JP2010538403A - 先端部形成方法 - Google Patents

先端部形成方法 Download PDF

Info

Publication number
JP2010538403A
JP2010538403A JP2010522398A JP2010522398A JP2010538403A JP 2010538403 A JP2010538403 A JP 2010538403A JP 2010522398 A JP2010522398 A JP 2010522398A JP 2010522398 A JP2010522398 A JP 2010522398A JP 2010538403 A JP2010538403 A JP 2010538403A
Authority
JP
Japan
Prior art keywords
tip
semiconductor
manufacturing
dopant concentration
hard mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010522398A
Other languages
English (en)
Inventor
シモーネ・セヴェリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Interuniversitair Microelektronica Centrum vzw IMEC
Original Assignee
Interuniversitair Microelektronica Centrum vzw IMEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interuniversitair Microelektronica Centrum vzw IMEC filed Critical Interuniversitair Microelektronica Centrum vzw IMEC
Publication of JP2010538403A publication Critical patent/JP2010538403A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1409Heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micromachines (AREA)

Abstract

本発明は、半導体先端部の製造方法(80)を提供する。上記方法は、先端部材料層が備わる基板を取得すること(81)、例えば1017cm−3を超えるドーパント濃度を有して強くドープされた第2ドーパント濃度の領域で囲まれ、例えば1017cm−3以下のドーパント濃度を有し非ドープ又は軽くドープされ第2ドーパント濃度よりも低い濃度の第1ドーパント濃度のテーパー状形状領域を備えたドーピング・プロファイルを先端部材料層に設けること(82)、及び、第2ドーパント濃度を有する先端部材料のエッチング速度が第1ドーパント濃度を有する先端部材料のエッチング速度よりも実質的に大きい化学エッチングを用いることで先端部材料層を等方的にエッチングすること(83)を備える。

Description

本発明は半導体加工に関する。より詳しくは、その実施形態において、小さく鋭い半導体先端部を形成する方法に関する。別の実施形態において、本発明は先端部自体に関する。先端部は、例えばカンチレバー上に形成可能であり、例えばプローブに基づくデータ記憶装置用のプローブの一部として使用可能である。上記加工は、例えばCMOS回路の電気的な回路を含む基板上に先端部を形成するために使用可能である。
データの記憶は、情報技術において重要な要素の一つである。記憶装置当たりの価格を減じる圧力と同様にこれまでフォームファクターを減じることおいて、より大きな記憶容量の要求が増すことは、磁気ハードドライブ、光学的装置、およびシリコン系の半導体メモリーチップのようなデータ記憶装置に関して実質的に世界的な研究及び開発活動のための主たる原動力になっている。しかしながら、従来の方法が基本的限界に近づいているように思われることから、記録密度を増加させることは、ますます困難になってきている。
さらに高い密度のデータ保存を可能にする解決策の必要がある。原子間力、及び走査トンネル顕微鏡のような、ナノメーター・スケールまで材料の構造を画像化し研究するためのナノメーターの鋭い先端部を用いる技術は、超高密度の記憶装置の形成に適している。プローブに基づくストレージ技術は、従来のストレージ技術によってアプローチしている物理的な限界を拡張するための自然な候補と見なすことができる。
プローブに基づく記憶装置の高いデータ転送速度を達成するための解決策は、個々の記憶領域で書き込み/読み取り/消去の動作を実行する先端部を備え、並行して動作する各々のカンチレバーを有するカンチレバーのアレイに基づいたMEMS(微小電子機械システム)を使用することである。高い記録密度を得るために、小さく鋭い先端部が必要である。
先行技術に記載されるように、結晶シリコンは、そのような先端部を形成するために使用可能である。米国2007/0041238では、シリコン先端部形成用のプロセスが記載され、該プロセスは、シリコン基板上にハードマスク層を形成すること、該ハードマスク内に先端部の領域を規定するパターンを規定すること、浅いキャビティにより囲まれた初期の先端部構造を形成するためにシリコンを等方的にエッチングすること、及び、付加のシリコンを消滅させる熱酸化物を成長することを備える。その後の工程で、熱酸化物はエッチングされ、それによって、先端部構造上に位置したハードマスクは、シリコン先端部から落ち除去させる。付加の熱酸化物及び酸化物エッチング工程は、シリコン先端部の高さ、及び/又はシリコン先端部の曲率半径を調節するために適用することができる。
既に形成された回路上にそのような先端部を加工するとき、許容される最高温度は、例えばCMOS回路に関して450℃に制限される。シリコンの熱酸化は、通常、800℃と1200℃との間の温度で行なわれる。よって、記載された方法は、既に処理された電気的な回路、例えばCMOS回路上に先端部を形成するのには使用できないという欠点がある。
小さく鋭い先端部、例えばカンチレバーを形成する単純で再現可能なプロセスの必要があり、ここで処理温度は、450℃を超えない。
米国公開2007/0041238号公報
本発明は、小さく鋭い先端部の形成用の単純で再現可能な製造プロセスを提供することを目的とし、ここで上記先端部は、例えば上部直径が100nm未満、好ましくは50nm未満であり、製造プロセス中の最高温度は450℃以下である。
上述の目的は、本発明による方法によって達成される。
本発明は、半導体先端部を製造する方法を提供する。その方法は、
先端部材料層が備わる基板を取得すること、
先端部材料層においてドーピング・プロファイルを提供すること、ここで該ドーピング・プロファイルは、第1ドーパント濃度の先細り形状の領域を備え、この領域は例えば1017cm−3以下のドーパント濃度を有し非ドープ又は軽くドープされ、例えば1017cm−3を超えるドーパント濃度を有し高くドープされた第2ドーパント濃度の領域で囲まれており、第1ドーパント濃度は第2ドーパント濃度よりも小さい、及び
第2ドーパント濃度を有する先端部材料のエッチング速度が、第1ドーパント濃度を有する先端部材料のエッチング速度よりも実質的に高い化学エッチングを用いることにより、先端部材料層を等方的にエッチングすること、を備える。
本発明の実施形態による方法の利点は、標準の半導体プロセスと容易に結合可能なことである。本発明の実施形態による方法によって、例えば、100nm未満の、例えば1と100nmとの間の、あるいは1と50nmとの間の、あるいは1と20nmとの間の、あるいは1と10nmとの間の、上部直径を有する鋭い先端部を得ることができる。本発明の実施形態による方法は、先端部上に電気的導電層を形成することをさらに備えることができる。
本発明の実施形態による方法において、先細り形状領域を設けることは、円すい形状領域、ピラミッド形状領域、あるいはくさび形状領域のいずれかを設けることを含むことができる。先細り形状領域は、基板から離れた端部に向かって徐々に狭くなる又は薄くなる領域である。
本発明の実施形態による方法において、先端部材料層においてドーピング・プロファイルの提供は、先端部材料層上にハードマスク、例えば円形のハードマスクを形成すること、及びドーピング工程を実行することを備え、それによりマスクとしてハードマスクを使用する。
本発明の実施形態の利点は、先端部の直径の変化がドーパント変動によって制限され、それは数nmのみの範囲になるということである。従って、非常に正確な先端部寸法を得ることができる。更にエッチング後、滑らかな接触面が得られる。
本発明の実施形態による方法は、ハードマスクを除去することを更に備えることができる。等方的なエッチングは、ハードマスクの除去前あるいは除去後に、行なうことができる。等方性エッチングがハードマスクを除去する前に行なわれれば、得られた先端部は、ハードマスクが等方性エッチングの前に除去された場合よりも高くなるだろう(1と2μmとの間の高さを有する)。本発明による実施形態において、ハードマスク層は、先端部材料層を部分的にエッチングした後に除去することもできる。
本発明による実施形態において、ドーピング・プロファイルの提供は、イオン注入によって、例えば、異なる注入エネルギー、例えば750KeVと60KeVとの間の注入エネルギーでのその後のイオン注入工程によって行なうこともできる。特定の実施形態において、ドーピング・プロファイルは、n型ドーピング・プロファイル、例えばリンのドーピング・プロファイルであってもよい。軽くドープした領域のドーピング濃度は、1017cm−3未満であってもよい。大きくドープした領域のドーピング濃度は、1017cm−3を超える、好ましくは1018cm−3を超えてもよい。
本発明の実施形態による方法において、等方エッチングは、例えばフッ素系のドライエッチング工程のようなドライエッチング工程により行なうことができる。第2ドーパント濃度(非常にドープした)を有する先端部材料のエッチング速度は、少なくとも2分の1、好ましくは3分の1であってもよく、第1ドーパント濃度(低くドープした、あるいは非ドープ)を有する先端部材料のエッチング速度よりも高い。
本発明の実施形態による方法において、基板は、電気的な回路、例えばCMOS回路を含むことができる。この電気的な回路は、本発明の実施形態による先端部の形成が始まる前に、存在可能である。このことは、電気的回路形成に関する高温プロセスを最初に行なうことができるので有利である。
本発明の実施形態による方法は、450℃を超えない温度、例えば400℃を超えない温度で行なうことができる。先端部材料層は、半導体材料、好ましくは450℃を超えない温度で提供される半導体材料であってもよく、例えば、300℃で蒸着可能な非晶質シリコン、あるいは420℃で蒸着可能なシリコン・ゲルマニウム、例えば微晶質のシリコン・ゲルマニウムのようなものである。
先端部形成プロセスが低温で実行可能なこと、例えば、電気的回路が既に形成された後、既に形成された電気的回路を破壊することなく、先端部を形成するプロセスが処理、例えばCMOS後の処理を可能にするということは、本発明の実施形態の利点である。
本発明の実施形態による方法は、基板上で行なうこともでき、ここで基板は、カンチレバー構造の一部であり、あるいはカンチレバー構造の上部に形成される。本発明の実施形態において、先端部は、例えば、プローブに基づくデータ記憶装置の一部として用いることができる。別の実施形態において、カンチレバー構造は、集積回路および同様の製品をテストするための例えばプローブ・カードの製造において使用されるような、カンチレバー電気的コネクタ要素の一部であってもよい。カンチレバー電気的コネクタは、テストされるデバイスの例えば導体パッドのような電気的接点と、テスト装置の例えば別の導体パッドのような別の電気的接点との間で電気的接触を提供するように設計されている。よって、カンチレバー電気的コネクタは、プローブ・カード・アセンブリーにおける電気的経路の一部を提供する。そこでは、プローブ・カード・アセンブリーは、テストされるデバイスとテスト装置との間の電気的な相互接続を提供する。
等方性エッチングの間に、直接、鋭い先端部を形成することができ、並びに、従来技術の方法のような繰り返しの熱酸化および酸化物エッチング工程の必要性を回避することができるということが本発明による方法の利点である。
更なる利点は、プロセスの単純化、およびプロセスの均一化である。先端部半径の変化は、ドーパント変動によって数nmの範囲に制限可能である。
別の態様において、本発明は、CMOSの上部に半導体先端部を設ける。ここで、半導体先端部は、20nm未満、例えば1と20nmとの間、あるいは1と10nmとの間の上部の直径を有する。半導体先端部は、本発明の方法の実施形態による方法によって形成可能である。
さらに別の実施形態において、半導体先端部は、20nm未満の、例えば1と20nmとの間の上部直径と、5nm未満の表面粗さとを有することで特徴付けられる。発明の特定の好ましい態様は、添付の独立請求項及び従属請求項の中で述べられている。従属請求項からの特徴は、独立請求項の特徴と結合でき、請求項において単にではなく適切に明示的に述べられた他の従属請求項の特徴と結合できる。
発明の特徴およびその利点と共に、構成及び動作方法の両方は、発明の原理を例示により図示する添付の図面とともに読んだとき、以下の詳細な記述を参照することで最も理解することができる。この記述は、例示のみのために示され、発明の範囲を制限するものではない。以下に引用された参照図は、添付の図を示す。
図1は、本発明の実施形態に従って形成可能な鋭い先端部の模式的な断面図であり、ここで、Dは上部の直径である。 図2は、本発明の実施形態に従って形成された鋭い先端部を有するカンチレバー構造の略図である。 図3(a)は、本発明の実施形態による先端部の形成プロセスにおいて、異なる方法の工程を示す。 図3(b)は、本発明の実施形態による先端部の形成プロセスにおいて、異なる方法の工程を示す。 図3(c)は、本発明の実施形態による先端部の形成プロセスにおいて、異なる方法の工程を示す。 図3(d)は、本発明の実施形態による先端部の形成プロセスにおいて、異なる方法の工程を示す。 図4は、SUPREM4シミュレーションの結果を示し、上部に円形のハードマスク層を有する1μm厚の非晶質シリコン層において、リン注入後のリンの濃度を示しており、ここでハードマスクは1μmの直径の円形形状を有する。 図5は、ハードマスク層を除去し等方性ドライエッチング後、低くドープした非晶質シリコン(1017cm−3)と比較して高くドープされた非晶質シリコン(1020cm−3)のエッチング速度を2倍とした場合の、図4に示される構造のSUPREM4シミュレーションの結果を示す。 図6は、非晶質シリコン層の部分的な等方性ドライエッチング、ハードマスク層の除去、および非晶質シリコン層のさらなる等方性ドライエッチングの後に、低くドープした非晶質シリコン(1017cm−3)と比較して高くドープされた非晶質シリコン(1020cm−3)のエッチング速度を2倍とした場合の、図4に示される構造のSUPREM4シミュレーションの結果を示す。 図7は、ハードマスク層を除去し等方性ドライエッチング後、低くドープした非晶質シリコン(1017cm−3)と比較して高くドープされた非晶質シリコン(1020cm−3)のエッチング速度を3倍とした場合の、図4に示される構造のSUPREM4シミュレーションの結果を示す。 図8は、本発明の実施形態による製造方法を図示するフローチャートである。
異なる図面において、同じ参照符号は、同一のあるいは類似の構成部分を示している。
以下の詳細な説明において、多数の特定の詳細は、発明の完全な理解、及び、特定の実施形態において発明がどのように実施可能かを提供するために述べられている。しかしながら、本発明は、これらの特定の詳細なしに実施可能であることが理解されるだろう。他の例では、既知の方法、手順、および技術は、本発明の特徴を不明瞭にしないように、詳細に記述されていない。本発明は、特定の実施形態に関して、およびある図面に関して記述されているが、発明は、それに制限されず、請求項によってのみ限定される。ここに含まれ記述された図面は、模式的であり、発明の範囲を制限するものではない。また、図面において、幾つかの構成部分のサイズは、誇張されていることもあり、説明の目的のため縮尺通りに描かれていない。寸法及び相対的寸法は、発明の実施への実際の縮小に対応していない。
更に、明細書及び請求範囲において、第1、第2、第3、等の用語が類似の構成部分同士を区別するために使用されているが、順番、時間的な、空間的な、ランキング的な、あるいは他のいかなる方法におけるものを示すために必要なものではない。そのように使用される用語は適切な状況下で交換可能であり、ここに記載される発明の実施形態はここに記述され又は図示される以外の他の順番にて動作可能であるということを理解すべきである。
さらに、明細書及び請求範囲において、上部、底部、上方、下方、等の用語が記述的な目的のために使用されるが、相対的な位置を記述するために必要ではない。そのように使用される用語は適切な状況下で交換可能であり、ここに記載される発明の実施形態はここに記述され又は図示される以外の他の配向性にて動作可能であるということを理解すべきである。
用語「備える」は、それ以後に列挙する手段に限定されるように解釈すべきではないことに注意すべきである。即ち、それは、他の構成部分又は工程を排除しない。よって、そのように述べられた特徴、整数、工程、又は部品を明記するように解釈されるべきであり、1つ以上の他の特徴、整数、工程、又は部品、あるいはそれらのグループの存在や追加を妨げない。したがって、表現「手段A及びBを備えたデバイス」の権利範囲は、部品A及びBのみからなるデバイスに限定されるべきではない。それは、本発明に関して、デバイスの唯一関連ある部品がA及びBであるということを意味する。
寸法を表す全ての数、例えば、厚み、ドーパント濃度、等のものは、全ての場合において用語「約」により修正されるように理解されるべきである。したがって、反対に示されていないならば、明細書及び添付の請求範囲にて述べられた数値パラメータは、本発明により得られると想定される所望の特性に依存して変更可能な近似値である。最低限でも、各数値パラメータは、有効数字の数、および通常の丸めるアプローチに照らして解釈されるべきである。
この明細書の全体にわたり参照する「一つの実施形態」あるいは「ある実施形態」は、実施形態に関する特定の特徴、構造、又は特性が本発明の少なくとも1つの実施形態に含まれているということを意味する。したがって、この明細書全体の種々の箇所に記載される「一つの実施形態において」あるいは「ある実施形態において」の文言は、必ずしも同じ実施形態を参照するものではない。しかしその場合もある。更に、この開示内容から当業者には明らかになるであろうように、一若しくは複数の実施形態において、特定の特徴、構造、又は特性は、いずれかの適切な方法において結合可能である。
同様に、発明の例示的な実施形態の記述において、開示内容を合理化し、一若しくは複数の様々な創造的な態様の理解を助けるため、当然のことながら、発明の様々な特徴は、時々、単一の実施形態、図、又は記述にまとめられる。しかしながら、この開示方法は、クレームされた発明が各請求項に明確に述べられるものよりも多い特徴を必要とするという意図を反映するように解釈されるべきではない。むしろ、以下の請求項が示すように、創造性のある態様は、単一の先の開示された実施形態のすべての特徴よりも少なく存在する。したがって、詳細な説明に続く請求項は、この発明の別個の実施形態としてそれ自身に基づく各請求項とともに、この詳細な説明内へ明らかに組み込まれる。
更に、ここに記述された幾つかの実施形態は、他の実施形態に含まれた他の特徴ではない幾つかを含むが、異なる実施形態の特徴の組み合わせは、当業者によって理解されるであろうように、発明の権利範囲内であることを意味し、異なる実施形態を形成する。例えば、以下の請求項において、クレームされた実施形態のいずれかは、いずれかの組み合わせにて用いることができる。
発明は、発明のいくつかの実施形態の詳述によって記述されるだろう。発明の他の実施形態は、添付の請求範囲により規定されるように、発明の技術的な教示から逸脱せずに、当業者の知識により構成可能であることは明らかである。
以下では、詳細な記述は、例えばプローブに基づくデータ記憶装置において使用するため、MEMS処理により、例えば高さが1μmと2μmとの間で、上部の直径が1と100nmとの間である小さく鋭い先端部をカンチレバー構造上に形成する方法に関する。しかしながら、本発明は、これに限定されず、より一般的に、MEMS処理により小さく鋭い先端部を基板上に形成する方法に関する。本発明の実施形態による方法の工程の一般的な概観は、図8のフローチャートに示される。
本発明は、例えば100nm未満の例えば50nm未満の上部直径を有するサブミクロンおよび鋭い先端部を製造するための簡単な方法80を提供し、ここで、先端部製造プロセスは、450℃を超えない温度で行なわれる。そのような鋭い先端部は、例えばカンチレバー構造上に形成可能であり、例えばプローブに基づくデータ保存システム、例えば、鋭い先端部を備えた複数のプローブを備えるものに用いることができる。図1は、上部の直径がDの先端部10の略図(断面)である。先端部上部の直径Dは、できるだけ小さくてもよく、例えば100nm未満、好ましくは50nm未満であってもよい。図2は、鋭い先端部10を有するカンチレバー構造11を示し、それは、例えばプローブに基づくデータ保存システムにて使用可能である。
本発明の実施形態による製作方法の利点は、電子回路後の加工、例えばCMOS後の加工用に使用可能なことであり、ここで第1の集積回路、例えばCMOS回路が加工され、その後、MEMSデバイス、例えばカンチレバー、カンチレバー先端部が集積回路上に一般的に加工される。例えば、EP−07061731に記載されるようなプロセスは、MEMS後処理に使用可能であり、ここでCMOS回路は、MEMS加工の間、保護層によって保護されており、及び電気的接続は、MEMSデバイスと下のCMOS回路との間でなすことができる。
上述したように、本発明の実施形態において、鋭い先端部は、カンチレバー上に、例えばMEMSカンチレバーに形成されてもよい。カンチレバー構造を形成するための構造材料は、いずれかの適当な材料、例えばSiGe(例えば、450℃あるいは450℃未満の温度で蒸着された)であってもよく、一方、例えばSiOのような犠牲層は、例えば酸化物、例えばHDP(高密度プラズマ)酸化物であってもよい。しかしながら、カンチレバー構造を形成するために他の材料が用いられてもよく、他の材料が犠牲層のために用いられてもよい。カンチレバーは、更に、例えば電気的な絶縁層のような付加層で覆われる。カンチレバーが完成した後、本発明の実施形態による先端部を形成する加工が実行可能である。
本発明の実施形態による先端部を形成する方法80の詳細な方法工程は、図3(a)から図3(d)に図示されている。
第1工程81において、基板が取得され、該基板は先端部材料の層を設けている。図3(a)に図示されるように、これは、基板30を取得して、基板30上に先端部材料層31を蒸着することによって行なうことができる。
本発明の実施形態において、用語「基板」は、いかなる基礎をなす材料、あるいは使用可能な材料、又は、本発明の実施形態に関する鋭い先端部10がその上に形成可能な材料を含むことができる。基板30は、例えばドープされたシリコン、ガリウム・ヒ素(GaAs)、ガリウム・ヒ素・リン(GaAsP)、インジウム・リン(InP)、ゲルマニウム(Ge)、又はシリコン・ゲルマニウム(SiGe)基板、のような、例えば半導体基板を含むことができる。基板30は、半導体基板部分に加えて、例えばSiOあるいはSi層のような絶縁層を含むことができる。基板30は、電気的な回路、例えば少なくとも1つのトランジスター例えばCMOSトランジスターを備えることができる。よって、用語「基板」は、対象の層あるいは部分の基礎となる層のための要素を一般的に定義するために使用される。また、基板30は、層が形成される他のいずれのベース、例えばガラスまたは金属層であってもよい。基板30は、例えば、カンチレバー例えばSiGeカンチレバーの上部層を表わすこともできる。カンチレバーのこの上部層は、例えばSiC層のような、例えば電気的な絶縁層であってもよい。
先端部材料層31は、例えば非晶質シリコン、又は微晶質シリコン・ゲルマニウムの層であってもよい。しかしながら、他の先端部材料層も、同様に用いられてもよい。先端部材料層31は、非ドープの、あるいは低ドープした材料の、例えば1017cm−3以下のドーパント濃度を有する層であってもよい。電気的回路、例えばCMOS回路を備えた基板30上に先端部10を形成するとき、450℃を超えない温度で蒸着可能で、及び、基板の上部層例えばカンチレバー構造の上部層、例えばSiC層に良好な選択性で等方的にエッチングされることができる、いずれの適切な材料が使用可能である。先端部材料層31の厚さは、例えば0.5μmと5μmとの間、例えば0.5μmと3μmとの間、例えば1μmと2μmとの間、の範囲であってもよい。先端部材料の蒸着は、例えば、化学蒸着法(CVD)、プラズマ化学気相成長法、又はプラズマ支援CVD技術によって行うことができ、450℃を超えない温度で実行可能である。例えば、シリコン・ゲルマニウム層の蒸着は、300℃から450℃の蒸着温度で実行可能であり、また、非晶質シリコン層の蒸着は、300℃と450℃との間の範囲の温度にて行なうことができる。
先端部材料層31を設けた基板30を取得した後、例えば、基板30上に先端部材料層31を蒸着後、図8におけるフローチャートの第2の工程82に図示されるように、ドーピング・プロファイルを例えば注入によって先端部材料層31に設けることができる。ドーピング・プロファイルの2次元分布が図5、図6、および図7に示されている。先端部材料層31にドーピング・プロファイルを設けるために、図3(b)および図8のフローチャートの工程84に図示されるように、ハードマスク層32例えばレジスト層が、当業者に知られた適切ないずれかの方法によって、蒸着されパターン化されてもよい。ハードマスク層32は、下部の先端部材料層31に対して比較的高い選択性を有する材料層であってもよく、それは例えば感光性ポリマーであってもよい。ハードマスク材料は、適切ないずれかの手段、例えばスピンコーティングによって塗布される。ハードマスク材料層32を塗布した後、それはフォトリソグラフィーによりパターン化可能である。不透明な及び透明な領域を有するフォトマスクを通して紫外線光の露光を介して、又は、レーザー・ビームまたは電子ビームを用いて直接に書くことにより、潜像がハードマスク層32内に形成可能である。(ハードマスク材料がいわゆるポジ又はネガの材料かどうかに依存して)露光され又は露光されていないハードマスク層32の領域は、適切な溶媒ですすぐことで除去される。そのようなハードマスク層32のパターン化は、後の加工で先端部10が位置すべきところに、例えば円形のスポットの形成を備えてもよい。そのような円形のスポットの直径は、例えば0.5μmと3μmとの間、例えば1μmと2μmとの間の範囲にあってもよい。
次に、例えばリンのドーピング工程のようなドーピング工程85が行なわれる。他のドーパントが用いられてもよい。しかしながら、非ドープと、リンがドープされた層との間のエッチング速度の変化は、3分の1までにすることができ、このことは、特に有益である。ドーピングは、当業者に知られたいずれの適当な技術によって行うことができる。好ましい実施形態において、ドーピングは、イオン注入によって行われてもよい。これは非常に制御可能な方法であり、また、注入されたプロファイルは、特に有利な深さを有することができる。例えば60KeVと750KeVとの間の範囲のエネルギーを有する中間のエネルギー注入器が使用可能である。従来のドーズ量およびチルト値は、使用可能であり、例えば〜1e15cm−2のドーズ量および〜0度のチルト角である。しかしながら、他のドーズ量、及び/又はチルト角も使用可能である。本発明の実施形態において、イオン注入によるドーピングは、異なった注入エネルギー及び/又は異なったドーズ量を備えた後続の複数のイオン注入工程を行なうことを含むことができる。好ましい実施形態において、先端部材料層31において結果として生じるドーピング・プロファイルは、高度にドープされた領域33に囲まれた、先端部10が位置することになっている(つまりパターン化されたハードマスク層32の下で)非ドープあるいは軽くドープされた円錐形状の領域34を備えることができる。高度にドープされた領域におけるドーピング濃度は、1017cm−3を超える、好ましくは1018cm−3を超えてもよい。ドーピング工程を行なった後の構造が図3(c)に図示されており、図3(c)は、先端部材料層31の高度にドープされた部分33、およびハードマスク32の真下の先端部材料層31の低度にドープされたあるいは非ドープの部分34を示している。
先端部10を形成するために、図8のフローチャートの第3工程83におけるように、先端部材料のドープされた層33、34の等方性のエッチング工程が行なわれ、ここでは、先端部材料層のドープされた領域33のエッチング速度は、低度にドープされた又は非ドープ領域34のエッチング速度よりも速い(選択的に2〜3倍速い)。等方性のエッチング工程は、例えばドライエッチング工程、例えばフッ素系のエッチング工程(例えばCHF、CF4、SF)を備える。例えば、CF−Oプラズマにおいてリンをドープした非晶質シリコンのエッチング速度は、低度にドープされた又は非ドープ材料のエッチング速度よりも約2倍速いことが知られている。(I.Haller 等による、「Selective Wet and Dry Etching of Hydrogenated Amorphous Silicon and Related Materials」、J. Electrochem. Soc, Vol. 13, No. 8, 8月 1988年,2042−2045)。さらに時間、均一性等のような、エッチング工程のパラメータの最適化は、さらに高いエッチング選択性を導くであろう。高度にドープされた先端部材料と、軽くあるいは非ドープの先端部材料との間のエッチング速度の違いのため、等方性エッチングの結果は、図3(d)に示されるように、鋭い円形先端部10であるかもしれない。ドライエッチングの代替として、等方性ウェットエッチングが使用可能である。しかしながら、ウェットエッチングは、それほど正確でないことがあり、ドライエッチングと比較してウエハにわたり均一性が低いことに悩まされることがある。
本発明の実施形態において、ハードマスク32は、等方性エッチング工程83を開始する前に除去可能である。代わりの実施形態において、ハードマスク32は、等方性エッチング工程83を開始する前に除去されないこともある。例えば、先端部材料層33、34の部分的なエッチングは、ハードマスク32を除去する前に行なわれることがある。
本発明の実施形態により先端部10を形成した後、先端部10は、電気的導電層(不図示)、例えば金属層、例えばPt層で覆われてもよい。好ましい実施形態において、電気的導電層は、良好な付着を提供するTiNの薄い層(例えば8〜12nm、例えば10nm)およびPtの薄層(例えば80〜100nm)を備えることができる。しかしながら、他の材料および他の層の厚さが用いられてもよい。電気的導電層は、いずれの適当な方法で適用されてもよく、例えば先端部10上にスパッタされてもよい。先端部10を覆う電気的導体材料は、高い電気伝導率を有することができ、耐摩耗性で、化学的に不活性であってもよい。電気的導電層は、先端部10の接触面を形成するためにエッチングすることができる。あるいは、先端部10の導電層をパターン化するために、リフトオフプロセスが使用可能である。
本発明の実施形態による方法の利点は、等方性エッチングの間に鋭い先端部が直接形成可能であり、従来技術の方法のような、繰り返される熱酸化および酸化物エッチング工程の必要性を避けることができる点である。本発明の実施形態による方法のさらなる利点は、先端部を形成するプロセスが450℃を超えない温度で行なうことができ、それにより、電気的な回路の加工後に、例えばCMOS後の加工の後に、先端部の加工を可能にする点である。更なる利点は、プロセスが単純な点およびプロセスの均一性である。先端部半径の変化は、ドーパントの変動によって数nmの範囲にて制限可能である。
本発明の実施形態による方法のテクノロジーキャド(TCAD)シミュレーション、例えばSUPREM4シミュレーションが実行され、その結果は、図4から図7に図示されている。
先端部材料層31に関し、1μm厚の非晶質シリコン層が仮定され、その上部に円形パターンを有する1.8μm厚のハードマスク(レジスト)層32を有し、上記ハードマスクの円形は1μmの直径を有する。リン注入シミュレーション(図4)は、チルト角0度で、750KeV、500KeV、250KeV、および60KeVの注入エネルギー、並びに1e15cm−2の注入ドーズ量を有する後続の注入工程後に、適切なリン濃度プロファイルを得ることができることを示している。図4のシミュレーション結果は、円形のハードマスク32のまわりにおける注入がハードマスク32の端に高いリン濃度領域33を生成し、ドーパントのラテラル・ストラグル(lateral straggle)が円形のハードマスク32の中央40の方へ向かってドーピング勾配を提供するということを示している。ドーパントのラテラル・ストラグルは、ハードマスク32の中央下の先端部材料層31に、円錐形状の非ドープあるいは軽くドープされた領域34を規定する。
図5および図7は、図4に示す構造のSUPREM4シミュレーションの結果に重畳された、得られた構造を示し、該構造は、先端部10を含み、等方性のドライエッチングに続くハードマスク層32の除去後、低度にドープされた(1017cm−3)非晶質シリコン領域34と比較して高度にドープされた(1020cm−3)非晶質シリコン領域33に関して、2倍(図5)および3倍(図7)高いエッチング速度であると推測される。ドーピング・プロファイル(図4)が与えられ、及び高度にリンがドープされた領域33と、低度にドープされたシリコン領域34との間のエッチング速度差が与えられて、ハードマスク端のシリコン領域33は、ハードマスク32の中央下のシリコン領域34よりも速くエッチング可能で、及び先端部形状を得ることができる。図5および図7のシミュレーション結果を比較すると、より小さな上部直径を有するより鋭い先端部が、より高いエッチング選択性を有する場合に得ることができるということを結論付けることができる。
図6は、図4に示す構造のSUPREM4シミュレーションの結果の一部に重畳された、得られた構造を示し、該構造は、先端部10を含み、非晶質シリコン層の部分的な等方性のドライエッチング、ハードマスク層32の除去、及びさらに非晶質シリコン層の等方性ドライエッチングの後、低度にドープされた(1017cm−3)非晶質シリコン領域34と比較して高度にドープされた(1020cm−3)非晶質シリコン領域33に関して、2倍高いエッチング速度であると推測される。図5および図6のシミュレーション結果と比較すると、ハードマスク層32を除去する前の部分的な等方性エッチングは、より小さな上部直径を有するより鋭い先端部を得ることに有益なことがあると結論付けることができる。
上述の説明は、発明のある実施形態の詳細である。しかしながら、説明がどんなに詳しくても、本発明は多くの方法で実施可能であることが十分に理解されるだろう。発明のある特徴あるいは態様を述べるときの特定の用語の使用は、その用語が関連付けられる発明の特徴あるいは態様のいかなる特別の特徴を含むように制限するために、その用語がここで再定義されていることを示唆するように取られるべきではないことに注意すべきである。
本発明による装置に関して、材料と同様に、好ましい実施形態、特定の構造、および配置が論じられているが、添付の請求範囲により規定されるように、この発明の範囲から逸脱することなく、形式的及び詳細に種々の変更又は修正がなされても良いことは理解されるべきである。

Claims (11)

  1. 半導体先端部(10)の製造方法(80)であって、
    先端部材料層(31)が備わる基板(30)を取得すること(81)、
    先端部材料層(31)にドーピング・プロファイルを設けること(82)、ここでドーピング・プロファイルは、第2ドーパント濃度の領域(33)で囲まれた第1ドーパント濃度のテーパー状形状領域(34)を備え、上記第1ドーパント濃度は第2ドーパント濃度よりも低い、
    第2ドーパント濃度を有する先端部材料のエッチング速度が第1ドーパント濃度を有する先端部材料のエッチング速度よりも実質的に大きい化学エッチングを用いることで先端部材料層(31)を等方的にエッチングすること(83)、
    を備えた半導体先端部の製造方法。
  2. テーパー状形状領域(34)を設けることは、円錐形状領域、ピラミッド形状領域、又はくさび形状領域のいずれかを設けることを備える、請求項1記載の半導体先端部の製造方法。
  3. 先端部材料層(31)にドーピング・プロファイルを設けること(82)は、先端部材料層(31)にハードマスク(32)を形成すること、及び、ドーピング工程を実施し(85)、それによりマスクとしてハードマスク(32)を使用する、請求項1又は2記載の半導体先端部の製造方法。
  4. ハードマスク(32)を除去することをさらに備え、ここで等方的にエッチングすること(83)は、ハードマスク(32)の除去前又は後で実行される、請求項3記載の半導体先端部の製造方法。
  5. ドーピング・プロファイルを設けること(82)は、イオン注入によって行なわれる、請求項1から4のいずれかに記載の半導体先端部の製造方法。
  6. 等方的にエッチングすること(83)は、ドライエッチング工程によって行なわれる、請求項1から5のいずれかに記載の半導体先端部の製造方法。
  7. 基板(30)は、電気的回路を備える、請求項1から6のいずれかに記載の半導体先端部の製造方法。
  8. 当該製造方法は、450℃を超えない温度で行なわれる、請求項1から7のいずれかに記載の半導体先端部の製造方法。
  9. 基板(30)は、カンチレバー構造の部分、あるいはカンチレバー構造の上部に形成される、請求項1から8のいずれかに記載の半導体先端部の製造方法。
  10. CMOS上部の半導体先端部(10)であって、20nm未満の上部直径を有する、半導体先端部。
  11. 半導体先端部(10)は、5nm未満の表面粗さを有する、請求項10記載の半導体先端部。
JP2010522398A 2007-08-29 2008-08-29 先端部形成方法 Pending JP2010538403A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US96863007P 2007-08-29 2007-08-29
PCT/EP2008/061434 WO2009027528A1 (en) 2007-08-29 2008-08-29 Method for formation of tips

Publications (1)

Publication Number Publication Date
JP2010538403A true JP2010538403A (ja) 2010-12-09

Family

ID=40089886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010522398A Pending JP2010538403A (ja) 2007-08-29 2008-08-29 先端部形成方法

Country Status (4)

Country Link
US (1) US8383498B2 (ja)
EP (1) EP2183743A1 (ja)
JP (1) JP2010538403A (ja)
WO (1) WO2009027528A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9685295B2 (en) * 2011-07-28 2017-06-20 The Board Of Trustees Of The University Of Illinois Electron emission device
US9711392B2 (en) * 2012-07-25 2017-07-18 Infineon Technologies Ag Field emission devices and methods of making thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157570A (ja) * 1987-04-24 1989-06-20 Hitachi Ltd 半導体装置およびその製造方法
JPH0684455A (ja) * 1992-07-15 1994-03-25 Canon Inc 微小ティップ、プローブユニット、及びこれらの製造方法、及びこれらを用いた走査型トンネル顕微鏡並びに情報処理装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532177A (en) * 1993-07-07 1996-07-02 Micron Display Technology Method for forming electron emitters
US6835589B2 (en) * 2002-11-14 2004-12-28 International Business Machines Corporation Three-dimensional integrated CMOS-MEMS device and process for making the same
KR100520631B1 (ko) * 2003-07-23 2005-10-13 삼성전자주식회사 나노스케일 디지털 데이터 저장 장치
KR100513662B1 (ko) * 2003-09-08 2005-09-09 엘지전자 주식회사 캔틸레버의 제조방법
US7541219B2 (en) * 2004-07-02 2009-06-02 Seagate Technology Llc Integrated metallic contact probe storage device
KR100580652B1 (ko) * 2004-08-27 2006-05-16 삼성전자주식회사 저항성 팁을 구비한 반도체 탐침 제조방법
US20060212978A1 (en) * 2005-03-15 2006-09-21 Sarah Brandenberger Apparatus and method for reading bit values using microprobe on a cantilever
US7354788B2 (en) 2005-06-28 2008-04-08 Intel Corporation Method for processing a MEMS/CMOS cantilever based memory storage device
US20070041238A1 (en) * 2005-07-08 2007-02-22 Nanochip, Inc. High density data storage devices with read/write probes with hollow or reinforced tips
WO2008053008A2 (en) 2006-10-31 2008-05-08 Interuniversitair Microelektronica Centrum (Imec) Method for manufacturing a micromachined device
US7677088B2 (en) * 2007-08-28 2010-03-16 Intellectual Properties Partners LLC Cantilever probe and applications of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157570A (ja) * 1987-04-24 1989-06-20 Hitachi Ltd 半導体装置およびその製造方法
JPH0684455A (ja) * 1992-07-15 1994-03-25 Canon Inc 微小ティップ、プローブユニット、及びこれらの製造方法、及びこれらを用いた走査型トンネル顕微鏡並びに情報処理装置

Also Published As

Publication number Publication date
US8383498B2 (en) 2013-02-26
WO2009027528A1 (en) 2009-03-05
EP2183743A1 (en) 2010-05-12
US20100295159A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
US9390936B2 (en) Methods for fabricating high aspect ratio probes and deforming high aspect ratio nanopillars and micropillars
US7787352B2 (en) Method for processing a MEMS/CMOS cantilever based memory storage device
KR100682916B1 (ko) 저항성 팁을 구비한 반도체 탐침 및 그 제조방법
JP4999391B2 (ja) デュアルチップ原子間力顕微鏡プローブとその製造方法
CN100587853C (zh) 制造具有电阻尖端的半导体探针的方法
KR100829565B1 (ko) 웨지 형상의 저항성 팁을 구비한 반도체 탐침 및 그제조방법
JP2010538403A (ja) 先端部形成方法
EP2801831B1 (en) Vertical embedded sensor and process of manufacturing thereof
JP2008135158A (ja) 抵抗性チップを備えた半導体探針及びその製造方法
US7671616B2 (en) Semiconductor probe having embossed resistive tip and method of fabricating the same
JP4101848B2 (ja) 自己整列されたメタルシールドを備えた抵抗性探針の製造方法
Berenschot et al. Self-aligned crystallographic multiplication of nanoscale silicon wedges for high-density fabrication of 3D nanodevices
KR100555048B1 (ko) 원자력 현미경용 전계 효과 트랜지스터 캔틸레버의 제조방법
US10221066B2 (en) Process for manufacturing a microelectromechanical interaction system for a storage medium
KR100515734B1 (ko) 전계 효과 트랜지스터가 내장된 원자력 현미경용캔틸레버의 채널 형성 방법
KR100515735B1 (ko) 수직 종횡비가 큰 원자력 현미경용 전계 효과 트랜지스터캔틸레버의 제조 방법
JP2007071867A (ja) 高分解能の抵抗性チップを備えた半導体探針及びその製造方法
CN107689379B (zh) 扫描探针及其制备方法
JP2008089500A (ja) 導電性カンチレバー及びその製造方法
JP4101847B2 (ja) 低断面比の抵抗性チップを備えた半導体探針及びその製造方法
JPH04326538A (ja) 微小プローブの製造方法
JPH10132830A (ja) プローブ顕微鏡用カンチレバーの探針の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917