. 5 shows a state in which grooves are formed in the weight part 3 and the piezoelectric body 2 and they are divided into four parts. The divided piezoelectric body 2 and weight portion 3 form an element. The groove was processed with a wire saw. The depth of the groove is up to the joint surface between the support portion 1 and the piezoelectric body 2, but the piezoelectric body 2 may be left a little. The direction of vibration energy is the left-right direction in the figure. At the time of grooving, the length of the piezoelectric body 2 in the vibration direction (the width of the surface on which the electrode described later is not formed) a is set to the length (the width of the surface on which the electrode described later is formed) b. Make it smaller. In this case, a = 0.1 mm and b = 1 mm. Thus, by making the length (width of the surface where the electrode is not formed) a of the piezoelectric body 2 smaller than the length (width of the surface where the electrode is formed) b perpendicular to the length (a). The piezoelectric body 2 itself is easily vibrated, and the distortion of the piezoelectric body 2 with respect to vibration energy is increased to increase the power generation efficiency.

図6は、図の右斜め上方から蒸着、スパッタリングなどによって一方の電極5を形成した状態を示している。電極5は、金、銀、アルミニウムなどが挙げられる。また、密着層として、Cr、Ti等を用いてもよい。その場合、例えば0.3μmAu/0.1μmCrを斜めスパッタにより形成する。
図7は、前記図6と同様に、図の左斜め上方から、蒸着、スパッタリングなどによって他方の電極6を形成した状態を示している。電極の材料、電極の形成方法などは図6と同様である。
FIG. 6 shows a state in which one electrode 5 is formed by vapor deposition, sputtering or the like from the upper right side of the figure. Examples of the electrode 5 include gold, silver, and aluminum. Further, Cr, Ti, or the like may be used as the adhesion layer. In that case, for example, 0.3 μm Au / 0.1 μm Cr is formed by oblique sputtering.
FIG. 7 shows a state in which the other electrode 6 is formed by vapor deposition, sputtering, etc. from the upper left of the drawing, as in FIG. The electrode material, electrode formation method, and the like are the same as in FIG.

図8は、リフトオフによって上部のマスク4aを除去すると共に、側方及び下部のマスク4bも除去した状態、つまり慣性状態を示している。リフトオフによって、2つの電極5、6が分割されている。
図9には、代表的な圧電型発電機の振動モードを示す。図9aは、所謂d31モードであり、分極方向と直交して向かい合う面に電極が形成され、分極方向と振動方向とが直交する振動モードであり、発電効率を表す等価圧電定数が小さい。図9bは、所謂d33モードであり、分極方向と直交して向かい合う面に電極が形成され、振動方向と分極方向とが一致する振動モードであり、d31モードほどではないものの、発電効率を表す等価圧電定数も比較的小さい。これに対し、図9Cは、本実施形態に相当する、所謂d15モードであり、分極方向と平行な向かい合う面に電極が形成され、分極方向と振動方向とが直交する振動モードであり、発電効率を表す等価圧電定数が大きい。
FIG. 8 shows a state where the upper mask 4a is removed by lift-off and the side and lower masks 4b are also removed, that is, an inertial state. The two electrodes 5 and 6 are divided by lift-off.
FIG. 9 shows a vibration mode of a typical piezoelectric generator. FIG. 9A is a so-called d31 mode, which is a vibration mode in which electrodes are formed on surfaces facing each other orthogonal to the polarization direction, and the polarization direction and the vibration direction are orthogonal to each other, and the equivalent piezoelectric constant representing the power generation efficiency is small. FIG. 9b is a so-called d33 mode, which is an oscillation mode in which electrodes are formed on the surfaces facing each other orthogonal to the polarization direction, and the oscillation direction and the polarization direction coincide with each other. The piezoelectric constant is also relatively small. On the other hand, FIG. 9C shows a so-called d15 mode corresponding to the present embodiment, in which electrodes are formed on opposite faces parallel to the polarization direction, and the polarization direction and the vibration direction are orthogonal to each other, and the power generation efficiency The equivalent piezoelectric constant representing is large.

このように、本実施形態の圧電型発電機では、外部から加わる振動エネルギーを回収して電気エネルギーに変換するにあたり、非圧電材料からなる支持部1と、支持部1上に形成され且つ分極方向が当該支持部1に対して垂直な圧電体2と、圧電体2の分極方向と平行な向かい合う面に形成された電極5、6と、圧電体2で、支持部1と反対側に形成された錘部3とを有し、圧電体2の分極方向と直交方向で且つ電極5,6の対向方向の振動エネルギーで発電することとしたため、即ちd15モードで発電することができ、発電効率がよい。   As described above, in the piezoelectric generator according to the present embodiment, the vibration energy applied from the outside is recovered and converted into electric energy, and the support portion 1 made of a non-piezoelectric material and the polarization direction are formed on the support portion 1. Is formed on the opposite side of the support portion 1 with the piezoelectric body 2 perpendicular to the support portion 1, the electrodes 5 and 6 formed on opposite faces parallel to the polarization direction of the piezoelectric body 2, and the piezoelectric body 2. Power generation is performed with vibration energy in a direction orthogonal to the polarization direction of the piezoelectric body 2 and in the opposite direction of the electrodes 5 and 6, that is, power generation in d15 mode is possible. Good.

また、圧電体2の電極5,6の形成されている面の幅を、電極5,6の形成されていない面の幅より大きくすることにより、圧電体2に発生する歪みを大きくすることができ、発電効率をより一層よくすることができる。
また、錘部3の厚さを圧電体2の厚さの同厚以上2倍以下とすることにより、共振周波数を下げつつ、エネルギー効率を高めることが可能となる。
Further, the distortion generated in the piezoelectric body 2 can be increased by making the width of the surface of the piezoelectric body 2 where the electrodes 5 and 6 are formed larger than the width of the surface where the electrodes 5 and 6 are not formed. And power generation efficiency can be further improved.
In addition, by setting the thickness of the weight portion 3 to be equal to or greater than twice the thickness of the piezoelectric body 2, it is possible to increase energy efficiency while lowering the resonance frequency.

1は支持部、2は圧電体、3は錘部、5,6は電極。   Reference numeral 1 is a support portion, 2 is a piezoelectric body, 3 is a weight portion, and 5 and 6 are electrodes.

Claims (3)

外部から加わる振動エネルギーを回収して電気エネルギーに変換するための発電機であって、非圧電材料からなる支持部と、前記支持部上に形成され且つ分極方向が当該支持部に対して垂直な圧電体と、前記圧電体の分極方向と平行な向かい合う面に形成された電極と、前記圧電体上で、前記支持部と反対側に形成された錘部とを有し、前記圧電体の分極方向と直交方向で且つ電極の対向方向の振動エネルギーで発電することを特徴とする圧電型発電機。   A generator for recovering vibration energy applied from the outside and converting it into electrical energy, a support portion made of a non-piezoelectric material, and a polarization direction formed on the support portion and perpendicular to the support portion A piezoelectric body; electrodes formed on opposite surfaces parallel to the polarization direction of the piezoelectric body; and a weight portion formed on the piezoelectric body on the side opposite to the support portion. A piezoelectric generator that generates electric power with vibration energy in a direction orthogonal to the direction and facing the electrode. 前記圧電体は、電極の形成されている面の幅が電極の形成されていない面の幅より大きいことを特徴とする請求項1に記載の圧電型発電機。   2. The piezoelectric generator according to claim 1, wherein the piezoelectric body has a width of a surface on which an electrode is formed larger than a width of a surface on which no electrode is formed. 前記錘部の厚さは圧電体の厚さの同厚以上2倍以下であることを特徴とする請求項1又は2に記載の圧電型発電機。   3. The piezoelectric generator according to claim 1, wherein a thickness of the weight portion is equal to or greater than twice the thickness of the piezoelectric body. 4.
JP2010197476A 2010-09-03 2010-09-03 Piezoelectric generator and electronic apparatus using piezoelectric generator Withdrawn JP2011004598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197476A JP2011004598A (en) 2010-09-03 2010-09-03 Piezoelectric generator and electronic apparatus using piezoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197476A JP2011004598A (en) 2010-09-03 2010-09-03 Piezoelectric generator and electronic apparatus using piezoelectric generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009098722A Division JP4849151B2 (en) 2009-04-15 2009-04-15 Piezoelectric generator

Publications (1)

Publication Number Publication Date
JP2011004598A true JP2011004598A (en) 2011-01-06

Family

ID=43562042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197476A Withdrawn JP2011004598A (en) 2010-09-03 2010-09-03 Piezoelectric generator and electronic apparatus using piezoelectric generator

Country Status (1)

Country Link
JP (1) JP2011004598A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128103B1 (en) 2011-06-16 2012-03-29 경기대학교 산학협력단 Self power generator
US8575824B2 (en) 2010-10-13 2013-11-05 Seiko Epson Corporation Piezoelectric generator, sensor node, and method of manufacturing piezoelectric generator
US8604666B2 (en) 2010-11-15 2013-12-10 Seiko Epson Corporation Power generating device and electronic component
US8604673B2 (en) 2010-11-18 2013-12-10 Seiko Epson Corporation Power generating device, electronic apparatus, and transportation apparatus
JP2014023002A (en) * 2012-07-19 2014-02-03 Shun Hosaka Sensor device and manufacturing method therefor
JP2015028425A (en) * 2013-07-30 2015-02-12 俊 保坂 Semiconductor sensor device and method of manufacturing the same
CN104728067A (en) * 2015-03-30 2015-06-24 苏州攀特电陶科技股份有限公司 Piezoelectric type energy collecting system of car body damper
JP2017175751A (en) * 2016-03-23 2017-09-28 国立大学法人東北大学 Oscillating power generation element
JP2018078565A (en) * 2017-11-03 2018-05-17 俊 保坂 Sensor device and manufacturing method therefor

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749388A (en) * 1993-08-04 1995-02-21 Seiko Epson Corp Generator
JPH07107752A (en) * 1993-09-30 1995-04-21 Mitsuteru Kimura Piezoelectric generating device
JPH07245970A (en) * 1994-03-02 1995-09-19 Calsonic Corp Piezoelectric power generator
JPH11136964A (en) * 1997-10-30 1999-05-21 Nippon Soken Inc Piezoelectric power supply device
JP2003502000A (en) * 1999-06-01 2003-01-14 コンティニューム コントロール コーポレイション Method and system for extracting power from mechanical fluctuations
JP2003159697A (en) * 2000-12-22 2003-06-03 Ngk Insulators Ltd Matrix type actuator
JP2003218418A (en) * 2002-01-18 2003-07-31 Matsushita Electric Ind Co Ltd Piezoelectric power generator
US6858970B2 (en) * 2002-10-21 2005-02-22 The Boeing Company Multi-frequency piezoelectric energy harvester
JP2005318774A (en) * 2004-04-30 2005-11-10 Katsumi Ikeda Cellular phone with power generation function using piezoelectric device
JP2006067643A (en) * 2004-08-24 2006-03-09 Taiheiyo Cement Corp Piezoelectric device and piezoelectric switch with same
JP2007101448A (en) * 2005-10-06 2007-04-19 Tdk Corp Acceleration sensor and method for manufacturing the acceleration sensor
JP2007107990A (en) * 2005-10-13 2007-04-26 Seiko Instruments Inc Acceleration sensor
JP2007225528A (en) * 2006-02-27 2007-09-06 Seiko Instruments Inc Biaxial acceleration sensor
US20080100182A1 (en) * 2006-11-01 2008-05-01 Young-Soo Chang Electric power generating apparatus for movement type equipment and self-generation system having the same
WO2010106598A1 (en) * 2009-03-18 2010-09-23 富士通株式会社 Piezoelectric power generating device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749388A (en) * 1993-08-04 1995-02-21 Seiko Epson Corp Generator
JPH07107752A (en) * 1993-09-30 1995-04-21 Mitsuteru Kimura Piezoelectric generating device
JPH07245970A (en) * 1994-03-02 1995-09-19 Calsonic Corp Piezoelectric power generator
JPH11136964A (en) * 1997-10-30 1999-05-21 Nippon Soken Inc Piezoelectric power supply device
JP2003502000A (en) * 1999-06-01 2003-01-14 コンティニューム コントロール コーポレイション Method and system for extracting power from mechanical fluctuations
JP2003159697A (en) * 2000-12-22 2003-06-03 Ngk Insulators Ltd Matrix type actuator
JP2003218418A (en) * 2002-01-18 2003-07-31 Matsushita Electric Ind Co Ltd Piezoelectric power generator
US6858970B2 (en) * 2002-10-21 2005-02-22 The Boeing Company Multi-frequency piezoelectric energy harvester
JP2005318774A (en) * 2004-04-30 2005-11-10 Katsumi Ikeda Cellular phone with power generation function using piezoelectric device
JP2006067643A (en) * 2004-08-24 2006-03-09 Taiheiyo Cement Corp Piezoelectric device and piezoelectric switch with same
JP2007101448A (en) * 2005-10-06 2007-04-19 Tdk Corp Acceleration sensor and method for manufacturing the acceleration sensor
JP2007107990A (en) * 2005-10-13 2007-04-26 Seiko Instruments Inc Acceleration sensor
JP2007225528A (en) * 2006-02-27 2007-09-06 Seiko Instruments Inc Biaxial acceleration sensor
US20080100182A1 (en) * 2006-11-01 2008-05-01 Young-Soo Chang Electric power generating apparatus for movement type equipment and self-generation system having the same
WO2010106598A1 (en) * 2009-03-18 2010-09-23 富士通株式会社 Piezoelectric power generating device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8575824B2 (en) 2010-10-13 2013-11-05 Seiko Epson Corporation Piezoelectric generator, sensor node, and method of manufacturing piezoelectric generator
US8604666B2 (en) 2010-11-15 2013-12-10 Seiko Epson Corporation Power generating device and electronic component
US9608548B2 (en) 2010-11-15 2017-03-28 Seiko Epson Corporation Power generating device and electronic component
US8604673B2 (en) 2010-11-18 2013-12-10 Seiko Epson Corporation Power generating device, electronic apparatus, and transportation apparatus
KR101128103B1 (en) 2011-06-16 2012-03-29 경기대학교 산학협력단 Self power generator
JP2014023002A (en) * 2012-07-19 2014-02-03 Shun Hosaka Sensor device and manufacturing method therefor
JP2015028425A (en) * 2013-07-30 2015-02-12 俊 保坂 Semiconductor sensor device and method of manufacturing the same
CN104728067A (en) * 2015-03-30 2015-06-24 苏州攀特电陶科技股份有限公司 Piezoelectric type energy collecting system of car body damper
JP2017175751A (en) * 2016-03-23 2017-09-28 国立大学法人東北大学 Oscillating power generation element
JP2018078565A (en) * 2017-11-03 2018-05-17 俊 保坂 Sensor device and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4849151B2 (en) Piezoelectric generator
JP2011004598A (en) Piezoelectric generator and electronic apparatus using piezoelectric generator
JP5594435B2 (en) Ultrasonic transducer
JP4767369B1 (en) Piezoelectric power generation element and power generation method using piezoelectric power generation element
Clementi et al. LiNbO3 films–A low-cost alternative lead-free piezoelectric material for vibrational energy harvesters
JP5620616B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
WO2012001954A1 (en) Oscillation device and electronic component
JP4985960B2 (en) Vibrating piece and vibrator
JP5941162B2 (en) Piezoelectric parts
JP5709415B2 (en) Piezoelectric electronic components
JP5627279B2 (en) Vibration power generation device and manufacturing method thereof
JP5992912B2 (en) Elastic wave device and manufacturing method thereof
JP5347546B2 (en) Vibrating piece, vibrating piece manufacturing method, and vibrator
JP2010187195A (en) Vibrating piece, method for manufacturing the same, and vibrator
JP2010103805A (en) Bending vibration piece, bending vibrator, and piezoelectric device
JP7055950B2 (en) Vibration generators and electronic devices
EP4233099A1 (en) Piezoelectric device comprising flexible single crystalline piezoelectric linbo3 and/or litao3 films integrated on flexible substrate and methods for producing the same
TW201308865A (en) Transducer module
CN108988814A (en) A kind of resonator of surface acoustic wave and preparation method thereof
JP5057122B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
WO2021210214A1 (en) Piezoelectric vibrator and method for manufacturing same
JP2011125071A (en) Power generation device
JP2008236463A (en) Saw resonator element and saw resonator
JP2010078389A (en) Acceleration sensor
JP2021175139A (en) Piezoelectric vibrator and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130925