JP2011000584A - コールドスプレー用ノズル - Google Patents

コールドスプレー用ノズル Download PDF

Info

Publication number
JP2011000584A
JP2011000584A JP2009243936A JP2009243936A JP2011000584A JP 2011000584 A JP2011000584 A JP 2011000584A JP 2009243936 A JP2009243936 A JP 2009243936A JP 2009243936 A JP2009243936 A JP 2009243936A JP 2011000584 A JP2011000584 A JP 2011000584A
Authority
JP
Japan
Prior art keywords
nozzle
cold spray
aluminum particles
temperature
polycrystalline diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009243936A
Other languages
English (en)
Inventor
Sven Leonhardt
レオンハルト スヴェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JP2011000584A publication Critical patent/JP2011000584A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nozzles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】本発明の課題は、アルミニウム粒子が内面に付着することを防止するコールドスプレー用ノズルを提供することにある。
【解決手段】本発明は、アルミニウム粒子を噴射するコールドスプレー用ノズル1の内面が多結晶ダイヤモンド膜3で被覆されていることを特徴とする。このコールドスプレー用ノズル1は、所定のノズル基体2の内面に多結晶ダイヤモンド膜3を形成することで、作動ガス(プロセスガス)に同伴して流動するアルミニウム粒子がコールドスプレー用ノズル1の内面に付着することを防止する。
【選択図】図1

Description

本発明は、コールドスプレー用ノズルに関する。
従来、コールドスプレー(Cold Spray)法によって基材の表面に皮膜を形成する方法が知られている。この方法は、皮膜材料の融点又は軟化点よりも低い温度に設定した超音速で流れる作動ガス(プロセスガス)に皮膜材料の粒子を同伴させることによって、この粒子を基材の表面に衝突させる(噴射する)ものである。この方法では、皮膜材料の粒子が高速で基材の表面に衝突した際に、固相状態のままでその粒子が塑性変形することによって皮膜が形成される。このようなコールドスプレー法によれば、緻密な組織で密度の高い皮膜を基材の表面に形成することができる。
一般に、コールドスプレー用ノズルとしては、ステンレス鋼、工具鋼、鋼硬合金等の材料で形成されたラバルノズルが知られている。このようなノズルを使用して、皮膜材料としてのアルミニウム粒子を噴射すると、ノズル内にアルミニウム粒子が付着し、更には付着したアルミニウム粒子によってノズルが閉塞する場合がある。そして、ノズルが閉塞すると、ノズルを交換するために、コールドスプレー操作を一旦中断しなければならない問題がある。次に参照する図3(a)は、従来のコールドスプレー用ノズルの断面図であって、ノズル内を流れる作動ガスの流線を併記した図、図3(b)は、図3(a)におけるIIIb部の部分拡大図、図3(c)は、従来のコールドスプレー用ノズルにおいて閉塞が生じる様子を示す概念図である。
図3(a)に示すように、コールドスプレー用ノズル11に窒素、ヘリウム等の作動ガスGが導入されると、作動ガスGは絞り部14でその温度が上昇する。その一方で、絞り部14の下流側に形成される膨張部15においては、図3(b)に示すように、コールドスプレー用ノズル11の壁面近くで作動ガスGの流れに乱れTが生じる。そのため、特にこの膨張部15では作動ガスGに同伴させたアルミニウム粒子(図示省略)とコールドスプレー用ノズル11の壁面との摩擦が激しくなって、その壁面の温度が上昇する。したがって、この摩擦熱と、絞り部14における作動ガスGの昇温とによって、膨張部15の壁面の温度が他の部分における壁面の温度よりも高くなる。つまり、膨張部15には、いわゆるヒートスポットが形成される。
その結果、従来のコールドスプレー用ノズル11においては、図3(c)に示すように、主に膨張部15でアルミニウム粒子の凝着物Aを形成して閉塞する。ちなみに、本発明者は、後記するように、工具鋼で形成された従来のコールドスプレー用ノズル11を使用した場合に、アルミニウム粒子の温度を400℃に設定し、アルミニウム粒子の速度を600m/sに設定したスプレー条件で、作動ガス(窒素ガス)の温度が550℃を超えると、このコールドスプレー用ノズル11が数分で閉塞することを確認している。
そこで、従来、交換可能な筒状部を膨張部の下流側に設けたコールドスプレー用ノズルが知られている(例えば、特許文献1参照)。
このコールドスプレー用ノズルは、筒状部を取り外すことで、膨張部の壁面のメンテナンスが容易になっている。
特開2005−95886号公報
しかしながら、前記したコールドスプレー用ノズル(例えば、特許文献1参照)は、膨張部のメンテナンスが容易になってはいるものの、付着したアルミニウム粒子をノズルから取り除くためにコールドスプレー操作を一旦中断しなければならない。
そこで、本発明の課題は、コールドスプレー操作を中断することなく継続的に行うことができるコールドスプレー用ノズルを提供することにある。
前記課題を解決する本発明のコールドスプレー用ノズルは、アルミニウム粒子を噴射するコールドスプレー用ノズルの内面が多結晶ダイヤモンド膜で被覆されていることを特徴とする。
本発明は、コールドスプレー用ノズルの内面に多結晶ダイヤモンドをコーティングすることで、内面の硬度、耐衝撃性及び耐熱性を向上させることのみならず、内面にアルミニウム粒子が付着し難くなることを本発明者が新たに見出してなされたものである。
本発明のコールドスプレー用ノズルによれば、アルミニウム粒子が内面に付着することを防止して、コールドスプレー操作を中断することなく継続的に行うことができる。
(a)は、本発明の実施形態に係るコールドスプレー用ノズルの構成説明図、(b)は、(a)におけるIb部の部分拡大図である。 閉塞を生じない噴射条件でノズルを使用した際の、アルミニウム粒子の温度[℃]と、アルミニウム粒子の速度[m/s]との関係を表したグラフである。 (a)は、従来のコールドスプレー用ノズルの断面図であって、ノズル内を流れる作動ガスの流線を併記した図、(b)は、(a)におけるIIIb部の部分拡大図、(c)は、従来のコールドスプレー用ノズルにおいて閉塞が生じる様子を示す概念図である。
以下に、本発明の実施形態について詳細に説明する。
図1(a)に示すように、コールドスプレー用ノズル1(以下、単に「ノズル1」ということがある)は、多結晶ダイヤモンドをノズル1の内面にコーティングしたものである。つまり、本実施形態に係るノズル1の内壁面は、図1(a)及び(b)に示すように、多結晶ダイヤモンド膜3で被覆されている。
ノズル1は、略筒状のラバラノズルの形状を有しており、その内側はアルミニウム粉体(粒子)を同伴する窒素、ヘリウム等の作動ガス(プロセスガス)が流通するようになっている。そして、ノズル1の内側には、絞り部4と、この絞り部4の下流側に形成される膨張部5とを備えている。
ノズル基体2は、ノズル1と略同形状を有しており、鋼材で形成することができる。中でも、ノズル基体2の材料としては、低炭素鋼、チタン合金鋼、モリブデン合金鋼、及びチタンジルコニウムモリブデン鋼が望ましい。
多結晶ダイヤモンド膜3は、CVD法、熱フィラメント法、プラズマジェット法、火炎法等の公知の方法によって形成することができ、中でもCVD法で形成されたCVD多結晶ダイヤモンドからなるものが望ましい。
本実施形態に係るノズル1は、アルミニウム粒子を使用したコールドスプレー法に好適に使用することができる。
アルミニウム粉体の粒子(アルミニウム粒子)としては、特に制限はないが、本実施形態に係るノズル1を使用すると、後記するように、従来のコールドスプレー用ノズルの臨界条件を上回る条件で運転することができるので、例えば作動ガスの温度を従来の温度よりも高く設定することができる。したがって、従来のコールドスプレー用ノズルでは、良好な被膜が得難いとされていた、硬度が比較的に高い反面、もろいアルミニウム粉体(粒子)にも適用することが可能となる。
作動ガス(プロセスガス)としては、例えば、窒素ガス、ヘリウムガス等が挙げられる。ちなみに、作動ガスとして窒素ガスを使用する場合には、比較的に粒径が大きい(質量が大きい)アルミニウム粒子を使用することができる。また、作動ガスとしてヘリウムを使用する場合には、作動ガスの速度を高めることができるのでアルミニウム粒子の噴射速度を上げることができる。
以上のようなノズル1によれば、内面が多結晶ダイヤモンド膜3で被覆されているので、例えばアルミニウム粒子等の金属粒子が内面に付着することを防止することができる。その結果、従来のコールドスプレー用ノズル(多結晶ダイヤモンド膜3を有しないもの)と比較して、作動ガスの温度や流速を一段と高めても、噴射される金属粒子による閉塞が回避されるので、より重い金属粒子を使用することができる。
また、このノズル1は、内面が多結晶ダイヤモンド膜3で被覆されているので、内面の硬度及び耐衝撃性を向上させることができる。
また、このノズル1は、内面が多結晶ダイヤモンド膜3で被覆されているので、内面の耐熱性を高めることができ、コールドスプレーの施工温度を向上させることができる。その結果、良好な皮膜を形成することができるように、好適なアルミニウム粒子の種類を選択する際に、その選択の幅が広がる。
また、このノズル1は、内面が多結晶ダイヤモンド膜3で被覆されているので、内面の熱伝導性を高めることができる。その結果、局部的な温度上昇であるヒートスポットが生じるのを回避することができる。したがって、このノズル1によれば、焼き付きを防止することができる。
本発明は前記実施形態に限定されず、種々の形態で実施することができる。
前記実施形態では、多結晶ダイヤモンド膜3をノズル1の内面の全体に亘って形成することを想定しているが、本発明はこれに限定されるものではなく、例えば、膨張部5の内面のみに多結晶ダイヤモンド膜3を形成したものであってもよい。
次に、本発明の効果を確認した実施例について説明する。
(実施例)
実施例では、図1(a)及び(b)に示すように、工具鋼からなるノズル基体2の内面の全体に亘って、多結晶ダイヤモンド膜3を形成した。この多結晶ダイヤモンド膜3は、CVD法によって形成した。
次に、このノズル1を使用したコールドスプレー法を想定して、アルミニウム粉体(アルミニウム粒子)を同伴する窒素ガス(作動ガス)をノズル1で噴射した。アルミニウム粒子の粒径は25〜45μmであった。噴射条件を図2に示す。ここで参照する図2は、閉塞を生じない噴射条件でノズルを使用した際の、アルミニウム粒子の温度[℃]と、アルミニウム粒子の速度[m/s]との関係を表したグラフである。そして、図2には、アルミニウム粒子の温度[℃]を粒子温度[℃]と記し、アルミニウム粒子の速度[m/s]を粒子速度[m/s]と記すと共に、作動ガスの温度を「ガス温度」として併記している(以下の比較例1及び比較例2においても同じ)。
図2に示すように、本実施例では、アルミニウム粒子の温度を500℃前後に設定すると共に、アルミニウム粒子の速度を700m/s前後に設定した3回の噴射工程のいずれにおいても、ノズル1におけるアルミニウム粒子の閉塞は無かった。
ちなみに、窒素ガスのガス温度は40〜700℃であった。
(比較例1)
比較例1では、多結晶ダイヤモンド膜3を形成しない、工具鋼からなるノズル基体2を使用して、アルミニウム粉体(アルミニウム粒子)を同伴する窒素ガス(作動ガス)を噴射した。アルミニウム粒子の粒径は25〜45μmであった。噴射条件を図2に示す。ちなみに、図2中の破線は、多結晶ダイヤモンド膜3を形成しないノズル基体2を使用した際に、ノズル基体2が閉塞しない、アルミニウム粒子の温度(粒子温度)及びアルミニウム粒子の速度(粒子速度)の臨界条件Cを示す線分である。
図2に示すように、比較例1では、図2中の破線で示す臨界条件Cを下回るように、粒子温度[℃]及び粒子速度[m/s]を設定して3回の噴射工程を行った。窒素ガスのガス温度は40〜400℃であった。なお、この比較例1では、臨界条件Cを下回るように噴射条件を設定したので、ノズル基体2はアルミニウム粒子で閉塞しなかった。
(比較例2)
比較例2では、多結晶ダイヤモンド膜3を形成しない、工具鋼からなるノズル基体2を使用して、アルミニウム粉体(アルミニウム粒子)を同伴する窒素ガス(作動ガス)を噴射した。アルミニウム粒子の粒径は25〜45μmであった。噴射条件を図2に示す。
図2に示すように、比較例2では、図2中の破線で示す臨界条件Cの近傍で3回の噴射工程を行った。なお、比較例2での窒素ガスのガス温度は40〜550℃であった。
そして、図示しないが、アルミニウム粒子の温度を400℃に設定し、アルミニウム粒子の速度を600m/sに設定したスプレー条件で、作動ガス(窒素ガス)の温度が550℃を超えると数分で閉塞することが確認された。
(実施例及び比較例のノズルの評価)
多結晶ダイヤモンド膜3を内面に形成した実施例のノズル1を使用すると、図2中の破線で示す臨界条件Cを超える領域でアルミニウム粒子の温度(粒子温度)及びアルミニウム粒子の速度(粒子速度)を設定してもアルミニウム粒子による閉塞が生じないことが確認された。
また、この際、多結晶ダイヤモンド膜3を形成しないノズル基体2を臨界条件Cの近傍で噴射条件を設定した比較例2では、閉塞を起さなかった作動ガスの最高温度が、550℃であるのに対して(図2参照)、実施例の多結晶ダイヤモンド膜3を有するノズル1では、閉塞を起さなかった作動ガスの最高温度が、700℃であった(図2参照)。つまり、実施例の多結晶ダイヤモンド膜3を有するノズル1では、多結晶ダイヤモンド膜3を有しないノズル基体2と比較して、作動ガスの最高温度に150℃のアドバンテージを有することが確認された。
1 コールドスプレー用ノズル(ノズル)
2 ノズル基体
3 多結晶ダイヤモンド膜
4 絞り部
5 膨張部
G 作動ガス
A 凝着物

Claims (1)

  1. アルミニウム粒子を噴射するコールドスプレー用ノズルの内面が多結晶ダイヤモンド膜で被覆されていることを特徴とするコールドスプレー用ノズル。
JP2009243936A 2009-06-18 2009-10-23 コールドスプレー用ノズル Pending JP2011000584A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200910025473 DE102009025473A1 (de) 2009-06-18 2009-06-18 Kaltsprühdüse

Publications (1)

Publication Number Publication Date
JP2011000584A true JP2011000584A (ja) 2011-01-06

Family

ID=43298803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243936A Pending JP2011000584A (ja) 2009-06-18 2009-10-23 コールドスプレー用ノズル

Country Status (2)

Country Link
JP (1) JP2011000584A (ja)
DE (1) DE102009025473A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013095070A1 (ko) * 2011-12-22 2013-06-27 (주)태광테크 저온분사를 이용한 스퍼터링 타겟의 제조방법 및 저온분사장치
JP6404532B1 (ja) * 2018-04-20 2018-10-10 株式会社特殊金属エクセル コールドスプレー用ノズル及びコールドスプレー装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100412B2 (en) 2014-11-06 2018-10-16 United Technologies Corporation Cold spray nozzles

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155954A (ja) * 1985-12-28 1987-07-10 Canon Inc 微粒子流の流れ制御装置
JPH05275493A (ja) * 1992-03-25 1993-10-22 Sumitomo Electric Ind Ltd ボンディングツール
JPH1169929A (ja) * 1997-08-28 1999-03-16 Kyocera Corp 釣具用ガイド部材
JP2002045735A (ja) * 2000-08-04 2002-02-12 National Institute Of Advanced Industrial & Technology 超微粒子薄膜形成方法及び装置
JP2004298863A (ja) * 2003-03-28 2004-10-28 United Technol Corp <Utc> コールドスプレー技術用ノズルおよびコールドスプレーシステム
JP2005095886A (ja) * 2003-09-02 2005-04-14 Nippon Steel Corp コールドスプレー用ノズル並びにコールドスプレー被膜及び製造方法
JP2006212624A (ja) * 2005-01-07 2006-08-17 Kobe Steel Ltd 溶射ノズル装置および溶射装置
JP2007084924A (ja) * 2005-08-24 2007-04-05 Brother Ind Ltd 成膜装置および噴出ノズル
JP2007146281A (ja) * 2005-10-24 2007-06-14 Nippon Steel Corp コールドスプレー装置
WO2009060080A2 (de) * 2007-11-09 2009-05-14 Schunk Sonosystems Gmbh Verfahren zum reduzieren des anlegierens von aluminium sowie ultraschallschweissvorrichtung
WO2009096275A1 (ja) * 2008-01-29 2009-08-06 Plasma Giken Co., Ltd. コールドスプレー用ノズル及びコールドスプレー装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6817550B2 (en) * 2001-07-06 2004-11-16 Diamicron, Inc. Nozzles, and components thereof and methods for making the same
DE102006023483A1 (de) * 2006-05-18 2007-11-22 Linde Ag Vorrichtung zum Kaltgasspritzen

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155954A (ja) * 1985-12-28 1987-07-10 Canon Inc 微粒子流の流れ制御装置
JPH05275493A (ja) * 1992-03-25 1993-10-22 Sumitomo Electric Ind Ltd ボンディングツール
JPH1169929A (ja) * 1997-08-28 1999-03-16 Kyocera Corp 釣具用ガイド部材
JP2002045735A (ja) * 2000-08-04 2002-02-12 National Institute Of Advanced Industrial & Technology 超微粒子薄膜形成方法及び装置
JP2004298863A (ja) * 2003-03-28 2004-10-28 United Technol Corp <Utc> コールドスプレー技術用ノズルおよびコールドスプレーシステム
JP2005095886A (ja) * 2003-09-02 2005-04-14 Nippon Steel Corp コールドスプレー用ノズル並びにコールドスプレー被膜及び製造方法
JP2006212624A (ja) * 2005-01-07 2006-08-17 Kobe Steel Ltd 溶射ノズル装置および溶射装置
JP2007084924A (ja) * 2005-08-24 2007-04-05 Brother Ind Ltd 成膜装置および噴出ノズル
JP2007146281A (ja) * 2005-10-24 2007-06-14 Nippon Steel Corp コールドスプレー装置
WO2009060080A2 (de) * 2007-11-09 2009-05-14 Schunk Sonosystems Gmbh Verfahren zum reduzieren des anlegierens von aluminium sowie ultraschallschweissvorrichtung
WO2009096275A1 (ja) * 2008-01-29 2009-08-06 Plasma Giken Co., Ltd. コールドスプレー用ノズル及びコールドスプレー装置
JP2009179831A (ja) * 2008-01-29 2009-08-13 Plasma Giken Kogyo Kk コールドスプレー用ノズル及びコールドスプレー装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013095070A1 (ko) * 2011-12-22 2013-06-27 (주)태광테크 저온분사를 이용한 스퍼터링 타겟의 제조방법 및 저온분사장치
JP6404532B1 (ja) * 2018-04-20 2018-10-10 株式会社特殊金属エクセル コールドスプレー用ノズル及びコールドスプレー装置
WO2019202720A1 (ja) * 2018-04-20 2019-10-24 株式会社特殊金属エクセル コールドスプレー用ノズル及びコールドスプレー装置

Also Published As

Publication number Publication date
DE102009025473A1 (de) 2011-01-05

Similar Documents

Publication Publication Date Title
JP5877590B2 (ja) コールドスプレー用ノズル及びそのコールドスプレー用ノズルを用いたコールドスプレー装置
JP5171125B2 (ja) コールドスプレー用のノズル及びそのコールドスプレー用のノズルを用いたコールドスプレー装置
US8389106B2 (en) Articles for high temperature service
Hearley et al. The erosion behaviour of NiAl intermetallic coatings produced by high velocity oxy-fuel thermal spraying
US20060038044A1 (en) Replaceable throat insert for a kinetic spray nozzle
JP5736138B2 (ja) コーティングの堆積装置及び方法
EP3017874B2 (en) Cold spray nozzles
EP1775026B1 (en) Improved non-clogging powder injector for a kinetic spray nozzle system
JP2011246816A (ja) 燃焼コールドスプレー
Fauchais et al. Thermal and cold spray: Recent developments
JP2011240314A (ja) コールドスプレー装置
JP2011000584A (ja) コールドスプレー用ノズル
JP2011016149A (ja) 鋼の連続鋳造方法
Alroy et al. Role of process parameters on microstructure, mechanical properties and erosion performance of HVAF sprayed Cr3C2-NiCr coatings
CN105624604A (zh) 在零件内表面热喷涂可控成分与结构涂层的致密化制备方法
US10279365B2 (en) Thermal spray method integrating selected removal of particulates
JP5845733B2 (ja) コールドスプレー用ノズル、及びコールドスプレー装置
JP2020037720A (ja) 溶射皮膜の形成方法、高速フレーム溶射装置、及び高速フレーム溶射用ノズル
JP5228149B2 (ja) 成膜用ノズルおよび成膜方法ならびに成膜部材
Dong et al. Effect of dry-ice blasting on the deposition behavior of molybdenum particles onto aluminum and stainless steel substrates using plasma spraying: From single splat to coating
EP3227032B1 (en) Thermal spray method integrating selected removal of particulates
JP2897650B2 (ja) 金属微粉末の製造装置
WO2016181939A1 (ja) 高速フレーム溶射装置
JP2015218353A (ja) ノズル及びアタッチメント
Wielage et al. Tailoring of Wire Feedstock and Processing Conditions in High Velocity Combustion Wire Spraying

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305