JP2010518396A - 改良型高解像度超音波顕微鏡 - Google Patents

改良型高解像度超音波顕微鏡 Download PDF

Info

Publication number
JP2010518396A
JP2010518396A JP2009549087A JP2009549087A JP2010518396A JP 2010518396 A JP2010518396 A JP 2010518396A JP 2009549087 A JP2009549087 A JP 2009549087A JP 2009549087 A JP2009549087 A JP 2009549087A JP 2010518396 A JP2010518396 A JP 2010518396A
Authority
JP
Japan
Prior art keywords
sample
transducer
transducer assembly
thin film
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009549087A
Other languages
English (en)
Other versions
JP5406729B2 (ja
Inventor
ハンフリー ジェー. マーリス
アルト ヴィー. ナルミッコ
Original Assignee
ブラウン ユニバーシティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラウン ユニバーシティ filed Critical ブラウン ユニバーシティ
Publication of JP2010518396A publication Critical patent/JP2010518396A/ja
Application granted granted Critical
Publication of JP5406729B2 publication Critical patent/JP5406729B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/0681Imaging by acoustic microscopy, e.g. scanning acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8965Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using acousto-optical or acousto-electronic conversion techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • G10K15/046Sound-producing devices using optical excitation, e.g. laser bundle

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

音波パルスを生成するべくポンプ光パルスの一部が吸収される少なくとも1つの金属薄膜または半導体薄膜と、少なくとも1つの誘電体薄膜とを含む光音響トランスデューサ構造。前記少なくとも1つの金属薄膜または半導体薄膜ならびに前記少なくとも1つの誘電体薄膜の厚さおよび光学的性質は、トランスデューサ構造の光反射率及び/又は他の光学特性における測定可能な変化を戻り音波パルスがもたらすように選択される。トランスデューサ構造は、共鳴キャビティと、試料の表面に音波が放射される際に、生成された音波が顕著に集束しないように形成される出力面とを含む。
【選択図】図11

Description

本発明の例示的実施形態は、概して、試料分析処理の遂行に音波を使用する機器に使用するのに適切な方法および装置に関し、より具体的には、例えば、超音波顕微鏡等の機器に関する。
背景
超音波顕微鏡では、音波が何らかの方法で生成され、集束される。被検体は、焦点または焦点の近傍に位置させられる。被検体の画像は、被検体を横方向に動かしつつ、被検体から反射するか又は被検体を通り抜ける音波の振幅および位相の変動を監視することによって得ることができる。被撮像体を移動させる代わりに、被撮像体を一定の位置に保持し、音響焦点の位置を変動させてもよい。音響焦点の位置は、音波の集束に使用されるレンズの位置を移動させることによって変えることができる。
従来の超音波顕微鏡は、音波を生成するトランスデューサと、音波を集束するためのレンズと、集束するようにそれを通って音波が伝播する接触媒質(通常は水)、それに試料物体から成る。物体から反射された音波は、入射ビームの集束に使用するレンズと同じレンズによって収集されてもよく、別のレンズによって収集されてもよい。試料を通り抜ける音波を収集するためには、試料の向こう側に集光レンズを必要とする。
最初の走査型超音波顕微鏡は、R.A. LemonsおよびC.F. Quateによって作られたと一般的に考えられている。R.A. Lemons , C.F. Quate "Acoustic Microscope Scanning Version", Appl. Phys. Lett. 24, 163 (1974)を参照のこと。これは、周波数160MHzの連続音波を使用し、10ミクロンの解像度を有し、そして透過モードで動作するものであった。
超音波顕微鏡の解像度は、音波の波長によって、および使用する1つまたは複数のレンズの開口数によって判断される。高解像度を達成するためには、開口数が大きく、可能な限り高い周波数で作動することが必要である。Briggsの45頁によると、接触媒質として水を使用して得られる最高解像度については、B. HadiomiogluおよびC.F. Quate、Appl. Phys. Lett. 43、1006(1983年)の著作物に説明されている。彼らは、開口数が0.73で半径が15ミクロンのレンズを使用して、周波数が4.4GHzで持続時間が3ナノ秒の音波パルスを使用した。線形モードにおける解像度は、0.37ミクロンであり、非線形モードでは0.24ミクロンであった。非線形性は、焦点近傍の音波の振幅が十分大きい場合に、より高い周波数高調波が生成される効果を言う。これらのより短い波長成分の存在により、解像度が改善される。4.4GHzにおける3ナノ秒は、13周期にしか相当しないことに留意されたい。
周波数が大きくなると、水中の音波の減衰が深刻な問題となる。水中において、GHz周波数範囲における減衰は、周波数の2乗に比例して変動する。38℃、つまり人の体温において、水中における単位距離当たりの減衰aは、a=0.016f2ミクロン-1によって求められる。ただしfはGHz単位の周波数を表す。反射型顕微鏡では、音響パルスの時間長tが、レンズ表面から試料に達し、およびそれから戻ってくる往復の時間よりも短いことが必要である。音波が電動式圧電トランスデューサによって生成される場合、tを、数ナノ秒(例えば5ナノ秒)未満にすることは非常に困難であるため、音響経路長は、少なくとも8ミクロンでなければならず、好ましくは、それよりも若干長くなければならない。5GHzの音波は、10ミクロン移動した後に、35dBだけ減衰しうる。したがって、レンズから試料物体までの所与の測定距離において、減衰は、事実上使用可能な最高周波数を定めし、かつ結果的に解像度を制限する。水は、それによる減衰が少ないために、接触媒質としてよく選ばれる。減衰がさらに少ない液体(例えばHe、H2、CS2、Hg、Ga)が存在するが、これらの材料を用いることは難しい。例えば、HeおよびH2は、室温において、接触液体としては使用不可能である。生物試料では、水は、一般的に、唯一の可能な接触媒質である。
概要
前述の問題および他の問題は、本発明の例示的実施形態に従って克服され、また、他の利点が実現される。
光音響トランスデューサ構造は、音波パルスを生成するためにポンプ光パルスの一部分が吸収される少なくとも1つの金属薄膜または半導体薄膜と;少なくとも1つの誘電体薄膜と;を備える。前記トランスデューサ構造の光反射率及び/又は他の光学特性における測定可能な変化を戻り音波パルスがもたらすように、前記少なくとも1つの金属薄膜または半導体薄膜ならびに前記少なくとも1つの誘電体薄膜の厚さおよび光学的性質が選択される。
本発明の別の例示的側面では、ポンプ光およびプローブ光を受光するための上面と、底面とを有する基板と;前記底面に配されるトランスデューサ構造であって、前記ポンプ光に反応して音波を生成するように構成され、また、前記生成された音波を試料に導き、かつ前記試料から戻ってくる音波を収集する出力面を有する光キャビティを備えるトランスデューサ構造と;を備えるトランスデューサアセンブリが提供される。前記出力面は、前記試料の表面に前記音波が放射される際に、前記生成された音波が顕著に集束しないように形成される。
本発明のさらなる例示的実施形態によると、プロセスコントローラと;前記プロセスコントローラの指示の下で、構造へのプロセスフローを遂行する複数のプロセスステーションと;前記プロセスコントローラに組み合わされる少なくとも1つの光音響顕微鏡システムとを含む処理システムが提供される。この処理システムは、半導体ウエハ処理システムなどでありうる。
前記少なくとも1つの光音響顕微鏡システムは、前記構造の表面の少なくとも1つの特性を決定するように動作可能である。また前記少なくとも1つの光音響顕微鏡システムは、ポンプ光およびプローブ光を受光するための上面、ならびに底面を有する基板と、前記底面に配されるトランスデューサ本体とを備えるトランスデューサアセンブリを含む。前記トランスデューサ本体は、前記ポンプ光に反応して音波を生成するように構成され、また、前記生成された音波を前記構造の前記表面に導き、かつ前記構造の前記表面から戻ってくる音波を収集する出力面を有する光キャビティを備える。前記出力面は、前記構造の前記表面に前記音波が放射される際に、前記生成された音波が顕著に集束しないように形成される。
本発明のまたさらなる例示的実施形態によると、光キャビティを備えるトランスデューサ構造に、ポンプ光のパルスを印加することと;前記ポンプ光パルスに応じて、前記トランスデューサ構造によって音響エネルギーのパルスを生成することと;前記音響エネルギーのパルスをトランスデューサ構造から試料の表面へ導くこと、ただし前記導かれるパルスは平面的な波面を有する、前記導くことと;前記表面から戻ってくる音響エネルギーの少なくとも一部分を、前記トランスデューサ構造で受信すること;プローブ光のパルスを前記トランスデューサ構造に印加することと;前記光キャビティと協働し、前記プローブ光の少なくとも1つの特性の変化によって、前記受信した音響エネルギーを検出することと;前記検出することに応じて、前記試料の前記表面の少なくとも1つの特性を決定することと、を含む少なくとも1つの方法が提供される。
本発明の例示的実施形態の前述の様相および他の様相は、添付の図面と共に本明細書を熟読することにより、より明らかになる。
図1A〜図1Dは、米国特許出願第11/274,628号に説明される本発明の例示的実施形態を示す。図1Aは、光音響トランスデューサアセンブリのある実施形態を示す。 光音響トランスデューサアセンブリの別の実施形態を示す。 戻ってくる音波パルスを検出するための薄膜の第1の実施形態を示す。薄膜は、誘電体材料によって囲まれる金属ドットの配列を有する。 戻ってくる音波パルスを検出するための薄膜の第2の実施形態を示す。薄膜は、金属によって囲まれる誘電体ドットの配列を有する。 図2〜図10は、米国仮特許出願第60/899,860号に説明される本発明の例示的実施形態を示す。図2は、光音響トランスデューサアセンブリのある実施形態の拡大断面図を示す。 特徴化(パターン化)された表面を有する試料表面上に位置している、図2の光音響トランスデューサアセンブリを示す。 図3に示すパターン化試料表面から受信した2つの音響エコーの時間的な分離を示すグラフである。 図3の試料のパターン化表面をより詳細に示す。図4のグラフの理解に有用である。 試料の別の例示的なパターン化表面を示す。 シミュレータと組み合わせた音響光学顕微鏡システムを示す。 少なくとも1つの薄膜層の存在を特徴とする試料表面上に位置している、図2の光音響トランスデューサアセンブリを示す。 光ファイバの末端部に形成されるか、またはそこに光学的に連結される図2の光音響トランスデューサアセンブリの例示的実施形態を示し、光ファイバを介して、ポンプ光およびプローブ光が供給される。 測定時の間隔で試料表面上に位置している音響レンズならびに介在接触媒質を示す。 図11〜図20は、本発明の例示的実施形態を示す。図11は、異種金属の薄膜を含む光キャビティを有する光音響トランスデューサアセンブリのある実施形態の拡大断面図を示す。 1つの金属薄膜、誘電体層、誘電体ブラッグ反射鏡または反射体が存在する光キャビティを有する光音響トランスデューサアセンブリの、ある実施形態の拡大断面図を示す。 1つの金属薄膜、誘電体層、誘電体ブラッグ反射鏡または反射体が存在する光キャビティを有する光音響トランスデューサアセンブリの、別の実施形態の拡大断面図を示す。 (調節可能でありうる)空隙として形成される光キャビティ、または空隙を含む光キャビティを有する光音響トランスデューサアセンブリのある実施形態の拡大断面図を示す。 接触流体と接触するパターン化薄膜を有する光音響トランスデューサアセンブリの、ある実施形態に関する拡大断面図を示す。 パターン化構造を示す拡大立体図である。 図15Aとは異なるパターン化構造を示す拡大立体図である。 接触流体と接触するパターン化薄膜を有する光音響トランスデューサアセンブリの、別の実施形態に関する拡大断面図を示す。 図15および図16に示す特徴のような、反復的な配列を伴う特徴とは対照的な、突出する単一の特徴を有する、試料表面に関して測定を行なうために使用する光音響トランスデューサアセンブリのある実施形態の拡大断面図を示す。 試料表面に関して測定を行なうために使用する光音響トランスデューサアセンブリのある実施形態の拡大断面図を示し、ポンプ光は試料表面へと伝播し、生成された音波がトランスデューサアセンブリへと帰ってくる。 金属薄膜に接触するDBRを有する光音響トランスデューサアセンブリのある実施形態の拡大断面図を示す。 等しい間隔で並ぶ一連のトレンチ(溝)を特徴とする表面プロファイルを有する試料を示す。 透明な結晶水晶基板を有するトランスデューサアセンブリの一実施形態を示し、その基板に、ダイヤモンドからなるテーパー状の透明基板が装着され、その上に、金属層および誘電体層を成膜して、光キャビティが形成される。 中心台座によって支持される円形光学誘電体円板から構成される平面ウィスパリングギャラリー共振器(WGR)の電子顕微鏡画像を示す。 図22Aの上面図画像であり、入力/出力リッジ型光導波路および高Qリング微小共振器から構成される光リング共振器(ORR)を示す。 複数のトレンチ(溝)を有する試料の拡大断面図である。 図23Aの試料に対応する、音響光学トランスデューサの出力応答を示す。 最上部の湾曲の径が異なる3つの試料の拡大断面図を示し、音響光学トランスデューサの複数のシミュレーションされた出力応答に対する最良適合に基づいて、試料を特徴化する方法を説明するのに有用である。 図7に示すシステムに類似する。さらにシミュレーション結果ライブラリが描かれている。 図7および図25に示す少なくとも1つの光音響顕微鏡システムを備える処理システム2600の例示的実施形態を示す。 図27A、図27B、および図27Cは、試料表面上の1つまたは複数の対象の特徴に対して、その位置決めを容易にするために、音響光学トランスデューサアセンブリの少なくとも1つの薄膜に少なくとも1つの開口部が設けられるある実施形態を示す。 図27A、図27B、および図27Cは、試料表面上の1つまたは複数の対象の特徴に対して、その位置決めを容易にするために、音響光学トランスデューサアセンブリの少なくとも1つの薄膜に少なくとも1つの開口部が設けられるある実施形態を示す。 図27A、図27B、および図27Cは、試料表面上の1つまたは複数の対象の特徴に対して、その位置決めを容易にするために、音響光学トランスデューサアセンブリの少なくとも1つの薄膜に少なくとも1つの開口部が設けられるある実施形態を示す。 本発明の例示的実施形態に従う方法と、コンピュータプログラム命令の実行の結果とを記述する論理フロー図である。
詳細説明
米国特許出願公開第US2006/0272418A1号、米国特許出願公開第US/2006/0272419-A1号、および国際公開第WO2006/132862A2号を参照されたい。これらの文書は、参照によって、その記載の全部が本明細書に組み込まれる。
US2006/0272418A1 US/2006/0272419A1 WO2006/132862 A2
例示的実施形態によると、光パルス、つまり「ポンプ」光パルスが材料に吸収されると、音波が生成される。次いで、音波は、音響レンズを使用して、試料の表面上に集束される。音波は、水または別の適切な液体でありうる接触媒質を介して、レンズから試料まで移動する。音波は、試料の表面から反射し、接触媒質を介して音響レンズに戻る。音波は、音響レンズによって収集された後、別の光パルス、つまり「プローブ」光パルスを使用して検出される。プローブ光パルスは、ポンプ光パルスに対して、時間的に遅れている。音響レンズについて多数の異なる実施形態が実現されてもよく、また、音響レンズおよびポンプ光パルスが吸収される材料について多数の異なる材料が使用されてもよい。また、音波が、基板から反射する代わりに基板を透過する型の超音波顕微鏡を用いてもよい。また、検出された信号を強化するために光キャビティを用いてもよい。また、試料の性質を修正するために、システムの使用を含む多数の異なる用途を使用してもよい。
図1A〜図1Dは、上述の米国特許出願に説明される例示的実施形態を示す。
戻ってくる音波パルスを検出する目的で、光音響トランスデューサ10(本明細書において、AOTA10とも呼ばれる)を多層構造として提供することが有利でありうる。が、単一の薄膜層の実施形態の使用も有利である。一非限定的例を図1Aに示す。基板1000の下面1000B上に、金属(例えばアルミニウム)等の非誘電体材料1002、誘電体材料(例えば二酸化ケイ素またはポリマー)1004、同一または別の金属等の第2の非誘電体材料1006の薄膜が順番に成膜される。音響レンズ1008は、第2の非誘電体薄膜1006の下に位置し、ポンプ光パルスおよびプローブ光パルスは、基板1000の上面1000Aから下方に導かれる。音響レンズ1008は、音響エネルギーを集束するための凹領域1010を含む。上側のアルミニウム薄膜1002は、ようやく感知できるほど弱い光パルスでも透過できるように、十分薄く作製される。アルミニウム薄膜1002及び1006の片方または両方のいずれかにおいてポンプ光が吸収されると、音波が生成される。上側のアルミニウム薄膜1002を通過するプローブ光は、上側と下側のアルミニウム薄膜1002,1004の間のSi02膜1004内で何度も前後に反射されるので、効果的に定在波が発生しうる。理解し得るように、薄膜1002、1004、1006によって画定されるAl/Si02/Al構造は、ファブリーペロー干渉計(Fabry Perot interferometer)と類似した役割を果たす。薄膜1002、1004、1006により画定されるAl/Si02/Al構造は、光マイクロキャビティを形成すると考えることができる。Si02層の厚さが適切に選択される場合、Al/Si02/Al構造からの光の反射は、Si02層1004の厚さ及び/又は屈折率のわずかな変化に鋭い感応性を有する。戻ってくる音波パルスによって、Si02層1004の厚さに変化がもたらされ、Si02層1004の屈折率が変化する。したがって、音波パルスが試料1012の表面1012Aから戻り、Si02層1004へと入射する場合、反射するプローブ光パルスに大きな変化が生じる可能性がある。このように、この種類の構造は、戻り音波パルスを検出するための検出手段を提供する。
上述のマイクロキャビティを加工するためには、Si02層1004の厚さは、好ましくは、Si02におけるプローブ光の整数の半波長にほぼ同等であるように作製される。したがって、真空中のプローブ光の波長が600nmであり、Si02層の屈折率が1.46である場合、Si02層の厚さは、約205nmまたは約410nmなどであるように作製される。
上述の条件下において、反射したプローブ光の位相は、音波がSi02層1004を通って移動する際に大きな(および検出可能な)変化を受ける。
図1Aに示す実施形態に関し、多数の可能かつ有用な変形例が存在する。
一非限定的例として、上側のアルミニウム薄膜1002は、図1Bのような多層誘電体反射鏡構造1020に置き換えられてもよい。多層誘電体反射鏡構造1020は、入射光パルスのためのブラッグ型(Bragg type)反射体としての役割を果たす。多層誘電体反射鏡構造1020とアルミニウム薄膜1006との間に配置される光マイクロキャビティ層1022は、Si02の層、または適切な厚さを有する他の誘電体材料を含む。戻り音波パルスが光マイクロキャビティ層1022に入射すると、パルスは、この層の厚さおよび屈折率を変化させる。これにより、多層誘電体反射鏡構造1020、光マイクロキャビティ層1022、およびアルミニウム薄膜1006から成る構造全体の光反射に大きな変化が生じる可能性がある。実際には、多層誘電体反射鏡構造1020は、非限定的例として、交互に重ねられた2層から16層の誘電体薄膜(例えばSi02およびTiO2)を有してもよい。薄膜の厚さおよび薄膜の数は、好ましくは、プローブビーム波長に関連して調節される。光マイクロキャビティにおける材料に対する効果に起因して反射率が変化することに加え、構造全体の反射率の変化の要因となるものは、(1)音が反射鏡を通過する際の、多層誘電体反射鏡1020を備える材料の屈折率および厚さの変化、(2)音がアルミニウム薄膜を通過する際の、アルミニウム薄膜の光学的性質および厚さの変化である。
一般に、誘電体反射鏡構造1020は、異なる屈折率n1およびn2を含む2つの材料1および2が交互に層をなすように構成される。図1Bに示す実施形態において、材料1の層の厚さは各々構造中で同一であり、材料2の層の厚さも各々構造中で同一である。しかしながら、材料1の層の全部または一部(および材料2の全部または一部)の厚さが異なる誘電体反射鏡構造1020を使用することが有利でありうる。例えば、材料1の各連続層の厚さは、選択された量だけ、前の層の厚さよりも大きくてもよい。このように、音波パルスの到達の結果、構造全体の反射率により大きな変化をもたらす誘電体反射鏡を構成することができる。
ポンプ光パルスやプローブ光パルスの波長を変えることによって、多層誘電体反射鏡構造1020における、ポンプ光パルスやプローブ光パルスの透過特性や反射特性が変わりうることに留意されたい。
戻ってくる音波パルスの生成および検出のために、横方向へパターンが設けられた1つまたは複数の薄膜を使用することが有利でありうる。この場合、個々の特徴構造は、用いられる光の波長より短い寸法を有する。例えば、図1Cを参照すると、このような薄膜は、誘電体材料1052によって囲まれる金属ドット1050の配列であることができる。また、誘電材料が充填された開口部から構成されるドット1060の配列を含む金属薄膜1062でもよい。また、例えば1nm〜100nm程度のサイズの細かいナノテクスチャが形成された材料でもよい。非限定的実施形態として、図1Cや図1Dにおける金属には、Al、Au、Asのうちの1つ以上が含まれてもよく、一方、誘電体材料としては、ポリマーまたは酸化物が含まれてもよい。ドット構造1050や1060は、量子ドット等のナノ分子の自己組織化配列の使用によって、または従来のフォトリソグラフィ技術によって、電子ビームリソグラフィに基づく技術等のマイクロ/ナノ加工技術を使用して形成可能である。また、例として、エッチングや、エッチングされた空洞の金属または誘電体による埋め戻し、注入(インプランテーション)プロセスも含まれうる。このようなパターン化された薄膜は、本発明の例示的実施形態における使用に好ましい値を示す反射係数および吸収係数を有するように調整しうる。
動作の際、戻ってくる音波パルスは、薄膜の金属成分および誘電体成分の光学的性質を変化させるように作用する。また、戻ってくる音波パルスにより誘起される光反射の変化の値は、より大きくなるようにできる。この構造は、音響パルスの生成を強化するように、特定の波長において入射光ポンプ光の吸収を最適化するように設計されてもよい。非限定的例として、ドットは、約100nm以下の高さおよび約100nm以下の直径を有するように形成しうる。
図1A〜図1Dに関連してこれまでに論じた実施形態において、半球型音響レンズ集束要素1010は、非限定的例として、約0.5umの半径を有することが可能であり、例として、電子ビームグレースケールリソグラフィおよびドライエッチングを含むプロセスによってサファイア(または、同等の材料)に加工されてもよい。
さらなるモードにおける超音波顕微鏡の動作が、図2を参照して説明されうる。図2では、音響レンズ凹領域1010の湾曲の径を増加させるとともに、試料1012までの距離を一定に維持することが望ましい。この場合、音響焦点(acoustic focus; AF)は、試料表面1012Aの下、恐らく実質的に下の位置に移動することが考えることができる。音響レンズ1010の湾曲の径が十分大きい場合、実質的に平面状の音波が、試料1012の表面1012Aに影響を及ぼすと考えることができる。この音波の振幅は、音響レンズ1008の下の試料表面1012Aの全体に亘って事実上一定であり(回折効果は無視)、試料表面1012Aが平坦である場合、波は、試料表面1012A上の全点に同時に到達する。次いで、この波は、波が、音響レンズ要素1010の表面上の各点に同時に到達するように、音響レンズ1008に戻る。図2が、音響レンズ1008と試料表面1012Aとの間に配される水等の接触媒質1050も示すことに留意されたい。
既に述べたように、本明細書において「レンズ」と言及される要素は、実際、実質的に平坦な表面を有してもよく、すなわち、「凹領域」1010は、実際は、光学的に平坦または実質的に平坦であってもよい。
図10は、測定のための距離1013に試料表面Aの上に位置した音響レンズ1008を示す。非限定的例として、測定距離1013は、約0.05ミクロンから約50ミクロンまでの範囲であってもよく、これは、接触媒質1050の1つ以上の特性(例えば粘度、表面張力)に関連してもよい。
音響レンズの表面1010が実質的に平坦である事例では、音響焦点は、事実上無限遠にあると考えら得るため、明らかに、試料1012の表面1012Aの実質的に下にあると考えることができることに留意されたい。
引き続き図2の説明をすると、戻り波は、レンズ材料を通過して、光キャビティ(または、他の構造)まで進み、光キャビティにおいて戻り波が検出される。音波の波面の全ての部分が、音波が検出される領域に同時に到達することから、音波は、特定の時間に到達する単一エコーとして検出される。
図2が、図1Aに示す音響レンズトランスデューサ10との関連において、限定としてではなく、便宜的に説明されていることに留意されたく、また、図1Bに示すような別の音響レンズアセンブリも同様に用いられ得ることにさらに留意されたい。
次に、図3に示す種類の試料1012の研究に対する、例示的実施形態の適用について考察する。この例において、試料表面1012Aは、隆起構造によって特徴付けられる不規則(非平面)表面を有するようにパターン化される。この種の試料1012において、ある部分の音響パルスは、表面1012A においてAと表示される領域から反射し、別の部分はBと表示される領域から反射する。
領域Aから反射する音波は、領域Bから反射する音波よりも、音波が検出できる領域へ早く到達する。したがって、プローブ光パルスにより測定される音響応答は、図4に示すように時間的に分離した2つの音響エコー(つまり表面領域AおよびBにそれぞれ対応するエコーAおよびエコーB)を含む。
上述の時間的分離は以下の関係式:

τ = 2h/v

によって求められる。ただし式中、hは領域Aに対する領域Bの深さであり、vは音響レンズの下面1010と試料表面1012Aと間の音響接触媒質1050における音波の速度である。
試料表面1012Aの幾何学的形状について、図5により詳細に示す。図より、領域Bから反射する音波が、領域Aから反射する音波よりも遅れて戻ることが明確に示される。
2つのエコーの間の時間差(図4におけるΔT)の測定を使用して、領域Aと領域Bの高さの差を判断することができる。水(一例示的接触媒質1050)において、音速は、約15Å/ps(ピコ秒当たりオングストローム)であるため、高さの差が1000Åである場合、2つのエコーの到達時間の差は130psである(領域Aに衝突する音波と比較した、領域Bに衝突する音波の往復時間)。
対象となる試料1012のある種において、領域Bは、試料表面1012Aを横断するトレンチ(溝)であってもよく、または試料表面1012Aにおける1つ以上の孤立したピット(凹み)または間隙であってもよい。代替として、領域Aは、試料表面1012Aを横断するリッジ(隆条)であってもよく、または領域B上に存在するアイランド(島)であってもよい。試料表面1012Aは、2つ以上のレベル、例えば、図6に示すように、高さh1およびh2によって区別される3つのレベルを含んでもよい。図6に示す試料に関し、3つの離散エコーが検出され、異なる高さh1およびh2を判断することが可能になる。
高さAにある試料および高さBにある試料の全範囲に対する比率が、音響エコーの相対的高さ(振幅)に影響を及ぼすことに留意されたい。したがって、エコーの相対的高さを使用して、領域Bに対する領域Aの比率を判断することができる。例えば、特定の高さを有する範囲は、全範囲のうちの約1%程であってもよく、依然として検出可能でありうる。
次に、試料表面の領域Aおよび試料表面の領域Bが異なる材料(例えばそれぞれ金属および誘電体)から構成される試料について考察する。fAを領域Aである範囲の比率とし、fBを領域Bである範囲の比率とし、fAおよびfBの値が既知であると仮定する。この場合、領域Aおよび領域Bの範囲から発生するエコーの相対的高さの測定を使用して、AおよびBの音響インピーダンスの相対値を判断することができる。材料の音響インピーダンスZは、密度ρおよび音速vの積に等しい。したがって、例えば、Aの音速およびAおよびBの密度が既知である場合、Bの音速を求めることができる。
試料表面1012Aのトレンチが浅い場合は、時間的に明確に分離する2つの離散エコー(図4に示す)を検出することが不可能であるかもしれない。しかしながら、このような場合は、期待される音響信号の数値シミュレーションを実行することができる。シミュレーションの結果は、測定された音響信号と、トレンチの深さやトレンチが設けられる範囲の比率等のシミュレーションへの入力パラメータと比較されて、シミュレーションの結果と実際の測定との間の最良適合を得るように調整される。また、このシミュレーションベースの手法は、様々な高さや深さを有する段部や溝部が表面1012Aに分布する、より複雑な試料についても用いられ得る。前述のように、測定された音響信号は、シミュレーションによって計算されるものと比較され、シミュレーションへの入力パラメータは、最良適合を得るように調整されることができる。
これに関し、光超音波顕微鏡システム2000とともに動作する音響レンズ1008を含むトランスデューサ10アセンブリを示す図7を参照する。音響光学顕微鏡システム2000は、ポンプ光パルスおよびプローブ光パルスを生成するための1つ以上の光源2000A(例えばレーザ)、戻りプローブ光の少なくとも1つの特性を検出する(例えば戻りプローブ光の強度及び/又は偏光状態のうちの1つ以上を検出する)のに適切な1つ以上の検出器2000B、ならびに任意の必要な信号処理回路を含み、また、恐らくは、音響レンズ1008と試料表面1012Aとの間の相対運動を生成するための手段(例えば試料表面を走査するためのX-Y又はX-Y-Z位置決めステージ)も含むであろう。PC等のコンピュータのメモリに格納されるコンピュータプログラムコードとして具現化されるシミュレータ等のシミュレータ2010は、試料に関連するシミュレーション結果を、音響光学顕微鏡システム2000によって行なわれた測定を受信する比較器2020に出力する。比較結果に基づいて、比較器2020は、1つ以上の調整コマンドを、シミュレータ2010への入力パラメータのうちの1つ以上の値を変動させるパラメータ調整ブロック2030へ送信する。このプロセスは、シミュレーション結果と測定の結果との間の最良適合が達成されるまで、反復的に継続してもよく、達成時に、最良適合結果(および恐らくはパラメータの現行値を含む)が出力される。これらの最良適合結果は、トレンチ、ピット、空洞、台座、リッジ、およびアイランド等(非限定的例として)の表面特徴のサイズおよび範囲分配等の試料および試料表面1012Aの特性について、最も密接に記述する理想的な最良適合結果である。シミュレータ2010、比較器2020、パラメータ調整ブロック2030は、実際には、音響光学顕微鏡システム2000の動作を制御及び/又は監視するシステムなどにおける、単一のコンピュータシステムに全て実装されてもよいことに留意されたい。
したがって、本発明の例示的実施形態のある様相は、試料の表面トポグラフィを示す最良適合パラメータを得るために、試料1012から検出された音響信号に基づいて、シミュレータ2010への入力パラメータを調整する手段と、該入力パラメータを調整する手段に組み合わされる出力部とを有する音響光学トランスデューサアセンブリ10であることが理解できる。
また、試料1012から戻る音響信号の測定を行なうことによって試料1012の品質を検査し、次いで、その測定を、望ましい幾何学的形状及び/又は機械的性質を有することが知られている少なくとも1つの試料(例えば既知の優良試料またはリファレンス試料)から行なわれた測定と比較することも、本発明の例示的実施形態の範囲内にあることに留意されたい。
また、図8に示すように、試料基板2100に成膜される1つまたは複数の薄膜2100Aの性質を測定することも、例示的実施形態の範囲内にある。実質的に平面の薄膜2100Aでは、第1の音響エコー(エコー1)は、接触媒質1050と、薄膜2100Aの上面2100Bとの間の界面における音波の反射から発生する。次いで、第2のエコー(エコー2)は、薄膜2100Aに入り、かつ薄膜2100Aと基板2100との間の界面2100Cにおいて反射する音波から発生する。エコー1とエコー2との間の時間を使用して、薄膜2100Aの厚さを判断することができる。
例えば、再び図4を参照すると、エコーAがエコー1(接触媒質1050と薄膜2100Aの上面2100Bとの間の界面からのエコー)に対応し、エコーBがエコー2(薄膜/基板界面2100Cからのエコー)に対応すると仮定する。この場合、デルタTの値は、薄膜2100Aの厚さに明らかに相関する。
2つのエコーの相対的な振幅を使用して、薄膜2100Aと基板2100との間の接合の品質を推定することができることに留意されたい。例えば、薄膜2100Aが基板2100に不完全に接合される場合、エコー2は、典型的には、既知の音響学の法則および界面2100Cにおける完全な接合の仮定を使用する理論的な計算に基づいて期待されうる振幅よりも大きくなる。したがって、理論的な計算(例えばシミュレーションの要素として)に基づいて、または少なくとも1つの既知の優良(参照)試料から測定された振幅に基づいて、期待されうる振幅を越えてエコー2の振幅が増加することは、薄膜2100Aおよび基板2100間の界面接合の実際の品質に相関可能になる。
本発明のこれらの例示的実施形態の使用は、ピコ秒超音波(picosecond ultrasonics; PU)等における従来の手法と比較した有利な効果を提供する。
例えば、PUでは、音波を生成するために、光が直接試料に吸収されるが、本発明の例示的実施形態に従う方法では、別の音響光学トランスデューサ10が音波を生成するために使用される。このため、透明な試料を研究することが可能になる。
さらに、例として、PUでは、ポンプ光ビームやプローブ光ビームは試料と直接相互作用するが、本発明の例示的実施形態では、別のトランスデューサ10を使用して、音波を生成および検出する。
音波パルスの高周波数フーリエ成分は、接触媒質1050により強く吸収されうる。このため音響パルスに広がりが生じることに留意されたい。したがって、本発明の例示的実施形態は、非常に薄い薄膜および塗膜以外、例えば、数百オングストローム未満の厚さの薄膜以外との使用に好適でありうる。しかしながら、非常に厚い薄膜、例えば、約1ミクロン以上の厚さの非常に厚い薄膜の評価のために、薄膜の厚さが判断できる精度を感知可能なほどまで低下させることなく、接触媒質1050の厚さを増加させることができる。光音響トランスデューサ10と試料表面1012Aとの間の測定距離のこの効果的な増加は、試料表面1012Aが走査されうる速度も増加させる。
トランスデューサ10のデザインには多くの可能な方法が存在する。これらには以下の例示的かつ非限定的な実施形態が含まれるが、これらに限定されるものではない。
最初に、図9を参照すると、ポンプ光およびプローブ光のうちの少なくとも1つは、光ファイバ2150によって供給されてもよい。またこの場合、トランスデューサ10は、光ファイバ2150の末端部に形成されるか、またはそこに光学的に連結されてもよい。反射したプローブ光は、同一のファイバ2150を介して、図7に示す音響光学顕微鏡システム2000の一部を形成する検出電子機器および信号処理回路に供給されてもよいことに留意されたい。
次に、透明試料1012の表面上に大きな面積の薄膜が成膜され、ポンプ光は、できれば試料1012の表面積全体をカバーする大きな範囲(例えば直径30ミクロンのスポット)に印加される。一方、プローブ光は、小さな範囲に印加される。プローブ光は、試料性質のマップを制作するために、試料表面1012A上(この場合薄膜表面上)で走査されてもよい。
「音波」の生成および受信との関連において上述したが、これは、音波が、ヒトの聴力に通常関連する可聴範囲にありうることを暗示するように意図されないことに留意されたい。
光音響トランスデューサアセンブリから出力されるプローブ光の検出可能な変化について本明細書において任意に言及することが、検出できる任意の変化を包含するように理解されるべきであることにさらに留意されたい。例えば、プローブ光に関して測定された特性は、好ましくは、光音響トランスデューサアセンブリから出力されたプローブ光の強度の変化でありうるが、一方、光音響トランスデューサアセンブリ10から戻った後に、プローブ光の他の特性における変化を測定する(例えば図7の音響光学顕微鏡システム2000において)ことも、本発明の例示的実施形態の範囲内にある。これらの他の特性には、透過したプローブ光の強度、反射したプローブ光の位相、反射したプローブ光の方向、および反射したプローブ光の偏光が含まれてもよいし、これらに限定される必要もない。したがって、検出器200Bは、測定されるべき反射プローブ光の1つまたは複数の所望の性質に反応しうるものである。
さらに、本発明の更なる例示的実施形態について説明する。
まず、光キャビティをトランスデューサアセンブリに設ける一つの利点は、キャビティを共鳴し易くすることによって、エネルギーが、単一の金属薄膜に吸収されるよりも多く吸収されることに留意されたい。ここで、共鳴は、光の波長と誘電体層の幅との間の関係が、キャビティ内に定在光波が発生する関係であることを意味する。しかしながら、光は、両方の金属薄膜に吸収され、結果的に、2つの音波パルスが、事実上同時に、構造中の異なる位置において生成される。これは、戻り音波から測定される信号の分析をより複雑にしうる。
本発明の本例示的実施形態によると、2つの音波パルスの生成に関連する問題は、2つの金属薄膜に異なる材料を使用することによって軽減できる。例えば、一方の薄膜は、アルミニウムであり、他方の薄膜は銅であってもよい。これらの金属の両方は、高い反射率を有するため、十分高いQを有するキャビティを作るために使用できる。しかしながら、アルミニウムにおける光の吸収は、銅よりも大幅に大きいため、アルミニウム薄膜においてより多くの光が吸収され、その薄膜において生成される音波パルスは、銅薄膜で生成される音波パルスよりも大幅に大きくなり得る。結果的に、銅薄膜で生成される音波パルスを無視することが、十分に優良な近似でありうる。この種類の構造の設計の際、音響反射を可能な限り小さくするように材料の厚さおよび層の厚さを選択することが有利である。これは、ポンプ光によって生成される1つまたは複数の音波パルスが、構造内で反射を受けることによって分析をより複雑にし得る追加の音波パルスを生成しないようにする。
この種類の光キャビティを有するトランスデューサ10の例を図11に示す。本図面において、銅薄膜1005はキャビティの一方の端部を境界付け、アルミニウム薄膜1006は他の端部を境界付ける。当然ながら、銅薄膜およびルミニウム薄膜の使用は、本発明を限定するものとして意味されない。一般に、本実施形態は、2つの異種反射材料(例えば金属含有材料)から構成される薄膜を用いるが、この場合、一方の材料は、他の材料よりもポンプ光波長の吸収性が低い。
本発明の別の例示的実施形態によると、1つの金属薄膜1006A(アルミニウムでありうる)、誘電体層1004、誘電体ブラッグ反射鏡または反射体(dielectric Bragg mirrorまたはreflector; DBR)1007が存在する光キャビティが図12および図13に示される。前述のように、光の波長と誘電体層1004の幅との関係は、キャビティ内に定在光波が発生する関係である。図11の実施形態と比較すると、図12および図13の実施形態は、光が、構造の一部分だけに吸収されるという利点を有する。結果的に、図11において生成される2重パルスの代わりに、単一の音波パルスが生成される。この種類の構造の設計の際、音響反射を可能な限り小さくするように材料の厚さおよび層の厚さを選択することが有利である。これによって、ポンプ光によって生成される1つまたは複数の音波パルスが、構造内で反射を受けることによって分析をより複雑にし得る追加の音波パルスを生成しないようにする。したがって、例えば、DBR1007に使用される材料の各々が、ほぼ同一の音響インピーダンスを有することが好ましい。音響インピーダンスZは、質量密度および音速の積として定義される。
図14は、光キャビティを調節する能力を有する光音響トランスデューサアセンブリ10のさらなる実施形態を示す。例えば、キャビティにおける反射要素のうちの1つは、キャビティが空隙1011を含むようにその端部から支持される薄い膜(本非限定的例において金属薄膜1006A)として加工される。2つの反射体(本非限定的例において金属薄膜1006AおよびDBR1007)間の空間は、ただ空隙1011であってもよく、または空隙1011と誘電体層1004(図示せず)とであってもよい。空隙1011は、ポンプ光の光学特性を提供するために静電的に調節されてもよい。垂直キャビティ型表面発光レーザ(vertical cavity surface emitting laser; VCSEL)のためのMEMS調節可能キャビティの加工に関し、Connie Chang-Hasnain、「Micromechanical Tunable Vertical Cavity Lasers」、Chapter in Vertical-Cavity Surface-Emitting Lasers: Technology and Applications、279〜316頁、J. ChengおよびN. Dutta編、Gordon Breach Science Publishers、2000年を参照することができる。MEMSの手法が、本明細書において、具体的には光音響トランスデューサアセンブリ10に適用される。空隙1011に関し、接触液体1050と接触する反射体1006Aにおいて生成される音波だけが、液体に入り、試料1012に到達することに留意されたい。したがって、本反射体が、ポンプ光の一部を吸収する材料から作製され、一方、他の反射体は、金属、半導体、またはDBR1007(実質的に光を吸収しない)であることができることが好ましい。わずかな量の熱が空隙を通過し、大部分の液体の熱伝導率が低いため、接触液体1050に接触する反射体1006Aにおけるポンプパルスによって堆積される熱は、側方の流れによって離隔して伝導し得る。したがって、その温度が過度に上昇しないように、反射体1006Aが、高熱伝導率の材料から作製され、かつ十分な厚さを有することが好適でありうる。
図14に示す実施形態において、InO等の透明導電薄膜または層1009が、基板1000に成膜される。導電層1009および金属薄膜1006A間に電圧差が印加されると、力が金属薄膜1006Aに作用し、キャビティの空間は、空隙1011のサイズの変化によって変化し、それによって、キャビティの光学特性が調節される。
他の手段によってキャビティの調節を行いうることにも留意されたい。非限定的例として、以下が挙げられる。
a)誘電体層1004の厚さおよび誘電率は、温度変化によって変化しうる。
b)基板1000に圧電材料を使用する場合に、電場の印加によって、基板1000に歪みが生じ、これによってキャビティの誘電体層1004にも歪みが生じる。この歪みによって、誘電体層1004の厚さや誘電率の変化がもたらされる。
c)誘電体層1004が、対称中心の無い材料から作製される場合、電場の印加により誘電率の線形変化を生じることができる(ポッケルス効果)。例えば、対称中心の無い酸化亜鉛の薄膜を調製してもよい。
共鳴キャビティを調節するために、他の技術を適用してもよいことを理解されたい。例えば、ウィスパリングギャラリー構造に基づく手法が考えられる。これに関し、モードが板の縁の周囲にある円形誘電体光学構造について考察する。この場合、金属トランスデューサ薄膜を円板の中心に配置することができ、その直径は、(Qを大幅に低下させることなく)ウィスパリングギャラリーモードに有限結合するように選択され、また、トランスデューサ10から放射され且つトランスデューサ10により受信される音響ビームの効果的な直径を画定するように選択される。
更に本実施形態に関し、ウィスパリングギャラリー共振器(whispering gallery resonator; WGR)は、小型の誘導波光学素子構造であり、これにより、Qが高い共振器を、赤外波長および可視波長近傍で実現可能になる。関連して、光リング共振器(Optical ring resonator; ORR)は、同様に、光波が低損失光媒体無内の周期軌道に閉じ込められる構造である。これらの波軌道の共鳴キャビティの本質により、光閉じ込めは、極めて特定の光波長においてのみ効果的であり、したがって、この構造は、狭線幅の共振器モードを明確に有する。WGRおよびORRは、半導体レーザの基礎として過去に使用されており(例えば「Blue-Green Laser Emission from ZnSe Quantum Well Microresonators」、M. Hovinen、J. Ding、A.V. Nurmikko、D.C. Grillo、Y. Fan. J. Han、 H. Li、およびR.L. Gunshor、Appl. Phys. Lett. 63, 3128 (1993年)参照)、生物センサおよび熱センサを含むセンサとして提案されている。これに関し、例えば、米国特許第6,781,696号「Apparatus and Method for a Microsphere Whispering-Gallery Mode Evanescent-Wave Sensor」、 Rosenbergerら、Vollmer, F.、D. Braun、A. Libchaber、M. Khoshsima、I. Teraoka、S. Arnold、「Protein detection by optical shift of a resonant microcavity」、Appl. Phys. Lett. 80、 4057〜4059(2002年)、およびG. Guan、S. Arnold、およびV. Otugen、「Temperature measurements using a microoptical sensor based on whispering gallery mode」、AIAA J. 44、2385〜2389(2006年)を参照することができる。
図22Aおよび図22Bは、典型的な平面光学WGR2200およびORR2230デバイスの一般的な構造をそれぞれ示す。これらの特定の例は、特定の光電子デバイス用途のために作られている。図22AのWGR2200は、中心台座2220によって支持される円形光学誘電体円板2210から構成される。図22BのORR2230は、入力/出力リッジ型光導波路2240、2250、および高いQを有するリング微小共振器2260から構成される。例示的かつ非限定的な寸法について図22Aおよび図22Bに示す。図22Bには、リッジ型光導波路2250とリング微小共振器2260との間の例示的空間を示す拡大図が含まれる。各事例において、光は、光ファイバまたは微小共振器のエバネセント波(evanescent wave)の範囲内に配置される他の補助誘導波構造によって、構造に連結される。平面バージョンに加え、WGR2200およびORR2230は、球形もしくは楕円形、または柱状の3D幾何学的形状で実装できる。
WGR2200およびORR2230のセンサとしての一般的な利用は、誘導光モードのスペクトル部分、すなわち共振器が機能する単一の波長が、ウィスパリングギャラリー材料またはリング共振器材料の幾何学的寸法および屈折率によって定まる感度を有するという事実に起因し、これは一方または両方の性質の小さな変化にも高い感度を有する結果となる。Qファクタは、構成材料の光学的損失に依存して、数千から百万を越える範囲で調節できる。
光音響センサは、材料表面/界面の屈折率または変位のいずれかに音波が影響を及ぼすデバイスであるため、高周波数超音波を検出するために、本発明の例示的実施形態に従い、上述のQが高い共振構造を有益に使用してもよい。WGR2200デバイスおよびORR2230デバイスが、薄膜金属塗膜を含む誘電体半導体材料から制作される場合、デバイスに連結される到来パルスレーザ光は、デバイス構造における超音波の到達を検出することができる。到達音波パルスに関連する屈折率及び/又は表面変位における変化は、閉じ込められた光学モードの共振周波数における推移により、構造から反射した入射光パルスの変調として検出される。同時に、別の光学励起パルスを標的材料に放射することによって、デバイスに歪みパルスを初めに放出させるために、同一の構造を用いることができる。
本発明のさらなる実施形態に関し、GaN/InGaNまたはAlGaN/GaNの薄膜ヘテロ構造等の、特定の群III〜群V合金から構成される特定のヘテロ構造を効果的に使用して、音波を生成できることに留意されたい。これらの構造は、非常に大きなピエゾ効果を呈し、光パルスが、バンド間光吸収によってキャリアを励起すると、大きな応力(stress)が生成され、結果として高振幅の音波パルスが放出される。ある具体例が、論文E. Makarona. B.C. Daly、 J.-S. Im、H.J. Maris、A.V. Nurmikko、およびJ. Han、「Coherent Generation of 100 GHz Acoustic Phonons by Dynamic Screening of Piezoelectric Fields in AlGaN/GaN Multilayer」、Appl. Phys. Lett. 81、2791(2002年)に記載されている。元々はフレネルレンズとの関連において説明されているが、この種類のトランスデューサアセンブリも、非集束型光音響トランスデューサアセンブリ10に使用してもよい。
さらに、音響レンズの制作技術に関し、使用可能ないくつかの例示的(かつ非限定的)な方法について以下に挙げる。
a)本明細書の図1Aや図1Bに示すようなレンズの凹面は、シリカ球をモールドとして使用してポリマー材を用いて制作し、球形をエッチングしてもよい。
b)レンズの凹面は、適切な材料で薄膜を形成してから、ナノインデンタ(nanoindentor)を使用して、薄膜の表面にキャビティを形成することによって加工されてもよい。この実施形態において、薄膜は、塑性流動(plastic flow)を呈する材料から形成され、ナノインデンタの先端には、所望の幾何学的形状のキャビティを生成する形状が設けられる。
c)凹面は、電子ビームグレースケールリソグラフィおよびドライエッチングによって形成されてもよい。
d)凹面は、まず、フォトレジストの層を表面に成膜し、フォトレジストに小孔を形成し、次いで、孔を介してウェットエッチングを使用して球形キャビティを形成することによってもたらされてもよい。
これまでに論じた種々の実施形態の全てにおいて、追加の薄膜を構造に組み込むことが有利でありうる。例えば、図11または図12に示す種類の光キャビティを使用する場合、アルミニウム薄膜1006と接触液体1050との間に、追加の薄膜を成膜してもよい。非限定的例として、このような追加の薄膜を使用して、(a)空気への暴露時にアルミニウム薄膜1006を酸化から保護し、及び/又は(b)音波の接触液体1050への透過性を強化してもよい。音の透過性を強化するために、追加される薄膜は、トランスデューサの1つまたは複数の薄膜の音響性質および接触液体1050の音響性質に適切に関連する音響性質を有する材料から構成されることが好ましい。
用途によっては、光キャビティなどの音波トランスデューサに、面に広がるパターンを設けることによって、利益を得られる場合もある。2つの非限定的例を図15および図16に示す。これらの図面において、金属(例えばアルミニウム)薄膜1006Bの下面はパターン化されている(すなわち3次元構造を有する)。結果的に、単純な平面音波が接触液体1050を介して試料1012に放射される代わりに、複雑な攪乱が生成される。例えば試料1012の表面に向かって放射される波の振幅は、横方向の位置によって変動し、薄膜1006Bの表面に垂直方向以外の方向に伝播する音波が放射される。非限定的例として、以下が挙げられる。
a)薄膜1006Bは、図15のようにパターン化されてもよい。この種類のトランスデューサでは、試料1012の表面上の薄膜1006Bの一方の部分(h1で示される部分A)の距離は、表面の別の部分(h2で示される部分B)の距離とは異なる。範囲AおよびBの両方の線形寸法(linier dimension)が、試料1012の表面からの高さh1およびh2よりも大きく、かつ試料1012の表面上のパターンの反復距離(repeat distance)よりも大きい場合、測定される信号は、高さh1およびh2のパターン化されていないトランスデューサによって得られるであろう信号の合計にほぼ近いと考えることができる。したがって、この種類のトランスデューサ10の使用は、非パターン化試料を使用する場合に、試料からトランスデューサまでの高さを変えた2つの測定を必要とし得る情報を抽出する手段を提供することができる。領域AおよびBを含む範囲は、図15aに示すように、表面に延在するストリップの配列としてパターン化されてもよく(一次元パターン化)、または図15bに示すように、領域Aを構成する範囲は、長方形構造から成り、領域Bは、アルミニウム薄膜1006の表面の残りを含むものであってもよい。
b)また、トランスデューサの薄膜1006Bは、図16に示すように、試料1012の表面の特徴が反復する距離と同じであるか、ほぼ同じである反復距離でパターン化されてもよい。この実施形態では、測定された信号は、試料1012に対するトランスデューサ10の横方向の位置に大きく依存する。すなわち、トランスデューサの薄膜1006B上の突領域が、試料1012の表面の突領域に対向する場合(図16に示す状態)における、トランスデューサ10の信号から測定される信号は、トランスデューサの薄膜1006B上の突領域が、試料1012の表面の中間谷領域に対向する場合とは異なる。したがって、この種類のトランスデューサ10による測定を使用して、試料1012の表面上に現れている特徴の横方向の位置について正確な判断を行なうことができる。
この後者の実施形態は、集積回路の製造中に使用されるパターン化プロセス等のプロセス中に、試料1012の表面を正確にレジストしたい場合に、特に有用でありうる。この場合、現在、プロセスのステップの間に10nm未満の解像度の半導体ウエハを配置および再配置することが必要でありうるため、重なり合いの問題を解決することができる。この用途において、ウエハの表面の一部分上の現在の(期待される)パターンは、トランスデューサ10の下面に複製可能であり、次いで、トランスデューサ10は、パターンセンサとして機能し、ウエハ表面の対応する部分の上に配置する際に整合させることを可能にする。代替として、ウエハ表面には、トランスデューサ10の下面上に複製される所定の整合パターンが設けられることができる。
トランスデューサ10上のパターン特徴が、段の高さsh1およびh2以外にも対応するように提供できることに留意されたい。
次に、これまでに説明した本発明の例示的実施形態に対する多数の強化および拡張について説明する。
試料1012の特定の性質を判断するための一方法は、上述の音響光学トランスデューサ10の実施形態のいずれか等の音響光学トランスデューサ(AOTA)10の出力に現れる特定の特徴の分析に基づく。例えば、図23Aに示す種類の試料1012について考察する。本事例における試料1012は、図示するような寸法を有する深さhの一連のトレンチを特徴とする。試料材料は二酸化ケイ素であってもよく、接触流体または媒質は水である。AOTA10(図示せず)は、試料1012の最上表面の上の高さ400nmに位置してもよい。この場合のAOTA10の出力のコンピュータシミュレーションの結果を、図23Bに示す。エコーAは、試料1012の上部で反射して生成された歪みパルスの部分から発生する。エコーBは、トレンチの底部に下方に伝播し、かつそこで反射する歪みパルスの部分から発生する。トレンチの深さdは、2つのエコーAおよびBの到達時間TAおよびTBの差、すなわち、
Figure 2010518396
によって判断可能である。式中において、cは、水(本例において仮定される接触媒質)中における音波の速度である。
信号の特定の特徴を使用して試料の性質を判断する第2の例として、図24に示す3つの試料の種類を考察する。これらの3つの試料間の唯一の違いは、試料構造の上部の表面の湾曲である。表面のこの部分が平坦である場合、最上部の試料において、そこから反射した音波が、AOTA10において強力なエコーを生成し、湾曲が増加すると、反射した音波の全てがAOTA10に直接戻るわけではなく、代わりに、様々な方向に反射して、エコーが弱くなる。したがって、上面の湾曲以外の、同一の幾何学的形状を有する一連の試料1012について、この表面からのエコーの振幅を使用して、この表面の湾曲を推定することができる。
試料の分析に関する別の方法は、図7に関して上述したように、音響光学トランスデューサアセンブリ10の出力のコンピュータシミュレーションを使用する。以下の説明に関し、図25を参照することができる。図25は、図7に示すシステムと類似しているが、加えて、シミュレーション結果ライブラリ(ライブラリ)2015が描かれている。シミュレーション結果ライブラリ2015は、シミュレーション結果のデータベースとして具現化されてもよい。コンピュータシミュレーションは、非限定的例として、試料1012を構成する材料の幾何学的形状および弾性的性質および質量密度の仮定値に基づく。次いで、シミュレーションされた出力は、AOTA10の測定された出力と比較されることができる。コンピュータシミュレーションは、シミュレーションされた出力が、測定された出力に可能な限り近似になる値を探索するために、試料1012の幾何学的形状および弾性的性質の異なる仮定値について繰り返されてもよい。コンピュータシミュレーションの遂行に含まれるステップについて以下に説明する。
a)AOTA10におけるポンプ光の吸収についてまず考察する。AOTA10を構成する薄膜層の既知の厚さおよび材料性質から、1つ以上の金属薄膜または半導体薄膜に吸収されるエネルギーを決定する。ポンプ光の吸収により、これらの薄膜において温度上昇が生じる。特定の薄膜内の温度上昇は、一般に、薄膜中で均一ではない。
b)温度上昇の結果、1つ以上の金属薄膜または半導体薄膜において熱応力が発生する。この応力は、材料の熱膨張係数および弾性的性質から計算できる。
c)この応力は、接触流体(媒質)1050に入り、かつ試料1012と相互作用する1つ以上の歪みパルスの伝播をもたらす。試料1012の幾何学的形状および弾性的性質を仮定することにより、これらのパルスの伝播は、例えば、有限要素または有限差分方法を使用して計算できる。
d)歪みパルスが接触流体1050を介して帰り、再びAOTA10に入射すると、結果として、AOTA10の光学特性に変化がもたらされる。例えば、これは、AOTA10を構成する薄膜のうちの1つ以上の厚さの変化である。歪みは、薄膜の材料の光学定数に変化をもたらす。AOTA10の光反射率または他の対象光学特性の変化を計算することができる。
大部分の固体材料では、質量密度および音速は、使用される可能性の高い接触媒質の質量密度および音速よりも実質的に大きい。結果的に、いくつかの試料について、AOTA10の出力を簡略化したコンピュータシミュレーションを行うことで十分な場合もある。この簡略化は、試料1012が剛性であると近似することによってなされる。
多くの対象試料について、試料1012を構成する材料の弾性的性質および密度は既知である。この状況において、AOTO10のシミュレーションされた出力と、測定された出力との間の最良適合(best fit)を得るために調整する必要があるのは、試料1012の幾何学的形状だけである。
AOTO10のシミュレーションされた出力と、測定された出力との間の最良適合を達成するように、試料1012に仮定する性質を調整するために使用可能な多数の方法が存在する。方法の第1の例は、試料1012に関する多くの幾何学的形状および恐らくは他の性質(例えば弾性および質量密度)に関する仮定について、シミュレーションによるAOTA10の出力のライブラリ2015を作成することである。これらのシミュレーションによる出力は、N個の時間tnの集合に対して計算された出力ysim(tn)を与える。なお、式中、nは1からNの範囲である。ライブラリ2015の本質を理解するために、図20に示す試料の表面プロファイルを例として考察する。この種類の試料のプロファイルは、以下のパラメータによって説明できる。

a)トレンチの深さ:h
b)反復距離:L
c)トレンチの底部における湾曲の径:R1
d)構造の上部の湾曲の径:R2
シミュレーションは、これらの4つのパラメータ値の各々について所定の範囲で行われる。例えば、パラメータ毎に10個の異なる値を与えると、シミュレーションされるAOTA10の出力は全部で10,000個になる。次いで、測定された出力は、シミュレーションされた出力のライブラリ2015と比較され、次いで、測定された出力に最も近似する、シミュレーションされた出力を与えるこれらの4つのパラメータの値が決定される。本明細書において使用する際、用語の「最も近似する」は、時間tnにおいて測定された出力ymeans(tn)と、シミュレーションされた出力ysim(tn)との間の差の2乗和を言及しうる。したがって、数を最小化するパラメータ:
Figure 2010518396
は、試料1012の実際の幾何学的形状を記述する最良適合パラメータであると解釈される。
以下に考察する例示的実施形態のうちの本実施形態および特定の実施形態において、図25におけるシミュレータブロック2010の「シミュレーション結果」出力2012は、実際は、多くのシミュレーション結果値を予めロードしたライブラリ2015からの出力でありうる。
当業者に理解可能なように、特定の種類の試料に有利に使用されうる方法に関する多数の変形例が存在する。
和Sは、特定の時間帯における出力のみを含むように制限された上で評価されてもよい。例えば、出力において、パラメータh,L,R1,R2のうちのいずれか重要であるものが特に大きな影響を示す時間帯のみに制限してもよい。
式2によって定義される和を使用する代わりに、重み関数W(t)を導入してもよい。そして和:
Figure 2010518396
を使用して、測定されたデータに対する最良適合を判断してもよい。
光学トランスデューサ10によって生成される歪みパルスの空間形状は、実際には既知でありうるが、生成された歪みパルスの振幅は不確実でありうる。このためysim(tn)の振幅が不確実になり、すなわち、シミュレーション出力はAysim(tn)になる。式中、tによるysim(tn)の変化は正確に知られるが、Aは未知のスケール係数である。この状況は、例えば、音波の生成に使用するポンプ光パルスのエネルギーが未知である場合に、または、ポンプパルスに照射されたAOTA10の表面の範囲が未知である場合に発生し得る。この場合、式3の関数Sは、
Figure 2010518396
に置き換えられ、ここで、スケール係数Aが、Sの値を最小化するように調整されるべきことが示唆される。これは、以下の式の使用に同等である。
Figure 2010518396
式中、以下の数が導入される。
Figure 2010518396
ライブラリ2015に存在しうる多くのシミュレーション出力をコンピュータが検索するために必要な時間の量を短縮しうる、様々な技法を使用してもよい。例えば、シミュレーション結果は、特定の属性に従って事前に格納されてもよい。したがって、例えば、シミュレーションの集合を多数の群に事前に分類し(群毎に索引iが付けられる)、結果的に、群iが、試料からの第1のエコー信号の到達時間が、特定の時間範囲TiからTi+1に発生するというシミュレーションを含み、時間Tiが、索引iとともに増加する数列を形成するようにする。次いで、測定された信号が、時間τに試料から到達する第1のエコーを示す場合、その測定された信号を、エコー到達時間がτに近似する範囲にあるシミュレーションされた信号のみと比較することが可能になる。したがって、Ti<τ< Ti+1である群iを探索し、次いで、群iのみを検索して、測定された出力に最も近似するシミュレーションされた出力を探索し得る。本例における属性は、第1のエコー信号の到達時間であったが、特定の試料に有利である他の属性を使用することは、本発明の例示的実施形態の範囲内にある。一非限定的例として、属性は、第1のエコーの第2のエコーに対する高さの比率であってもよい。別の非限定的例として、属性は、エコーの幅であってもよい。また、2つの(またはそれ以上の)属性を使用して、シミュレーションされたデータの集合を、第1の属性が特定の範囲にあり、かつ第2の属性が特定の範囲にある全シミュレーションを含む群に事前に分類することは、本発明のこれらの例示的実施形態の範囲内にある。
測定されたデータに最も近似するシミュレーションデータを探索することによって、シミュレーションと実際の測定との間の最良適合を与える、試料表面1012Aを記述するパラメータの集合を得ることができる。しかしながら、このようにして得られるパラメータの集合が、シミュレーション結果ライブラリ2015に含まれるパラメータの集合の中で単に最良であることに留意することが重要である。例として、図20に示す試料1012について再び考察する。高さパラメータhが、200nmから290nmの間の10個の等間隔値を取るシミュレーションの結果を、ライブラリ2015が含むと仮定する。ライブラリ2015における最良適合シミュレーションが、h=240nmであると探索される場合、判断された値hは、約10nmの量だけ不確実になる。上述のライブラリ2015の方法を使用してこの精度を改善するためには、パラメータhの値の間隔を減少させることが必要であろう。これは、少なくとも2つの方法で実行可能であるが、いずれの方法も、実質的に困難である。第1に、ライブラリ2015に含まれるhの値の数を単に増加するとともに、値の全範囲を一定(上記例において200nmから290nmの間)に維持することができる。これは、ライブラリ2015を構成するシミュレーションの数が増えるという不利点を有し、ライブラリ2015の作成に必要な時間が増え、また、最良適合についてライブラリ2015を検索するのに必要なコンピュータの時間も増えることを意味する。第2の手法は、hの値の数を一定に維持するが、hの値の全範囲を減少させることである。例えば、これは、hの値の間の間隔が5nmだけでありうる230nmから275nmの範囲に減少し得る。この方法は、ライブラリ2015に含まれる値の範囲外にあるhの値を有する試料が出現するという不利点有する。このような試料については、ライブラリ2015を検索しても、hの正確な値が返されることができない。そこで、別の方法を使用して、適合探索の手順を改善してもよい。次は、これらの困難を克服する手段に関していくつかの例を挙げる。少なくともこれらの説明に基づいて、他の手法も当業者に明白になるだろう。
第1の方法では、ライブラリ2015の検索が行なわれ、シミュレーションされた出力と測定された出力との間の最良適合を求めるパラメータの集合が探索される。これらのパラメータをxbest,kとする。ただし式中、k=1,…Kであり、Kはパラメータの総数である(上記例においてK=4)。これらのパラメータは、「パラメータ間隔」、すなわち変数xkの間隔における最良適合点の位置を定義すると考えてもよい。
この間隔は、K次元を有する。次いで、パラメータ間隔の最良適合点におけるSの値と、パラメータ間隔のいくつかの数の近傍点におけるSの値との間で円滑に補間する関数を構成してもよい。次いで、Sがその最小値を有するパラメータ間隔における位置を見つけ、このようにして、パラメータの値の新しい最良集合を入手する。
この方法に関して高度に簡略化された説明として、試料1012が、1つのみのパラメータ(例えば高さh)によって記述される状況を考察する。本例においてK=1である。ライブラリ2015を検索することにより、最良適合を与えるシミュレーション結果を同定する。このシミュレーションにおける高さをh0とし、Sの値をS0とする。ライブラリ2015において次に小さい高さにおける高さの値をh1とし、次に大きい高さにおける高さの値をh2とし、これらの2つの高さのSの値をS1およびS2とする。簡略化するために、ライブラリ2015がh2−h1= h0−h1=Δhであるように構成されていることを仮定する。次いで、2次関数を構成することができる。
Figure 2010518396
これは、S(h0)=S0, S(h1)=S1, S(h2)=S2という性質を有する。次いで、関数Sの最小値の位置を、hの最良適合値の推定として使用する。これは、hの最良適合値
Figure 2010518396
を与える。
第2の方法は、ライブラリ2015において探索されるパラメータの最良集合からスタートし、 次いで、オリジナルの値に対して調整されるパラメータで新しいシミュレーションを実行する。パラメータは、和Sをその最小値まで減少させるような新しい値を探索するように調整される。この最小化の達成に使用できる多数の周知のアルゴリズムが存在する。このようなアルゴリズムの1つは、リーベンベルク-マルクワルト法である。これに関し、Numerical Recipes、W.H. Press、S.A. Teukolsky、 W.T. Vetterling、およびB.P. Flannery、第2編、Cambridge University Pressにおける説明を参照してもよい。
第3の方法では、ライブラリ2015を使用せずに、試料パラメータの先験的な推定に基づいて第1のシミュレーションを実行するように選択してもよい。新しいシミュレーションは、元の値に対して調整されるパラメータで実行される。パラメータは、和Sをその最小値まで減少させるような新しい値を探索するように調整される。この最小化の達成に使用できる多数の周知のアルゴリズムが存在する。このようなアルゴリズムの1つは、上述のリーベンベルク-マルクワルト法である。
実際の応用の多くの場合、測定は、全て互いに似ている一連の試料に対して行なわれることに留意することが重要である。典型的には、測定の目的は、一連の各試料1012が、所望の幾何学的形状に十分近い幾何学的形状を有することを検証することである。したがって、シミュレーションされた出力のライブラリ2015を、所定の種類の試料1012について計算する必要があるのは一度だけである。このライブラリ2015は、測定が行なわれる前に事前に作成できる。
上述の方法において、ライブラリ2015に格納されるシミュレーション毎の誤差和Sを計算するために、コンピュータ時間のうちの相当な時間が必要とされうる。特定の試料では、以下のように、より単純な方法を使用して、試料パラメータを判断することが有利でありうる。この方法では、シミュレーションは、試料を記述するパラメータの集合の値の範囲について事前に実行される。次いで、シミュレーションされた出力毎に、シミュレーションされた出力のある数J個の特性が、コンピュータに格納される。例として、これらの特性には、第1および第2のエコーの到達時間、これらのエコー、または他のエコーの振幅等が含まれうる。次いで、これらの特性は、AOTA10から測定された出力から得られた、上記と同じのJ個の特性の値と比較される。次いで、ライブラリ2015を検索して、シミュレーションされたJ個の特性と、測定されたJ個の特性との最良適合を求める試料パラメータの集合を探索する。この方法を使用する際、上述の方法に類似する補間方法を使用して、試料2015のパラメータを判断する精度を改善することができる。
ライブラリ2015が、シミュレーションの結果のみを含んでもよいこと、またはライブラリ2015が、シミュレーションの結果および1つ以上のリファレンス試料に関して行なわれた測定の結果を含んでもよいこと、またはいくつかの実施形態では、ライブラリ2015が、1つ以上のリファレンス試料に関して行なわれた測定の結果のみを含んでもよいことに留意されたい。
非集束型トランスデューサ10が用いられる多くの用途においては、集積回路に典型的に見られる反復的な特徴配列を有する試料1012の測定を伴う。このような用途において、ポンプ光パルスおよびプローブ光パルスによって励起されるトランスデューサ10の範囲の線形寸法は、試料特徴の反復距離よりも大幅に大きい。しかしながら、非集束型トランスデューサ10を使用して、図17に示す特徴1015等の対象である単一の特徴を有する試料に関して測定を行なうこともできる。この場合、ポンプビームおよびプローブビームは、対象の特徴1015上に直接配置されるトランスデューサの光キャビティの小範囲に導かれる。
ある範囲の光波長では不透明な試料に対しては、図18に示す構成を使用してもよい。光キャビティは、誘電体層1004とともに、2つのDBR1007によって形成される。キャビティは、ポンプ光が十分透過するように設計され、ポンプ光パルスは、試料1012に吸収される。すると試料1012において音波が生成され、接触液体1050から光キャビティへと伝播する。キャビティは、音波パルスが誘電体層1004に入って、この層の厚さが変化する際に、プローブ光パルスの反射率が変化するように設計される。この実施形態は、ポンプ光パルスおよびプローブ光パルスに異なる波長を用いる。多くの材料では、波長が短くなると光の吸収が強くなるため、短い波長のポンプ光と、それよりも長い波長のプローブ光を用いることが好ましい。
先行の出願において、また、光キャビティやトランスデューサに関する上記説明において、誘電体層1004の上下に2つの反射鏡(DBRまたは金属)を含む実施形態を参照した。しかしながら、音波パルスが入射する際に光反射率が検出可能に変化する性質を有し、かつ、光学的な吸収を行い音波(音響エネルギー)を生成する少なくとも1つの層を有する、任意の多層構造を含む構成という、より広い型に例示的実施形態を拡大することに留意されたい。光キャビティがDBR1007を組み込む際に、DBR1007自体を形成する誘電体層と、光キャビティの一部を形成すると考えられる層(誘電体層1007)との間に区別を付けることが任意であることに留意されたい。例えば、層1007は、DBR1007を備える誘電体層のうちの1つ以上に使用する材料と同一の材料から制作されてもよい。
したがって、本発明の例示的実施形態が、(a)ポンプ光パルスの一部が吸収される少なくとも1つの金属薄膜または半導体薄膜と、(b)戻ってくる音波パルスが、トランスデューサ構造の光反射率及び/又は他の光学特性における測定可能な変化をもたらすように、薄膜の厚さおよび光学的性質が選択される少なくとも1つの誘電体薄膜とを含む、トランスデューサ構造にも関することに留意されたい。
DBR1007が金属薄膜1006Aに接触するこの種類のトランスデューサアセンブリ10の一例を図19に示す。DBR1007は、それを通る透過率が約50%であり、かつDBR1007の構成層の厚さに高度に感応性を有するように設計されうる。ポンプ光が金属薄膜1006Bに吸収されると、音波が生成される。戻り音波は、金属薄膜1006Bを通過してDBR1007に入射する。結果としてもたらされるDBRにおける層空間の変化は、プローブ光パルスに対する反射率に大きな変化をもたらす。金属薄膜1006Aの底面が平坦かつ無特徴であってもよく、または、15、図15a、図15b、図16に示す例のようにパターン化されてもよいことに留意されたい。
本発明の例示的実施形態が、反射率の変化を測定するためにプローブパルスを使用することだけに限定されないことに留意されたい。代わりに、測定量は、反射光もしくは透過光の反射係数、透過係数、位相の変化、透過光もしくは反射光の偏光、または偏光解析パラメータの変化であってもよい。これらの量のうちの1つ以上は、試料1012の表面1012Aに関する情報を入手するように測定されてもよい。
さらに、量子井戸構造の使用によって接触流体1050を伝播した後に戻る音波を検出することは、本発明の例示的実施形態の範囲内にある。適切な(かつ非限定的な)種類の量子井戸構造の1つは、「Ultrafast Band-Gap Shift Induced by a Strain Pulse in Semiconductor Heterostructures」、A.V. Akimov、A.V. Scherbakov、D.R. Yakovlev、C.T. Foxon、およびM. Bayer、Physical Review Letters、97、037401(2006年)に記載されている。
さらに、異なる繰り返し率で進むポンプおよびプローブに別々のレーザを使用することは、本発明の例示的実施形態の範囲内にある。本手法は、非同期光サンプリング(asynchronous optical sampling; ASOPS)と呼ばれてもよく、P.A. Elzinga、F.E. Lytle、Y. Jian、G.B. King、および N.M Laurendeau、Applied Optics 26、4303(1987年)、「Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz scan rates over nanosecond time delays without mechanical delay line」、A. Bartels、F. Hudert、C. Janke、T. DekorsyおよびK. Kohler、Applied Physics Letters 88、041117(2006年)、およびウェブサイトhtttp://www.gigaoptics.com/twin.htmlを参照されたい。
上記の説明において、各ポンプパルスは、試料1012の同一の範囲に音響エネルギーを印加するが、音響エネルギーの強度はその範囲において滑らかに変動する。また、誘起過渡回折格子法(induced transient grating method)によって、過渡的光学応答(transient optical response)を測定することも本発明の範囲内にある(D.W. Phillion、D.J. Kuizenga、A.E. Siegman、Appl. Phys. Lett. 27、85(1975年)参照)。過渡回折格子を誘起するために、各ポンプパルスは、1つまたは複数のビームスプリッタによって、2つ以上の成分に分割され、さらにこれらの成分は、別々の光路を通過し、トランスデューサアセンブリ10の面の同じ範囲に全て導かれる。異なる成分が、それぞれ異なる角度をもって面に導かれる場合、異なる成分が強め合うように干渉する場所と、弱め合うように干渉する場所とが存在する。結果的に、ポンプ光の全強度は面の中で変動する。2つの成分のみが存在する場合、強度は面の中で周期的に変動する。強度の周期性、すなわち最大強度を与える点の間隔は、ポンプ光の波長と、ポンプ光の異なる成分が面に入射する角度によって定まる。強度の周期的変化の結果、吸収されるポンプ光の量は、トランスデューサ10の面の中で周期的に変動する。したがって、音波パルスの振幅も、試料1012の面の中で周期的に変動する。結果的に、戻ってくる音波パルスから生じるトランスデューサ10の光学的性質の過渡変化も、周期的に変動する。トランスデューサ10の光学的性質における過渡変化のこの変動は、トランスデューサの位置に一致する過渡回折格子の生成に同等である。したがって、プローブ光がトランスデューサに入射すると、プローブ光の一部は回折される。すなわち、プローブ光の一部は、正反射の方向とは異なる方向へ、1つまたは複数の方向へと反射する。ポンプビームとプローブビームとの印加の間の時間遅延tの関数として、この回折されたプローブ光の強度を測定することによって、試料から戻ってくる音波パルスの特徴化のための別の方法が提供される。
図7および図25の説明に関連して前述したように、試料1012から測定される応答は、期待された応答のコンピュータシミュレーションの結果と比較され、また、試料の性質について仮定されるパラメータは、測定された反応とシミュレーションされた反応との最良適合を達成するように調整される。本明細書における試料の性質には、試料表面の粗度、弾性的性質、密度を含む試料1012の幾何学的形状が含まれる。シミュレーションは、非限定的例として、有限要素または有限差分方法を使用して実行されてもよい。最も完全なシミュレーションには、
(a)ポンプ光が入射する際の、トランスデューサ構造10の光照射野の計算、
(b)トランスデューサ構造10の異なる成分に吸収されるエネルギーの計算、
(c)トランスデューサ構造10内に生じる応力の計算、
(d)トランスデューサ10、接触液体1050、および試料1012を通る音波パルスの伝播の計算、
(e)戻り音波の結果としての、トランスデューサ10の反射または他の光学的性質の変化の計算、
が含まれうる。好ましくは、計算は、試料1012に到達し、かつそこで吸収されるポンプ光のその部分によって生成される音波を含む。音波の伝播の計算は、好ましくは、接触流体1050のせん断粘度および体積粘性率の許容ならびに試料1012の有限弾性コンプライアンスの許容を含む。
いくつかの用途では、簡略化バージョンのシミュレーションを実行することが望ましい。例えば、音波パルスが貫通しない剛性構造として、試料1012を近似化することが許容できる。
等しい間隔で並ぶ一連のトレンチ(溝)を特徴とする表面プロファイルを有する前述の試料1012では、判断されうる試料1012の幾何学的性質には、

a)トレンチの深さ:h
b)反復距離:L
c)トレンチの底部における湾曲の径:R1
d)トレンチの上部の湾曲の径:R2

が含まれる。図20を参照されたい。
突構造の側壁角θも判断できることに留意されたい。
また、本発明の例示的実施形態は、試料1012から測定された応答が、試料表面1012Aの上の音響光学トランスデューサ10の複数の距離について記録される方法の使用も包含する。
さらに、これに関し、試料表面1012A上の音響光学トランスデューサ10の複数の異なる距離に基づくシミュレーション結果を、ライブラリ2015が含んでもよいことに留意されたい。
また、本発明の例示的実施形態は、図7及び/又は図25に示すシステム等の測定システムが、偏光解析法(ellipsometry)、もしくは反射率測定法(reflectometry)、またはX線に基づくシステム等の1つまたは複数の別の種類の試料測定システムと組み合わせる実施形態も包含する。各測定システムからの結果を、単独でまたは相乗的に組み合わせて使用して、臨界次元(critical dimension; CD)など、試料1012に関連する様々な種類の測定結果を得る。
トランスデューサアセンブリ10ならびに関連の光学部品、機械的部品、および電気部品を含む測定システムは、スタンドアロン型測定システムを形成してもよく、または1つ以上の他の種類の測定システムと組み合わせられてもよく、またはフォトリソグラフィ、もしくは集積回路の処理等のある種類のプロセスと関連する他の種類の機器に一体化または内蔵されてもよい。これに関して、図16に関連して既に述べた。トランスデューサ10に基づく測定システムは、画プロセスステップ間において半導体ウエハの正確な位置合わせ(レジストレーション)を可能にするべく、半導体プロセスフローに統合されうる。
本発明の例示的実施形態の使用は、集積回路の製造中等などにおける、半導体ウエハの処理の種々の工程中に利益をもたらしうる。特に有用かつ非限定的な応用の1つにおいては、化学機械研磨(chemical mechanical polishing; CMP)プロセスと併用される。
これに関し、チップの異なる部分の間の電気相互接続を加工するために、いわゆる「デュアルダマシン銅」(dual damascene copper)プロセスを使用することは、チップメーカ(集積回路製造者)の間で一般的である。これは、適切な表面トポグラフィシステムを使用して効果的に特徴付けられうるプロセスの一限定的例である。デュアルダマシンプロセスは、次の5つの要素を有すると考えることができる。
(1)誘電体材料(ポリマー又はガラス)の層が、(複数の個別チップを含む)ウエハの表面上に成膜される、層間誘電体(interlayer dielectric; ILD)成膜。
(2)精密な光リソグラフィに適切な平滑表面を生成するように、誘電体層が研磨されるCMP。
(3)リソグラフパターン化ステップおよび反応性イオンエッチングステップの組み合わせ。これによって、ウエハ表面に平行に存在する複数のトレンチと、トレンチの底部から(前に定義されたような)下側の導電層へ向かう小さなビアとを備える複雑な網目構造が形成される。
(4)トレンチおよびビアを、銅で過剰充填するための金属成膜工程の組み合わせ。
(5)余分な銅を除去し、誘電体材料に囲まれる銅充填トレンチ(および恐らくはビア)の網目構造が残る最終CMPステップ。
典型的には、トレンチ領域における銅の厚さ(すなわち、トレンチ深さ)、およびそれを囲む誘電体の厚さは、0.2ミクロンから0.5ミクロンまでの範囲にある。結果として生じるトレンチの幅は、100ナノメートルから100,000ナノメートルまでの範囲にあってもよく、各チップの銅領域は、ある領域では、平行線の配列等の規則的なパターンを形成し、他の領域では、明らかなパターンを含まない。同様に、表面が銅領域で密に被覆されうるいくつかの領域内において、および他の領域において、銅領域は薄くてもよい。研磨速度、ひいては研磨後の残りの銅(および誘電体)の厚さは、研磨条件(パッド圧力および研磨スラリー組成等)と、銅領域および囲繞誘電体領域の局所的な詳細位置(すなわち、配向、近接、および形状)とに、強くかつ複雑に依存することを理解することが重要である。
この「位置依存研磨速度」は、多数の側方長さスケールにおいて、可変表面トポグラフィを発生させることで知られている。例えば、ウエハのエッジに近接するチップは、総計的に、中心に近接するチップよりも迅速に研磨され、エッジ近傍において所望する厚さよりも薄くなり、中心において所望する厚さよりも厚い銅領域が形成される。これは、「ウエハスケール」プロセス不均一性、すなわちウエハ直径に匹敵する長さスケールにおいて発生する不均一性の例である。また、高密度の銅トレンチを有する領域が、低銅線密度を有する隣接領域よりも速い速度で研磨されることも知られている。これにより、高銅密度領域において、「CMP誘起浸食」として知られている現象が生じる。これは、「チップスケール」プロセス不均一性、すなわち単一のチップの線形寸法に匹敵する(およびそれよりも大幅に小さい場合がある)長さスケールにおいて発生する不均一性の例である。「ディッシング」(dishing)として知られている別の種類のチップスケール不均一性は、単一の銅充填トレンチ領域(囲繞誘電体材料よりも速い速度で研磨する傾向にある)内で発生する。幅が数ミクロンを越えるトレンチでは、ディッシングは、影響を受けた線が、後に過度の電気抵抗を呈し、チップ不具合をもたらすという結果について深刻になり得る。
CMP誘起ウエハスケールおよびチップスケールプロセスの不均一性は、事実上は、予測するのが困難であり、CMP処理システム内の状態が展開するにつれて経時的に変化し易い。効果的に監視し、かつ任意の不均一性が許容限界内にあることを確実にする目的でプロセス状態を適切に調整するためには、プロセス技師が、多数で多種多様の位置におけるチップ上の非接触表面トポグラフィを頻繁に測定することが重要である。
したがって、本発明の例示的実施形態の使用は、特に、CMPの使用により生じるウエハスケールおよびチップスケールプロセスの不均一性の一方または両方の有無の検出に適している。
本発明の例示的実施形態の使用は、例えば、約50nm未満の寸法、すなわち、半導体ウエハ処理の現世代および次世代に関連する寸法等の、光学技術の使用によっては解決不可能な表面特徴の検出および特徴化を有利にも可能にする。
トランスデューサアセンブリ10ならびに関連の光学部品、機械的部品、電気部品を使用して、例えば、受動デバイスと能動デバイスとの間の接続に使用する線等の、集積回路基板上に存在する金属線および他の種類の線を特徴化してもよいことに留意されたい。しかしながら、直径が10nm未満の範囲にありうる整合カーボンナノチューブから構成される線等の、他の種類の現世代および次世代の相互接続要素も、解決可能でありうる。
本発明の例示的実施形態では、透明基板1000は、ダイヤモンドから構成されうる。これは、ダイヤモンドが高熱伝導率を有し、トランスデューサアセンブリ10において生成される熱を迅速に抽出可能にするためである。これにより、光キャビティおよび他の構造の寸法における熱誘起による変化は最小になる。
接触媒質1050は、前述のように水であってもよいが、水に限定されない。例えば、粘性流体は、固体の線にさらに沿って挙動し、高音響周波数において、水よりも減衰しない。一般に、放射・入射する音波パルスの減衰を抑えるためには、可能な限り薄い層(例えば約0.1ミクロンから約1ミクロン)の接触媒質1050を使用することが望ましい。
トランスデューサ10の底面は、約1センチメートルまたは約50ミクロン等の任意の適切な寸法を有してもよい。例えば、図21は、透明結晶水晶基板3000を有するトランスデューサアセンブリ10の一実施形態を示し、その基板に、ダイヤモンドから構成されるテーパー状の透明基板3010が装着され、その上に、金属層および誘電体層3020(例えばアルミニウムおよびSiO2)を成膜して、光キャビティが形成される。ダイヤモンド基板3010は、ダイヤモンドアンビルセルにおいて使用できる成分に類似してもよく、またはその成分であってもよい。本非限定的例における寸法(D)は、約50ミクロンである。
また、接触媒質1050の温度を制御すること、および複数の異なる温度で試料表面1012Aの測定を行なうことも本発明の例示的実施形態の範囲内にある。同様に、ライブラリ2015に格納されるシミュレーション結果は、接触媒質1050の異なる温度を仮定するシミュレーション結果の集合を含んでもよい。接触媒質1050の温度は、水が接触媒質1050として使用される場合、水を加熱または冷却すること等によって直接変化させてもよく、または、試料1012の温度を変化させること等によって間接的に変化させてもよい。
図26は、図7および図25に示す光音響顕微鏡システム2000のうちの1つ以上を備える処理システム2600の例示的実施形態を示す。処理システム2600は、半導体ウエハ処理システムであってもよいが、本発明の例示的実施形態の使用は、半導体ウエハを処理するシステムだけに限定されない。処理システム2600は、プロセスコントローラ2610を含んでもよく、プロセスコントローラ2610は、プロセスバス2615を介して、光音響顕微鏡システム2000と、プロセスステーション1、プロセスステーション2、...、プロセスステーションn等の複数のプロセスステーション2620のうちの種々のステーションとに双方向に接続される。プロセスステーション2620の各々は、プロセスフローに従って、処理システム2600を進む際に、異なる種類の処理をウエハに実行することができる。1つ以上のロボットウエハハンドラ(図示せず)を使用して、処理システム2600にウエハを移動させることができる。プロセスステーション2620のうちの個々のステーションは、酸化、金属及び/又は半導体成膜(例えば化学蒸着(chemical vapor deposition; CVD))、イオン注入、フォトレジスト処理、フォトレジスト暴露、フォトレジスト現像、エッチング(化学エッチング及び/又は非化学ベースのエッチング)、フォトレジスト分離、ならびに/あるいは上述のCMP処理等の動作を実行できるが、これらに限定されない。これらのプロセスの1つ以上は、1回以上繰り返されてもよい。例えばマスクとの位置合わせを行う段階など、処理の種々の段階において、ウエハの位置を正確に合わせる必要がある。処理の種々の段階において、ウエハの表面特徴は、直近のプロセスの品質を確認するべく、検査及び/又は特徴付けが必要となる。本発明のこの側面に従って、1つ以上の光音響顕微鏡システム2000を使用して、ウエハの表面特徴を検出、測定、及び/又は特徴化し、またその動作を支援するために、プロセスコントローラ2610に結果を報告する。プロセスコントローラ2610は、1つ以上のデータプロセッサとして実装可能であり、また、図25に示すように、比較器2020、パラメータ調整ブロック2030、シミュレータ2010、およびライブラリ2015の機能性を含んでもよいことに留意されたい。
また、1つ以上の光音響顕微鏡システム2000を、米国特許第7,193,726 B2号、Optical Interferometry、Henry A. Hillに説明されるシステム等の干渉計ベースのシステム等の、他の種類の計量システムと併用して使用してもよいことにも留意されたいが、これに限定されない。
本発明の他の実施形態において、2つの非限定的例として、液晶ディスプレイまたはプラズマディスプレイの製造中に処理システム2600を使用してもよい。
次に、音響光学トランスデューサアセンブリ(Acousto-Optic Transducer Assembly AOTA)10を、ウエハ試料1012上の対象範囲上に位置させるための実施形態について論じる。
測定を行なうためには、典型的には、ポンプビームおよびプローブビームが導かれるAOTA10の領域が、対象特徴の上に直接存在するように、AOTA10または試料1012を移動させることが必要である。AOTA10を構成する薄膜の側方線形寸法は、例えば、大きくて1000ミクロンであり、または、例えば、小さくて1ミクロンでありうる。典型的には、ポンプビームおよびプローブビームは、AOTA10の線形寸法が上述の範囲の下端にある場合を除いて、AOTA10の全範囲のうちの一部にのみ導かれる。したがって、例えば、AOTA10は、側面300ミクロンの四角形でありうるが、ポンプビームおよびプローブビームが導かれる範囲は、AOTA10の全範囲内のどこかに配置される直径10ミクロンの円形のスポットに限定されうる。AOTA10が、ポンプ光が吸収される少なくとも1つの金属薄膜を含む非パターン化薄膜の層から構成される場合、AOTA10は、実質的に不透明である。したがって、試料表面1012A上の1つまたは複数の対象の特徴に対してAOTA10の位置を判断するために、顕微鏡を使用してAOTA10を見ることは技術的に困難でありうる。これにより、対象の特徴の測定を行なうために、ポンプビームおよびプローブビームを正確な位置に配置することが難しくなる。
図27A〜図27Cを参照すると、AOTA10の位置決めは、少なくとも1つの開口1002Aを残すようにAOTA10をパターン化することによって容易になる。その開口部を介して、試料表面1012A、例えば、ウエハ表面の特徴を、顕微鏡(図示せず)等によって見ることができる。したがって、例えば、以下の事項が可能になる。
1)対象の特徴が開口1002Aを介して可視的であるように、AOTA10を移動させること(図27A)。
2) 開口が、対象の特徴の上に存在しないように、ある所定の距離だけAOTA10を移動させること(図27B)。
3)図27Cでは、図27Aの開口1002Aが元々占めていた位置にポンプビームおよびプローブビームを指向させること。
この手順の変形例として、以下の事項が可能である。
1)測定が行なわれる対象の特徴以外の特徴(例えばリファレンス的な特徴)を試料表面1012A上に設ける。ここで、対象の特徴に対する特徴の位置は、事前に既知であるとする。
2)対象の特徴の上に直接存在するAOTA10上の位置に、ポンプビームおよびプローブビームを導く。
さらなる実施形態として、AOTA10は、ポンプ光が1つ以上の薄膜に吸収されるように選択される材料から加工されてもよいが、選択された材料は、光波長のある領域において、光がAOTA10を通過できるような材料である。例えば、ポンプ光が吸収される薄膜は、(金属とは対照的に)半導体材料であってもよく、半導体材料のバンドギャップエネルギーよりも小さい光子エネルギーを有する光が、この薄膜を通過可能になるようにする。この場合、この波長領域の光を使用する顕微鏡は、試料表面1012A上の特徴を直接視認するために使用できる。
例示的実施形態に関する前述の説明に基づき、これらの例示的実施形態が、少なくとも1つの方法と、実行時に少なくとも1つの方法の実行をもたらすコンピュータプログラム命令とを格納するコンピュータ可読媒体とを包含することも理解されたい。
図28を参照すると、少なくとも1つの方法が次の事項を含む。
(ブロック28A)光キャビティを備えるトランスデューサ構造に、ポンプ光のパルスを印加する。
(ブロック28B)ポンプ光のパルスに反応して、トランスデューサ構造が音響エネルギーのパルスを生成する。
(ブロック28C)音響エネルギーのパルスをトランスデューサ構造から試料の表面へと導く。導かれるパルスは、平面的な波面を有する。
(ブロック28D)表面から戻ってくる音響エネルギーの少なくとも一部分を、トランスデューサ構造で受信する。
(ブロック28E)プローブ光のパルスをトランスデューサ構造に印加する。
(ブロック28F)光キャビティと協働し、プローブ光の少なくとも1つの特性の変化によって、受信した音響エネルギーを検出する。
(ブロック28G)上記の検出に応じて、試料の表面の少なくとも1つの特性を決定する。
前述の方法において、ポンプ光のパルスおよびプローブ光のパルスは、第1および第2のレーザ光源のうちの1つから、または1つのレーザ光源から得られる。
前述の方法において、少なくとも1つの検出された特性は、強度、位相、偏光、および角度のうちの少なくとも1つを含んでもよい。
前述の方法において、決定された少なくとも1つの特性は、少なくとも1つの表面特徴の有無、少なくとも1つの表面特徴の高さ又は深さのいずれか又は両方、少なくとも1つの表面特徴の湾曲の量、試料の表面上に配される少なくとも1つの薄膜の厚さ、のいずれか1つ以上を含んでもよい。
前述の方法において、判断された少なくとも1つの特性は、トランスデューサ構造と試料の表面との間の位置を示してもよい。
前述の方法において、決定された少なくとも1つの特性は、試料の少なくとも1つの特性を示す最良適合パラメータを得るために、シミュレーションへの入力パラメータを調整することによって得られてもよく、また、決定された少なくとも1つの特性は、シミュレーション、または少なくとも1つのリファレンス試料より行なわれた試験のうちの少なくとも1つにより得られる結果から構成されるライブラリとの比較によって得られてもよい。
前述の方法は、半導体ウエハの処理中に実行されてもよく、非限定的例として、半導体ウエハに実行される研磨プロセス中に実行されてもよく、この場合、決定された少なくとも1つの特性は、研磨プロセスの実行からもたらされうるウエハスケールおよびチップスケールプロセスの不均一性のうちの少なくとも1つを示す。前述の方法の実行は、約50nm未満の寸法を有する表面特徴を特徴化するために使用されてもよい。
前述の方法において、トランスデューサ構造の一部を備える薄膜を貫通する開口部を介して、試料表面の一部分を視認するステップ、または薄膜に対して少なくとも部分的に透過的である光の波長を使用して、トランスデューサ構造の一部を備える薄膜を通して、試料表面の一部分を視認する段階が存在してもよい。
前述の方法において、光キャビティを調節する段階が存在してもよい。光キャビティが空隙を備え得る例示的実施形態では、前記調節することは、電気信号の印加に応じて、空隙の幅を変化させることを含んでもよい。
前述の方法において、平面的な波面は、試料の表面に影響を及ぼす際に、同じような振幅、または空間的に変化する振幅のいずれかを有する。
この方法は、第1の測定方法の一部として実行されてもよく、試料の表面の少なくとも1つの特性を決定することは、少なくとも1つの第2の測定方法によって行なわれる測定の結果と併用して実行されてもよい。
前述の方法において、ポンプ光およびプローブ光は、光ファイバを介してトランスデューサ構造に供給されてもよい。
前述の方法において、音響エネルギーのパルスを導く段階及び戻ってくる音響エネルギーを受信する段階は、トランスデューサ構造の表面と試料の表面との間に設けられる接触媒質を介して行われてもよい。また、この方法は、方法の実行中に、接触媒質の温度を変化させるステップも含んでもよい。
前述の説明では、例示的かつ非限定的な例として、本発明の例示的実施形態の完全かつ詳細な説明が提供されている。しかしながら、添付の図面および付随の請求項を熟読する際に、前述の説明を考慮して、種々の修正および適合が、当業者に明白になるであろう。例えば、他の類似のまたは同等の波長、材料、寸法、試料の種類、およびの同等物の使用は、当業者によって試行されてもよい。加えて、特定の方法/プロセス/計算ステップおよび手順は、明示された順番以外の順番で実行されてもよい。しかしながら、本発明の教示に関する全てのこのような修正および類似修正は、依然として、本発明の実施形態の範囲内にある。
さらに、本発明の好適な実施形態の特徴のうちのいくつかを使用して、他の特徴を対応して使用せずに利益をもたらすことができる。したがって、前述の説明は、本発明の原理、教示、および実施形態を単に例証するものとして考えられるべきであり、その限定として考えられるべきではない。

Claims (60)

  1. 音波パルスを生成するためにポンプ光パルスの一部分が吸収される少なくとも1つの金属薄膜または半導体薄膜と;
    少なくとも1つの誘電体薄膜と;
    を備えるトランスデューサ構造であって、前記トランスデューサ構造の光反射率及び/又は他の光学特性における測定可能な変化を戻り音波パルスがもたらすように、前記少なくとも1つの金属薄膜または半導体薄膜ならびに前記少なくとも1つの誘電体薄膜の厚さおよび光学的性質が選択される、トランスデューサ構造。
  2. ポンプ光およびプローブ光を受光するための上面と、底面とを有する基板と;
    前記底面に配されるトランスデューサ構造と;
    を備える、トランスデューサアセンブリであって、前記トランスデューサ構造は、前記ポンプ光に反応して音波を生成するように構成され、また、前記生成された音波を試料に導き、かつ前記試料から戻ってくる音波を収集する出力面を有する光キャビティを備え、前記出力面は、前記試料の表面に前記音波が放射される際に、前記生成された音波が顕著に集束しないように形成されている、トランスデューサアセンブリ。
  3. 前記出力面は、平面的な音波を前記試料に導くように形成される、請求項2に記載のトランスデューサアセンブリ。
  4. 前記トランスデューサは、2つの非誘電体層の間に設けられる誘電体の層から構成され、前記誘電体の層の厚さは、前記プローブ光に検出可能な変化を生じさせるべく、前記プローブ光の波長に関連し、且つ収集される音波によって修正可能である値を有するように選択される、請求項2又は3に記載のトランスデューサアセンブリ。
  5. 前記トランスデューサは、金属含有層と多層誘電体スタックとの間に設けられる光マイクロキャビティ層から構成され、前記光マイクロキャビティ層の厚さは、前記プローブ光に検出可能な変化を生じさせるべく、前記プローブ光の波長に関連し、且つ収集される音波によって修正可能である値を有するように選択される、請求項2または3に記載のトランスデューサアセンブリ。
  6. 前記出力面がパターン化される、請求項2から5のいずれか1項に記載のトランスデューサアセンブリ。
  7. 前記試料の表面は、少なくとも1つの他の特徴の表面の上または下に或る垂直方向の距離をおいて配される少なくとも1つの特徴の存在によって特徴付けられ、
    前記トランスデューサアセンブリは、前記垂直方向の距離を示す検出信号を生成するように構成される、請求項2から6のいずれか1項に記載のトランスデューサアセンブリ。
  8. 前記出力面は、前記トランスデューサアセンブリと前記試料の表面との間のレジストレーションを示す検出信号を生成するようにパターン化される、請求項2から7のいずれか1項に記載のトランスデューサアセンブリ。
  9. 前記少なくとも1つの特徴は特徴面を有し、
    前記トランスデューサアセンブリは、前記特徴面の湾曲の径を示す検出信号を生成するように構成される、請求項7に記載のトランスデューサアセンブリ。
  10. 前記試料を表す最良適合パラメータを得るために、前記試料から検出された音響信号に基づいて、シミュレータへの入力パラメータを調整する手段と、該入力パラメータを調整する手段に組み合わされる出力部とを有する、請求項2から9のいずれか1項に記載のトランスデューサアセンブリ。
  11. 前記試料から検出された音響信号を、シミュレーション結果のライブラリに比較する手段に組み合わされる出力部を有し、前記比較手段は、前記試料から検出された音響信号と、前記ライブラリに含まれる少なくとも1つのシミュレーション結果との間の最良適合を教える、請求項2から10のいずれか1項に記載のトランスデューサアセンブリ。
  12. 半導体ウエハの処理に使用される機器の一部として具現化される、請求項2から11のいずれか1項に記載のトランスデューサアセンブリ。
  13. 半導体ウエハに対して化学機械研磨処理を行うシステムの一部として具現化され、前記化学機械研磨プロセスから生じ得るウエハスケールおよびチップスケールプロセスの不均一性のうちの少なくとも1つを検出するように動作しうる、請求項2から12のいずれかに記載のトランスデューサアセンブリ。
  14. 前記試料の処理に使用され、かつ約50nm未満の寸法を有する表面特徴の特徴化を検出および可能にするように動作しうる機器の一部として具現化される、請求項2から13のいずれかに記載のトランスデューサアセンブリ。
  15. 前記トランスデューサ構造は、前記音波を生成するために前記ポンプ光の一部が吸収される少なくとも1つの薄膜を含み、前記少なくとも1つの薄膜は、前記試料の表面を、前記トランスデューサ構造を介して視認可能とするように形成される少なくとも1つの開口部を有する、請求項2から14のいずれかに記載のトランスデューサアセンブリ。
  16. 前記トランスデューサ構造は、前記音波を生成するために前記ポンプ光の一部が吸収される少なくとも1つの薄膜を含み、前記少なくとも1つの薄膜は、特定の波長の光に対して少なくとも部分的に透過性である材料から構成され、前記少なくとも1つの薄膜を通して、前記特定の波長を使用して、前記試料の前記表面が視認可能になる、請求項2から15のいずれかに記載のトランスデューサアセンブリ。
  17. 前記光キャビティは、第1および第2の金属含有薄膜によって境界付けられ、前記第1の金属含有薄膜の金属は、前記第2の金属含有薄膜の金属とは異なる、請求項2から16のいずれかに記載のトランスデューサアセンブリ。
  18. 前記光キャビティを調節する手段をさらに備える、請求項2から17のいずれかに記載のトランスデューサアセンブリ。
  19. 前記光キャビティは、空隙を備える、請求項2から18のいずれかに記載のトランスデューサアセンブリ。
  20. 前記空隙の幅を静電的に変化させる手段をさらに備える、請求項19に記載のトランスデューサアセンブリ。
  21. 前記光キャビティは、ウィスパリングギャラリー共振器(whispering gallery resonator)および光リング共振器(optical ring resonator)のうちの1つから構成される、請求項18に記載のトランスデューサアセンブリ。
  22. ポンプ光の強度が前記トランスデューサアセンブリ内で空間的に変化するように、異なる角度から到達する多数のポンプパルスが前記上面に受光され、結果として前記試料に導かれる前記生成された音波の振幅に空間的変化がもたらされる、請求項2から21のいずれかに記載のトランスデューサアセンブリ。
  23. 前記トランスデューサアセンブリは、第1の測定システムの一部を形成し、少なくとも1つの第2の測定システムによって前記試料から生成された第2の検出信号とともに使用される第1の検出信号を生成するように構成される、請求項2から22のいずれか1項に記載のトランスデューサアセンブリ。
  24. 前記基板はダイヤモンドから構成される、請求項2から23のいずれか1項に記載のトランスデューサアセンブリ。
  25. 前記ポンプ光および前記プローブ光が供給される光ファイバの端部に連結される、請求項2から24のいずれか1項に記載のトランスデューサアセンブリ。
  26. プロセスコントローラと;
    前記プロセスコントローラの指示の下で、構造へのプロセスフローを遂行する複数のプロセスステーションと;
    前記プロセスコントローラに組み合わされ、かつ前記構造の表面の少なくとも1つの特性を決定するために動作しうる少なくとも1つの光音響顕微鏡システムと;
    を備える処理システムであって、
    前記光音響顕微鏡は、ポンプ光およびプローブ光を受光するための上面と、底面とを有する基板と;前記底面に配されるトランスデューサ本体と;を備えるトランスデューサアセンブリを備え;
    前記トランスデューサ本体は、前記ポンプ光に反応して音波を生成するように構成され、また、前記生成された音波を前記構造の前記表面に導き、かつ前記構造の前記表面から戻ってくる音波を収集する出力面を有する光キャビティを備え、ただし前記出力面は、前記構造の前記表面に前記音波が放射される際に、前記生成された音波が顕著に集束しないように形成されている;
    処理システム。
  27. 前記出力面は、平面的な音波を前記構造の前記表面に導くように形成される、請求項26に記載の処理システム。
  28. 前記トランスデューサは、2つの非誘電体層の間に設けられる誘電体の層から構成され、前記誘電体の層の厚さは、前記プローブ光に検出可能な変化を生じさせるべく、前記プローブ光の波長に関連し、且つ収集される音波によって修正可能である値を有するように選択される、請求項26又は27に記載の処理システム。
  29. 前記トランスデューサアセンブリは、金属含有層と多層誘電体スタックとの間に設けられる光マイクロキャビティ層から構成され、前記光マイクロキャビティ層の厚さは、前記プローブ光に検出可能な変化を生じさせるべく、前記プローブ光の波長に関連し、且つ収集される音波によって修正可能である値を有するように選択される、請求項26又は27のいずれか1項に記載の処理システム。
  30. 前記出力面はパターン化される、請求項26から29のいずれか1項に記載の処理システム。
  31. 前記構造の前記表面は、少なくとも1つの他の特徴の表面の上または下に或る垂直方向の距離をおいて配される少なくとも1つの特徴の存在によって特徴付けられ、前記トランスデューサアセンブリは、前記垂直方向の距離を示す検出信号を生成するように構成される、請求項26から30のいずれか1項に記載の処理システム。
  32. 前記構造の前記表面は、少なくとも1つの他の特徴の表面の上または下に或る垂直方向の距離をおいて配される少なくとも1つの特徴の存在によって特徴付けられ、前記出力面は、前記トランスデューサアセンブリと、前記構造の前記表面との間のレジストレーションを示す検出信号を生成するようにパターン化される、請求項26から31のいずれか1項に記載の処理システム。
  33. 前記構造の前記表面は、少なくとも1つの他の特徴の表面の上または下に或る垂直方向の距離をおいて配される少なくとも1つの特徴の存在によって特徴付けられ、前記トランスデューサアセンブリは、前記特徴面の湾曲の径を示す検出信号を生成するように構成される、請求項26から32のいずれか1項に記載の処理システム。
  34. 前記プロセスコントローラは、最良適合パラメータを得るために、前記光音響顕微鏡システムの出力に応じて、前記構造の前記表面から検出された音響信号に基づき、シミュレータへの少なくとも1つの入力パラメータを調整する、請求項26から33のいずれか1項に記載の処理システム。
  35. 前記プロセスコントローラは、前記構造の前記表面から検出された音響信号と、前記ライブラリに含まれる少なくとも1つのシミュレーション結果との間の最良適合を得るために、前記光音響顕微鏡システムの出力に応じて、前記構造の前記表面から検出された音響信号を、シミュレーション結果のライブラリに比較する、請求項26から34のいずれか1項に記載の処理システム。
  36. 前記構造は半導体ウエハから構成される、請求項26から35のいずれか1項に記載の処理システム。
  37. 前記プロセスステーションのうちの少なくとも1つは、半導体ウエハの表面に対して化学機械研磨プロセスを実行し、前記光音響顕微鏡システムは、前記化学機械研磨プロセスから生じ得るウエハスケールおよびチップスケールプロセスの不均一性のうちの少なくとも1つを検出するように動作する、請求項36に記載の処理システム。
  38. 前記光音響顕微鏡システムは、約50nm未満の寸法を有するウエハ表面の特徴の特徴化を検出および可能にするように動作しうる、請求項36に記載の処理システム。
  39. 光キャビティを備えるトランスデューサ構造に、ポンプ光のパルスを印加することと、
    前記ポンプ光パルスに応じて、前記トランスデューサ構造によって音響エネルギーのパルスを生成することと、
    前記音響エネルギーのパルスをトランスデューサ構造から試料の表面へ導くこと、ただし前記導かれるパルスは平面的な波面を有する、前記導くことと、
    前記表面から戻ってくる音響エネルギーの少なくとも一部分を、前記トランスデューサ構造で受信すること、
    プローブ光のパルスを前記トランスデューサ構造に印加することと、
    前記光キャビティと協働し、前記プローブ光の少なくとも1つの特性の変化によって、前記受信した音響エネルギーを検出することと、
    前記検出することに応じて、前記試料の前記表面の少なくとも1つの特性を決定することと、
    を含む、方法。
  40. 前記ポンプ光パルスおよびプローブ光の前記パルスは、第1および第2のレーザ光源のうちの1つから、または1つのレーザ光源から得られる、請求項39に記載の方法。
  41. 前記少なくとも1つの決定される特性は、強度、位相、偏光、および角度のうちの少なくとも1つを含む、請求項39および請求項40のいずれか1項に記載の方法。
  42. 前記決定される少なくとも1つの特性は、少なくとも1つの表面特徴の有無を含む、請求項39から41のいずれか1項に記載の方法。
  43. 前記決定される少なくとも1つの特性は、少なくとも1つの表面特徴の高さまたは深さのうちの少なくとも1つ、ならびに少なくとも1つの表面特徴の湾曲の量を含む、請求項39から42のいずれか1項に記載の方法。
  44. 前記決定される少なくとも1つの特性は、前記試料の前記表面上に配される少なくとも1つの薄膜の厚さを含む、請求項39から43のいずれか1項に記載の方法。
  45. 前記決定される少なくとも1つの特性は、前記トランスデューサ構造と前記試料の前記表面との間のレジストレーションを示す、請求項39から44のいずれか1項に記載の方法。
  46. 前記決定される少なくとも1つの特性は、前記試料の前記少なくとも1つの特性を示す最良適合パラメータを得るべくシミュレーションへの入力パラメータを調整することによって得られる、請求項39から45のいずれか1項に記載の方法。
  47. 前記決定される少なくとも1つの特性は、シミュレーション、または少なくとも1つのリファレンス試料より行なわれた試験の少なくともいずれかにより得られる結果から構成されるライブラリとの比較によって求められる、請求項39から46のいずれか1項に記載の方法。
  48. 半導体ウエハの処理中に実行される、請求項39から47のいずれか1項に記載の方法。
  49. 前記半導体ウエハに実行される研磨プロセス中に実行され、
    前記決定される少なくとも1つの特性は、前記研磨プロセスの実行からもたらされうるウエハスケールおよびチップスケールプロセスの不均一性のうちの少なくとも1つを示す、請求項48に記載の方法。
  50. 約50nm未満の寸法を有する表面特徴を特徴化するように行われうる、請求項39から49のいずれか1項に記載の方法。
  51. 前記トランスデューサ構造の一部を備える薄膜を貫通するように開口部を介して、試料表面の一部分を視認することをさらに含む、請求項39から50のいずれか1項に記載の方法。
  52. 前記薄膜に対して少なくとも部分的に透過的である光の波長を使用して、前記トランスデューサ構造の一部を備える薄膜を通して、前記試料表面の一部分を視認することをさらに含む、請求項50に記載の方法。
  53. 前記光キャビティを調節することをさらに含む、請求項39から52のいずれか1項に記載の方法。
  54. 前記光キャビティは空隙を備え、前記調節することは、電気信号の印加に応じて前記空隙の幅を変化させることを含む、請求項53に記載の方法。
  55. 前記平面的な波面は、前記試料の前記表面に影響を及ぼす際に、同じような振幅、または空間的に変化する振幅のいずれかを呈する、請求項39から54のいずれか1項に記載の方法。
  56. 第1の測定方法の一部として実行され、
    前記試料の前記表面の少なくとも1つの特性を決定することは、少なくとも1つの第2の測定方法によって行なわれる測定の結果と併用して実行される、請求項39から55のいずれか1項に記載の方法。
  57. 前記ポンプ光およびプローブ光は、光ファイバを介してトランスデューサ構造に供給される、請求項39から56のいずれか1項に記載の方法。
  58. 前記導くこと及び前記受信することは、前記トランスデューサ構造の表面と前記試料の前記表面との間に設けられる接触媒質を通じて行われる、請求項39から57のいずれか1項に記載の方法。
  59. 前記方法の実行中に、前記接触媒質の温度を変化させることをさらに含む、請求項58に記載の方法。
  60. 実行されることにより、請求項39から59のいずれか1項に記載の方法を具現化するコンピュータ命令を格納する、コンピュータ可読媒体。
JP2009549087A 2007-02-05 2008-02-05 改良型高解像度超音波顕微鏡 Expired - Fee Related JP5406729B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US89986007P 2007-02-05 2007-02-05
US60/899,860 2007-02-05
US766707P 2007-12-14 2007-12-14
US61/007,667 2007-12-14
PCT/US2008/001486 WO2008097527A1 (en) 2007-02-05 2008-02-05 Enhanced ultra-high resolution acoustic microscope

Publications (2)

Publication Number Publication Date
JP2010518396A true JP2010518396A (ja) 2010-05-27
JP5406729B2 JP5406729B2 (ja) 2014-02-05

Family

ID=39682015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009549087A Expired - Fee Related JP5406729B2 (ja) 2007-02-05 2008-02-05 改良型高解像度超音波顕微鏡

Country Status (4)

Country Link
US (1) US8302480B2 (ja)
EP (1) EP2115450A4 (ja)
JP (1) JP5406729B2 (ja)
WO (1) WO2008097527A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066252A (ja) * 2008-08-13 2010-03-25 Kobe Steel Ltd 超音波顕微鏡
JP2012112823A (ja) * 2010-11-25 2012-06-14 Kobe Steel Ltd 超音波顕微鏡
KR20140103932A (ko) * 2011-11-02 2014-08-27 세노 메디컬 인스투르먼츠 인코포레이티드 상호 정합된 기능적 및 해부학적 매핑을 위한 이중 방식 이미징 시스템
KR101526905B1 (ko) * 2015-02-16 2015-06-09 삼성전자주식회사 광음향 프로브 및 이를 포함하는 광음향 장치
JP2021511485A (ja) * 2018-01-26 2021-05-06 エーエスエムエル ネザーランズ ビー.ブイ. 基板上のターゲット構造の位置を決定するための装置及び方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750536B2 (en) 2006-03-02 2010-07-06 Visualsonics Inc. High frequency ultrasonic transducer and matching layer comprising cyanoacrylate
JP5483341B2 (ja) * 2010-02-19 2014-05-07 株式会社神戸製鋼所 超音波顕微鏡
US8356517B2 (en) * 2010-02-24 2013-01-22 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Integrated optical and acoustic transducer device
JP5306300B2 (ja) * 2010-09-15 2013-10-02 株式会社東芝 成膜装置及び成膜方法
US8670295B1 (en) 2010-12-20 2014-03-11 Western Digital (Fremont), Llc Method and system for optically coupling a laser with a transducer in an energy assisted magnetic recording disk drive
US8749790B1 (en) 2011-12-08 2014-06-10 Western Digital (Fremont), Llc Structure and method to measure waveguide power absorption by surface plasmon element
US8753903B1 (en) * 2012-05-22 2014-06-17 Western Digital (Fremont), Llc Methods and apparatuses for performing wafer level characterization of a plasmon element
US20140033821A1 (en) * 2012-07-31 2014-02-06 National Taiwan University Noninvasive measuring device and noninvasive measuring method for probing an interface
US9279785B2 (en) * 2013-05-31 2016-03-08 Olympus Ndt Monitoring temperature variation in wedge of phased-array probe for weld inspection
US9441938B1 (en) 2013-10-08 2016-09-13 Western Digital (Fremont), Llc Test structures for measuring near field transducer disc length
US9885691B1 (en) 2013-10-08 2018-02-06 Nanometronix LLC Nanoindenter ultrasonic probe tip and force control
JP2015112326A (ja) * 2013-12-12 2015-06-22 キヤノン株式会社 プローブ、被検体情報取得装置
TWI662540B (zh) 2014-03-12 2019-06-11 美商富士膠片索諾聲公司 具有超音波透鏡與整合中央匹配層的高頻超音波轉換器
DE102014209773A1 (de) * 2014-05-22 2015-11-26 Siemens Aktiengesellschaft Simulationsgestützte Defektbewertung mit Ultraschall
KR101656185B1 (ko) 2015-06-02 2016-09-09 서울과학기술대학교 산학협력단 초음파 현미경의 신호 분석 방법
US11815347B2 (en) * 2016-09-28 2023-11-14 Kla-Tencor Corporation Optical near-field metrology
EP3349016A1 (en) 2017-01-13 2018-07-18 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method of and system for determining an overlay or alignment error between a first and a second device layer of a multilayer semiconductor device
EP3385725A1 (en) 2017-04-04 2018-10-10 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method of and atomic force microscopy system for performing subsurface imaging
EP3422104A1 (en) 2017-06-29 2019-01-02 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method, atomic force microscopy system and computer program product
KR102374949B1 (ko) * 2017-07-25 2022-03-15 에이에스엠엘 네델란즈 비.브이. 파라미터 결정 방법 및 그 장치
US11181627B2 (en) * 2018-02-05 2021-11-23 Denso Corporation Ultrasonic sensor
FR3077891B1 (fr) * 2018-02-12 2021-08-27 Centre Nat Rech Scient Oscillateur parametrique phononique
US20220350022A1 (en) * 2021-04-29 2022-11-03 Deepsight Technology, Inc. Modularized acoustic probe
US11835546B1 (en) 2021-08-04 2023-12-05 Nanometronix LLC Characterization of nanoindented and scratch induced accoustic events
US11346857B1 (en) 2021-08-04 2022-05-31 Nanometronix LLC Characterization of nanoindentation induced acoustic events

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449955A (en) * 1987-08-19 1989-02-27 Shikoku Elec Power Plane ultrasonic wave generating method by laser light and ultrasonic surveying method
JPH04147053A (ja) * 1990-10-09 1992-05-20 Power Reactor & Nuclear Fuel Dev Corp レーザー超音波探傷方法及び装置
JPH05149931A (ja) * 1991-11-26 1993-06-15 Hitachi Constr Mach Co Ltd 音速・密度測定方法及び装置
JPH07270386A (ja) * 1994-03-30 1995-10-20 Olympus Optical Co Ltd 超音波顕微鏡
JPH10128236A (ja) * 1996-10-30 1998-05-19 Mitsubishi Heavy Ind Ltd 超音波発生装置
JP2002301076A (ja) * 2000-05-02 2002-10-15 Fuji Photo Film Co Ltd 超音波用探触子及び超音波受信装置並びに超音波診断装置
US20060272419A1 (en) * 2005-06-03 2006-12-07 Brown University Opto-acoustic methods and apparatus for performing high resolution acoustic imaging and other sample probing and modification operations

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137991A (en) * 1976-11-23 1979-02-06 International Business Machines Corporation Clamped acoustic elastic wave generator
US4267732A (en) * 1978-11-29 1981-05-19 Stanford University Board Of Trustees Acoustic microscope and method
US4269067A (en) * 1979-05-18 1981-05-26 International Business Machines Corporation Method and apparatus for focusing elastic waves converted from thermal energy
US4430897A (en) * 1981-05-14 1984-02-14 The Board Of Trustees Of The Leland Stanford University Acoustic microscope and method
US4710030A (en) * 1985-05-17 1987-12-01 Bw Brown University Research Foundation Optical generator and detector of stress pulses
US4909082A (en) * 1987-02-02 1990-03-20 The Board Of Trustees Of The Leland Stanford Junior University Acoustic transducer for acoustic microscopy
US4938216A (en) * 1988-06-21 1990-07-03 Massachusetts Institute Of Technology Mechanically scanned line-focus ultrasound hyperthermia system
JP2834173B2 (ja) * 1989-02-17 1998-12-09 株式会社日立製作所 走査型トンネル音響顕微鏡
US5457997A (en) * 1991-11-22 1995-10-17 Doryokuro Kakunenryo Kaihatsu Jigyodan Laser ultrasonic detection method and apparatus therefor
US5706094A (en) * 1995-08-25 1998-01-06 Brown University Research Foundation Ultrafast optical technique for the characterization of altered materials
US6321601B1 (en) * 1996-08-06 2001-11-27 Brown University Research Foundation Optical method for the characterization of laterally-patterned samples in integrated circuits
US5748318A (en) * 1996-01-23 1998-05-05 Brown University Research Foundation Optical stress generator and detector
US5615675A (en) * 1996-04-19 1997-04-01 Regents Of The University Of Michigan Method and system for 3-D acoustic microscopy using short pulse excitation and 3-D acoustic microscope for use therein
US5844684A (en) * 1997-02-28 1998-12-01 Brown University Research Foundation Optical method for determining the mechanical properties of a material
US6273884B1 (en) * 1997-05-15 2001-08-14 Palomar Medical Technologies, Inc. Method and apparatus for dermatology treatment
US5748317A (en) * 1997-01-21 1998-05-05 Brown University Research Foundation Apparatus and method for characterizing thin film and interfaces using an optical heat generator and detector
US5864393A (en) * 1997-07-30 1999-01-26 Brown University Research Foundation Optical method for the determination of stress in thin films
US5999847A (en) * 1997-10-21 1999-12-07 Elstrom; John A. Apparatus and method for delivery of surgical and therapeutic agents
US6038026A (en) * 1998-07-07 2000-03-14 Brown University Research Foundation Apparatus and method for the determination of grain size in thin films
US6025918A (en) * 1998-07-07 2000-02-15 Brown University Research Foundation Apparatus and method for measurement of the mechanical properties and electromigration of thin films
US6491685B2 (en) * 1999-03-04 2002-12-10 The Regents Of The University Of California Laser and acoustic lens for lithotripsy
US6317216B1 (en) * 1999-12-13 2001-11-13 Brown University Research Foundation Optical method for the determination of grain orientation in films
IT1316597B1 (it) * 2000-08-02 2003-04-24 Actis S R L Generatore optoacustico di ultrasuoni da energia laser alimentatatramite fibra ottica.
CA2501098C (en) * 2002-10-23 2014-04-08 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US7089099B2 (en) * 2004-07-30 2006-08-08 Automotive Technologies International, Inc. Sensor assemblies
US20060272418A1 (en) * 2005-06-03 2006-12-07 Brown University Opto-acoustic methods and apparatus for perfoming high resolution acoustic imaging and other sample probing and modification operations

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449955A (en) * 1987-08-19 1989-02-27 Shikoku Elec Power Plane ultrasonic wave generating method by laser light and ultrasonic surveying method
JPH04147053A (ja) * 1990-10-09 1992-05-20 Power Reactor & Nuclear Fuel Dev Corp レーザー超音波探傷方法及び装置
JPH05149931A (ja) * 1991-11-26 1993-06-15 Hitachi Constr Mach Co Ltd 音速・密度測定方法及び装置
JPH07270386A (ja) * 1994-03-30 1995-10-20 Olympus Optical Co Ltd 超音波顕微鏡
JPH10128236A (ja) * 1996-10-30 1998-05-19 Mitsubishi Heavy Ind Ltd 超音波発生装置
JP2002301076A (ja) * 2000-05-02 2002-10-15 Fuji Photo Film Co Ltd 超音波用探触子及び超音波受信装置並びに超音波診断装置
US20060272419A1 (en) * 2005-06-03 2006-12-07 Brown University Opto-acoustic methods and apparatus for performing high resolution acoustic imaging and other sample probing and modification operations

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066252A (ja) * 2008-08-13 2010-03-25 Kobe Steel Ltd 超音波顕微鏡
JP2012112823A (ja) * 2010-11-25 2012-06-14 Kobe Steel Ltd 超音波顕微鏡
KR20140103932A (ko) * 2011-11-02 2014-08-27 세노 메디컬 인스투르먼츠 인코포레이티드 상호 정합된 기능적 및 해부학적 매핑을 위한 이중 방식 이미징 시스템
KR102117132B1 (ko) * 2011-11-02 2020-05-29 세노 메디컬 인스투르먼츠 인코포레이티드 상호 정합된 기능적 및 해부학적 매핑을 위한 이중 방식 이미징 시스템
KR101526905B1 (ko) * 2015-02-16 2015-06-09 삼성전자주식회사 광음향 프로브 및 이를 포함하는 광음향 장치
JP2021511485A (ja) * 2018-01-26 2021-05-06 エーエスエムエル ネザーランズ ビー.ブイ. 基板上のターゲット構造の位置を決定するための装置及び方法
JP7326292B2 (ja) 2018-01-26 2023-08-15 エーエスエムエル ネザーランズ ビー.ブイ. 基板上のターゲット構造の位置を決定するための装置及び方法
US11927891B2 (en) 2018-01-26 2024-03-12 Asml Netherlands B.V. Apparatus and methods for determining the position of a target structure on a substrate

Also Published As

Publication number Publication date
JP5406729B2 (ja) 2014-02-05
EP2115450A1 (en) 2009-11-11
US8302480B2 (en) 2012-11-06
EP2115450A4 (en) 2015-03-04
WO2008097527A1 (en) 2008-08-14
US20110036171A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5406729B2 (ja) 改良型高解像度超音波顕微鏡
US8567253B2 (en) Opto-acoustic methods and apparatus for performing high resolution acoustic imaging and other sample probing and modification operations
US7624640B2 (en) Opto-acoustic methods and apparatus for performing high resolution acoustic imaging and other sample probing and modification operations
US7352466B2 (en) Gas detection and photonic crystal devices design using predicted spectral responses
US9835591B2 (en) Optical cantilever based analysis
JPS60256038A (ja) 薄層試料の厚さと組成変数との両方を求める装置
JP2005510699A (ja) 半導体ウェハの応力を測定するための方法および装置
US8537363B2 (en) Picosecond ultrasonic system incorporating an optical cavity
JP2009527736A (ja) プラズモン・トモグラフィ
US20180238833A1 (en) Resonator for force detection
JP2007170960A (ja) 熱弾性特性測定装置、熱弾性特性測定方法
US6741352B2 (en) Sensor utilizing attenuated total reflection
KR100924199B1 (ko) 다중 레이저 표면파를 이용한 표면 결함 검사 장치 및 방법
US20230366805A1 (en) Optoacoustic monitoring device for cell characterization
US11668644B2 (en) Opto-acoustic measurement of a transparent film stack
CN114216858B (zh) 薄膜的检测方法
JP3390355B2 (ja) 表面プラズモンセンサー
Zaidi et al. FTIR based nondestructive method for metrology of depths in poly silicon-filled trenches
EP3615948A1 (en) Subsurface atomic force microscopy with guided ultrasound waves
RU2432579C1 (ru) Способ диэлектрической спектроскопии тонкого слоя на поверхности твердого тела в инфракрасном диапазоне
JP3844688B2 (ja) 全反射減衰を利用したセンサー
AU2016200064A1 (en) Optical sensor
WO2024058671A1 (en) Opto-acoustic interrogator system
CN112327063A (zh) 一种提高微波电场测量空间分辨率的装置及方法
Cottier et al. Thickness-modulated waveguides for integrated optical sensing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120321

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121002

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131101

R150 Certificate of patent or registration of utility model

Ref document number: 5406729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees