JP2007107990A - Acceleration sensor - Google Patents

Acceleration sensor Download PDF

Info

Publication number
JP2007107990A
JP2007107990A JP2005298590A JP2005298590A JP2007107990A JP 2007107990 A JP2007107990 A JP 2007107990A JP 2005298590 A JP2005298590 A JP 2005298590A JP 2005298590 A JP2005298590 A JP 2005298590A JP 2007107990 A JP2007107990 A JP 2007107990A
Authority
JP
Japan
Prior art keywords
piezoelectric
acceleration sensor
electrode
acceleration
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005298590A
Other languages
Japanese (ja)
Inventor
Jun Tsuneyoshi
潤 恒吉
Masataka Araogi
正隆 新荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005298590A priority Critical patent/JP2007107990A/en
Publication of JP2007107990A publication Critical patent/JP2007107990A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acceleration sensor having excellent mass productivity and a high output voltage. <P>SOLUTION: At least one or more piezoelectric elements wherein a spontaneous polarization direction is parallel to an electrode respectively are arranged so that the electrode surface of each piezoelectric element becomes parallel. This sensor has a constitution wherein a weight receiving an inertia force by an acceleration is connected to a free end face of the piezoelectric element, and piezoelectricity is generated by applying a shearing stress to the piezoelectric element. A plate material wherein the spontaneous polarization direction is the same as the plate thickness direction is grooved to form an electrode, and thereby a plurality of piezoelectric elements can be formed easily, and an output voltage is heightened by connecting in series the piezoelectric elements. Directivity of the acceleration detection direction can be heightened by using a material classified as a point group of 4 mm or 6 mm as a piezoelectric material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、加速度により錘へ作用する力を検出し、電気信号として取り出す加速度センサに係わる。   The present invention relates to an acceleration sensor that detects a force acting on a weight by acceleration and extracts it as an electrical signal.

従来より、加速度センサはモバイルPCやゲーム機,自動車に搭載され、落下時のHDD保護や力学量のモニタ,衝突の検出,サスペンション制御のためのセンサとして広く用いられている。   Conventionally, acceleration sensors are mounted on mobile PCs, game machines, and automobiles, and are widely used as sensors for HDD protection, mechanical quantity monitoring, collision detection, and suspension control when dropped.

なかでも、圧電体を用いた加速度センサは測定原理が単純で信頼性も高く、自動車エンジンのノッキングセンサなどのヘビーデューティ用途での応用実績もある。これらの加速度センサには各種構造が開示されているが、原理的には加速度の作用により慣性体となる錘に働く力を、可撓部を構成する圧電体、または可撓部に設けられた圧電体に発生する圧電気を検出するものであり、圧電体での検出原理より3種類に大別される。   In particular, an acceleration sensor using a piezoelectric body has a simple measurement principle and high reliability, and has a track record of application in heavy duty applications such as a knocking sensor for an automobile engine. Various types of structures are disclosed in these acceleration sensors, but in principle, the force acting on the weight, which is an inertial body by the action of acceleration, is provided on the piezoelectric body constituting the flexible section or the flexible section. Piezoelectricity generated in the piezoelectric body is detected and is roughly classified into three types based on the detection principle of the piezoelectric body.

第1の手法は、圧電体の自発分極方向の伸縮を圧電気として検出する33モードの加速度センサである。特許文献1に記載されているように自発分極方向と垂直に電極が形成され、慣性体となる錘が自発分極方向と平行に振動するものである。即ち、自発分極と同一(平行)方向の加速度が検出される。   The first method is a 33-mode acceleration sensor that detects expansion and contraction in the spontaneous polarization direction of the piezoelectric body as piezoelectricity. As described in Patent Document 1, an electrode is formed perpendicular to the spontaneous polarization direction, and a weight serving as an inertial body vibrates parallel to the spontaneous polarization direction. That is, acceleration in the same (parallel) direction as the spontaneous polarization is detected.

第2の手法は、圧電体の自発分極方向と垂直な面内の伸縮を圧電気として検出する31(=32)モードの加速度センサである。特許文献2に記載されるように片持ち梁を圧電体で形成し(通常バイモルフで構成される。)、曲げモーメントにより梁表裏に発生する応力状態(圧縮,引っ張り)を圧電気として検出するものである。この場合も、自発分極方向と垂直に電極が形成され、自発分極方向の加速度が間接的に検出される。   The second method is a 31 (= 32) mode acceleration sensor that detects in-plane expansion and contraction perpendicular to the spontaneous polarization direction of the piezoelectric body as piezoelectricity. As described in Patent Document 2, a cantilever beam is formed of a piezoelectric body (usually composed of bimorph), and a stress state (compression, tension) generated on the front and back of the beam by a bending moment is detected as piezoelectricity. It is. Also in this case, an electrode is formed perpendicular to the spontaneous polarization direction, and the acceleration in the spontaneous polarization direction is indirectly detected.

また、特許文献3に開示されるように、梁を構成する支持体上に圧電体を形成する場合もある。   In addition, as disclosed in Patent Document 3, a piezoelectric body may be formed on a support that constitutes a beam.

第3の手法は、圧電体の厚みすべり振動を検出する15(=24)モードの加速度センサである。本手法では特許文献4および特許文献5に示されるように圧電体の自発分極方向と平行な面に電極が形成されるのが特徴であり、電極面に錘が連接され、前述の2手法と同様に分極方向の加速度を検出するものである。
特開平05−333045号公報 特開平11−183510号公報 特開平11−108951号公報 特開2002−022761号公報 特開2002−162408号公報
The third method is a 15 (= 24) mode acceleration sensor that detects the thickness shear vibration of the piezoelectric body. This method is characterized in that an electrode is formed on a surface parallel to the spontaneous polarization direction of the piezoelectric body as shown in Patent Document 4 and Patent Document 5, and a weight is connected to the electrode surface. Similarly, the acceleration in the polarization direction is detected.
JP 05-333045 A Japanese Patent Laid-Open No. 11-183510 JP-A-11-108951 JP 2002-022761 A JP 2002-162408 A

現在市販されている点群4mmの圧電体材料、例えばPZTの圧電定数の独立コンポーネントはd31(=d32),d33,d15(=d24)の3つである。比較的大きなd定数をもつ低Q材またはソフト材と呼ばれるPZTにおいて、電気機械結合係数で最も高い値を示すのがk15(=k24)であり、d15(=d24)を用いた15(=24)モードで加速度を検出することは感度の向上という点で非常に有利である。従って、前述の第3の手法を用いて加速度を検出することが望ましい。   There are three independent components of a piezoelectric material having a point group of 4 mm, such as PZT, which are currently commercially available, d31 (= d32), d33, and d15 (= d24). In PZT called a low-Q material or soft material having a relatively large d constant, k15 (= k24) shows the highest electromechanical coupling coefficient, and 15 (= 24) using d15 (= d24). ) Detection of acceleration in the mode is very advantageous in terms of improving sensitivity. Therefore, it is desirable to detect acceleration using the third method described above.

図6に第3の手法による、従来例の加速度センサの構成を示した。なお、説明の都合上、直交座標系のuvw軸を図6中に示したようにとる。自発分極方向をv軸方向とした圧電体41の、分極方向に平行(uv平面に平行)な対向面に電極30を形成して圧電素子40が構成される。次に、圧電素子40の片側の電極30面を基板50に接着し、他方の面を慣性力が作用する錘20に接着すると加速度センサ10’が完成する。   FIG. 6 shows the configuration of a conventional acceleration sensor according to the third method. For convenience of explanation, the uvw axis of the orthogonal coordinate system is as shown in FIG. The piezoelectric element 40 is configured by forming the electrode 30 on the opposing surface of the piezoelectric body 41 having the spontaneous polarization direction as the v-axis direction and parallel to the polarization direction (parallel to the uv plane). Next, when the surface of the electrode 30 on one side of the piezoelectric element 40 is bonded to the substrate 50 and the other surface is bonded to the weight 20 on which the inertial force acts, the acceleration sensor 10 'is completed.

図6に示した加速度センサがv軸方向(正または負)に加速度αで運動した場合、質量mの錘20生じるmαの慣性力と釣り合う剪断応力が圧電素子40のu軸まわりに発生し、d15(=d24)による圧電気が生じて対向する電極30の間に電圧が発生する。この電圧は加速度αにほぼ比例するため、加速度センサとして動作する。   When the acceleration sensor shown in FIG. 6 moves at an acceleration α in the v-axis direction (positive or negative), a shear stress that balances the inertia force of mα generated by the weight 20 of mass m is generated around the u-axis of the piezoelectric element 40, Piezoelectricity is generated by d15 (= d24), and a voltage is generated between the opposing electrodes 30. Since this voltage is substantially proportional to the acceleration α, it operates as an acceleration sensor.

ところが、従来例の加速度センサの構造では電極30が形成された圧電素子40を電気的な接続を行ないながら基板50や錘20に接着する必要があり、製造工程が煩雑になるという課題を有していた。   However, in the structure of the conventional acceleration sensor, it is necessary to bond the piezoelectric element 40 on which the electrode 30 is formed to the substrate 50 and the weight 20 while performing electrical connection, which has a problem that the manufacturing process becomes complicated. It was.

また、板状の圧電素子40を用いる場合、静電容量が大きくなってしまい、出力電圧が小さくなるという課題も有していた。一方、出力電圧の増大を図るためにセンサ素子を複数設ける場合には、別途直列接続するための配線を行なう必要があり、センサ素子面積の増大や工数増をもたらし、製造コストと高密度実装の観点から実用性に乏しいものであった。   Further, when the plate-like piezoelectric element 40 is used, there is a problem in that the capacitance increases and the output voltage decreases. On the other hand, when providing a plurality of sensor elements to increase the output voltage, it is necessary to separately provide wiring for series connection, resulting in an increase in sensor element area and man-hours. From the viewpoint, it was poor in practicality.

請求項1記載の発明は、前述の第3の手法である圧電体の厚みすべりモードでの検出を実現しつつ、基板や錘との接着が電極面を介さずに行なえるようにしたものである。即ち、加速度により慣性力が作用する錘と、圧電体と電極により構成され前記錘に接続される圧電素子とを有し、前記電極を前記圧電体の自発分極方向と平行に配置し、前記錘が前記圧電体の自発分極方向と垂直な面に連接させることで目的を達成した。   The first aspect of the invention is to realize the detection in the thickness-slip mode of the piezoelectric body, which is the third method described above, while allowing the substrate and the weight to be bonded without going through the electrode surface. is there. That is, it has a weight on which an inertial force acts by acceleration, and a piezoelectric element composed of a piezoelectric body and an electrode and connected to the weight, the electrode being arranged in parallel with the spontaneous polarization direction of the piezoelectric body, Has achieved the object by connecting it to a plane perpendicular to the spontaneous polarization direction of the piezoelectric body.

請求項2記載の発明は、圧電素子に曲げや伸縮モードの変形ではなく剪断応力による厚みすべりモードの変形を与える目的のものである。即ち、請求項1記載の錘を、複数の前記圧電素子に連接させることで実現した。   The invention described in claim 2 is intended to give the piezoelectric element a deformation in a thickness-shear mode due to a shear stress, not a deformation in a bending or expansion / contraction mode. That is, the weight according to claim 1 is realized by connecting to a plurality of the piezoelectric elements.

請求項3記載の発明は、測定方向の加速度を選択的に検出するためのものである。本発明の構造において、圧電体の自発分極方向を3軸(Z軸)にとり、1軸(X軸)まわりと2軸(Y軸)まわりの剪断応力に対する圧電コンポーネントがd15=d24でかつそれ以外のd1m(m=1,2,3,4,6)とd2n(n=1,2,3,5,6)が0であれば、電極面の法線方向の加速度のみを検出することが可能となる。即ち、請求項1および請求項2記載の圧電素子を構成する圧電体を、国際記号で4mmまたは6mmの点群に分類される結晶を主成分とする材料で構成することで実現した。表1に4mmまたは6mm圧電コンポーネントdijを示す。   The invention according to claim 3 is for selectively detecting the acceleration in the measurement direction. In the structure of the present invention, the direction of spontaneous polarization of the piezoelectric body is taken as three axes (Z axis), and the piezoelectric component with respect to shear stress around one axis (X axis) and two axes (Y axis) is d15 = d24 and the others If d1m (m = 1, 2, 3, 4, 6) and d2n (n = 1, 2, 3, 5, 6) are 0, only the acceleration in the normal direction of the electrode surface can be detected. It becomes possible. That is, the piezoelectric body constituting the piezoelectric element according to claim 1 and claim 2 is realized by a material mainly composed of crystals classified into point groups of 4 mm or 6 mm by international symbols. Table 1 shows a 4 mm or 6 mm piezoelectric component dij.

Figure 2007107990
Figure 2007107990

請求項4記載の発明は、複数の圧電素子を容易に直列接続せしめる構造を実現するためるものである。即ち、請求項1から3記載の加速度センサであって、前記圧電素子がその電極面を互いに平行となる様に複数配置し、かつ素子を直列に接続することで目的を達成した。   The invention described in claim 4 is for realizing a structure in which a plurality of piezoelectric elements are easily connected in series. That is, in the acceleration sensor according to claims 1 to 3, a plurality of the piezoelectric elements are arranged so that their electrode surfaces are parallel to each other, and the object is achieved by connecting the elements in series.

請求項5記載の発明は、製造工程の簡素化と工数減を実現するものである。即ち、請求項4記載の加速度センサであって、板厚方向に分極された圧電体板に溝加工を施すことで前記圧電素子を複数配置させることで目的を達成した。   The invention according to claim 5 realizes simplification of the manufacturing process and reduction of man-hours. That is, in the acceleration sensor according to claim 4, the object is achieved by arranging a plurality of the piezoelectric elements by grooving the piezoelectric plate polarized in the plate thickness direction.

請求項6記載の発明は、更なる出力電圧の増大や差動出力での増幅を可能とするために直列接続された圧電体列を複数設ける目的のものである。即ち、請求項4および5記載の加速度センサであって、前記電極面の法線方向に前記溝より深い分割溝を複数形成することで、直列された圧電素子列を複数形成して実現した。   The invention described in claim 6 is intended to provide a plurality of piezoelectric strings connected in series in order to enable further increase in output voltage and amplification with differential output. In other words, the acceleration sensor according to claim 4 and 5 is realized by forming a plurality of series of piezoelectric element arrays by forming a plurality of division grooves deeper than the grooves in the normal direction of the electrode surface.

本発明によれば、簡便な工程で圧電素子を複数形成しかつ直列接続できるため、量産性に優れた高感度の加速度センサを低コストで提供することが可能となる。   According to the present invention, since a plurality of piezoelectric elements can be formed and connected in series by a simple process, it is possible to provide a high-sensitivity acceleration sensor excellent in mass productivity at low cost.

以下、本発明について図面を参照しながら詳細に説明する。また、以下の実施の形態により本発明が限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments.

圧電材料としては国際記号で4mmの点群に分類される、市販のHIP処理PZT材(5D系)を用いた。圧電定数d15(=d24)が約800pC/Nで、厚み方向に分極処理された板厚0.8mmの圧電体板を用いた。無論、強誘電体ではないが圧電コンポーネントの独立性がまったく等しい点群6mmに分類されるZnS,ZnO,CdS,AlNなどの圧電材料であっても、単結晶材料や配向材料(膜)を用いることで原理的には応用可能である。   As the piezoelectric material, a commercially available HIP-treated PZT material (5D system) classified into a point group of 4 mm by an international symbol was used. A piezoelectric plate having a piezoelectric constant d15 (= d24) of about 800 pC / N and a thickness of 0.8 mm polarized in the thickness direction was used. Of course, even a piezoelectric material such as ZnS, ZnO, CdS, AlN, etc., which is not a ferroelectric material but is classified into a point group of 6 mm where the independence of the piezoelectric components is completely equal, a single crystal material or an orientation material (film) is used. Therefore, it can be applied in principle.

さらに、加速度検出の指向性を重視しないならば、特に点群6mmや4mmの圧電体に拘る必要は無く、15モードないし24モードの厚み滑りで圧電気を生じる物質ならば何れの物質でも良い。   Further, if the acceleration directivity is not important, there is no particular need for the piezoelectric material having a point group of 6 mm or 4 mm, and any material may be used as long as it generates piezoelectricity by thickness sliding in 15 to 24 modes.

なお、本圧電体のキュリー温度は約300℃であったが、後述の電極形成工程や接着工程において、プロセス温度は概ね100℃以下に管理する必要がある。少なくとも、分極処理後のエージング温度を上回ってはならない。   The Curie temperature of this piezoelectric body was about 300 ° C., but it is necessary to control the process temperature to about 100 ° C. or lower in the electrode forming step and the bonding step described later. At least the aging temperature after the polarization treatment should not be exceeded.

慣性力を受ける錘については、熱歪の防止と密度の大きさ(約8,000kg/m3)の観点より、同一材料のPZTを用いることとした。もちろん、他のセラミックス材料,金属材料等でも問題はないが、電極30との絶縁を考慮する必要がある。   For the weight receiving the inertial force, PZT of the same material is used from the viewpoint of preventing thermal strain and the density (about 8,000 kg / m3). Of course, other ceramic materials, metal materials, etc. have no problem, but it is necessary to consider insulation from the electrode 30.

図1は実施例1に係わる加速度センサ10の概略構成を示した図である。なお、説明のために自発分極Psの方向(出力電圧の符号が反転するだけなので正負はどちらでも良い)をZ軸とし、加速度の検出方向をY軸,紙面手前方向がX軸となる直交座標系を用いる。   FIG. 1 is a diagram illustrating a schematic configuration of an acceleration sensor 10 according to the first embodiment. For the sake of explanation, the direction of the spontaneous polarization Ps (the sign of the output voltage is only reversed so that it can be positive or negative) is the Z-axis, the acceleration detection direction is the Y-axis, and the orthogonal coordinates where the front side of the page is the X-axis Use the system.

厚み方向に分極された直方体形状の圧電体41の自発分極方向に平行な1対の側面に電極30を形成する。次に、非導電性の基板50に分極方向と垂直な面を接着剤(図示せず)により固定し、反対側の面に剛体である錘20を接着すると本発明の基本となる加速度センサ10が構成される(図1(a)参照。)。   Electrodes 30 are formed on a pair of side surfaces parallel to the spontaneous polarization direction of a rectangular parallelepiped piezoelectric body 41 polarized in the thickness direction. Next, when the surface perpendicular to the polarization direction is fixed to the non-conductive substrate 50 with an adhesive (not shown) and the weight 20 which is a rigid body is bonded to the opposite surface, the acceleration sensor 10 which is the basis of the present invention. (See FIG. 1A).

次に、この加速度センサ10をY軸+方向に加速度αで運動させると、質量mの錘20には慣性力mαが働き、圧電体41と錘20の接合面に剪断応力が生じる。その結果、X軸まわりの剪断変形(厚み滑り)が生じて圧電気を生じる(図1(b)参照。)。   Next, when the acceleration sensor 10 is moved in the Y-axis + direction at an acceleration α, an inertial force mα acts on the mass 20 having a mass m, and a shear stress is generated on the joint surface between the piezoelectric body 41 and the mass 20. As a result, shear deformation (thickness slip) around the X-axis occurs to generate piezoelectricity (see FIG. 1B).

ここで圧電体41の外形寸法を厚みW/2(Z軸方向),幅W(Y軸方向),奥行きW(X軸方向)として、従来例の図6と同一条件で比較すると、本実施例では従来例と比較して出力電圧が約2倍,圧電素子40の静電容量が約0.25倍,電荷量が0.5倍になることが明らかとなった。   Here, when the outer dimensions of the piezoelectric body 41 are set to the thickness W / 2 (Z-axis direction), the width W (Y-axis direction), and the depth W (X-axis direction) under the same conditions as in FIG. In the example, it was revealed that the output voltage was about twice as much as the conventional example, the capacitance of the piezoelectric element 40 was about 0.25 times, and the charge amount was 0.5 times.

前記実施例1においては圧電素子40に対して錘20が単独で連接しているため、基板50で支持される片持ち梁の構成となっている。従って、正確には剪断変形だけではなく曲げモーメントも圧電素子40に作用するため、加速度検出のリニアリティーを悪化させる恐れがある。   In the first embodiment, since the weight 20 is independently connected to the piezoelectric element 40, the structure is a cantilever beam supported by the substrate 50. Therefore, since not only shear deformation but also bending moment acts on the piezoelectric element 40, the linearity of acceleration detection may be deteriorated.

また、1ユニットの圧電素子40の出力電圧は小さいものであるが、複数の圧電素子40を直列接続できれば出力信号の増大を図ることができる。これらの課題を解決する実施例2を以下に説明する。   Further, although the output voltage of one unit of the piezoelectric element 40 is small, if a plurality of piezoelectric elements 40 can be connected in series, the output signal can be increased. A second embodiment that solves these problems will be described below.

板厚方向に分極処理を施された圧電体プレート42の所定の部分にドライフィルム12をラミネートする。(図2(a)参照。)次に、ダイシングソーを用いて溝幅約100μm,溝深さ約200μmの壁形成溝14をX軸方向に形成し、Y軸方向に200μmピッチで送りながら壁形成溝14を複数形成すると図2(b)の状態となる。   The dry film 12 is laminated on a predetermined portion of the piezoelectric plate 42 that has been polarized in the thickness direction. (See FIG. 2A.) Next, a wall forming groove 14 having a groove width of about 100 μm and a groove depth of about 200 μm is formed in the X-axis direction using a dicing saw, and the wall is formed while being fed at a pitch of 200 μm in the Y-axis direction. When a plurality of formation grooves 14 are formed, the state shown in FIG.

純水による流水超音波洗浄後に充分乾燥を行い、Arガスによるスパッタリング法により密着層のTiを0.1μm(平坦部析出換算)成膜後、真空破壊することなく導電層のAuを0.3μm(平坦部析出換算)を連続成膜する。次いで、有機溶剤によりドライフルムを膨潤剥離して圧電素子40の自由端面の金属をドライフィルム12ごとリフトオフする。   Thoroughly dry after flowing water ultrasonic cleaning with pure water, and after depositing Ti of the adhesion layer to 0.1 μm (in terms of flat portion precipitation) by sputtering with Ar gas, the conductive layer of Au is 0.3 μm without vacuum breakage. (Flat portion precipitation conversion) is continuously formed. Next, the dry film is swollen and peeled off with an organic solvent, and the metal on the free end face of the piezoelectric element 40 is lifted off together with the dry film 12.

この電極形成とリフトオフ工程により、複数の圧電素子40の電極30と、電極面が平行である隣接する圧電素子40を直列接続するブリッジ電極31および信号出力を取り出す電極端子32を同時形成することができる。   By this electrode formation and lift-off process, the electrode 30 of the plurality of piezoelectric elements 40, the bridge electrode 31 for connecting the adjacent piezoelectric elements 40 whose electrode surfaces are parallel to each other in series, and the electrode terminal 32 for extracting the signal output can be simultaneously formed. it can.

リフトオフ工程後に外周4面に付きまわった電極材料を除去するため、再びダイシングソーにより外周4辺(側面)近傍を薄切すると、図2(c)に示した圧電素子アレイ43が完成する。なお、図2(c)中に一点鎖線で示したA-A’断面詳細の一部を図2(d)に示した。   In order to remove the electrode material attached to the four outer peripheral surfaces after the lift-off process, the vicinity of the four outer peripheral sides (side surfaces) is again sliced with a dicing saw to complete the piezoelectric element array 43 shown in FIG. FIG. 2D shows a part of the details of the A-A ′ cross section indicated by the alternate long and short dash line in FIG.

次に、錘20に薄くエポキシ系の接着剤(図示せず)を塗布し、圧電素子アレイ43の自由端壁に接着し硬化させる。完成した本実施例2による加速度センサ10の構成図を図3(e)に示し、図中のB‐B’断面図を図3(f)に示す。このような構成とすることで、図3(g)の回路図に示すような圧電素子40を高密度に直列接続した圧電素子アレイ43を作製することができ、出力電圧の高い高感度の加速度センサ10が得られた。   Next, a thin epoxy adhesive (not shown) is applied to the weight 20, and is adhered and cured to the free end wall of the piezoelectric element array 43. FIG. 3E shows a configuration diagram of the completed acceleration sensor 10 according to the second embodiment, and FIG. 3F shows a B-B ′ cross-sectional view in the drawing. With such a configuration, it is possible to produce a piezoelectric element array 43 in which piezoelectric elements 40 as shown in the circuit diagram of FIG. 3G are connected in series at high density, and a high-sensitivity acceleration with a high output voltage. A sensor 10 was obtained.

なお、本実施例2では基板50を設けずに圧電体プレート42に支持機能を具備させたが、別途、基板材料に薄い圧電体プレート42を貼り付けてから用いてもよい。   In the second embodiment, the piezoelectric plate 42 is provided with a support function without providing the substrate 50. However, the thin piezoelectric plate 42 may be separately attached to the substrate material.

前記実施例2では、圧電素子40を1列に直列接続した加速度センサを説明したが、実施例3では複数の圧電素子アレイ43が形成された加速度センサについて説明する。   In the second embodiment, the acceleration sensor in which the piezoelectric elements 40 are connected in series in one row has been described. In the third embodiment, an acceleration sensor in which a plurality of piezoelectric element arrays 43 are formed will be described.

前記実施例2の工程の途中であり、図2(f)に示した錘20の接着前の圧電素子アレイ43からの実施方法を図4および図5を用いて説明する。   An implementation method from the piezoelectric element array 43 before the weight 20 shown in FIG. 2 (f) in the process of Example 2 will be described with reference to FIGS.

図4(a)に実施例2の圧電素子アレイ43とXYZ直行座標系の関係を示した。壁形成溝14と直行するY軸方向に、壁形成溝14より切り込み量の大きい、即ち溝深さが深い電極切断溝16を1溝以上形成すると、図4(b)に示したようなX軸方向に圧電素子アレイ43が複数形成された圧電素子アレイユニット44が完成する。図4(b)の正面図(−X軸方向)を図4(c)に、側面図(Y軸方向)を図4(d)に示した。   FIG. 4A shows the relationship between the piezoelectric element array 43 of Example 2 and the XYZ orthogonal coordinate system. When one or more electrode cutting grooves 16 having a larger depth of cut than the wall forming groove 14, ie, having a deep groove depth, are formed in the Y-axis direction perpendicular to the wall forming groove 14, the X as shown in FIG. A piezoelectric element array unit 44 having a plurality of piezoelectric element arrays 43 formed in the axial direction is completed. A front view (−X axis direction) of FIG. 4B is shown in FIG. 4C, and a side view (Y axis direction) is shown in FIG. 4D.

前記実施例と同様に錘20を接着すると、実施例3による加速度センサ10(図5(a)参照)が完成する。なお、図5(e)に一点鎖線で示したB‐B’断面図を図5(f)に示してある。本実施例の加速度センサ10の等価回路を図5(g)に示した。   When the weight 20 is bonded in the same manner as in the previous embodiment, the acceleration sensor 10 according to the third embodiment (see FIG. 5A) is completed. Note that FIG. 5F is a cross-sectional view taken along the alternate long and short dash line in FIG. 5E. An equivalent circuit of the acceleration sensor 10 of this embodiment is shown in FIG.

次に、複数の圧電アレイ43を直列に接続すれば、例えば図5(g)においてB1とA2,B2とA3,・・・・,Bn−1とAnを接続することで、A1端子とBn端子間には図3(g)で示した圧電素子アレイ43(1列)のときの約n倍の出力電圧を取り出せる加速度センサが得られた。   Next, if a plurality of piezoelectric arrays 43 are connected in series, for example, by connecting B1 and A2, B2 and A3,..., Bn-1 and An in FIG. An acceleration sensor capable of extracting an output voltage about n times that of the piezoelectric element array 43 (one row) shown in FIG. 3G was obtained between the terminals.

また、例えばA2端子とB1端子を接続して接地し、A1端子とB2端子間に発生する電圧を差動増幅することで、出力電圧が高いだけでなく同相ノイズが除去されたs/nの高い出力信号を取り出せる加速度センサが得られた。   Further, for example, by connecting the A2 terminal and the B1 terminal and grounding, and differentially amplifying the voltage generated between the A1 terminal and the B2 terminal, not only the output voltage is high but also the common mode noise is removed. An acceleration sensor that can extract high output signals was obtained.

本発明の実施例1による加速度センサを説明する図である。It is a figure explaining the acceleration sensor by Example 1 of this invention. 本発明の実施例2による加速度センサを説明する図である。It is a figure explaining the acceleration sensor by Example 2 of this invention. 図2に続き本発明の実施例2による加速度センサを説明する図である。FIG. 3 is a diagram illustrating an acceleration sensor according to a second embodiment of the present invention following FIG. 2. 本発明の実施例3による加速度センサの構成を示す図である。It is a figure which shows the structure of the acceleration sensor by Example 3 of this invention. 図4に続き実施例3による従来例を説明する図である。FIG. 5 is a diagram illustrating a conventional example according to Example 3 following FIG. 4. 従来例を説明する図である。It is a figure explaining a prior art example.

符号の説明Explanation of symbols

10 加速度センサ
10’加速度センサ
12 ドライフィルム
14 壁形成溝
16 電極切断溝
20 錘
30 電極
31 ブリッジ電極
32 電極端子
40 圧電素子
41 圧電体
42 圧電体プレート
43 圧電素子アレイ
44 圧電素子アレイユニット
50 基板
DESCRIPTION OF SYMBOLS 10 Acceleration sensor 10 'Acceleration sensor 12 Dry film 14 Wall formation groove | channel 16 Electrode cutting groove | channel 20 Weight 30 Electrode 31 Bridge electrode 32 Electrode terminal 40 Piezoelectric element 41 Piezoelectric body 42 Piezoelectric plate 43 Piezoelectric element array 44 Piezoelectric element array unit 50 Substrate

Claims (6)

加速度により慣性力が作用する錘と、
圧電体と前記圧電体を挟持する一対の電極とから構成され、前記錘に接続される圧電素子と、を有し、
前記電極が前記圧電体の自発分極方向と平行に配置され、
前記錘が前記圧電体の自発分極方向と垂直な面に連接されている加速度センサ。
A weight on which inertial force is applied by acceleration;
A piezoelectric element composed of a piezoelectric body and a pair of electrodes sandwiching the piezoelectric body, and connected to the weight;
The electrode is disposed parallel to the spontaneous polarization direction of the piezoelectric body;
An acceleration sensor in which the weight is connected to a surface perpendicular to the spontaneous polarization direction of the piezoelectric body.
前記錘が、複数の前記圧電素子に連接されている請求項1に記載の加速度センサ。   The acceleration sensor according to claim 1, wherein the weight is connected to a plurality of the piezoelectric elements. 前記圧電素子を構成する前記圧電体が、国際記号で4mmまたは6mmの点群に分類される結晶を主成分としている請求項1または2に記載の加速度センサ。   The acceleration sensor according to claim 1 or 2, wherein the piezoelectric body constituting the piezoelectric element is mainly composed of crystals classified into point groups of 4 mm or 6 mm by international symbols. 前記圧電素子がその電極面を互いに平行となる様に複数配置されかつ素子が直列に接続されている請求項1から3のいずれか一項に記載の加速度センサ。   The acceleration sensor according to any one of claims 1 to 3, wherein a plurality of the piezoelectric elements are arranged so that their electrode surfaces are parallel to each other, and the elements are connected in series. 板厚方向に分極された前記圧電体に溝加工を施すことで前記圧電素子が複数配置されている請求項4に記載の加速度センサ。   The acceleration sensor according to claim 4, wherein a plurality of the piezoelectric elements are arranged by performing groove processing on the piezoelectric body polarized in the plate thickness direction. 前記電極面の法線方向に前記溝より深い分割溝を複数形成し、直列された圧電素子列が複数形成されている請求項4または5に記載の加速度センサ。   6. The acceleration sensor according to claim 4, wherein a plurality of division grooves deeper than the groove are formed in a direction normal to the electrode surface, and a plurality of series piezoelectric element arrays are formed.
JP2005298590A 2005-10-13 2005-10-13 Acceleration sensor Pending JP2007107990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298590A JP2007107990A (en) 2005-10-13 2005-10-13 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298590A JP2007107990A (en) 2005-10-13 2005-10-13 Acceleration sensor

Publications (1)

Publication Number Publication Date
JP2007107990A true JP2007107990A (en) 2007-04-26

Family

ID=38033966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298590A Pending JP2007107990A (en) 2005-10-13 2005-10-13 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP2007107990A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004598A (en) * 2010-09-03 2011-01-06 Seiko Epson Corp Piezoelectric generator and electronic apparatus using piezoelectric generator
WO2011001515A1 (en) * 2009-06-30 2011-01-06 富士通株式会社 Acceleration sensor, device for generating electricity by vibration, and acceleration sensor manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001515A1 (en) * 2009-06-30 2011-01-06 富士通株式会社 Acceleration sensor, device for generating electricity by vibration, and acceleration sensor manufacturing method
JPWO2011001515A1 (en) * 2009-06-30 2012-12-10 富士通株式会社 Acceleration sensor, vibration power generation device, and method of manufacturing acceleration sensor
US8421312B2 (en) 2009-06-30 2013-04-16 Fujitsu Limited Acceleration sensor having polarized piezoelectric layer interposed between sensing electrodes
JP2011004598A (en) * 2010-09-03 2011-01-06 Seiko Epson Corp Piezoelectric generator and electronic apparatus using piezoelectric generator

Similar Documents

Publication Publication Date Title
JP5605433B2 (en) Piezoelectric vibration device
US5276657A (en) Metal-electroactive ceramic composite actuators
US8455964B2 (en) Electromechanical transducer and production method therefor
CN1283547C (en) Micro-machined ultrasonic transducer (MUT) substrate that limits the lateral propagation of acoustic energy
JP3183177B2 (en) Acceleration sensor
JP4909607B2 (en) 2-axis acceleration sensor
EP1312424A3 (en) Piezoelectric transducer, manufacturing method of piezoelectric transducer and pulse wave detector
JPH0446517B2 (en)
JP2014504364A (en) High performance curved accelerometer
JPH11211748A (en) Machine-electricity conversion element and its manufacture and acceleration sensor
KR20000068111A (en) Bimorph piezoelectric device for acceleration sensor and method of its manufacture
JP2008205888A (en) Manufacturing method of piezoelectric vibation chip and piezoelectric vibration element
JP2007107990A (en) Acceleration sensor
US7579760B2 (en) Vibrator and production method therefor
JP3873040B2 (en) Pressure sensor
JP2007225527A (en) Triaxial acceleration sensor
US7104140B2 (en) High sensitivity, low noise piezoelelctric flexural sensing structure using &lt;011&gt; poled relaxor-based piezoelectric single crystals
JPH11261127A (en) Piezoelectric component, piezoelectric sensor, piezoelectric actuator, and ink jet printer head
JP2011108680A (en) Method of manufacturing multilayer substrate, method of manufacturing diaphragm, and method of manufacturing pressure sensor
JP2007003373A (en) Piezo electric acceleration sensor
US9404938B2 (en) Acceleration sensor
JPH11118823A (en) Mechanical and electric converting element, its manufacture, and acceleration sensor
JPH11183510A (en) Acceleration sensor and its menufacture
JP2005164505A (en) Acceleration sensor
JP2005265421A (en) Acceleration sensor