JP2010511853A - Thermal control device and manufacturing method of thermal control device - Google Patents

Thermal control device and manufacturing method of thermal control device Download PDF

Info

Publication number
JP2010511853A
JP2010511853A JP2009540128A JP2009540128A JP2010511853A JP 2010511853 A JP2010511853 A JP 2010511853A JP 2009540128 A JP2009540128 A JP 2009540128A JP 2009540128 A JP2009540128 A JP 2009540128A JP 2010511853 A JP2010511853 A JP 2010511853A
Authority
JP
Japan
Prior art keywords
control device
thermal control
manufacturing
envelope
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009540128A
Other languages
Japanese (ja)
Other versions
JP5250559B2 (en
Inventor
ソク−ファン ムーン
グウン ファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JP2010511853A publication Critical patent/JP2010511853A/en
Application granted granted Critical
Publication of JP5250559B2 publication Critical patent/JP5250559B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/09Heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Abstract

本発明の熱制御装置の製造方法は、潜熱熱伝逹方式で熱を吸収/放出する作動流体の通路となるエンベロープ及びエンベロープの内壁に形成される溝を備える熱制御装置の製造方法において、(a1)溝に対応する形状の突出部を備えた第1及び第2テンプレートを設ける段階と、(b1)第1及び第2テンプレートに金属を蒸着して第1及び第2蒸着膜を形成する段階と、(c1)第1及び第2蒸着膜上に第1及び第2金属板を各々積層する段階と、(d1)第1及び第2金属板に対して第1及び第2テンプレートをバーンアウトさせる段階と、(e1)バーンアウトされた第1及び第2金属板を互いに接合してエンベロープを形成する段階と、を含む。The manufacturing method of the thermal control device of the present invention is a manufacturing method of a thermal control device including an envelope serving as a passage for a working fluid that absorbs / releases heat by a latent heat transfer system and a groove formed on an inner wall of the envelope. a1) providing a first and second template having protrusions having a shape corresponding to the groove; and (b1) forming a first and second deposited film by depositing metal on the first and second templates. (C1) laminating first and second metal plates on the first and second deposited films, and (d1) burnout the first and second templates to the first and second metal plates. And (e1) joining the burned out first and second metal plates together to form an envelope.

Description

本発明は、熱制御装置及び熱制御装置の製造方法に関し、より詳細には、電子機器から発生する熱を作動流体の潜熱によって制御する熱制御装置及び熱制御装置の製作方法に関する。   The present invention relates to a heat control device and a method for manufacturing the heat control device, and more particularly to a heat control device that controls heat generated from an electronic device by latent heat of a working fluid and a method for manufacturing the heat control device.

PC(Personal Computer)の高性能化及びパッケージの集積度増加によってCPU(Central Processing Unit)などの電子部品から発散される熱を無視できない。また、PC用CPUに使われる最先端加工技術が徐々に他の電子製品にも使われることによって、広範囲な種類の電子機器における熱の発散が、解決すべき重要な問題となっている。代表的な例として、ノート型パソコン以上に圧縮設計が要求される携帯電話などでも現在のような発展速度で高性能化が進行するならば、熱問題が深刻になる恐れがある。   The heat dissipated from an electronic component such as a CPU (Central Processing Unit) due to the high performance of a PC (Personal Computer) and an increase in the integration density of a package cannot be ignored. Further, as the state-of-the-art processing technology used for PC CPUs is gradually used for other electronic products, heat dissipation in a wide variety of electronic devices has become an important problem to be solved. As a typical example, even if a mobile phone or the like that requires a compression design more than a notebook personal computer progresses in performance at the current development rate, the thermal problem may become serious.

現在、携帯電話の技術発展は、カラーディスプレー、マルチメディア、VOD(Video on Demand)、映像電話、モバイルゲームなどを主軸とするデータサービスとして発展している。このようにシステム内部で処理せねばならないプロセスは増加している。したがって、システムで発生する発熱量も増加し続けると予想される。携帯電話の安定性を考慮すれば、このようなシステムでの熱消散技術は必ず開発されねばならない。携帯電話は、移動性を重視するので、軽量化と共に小型化が重視される技術分野である。   At present, cellular phone technology is being developed as a data service centered on color displays, multimedia, VOD (Video on Demand), video phones, mobile games, and the like. Thus, the number of processes that must be processed inside the system is increasing. Therefore, the amount of heat generated in the system is expected to continue to increase. Considering the stability of mobile phones, heat dissipation technology in such systems must be developed. Since mobile phones place importance on mobility, they are a technical field where weight reduction and weight reduction are important.

このような環境で発生熱を効率的に処理するには、特に、薄くかつ伝熱能に優れた熱制御装置の開発が必要である。通常、電子機器内での発熱部位は相対的に小さな面積のホットスポット(hot spot)形態に存在する。今まではパッケージング空間が不足した電子機器での熱制御のために伝導熱抵抗の小さな物質を利用してホットスポットの問題点を解決してきた。その代案として、熱消散のためのヒートシンク及びペルティエ素子などの伝熱素子を付着する方案があるが、一定サイズ以上の設置空間を必要とするか、動作電源を供給せねばならない問題点がある。したがって、軽薄短小化されるパッケージング趨勢に相応するために、小さくて薄く、かつ、電源供給なしに熱制御特性に優れた熱制御装置の開発が必須である。   In order to efficiently process the generated heat in such an environment, it is necessary to develop a heat control device that is particularly thin and excellent in heat transfer capability. In general, a heat generating part in an electronic device exists in the form of a hot spot having a relatively small area. Up to now, the problem of hot spots has been solved by using a material with low conduction thermal resistance for heat control in electronic equipment that lacks packaging space. As an alternative, there is a method of attaching a heat transfer element such as a heat sink and a Peltier element for heat dissipation, but there is a problem that an installation space of a certain size or more is required or an operation power supply must be supplied. Therefore, in order to correspond to the trend of packaging that is light and thin, it is essential to develop a thermal control device that is small and thin and that has excellent thermal control characteristics without power supply.

小型化された熱制御装置のうち、代表的なものとして、作動流体の潜熱を利用する熱制御装置を挙げられる。潜熱熱伝逹方式の熱輸送素子または熱消散素子は、作動流体の蒸発圧力を利用して小さな温度差でも無動力で熱を効果的へ移送する。   A representative example of the miniaturized thermal control device is a thermal control device that uses the latent heat of the working fluid. The heat transfer element or the heat dissipation element of the latent heat transfer system effectively transfers heat without power even with a small temperature difference using the evaporation pressure of the working fluid.

図1は、従来の潜熱方式熱制御装置の動作原理を説明するための図である。この図1を参照すれば、作動流体の通路となる金属材質のエンベロープ90内部に作動流体40、50が充填される。電子機器などの熱源と隣接した蒸発部10で作動流体は気化されつつ熱を吸収する。気化された作動流体40は、移送部20を経て凝縮部30で凝縮されて熱を放出する。凝縮部30で液化された作動流体50は毛細管力によって蒸発部10に再び移動するが、このような毛細管力を発生させるために、エンベロープ90内にウィック(wick)(図示せず)または溝(groove)(図示せず)が設けられる。   FIG. 1 is a diagram for explaining the operation principle of a conventional latent heat system heat control device. Referring to FIG. 1, working fluids 40 and 50 are filled into a metal envelope 90 serving as a working fluid passage. The working fluid absorbs heat while being vaporized in the evaporator 10 adjacent to the heat source such as an electronic device. The vaporized working fluid 40 is condensed in the condensing unit 30 through the transfer unit 20 and releases heat. The working fluid 50 liquefied in the condensing unit 30 moves again to the evaporation unit 10 by capillary force. In order to generate such capillary force, a wick (not shown) or a groove (not shown) is formed in the envelope 90. (groove) (not shown) is provided.

しかし、電子機器の厚さ及び大きさが小さくなることによって、エンベロープ、ウィック、溝も、次第にマイクロ構造化される趨勢にあるために、微細なマイクロ構造を有するエンベロープ、ウィック、溝を高精度で形成しうる新たな製造方法の開発が要求される。例えば、シリコンまたはガラスをエッチングして溝の微細構造を形成する方案がありえるが、これよりさらに簡単でありながらも経済性が確保される新たな熱制御装置及びその製造方法が必要である。   However, as the thickness and size of electronic devices become smaller, envelopes, wicks, and grooves tend to become more micro-structured. Development of a new manufacturing method that can be formed is required. For example, there can be a method of etching the silicon or glass to form the fine structure of the groove. However, a new heat control device and a method for manufacturing the same are required which are simpler and more economical.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、構造及び製作が簡単で多様な形態に成形でき、かつマイクロ構造を有するエンベロープ、ウィック、溝を形成できるので、狭い空間にも容易に設置でき、作動流体の潜熱を利用して熱消散及び熱均一化性能を向上させうる熱制御装置及びその製造方法を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to be able to form an envelope, a wick, and a groove having a micro structure with a simple structure and manufacturing, and can be formed into various forms. Another object of the present invention is to provide a heat control device that can be easily installed in a narrow space and can improve heat dissipation and heat uniformity performance by using latent heat of a working fluid, and a method for manufacturing the same.

本発明は、このような目的を達成するためになされたもので、本発明による熱制御装置の製造方法は、潜熱熱伝逹方式で熱を吸収/放出する作動流体の通路となるエンベロープ及び前記エンベロープの内壁に形成されて前記作動流体を移動させる毛細管力を発生させる溝を備える熱制御装置の製造方法において、(a1)前記溝に対応する形状の突出部を備えた第1及び第2テンプレートを設ける段階と、(b1)前記第1及び第2テンプレートに金属を蒸着して第1及び第2蒸着膜を形成する段階と、(c1)前記第1及び第2蒸着膜上に第1及び第2金属板を各々積層する段階と、(d1)前記第1及び第2金属板に対して前記第1及び第2テンプレートをバーンアウトさせる段階と、(e1)前記バーンアウトされた第1及び第2金属板を互いに接合して前記エンベロープを形成する段階と、を含むことを特徴とする。   The present invention has been made to achieve such an object, and a method of manufacturing a thermal control device according to the present invention includes an envelope serving as a passage for a working fluid that absorbs / releases heat in a latent heat transfer system, and In a method of manufacturing a thermal control device including a groove formed on an inner wall of an envelope and generating a capillary force for moving the working fluid, (a1) first and second templates having protrusions having a shape corresponding to the groove (B1) depositing metal on the first and second templates to form first and second deposited films; and (c1) first and second deposited on the first and second deposited films. Laminating each of the second metal plates; (d1) burning out the first and second templates on the first and second metal plates; and (e1) the burned out first and second plates. Second metal The joining with each other, characterized in that it and forming said envelope.

ここで、前記(a1)段階は、前記突出部に対応する凹部を備える金型を利用して前記第1及び第2テンプレートを各々設けることが望ましい。また、前記第1及び第2テンプレートは、高分子ポリマーからなることが望ましい。前記高分子ポリマーは、PMMA(Polymethly Methacrylate:メタクリル酸メチル樹脂)を少なくとも含むことが望ましい。そして、前記(c1)段階は、前記第1及び第2蒸着膜上に前記エンベロープを構成する金属をメッキして前記第1及び第2金属板を各々形成することが望ましい。   Here, in the step (a1), it is preferable that the first and second templates are provided using a mold having a recess corresponding to the protruding portion. The first and second templates are preferably made of a high molecular polymer. The polymer polymer preferably includes at least PMMA (Polymethymethacrylate). In the step (c1), it is preferable that the first and second metal plates are formed by plating the metal constituting the envelope on the first and second deposited films, respectively.

他の実施例として、本発明による熱制御装置の製造方法は、潜熱熱伝逹方式で熱を吸収/放出する作動流体の通路となるエンベロープ及び前記エンベロープの内壁に形成されて前記作動流体を移動させる毛細管力を発生させる溝を備える熱制御装置の製造方法において、(a2)前記溝に対応する形状の突出部を備えた一体型テンプレートを設ける段階と、(b2)前記一体型テンプレートに金属を蒸着して蒸着膜を形成する段階と、(c2)前記蒸着膜を包囲する一体型金属板を積層する段階と、(d2)前記一体型金属板から前記一体型テンプレートをバーンアウトさせる段階と、を含むことを特徴とする。   As another embodiment, a method of manufacturing a thermal control device according to the present invention includes an envelope serving as a passage for a working fluid that absorbs / releases heat in a latent heat transfer system and an inner wall of the envelope to move the working fluid. In a method of manufacturing a thermal control device including a groove for generating a capillary force to be produced, (a2) providing an integrated template having a protruding portion having a shape corresponding to the groove; and (b2) applying a metal to the integrated template. Vapor deposition to form a vapor deposition film; (c2) laminating an integral metal plate surrounding the vapor deposition film; and (d2) burning out the integral template from the integral metal plate; It is characterized by including.

ここで、前記(a2)段階は、前記突出部に対応する凹部を各々備える1対の金型を利用して前記一体型テンプレートを設けることが望ましい。また、前記一体型テンプレートは、高分子ポリマーからなることが望ましい。前記高分子ポリマーはPMMAを少なくとも含むことが望ましい。そして、前記(c2)段階は、前記蒸着膜上に前記エンベロープを構成する金属をメッキして、前記一体型金属板を積層することが望ましい。   Here, in the step (a2), it is preferable that the integrated template is provided using a pair of molds each having a concave portion corresponding to the protruding portion. The integral template is preferably made of a polymer. The high molecular polymer preferably includes at least PMMA. In the step (c2), it is preferable that the metal constituting the envelope is plated on the deposited film and the integrated metal plate is laminated.

また、他の実施例として、本発明による熱制御装置の製造方法は、潜熱熱伝逹方式で熱を吸収/放出する作動流体の通路となるエンベロープ及び前記エンベロープの内壁に形成されて前記作動流体を移動させる毛細管力を発生させる溝を備える熱制御装置の製造方法において、(a3)一側に補強膜が形成されて他側に溝が形成される1対の補強テンプレートを設ける段階と、(b3)前記1対の補強テンプレートを当接させる段階と、(c3)前記1対の補強テンプレート上に金属板を積層して前記エンベロープを形成する段階と、を含むことを特徴とする。   As another embodiment, the method of manufacturing a thermal control device according to the present invention includes an envelope that serves as a passage for a working fluid that absorbs / releases heat by a latent heat transfer method, and an inner wall of the envelope. (A3) providing a pair of reinforcing templates in which a reinforcing film is formed on one side and a groove is formed on the other side, in a manufacturing method of a thermal control device including a groove that generates a capillary force that moves a capillary force; b3) contacting the pair of reinforcing templates; and (c3) laminating a metal plate on the pair of reinforcing templates to form the envelope.

ここで、前記(a3)段階は、前記溝に対応する形状の突出部を備える金型を利用して前記1対の補強テンプレートを各々設けることが望ましい。また、前記補強テンプレートは、前記補強膜上に高分子ポリマーを積層したことが望ましい。前記高分子ポリマーはPMMAを少なくとも含むことが望ましい。そして、前記(c3)段階は、前記補強膜上に前記エンベロープを構成する金属をメッキして前記金属板を積層することが望ましい。   Here, in the step (a3), it is preferable that the pair of reinforcing templates is provided by using a mold having a protrusion having a shape corresponding to the groove. The reinforcing template is preferably a polymer polymer laminated on the reinforcing film. The high molecular polymer preferably includes at least PMMA. In the step (c3), the metal plate is preferably laminated by plating a metal constituting the envelope on the reinforcing film.

一方、本発明の熱制御装置は、潜熱熱伝逹方式で熱を吸収/放出する作動流体の通路となるエンベロープ及び前記エンベロープの内壁に形成されて前記作動流体を移動させる毛細管力を発生させる溝を備え、高分子ポリマーからなるテンプレートに前記溝または前記溝に対応する形状の突出部を形成して、前記テンプレートに金属の蒸着膜を形成した後、前記蒸着膜に前記エンベロープを構成する金属を積層し、前記テンプレートをバーンアウトさせることによって、前記エンベロープを形成することを特徴とする。   On the other hand, the thermal control device of the present invention includes an envelope serving as a passage for a working fluid that absorbs / releases heat by a latent heat transfer system, and a groove that is formed on the inner wall of the envelope and generates a capillary force that moves the working fluid. And forming a groove corresponding to the groove on a template made of a polymer, forming a metal vapor deposition film on the template, and then forming a metal constituting the envelope on the vapor deposition film. The envelope is formed by stacking and burning out the template.

本発明の熱制御装置及び熱制御装置の製作方法によれば、優秀な毛細管力を発生する微細構造の溝を形成すべく成形容易性に優れた高分子ポリマー材質のテンプレートを、金型を利用して加工することで陰刻または陽刻の溝形状を簡単に加工し、テンプレートに形成された溝形状は簡単なメッキ工程によって高精度で金属板に転移させ、テンプレートをバーンアウトさせる簡単な工程によってエンベロープを最終的に形成しうる。   According to the thermal control device and the manufacturing method of the thermal control device of the present invention, a template made of a polymer polymer material having excellent moldability is used to form a microstructured groove that generates excellent capillary force. By machining, the indented or engraved groove shape is easily processed, and the groove shape formed in the template is transferred to the metal plate with high accuracy by a simple plating process, and the envelope is created by a simple process of burning out the template. Can eventually be formed.

従来の潜熱方式熱制御装置の動作原理を説明するための図である。It is a figure for demonstrating the principle of operation of the conventional latent heat system thermal control apparatus. 本発明の熱制御装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the thermal control apparatus of this invention. 本発明の熱制御装置の製作方法に関する第1実施例を順次に示す断面図である。It is sectional drawing which shows 1st Example regarding the manufacturing method of the thermal control apparatus of this invention sequentially. 本発明の熱制御装置の製作方法に関する第1実施例を順次に示す断面図である。It is sectional drawing which shows 1st Example regarding the manufacturing method of the thermal control apparatus of this invention sequentially. 本発明の熱制御装置の製作方法に関する第1実施例を順次に示す断面図である。It is sectional drawing which shows 1st Example regarding the manufacturing method of the thermal control apparatus of this invention sequentially. 本発明の熱制御装置の製作方法に関する第1実施例を順次に示す断面図である。It is sectional drawing which shows 1st Example regarding the manufacturing method of the thermal control apparatus of this invention sequentially. 本発明の熱制御装置の製作方法に関する第1実施例を順次に示す断面図である。It is sectional drawing which shows 1st Example regarding the manufacturing method of the thermal control apparatus of this invention sequentially. 本発明の熱制御装置の製作方法に関する第2実施例を順次に示す断面図である。It is sectional drawing which shows 2nd Example regarding the manufacturing method of the thermal control apparatus of this invention sequentially. 本発明の熱制御装置の製作方法に関する第2実施例を順次に示す断面図である。It is sectional drawing which shows 2nd Example regarding the manufacturing method of the thermal control apparatus of this invention sequentially. 本発明の熱制御装置の製作方法に関する第2実施例を順次に示す断面図である。It is sectional drawing which shows 2nd Example regarding the manufacturing method of the thermal control apparatus of this invention sequentially. 本発明の熱制御装置の製作方法に関する第2実施例を順次に示す断面図である。It is sectional drawing which shows 2nd Example regarding the manufacturing method of the thermal control apparatus of this invention sequentially. 本発明の熱制御装置の製作方法に関する第3実施例を順次に示す断面図である。It is sectional drawing which shows sequentially 3rd Example regarding the manufacturing method of the thermal control apparatus of this invention. 本発明の熱制御装置の製作方法に関する第3実施例を順次に示す断面図である。It is sectional drawing which shows sequentially 3rd Example regarding the manufacturing method of the thermal control apparatus of this invention. 本発明の熱制御装置の製作方法に関する第3実施例を順次に示す断面図である。It is sectional drawing which shows sequentially 3rd Example regarding the manufacturing method of the thermal control apparatus of this invention. 本発明の熱制御装置の製作方法に関する第3実施例を順次に示す断面図である。It is sectional drawing which shows sequentially 3rd Example regarding the manufacturing method of the thermal control apparatus of this invention.

以下、図面を参照して本発明の実施例について説明する。
各構成要素の大きさや厚さは、説明の明瞭性のために誇張されうる。本発明の実施例は、添付図面に示されたところに限定されず、同じ発明の範疇内で多様に変形されうるということは明白である。
Embodiments of the present invention will be described below with reference to the drawings.
The size and thickness of each component may be exaggerated for clarity of explanation. It will be apparent that the embodiments of the present invention are not limited to those shown in the accompanying drawings, and can be variously modified within the scope of the same invention.

図2は、本発明のマイクロ熱制御装置の外観を示す斜視図である。エンベロープ400の内壁401に溝301が形成されたことを示す。作動流体は、エンベロープ400の内部に充填され、潜熱熱伝逹方式で熱を吸収/放出する。熱を放出しつつ液化された作動流体は、溝301に沿って毛細管力によって移動し、冷却を必要とする電子機器を冷却する。   FIG. 2 is a perspective view showing the appearance of the micro heat control device of the present invention. It shows that the groove 301 is formed in the inner wall 401 of the envelope 400. The working fluid is filled in the envelope 400 and absorbs / releases heat in a latent heat transfer system. The working fluid that is liquefied while releasing heat moves along the groove 301 by capillary force, and cools the electronic device that requires cooling.

図3A乃至図3Eは、本発明のマイクロ熱制御装置の製作方法に関する第1実施例を順次に示す断面図である。熱制御装置の製造方法に関する第1実施例は、1つの金型100を利用して第1テンプレート200aを押して突出部201を形成し、第1テンプレート200a上に第1蒸着膜202aを蒸着させることによって、金属を塗布しうる条件を形成した後、第1蒸着膜202a上にエンベロープ400を構成する金属を所望の厚さにメッキして第1金属板300aを積層する。第1金属板300aを加熱して第1テンプレート200aをバーンアウトさせれば、エンベロープ400の内壁401が露出される。   3A to 3E are cross-sectional views sequentially showing a first embodiment relating to a method of manufacturing a micro thermal control device of the present invention. In the first embodiment relating to the manufacturing method of the thermal control device, the first template 200a is pushed using one mold 100 to form the protruding portion 201, and the first vapor deposition film 202a is deposited on the first template 200a. Then, after the conditions for applying the metal are formed, the metal constituting the envelope 400 is plated on the first deposited film 202a to a desired thickness, and the first metal plate 300a is laminated. If the first template 200a is burned out by heating the first metal plate 300a, the inner wall 401 of the envelope 400 is exposed.

同様に、前記金型100を利用して第2テンプレート200bを成形し、第2テンプレート200b上に第2蒸着膜202bを蒸着させることによって、金属を塗布しうる条件を形成した後、第2蒸着膜202b上にエンベロープ400を構成する金属を所望の厚さにメッキして第2金属板300bを積層する。第2金属板300bを加熱して第2テンプレート200bをバーンアウトさせれば、エンベロープ400の内壁401が露出される。   Similarly, a second template 200b is formed using the mold 100, and a second vapor deposition film 202b is deposited on the second template 200b to form a condition for applying a metal, and then the second vapor deposition. A metal constituting the envelope 400 is plated on the film 202b to a desired thickness, and the second metal plate 300b is laminated. If the second metal plate 300b is heated to burn out the second template 200b, the inner wall 401 of the envelope 400 is exposed.

第1金属板300aは、エンベロープ400の一面を形成し、第2金属板300bはエンベロープ400の他面を形成する。溝301が形成された第1金属板300a及び第2金属板300bを接合部303で接合すれば、1つのエンベロープ400が完全に形成される。金型100を利用して第1及び第2テンプレート200a、200bを形成する本発明の実施例は、例えば、フォトリソグラフィー工程によるエッチング工程よりさらに簡単にマイクロ構造を形成しうる長所がある。第1及び第2テンプレート200a、200bは、突出部201の成形及びバーンアウトの容易性を考慮して高分子ポリマーを材質とし、一実施例として前記高分子ポリマーはPMMA(Polymethly Methacrylate:メタクリル酸メチル樹脂)を少なくとも含むことが望ましい。   The first metal plate 300 a forms one surface of the envelope 400, and the second metal plate 300 b forms the other surface of the envelope 400. If the first metal plate 300a and the second metal plate 300b in which the groove 301 is formed are joined by the joint portion 303, one envelope 400 is completely formed. The embodiment of the present invention in which the first and second templates 200a and 200b are formed by using the mold 100 has an advantage that a microstructure can be formed more easily than an etching process by a photolithography process, for example. The first and second templates 200a and 200b are made of a high molecular polymer in consideration of the ease of molding and burnout of the protruding portion 201. As an example, the high molecular polymer is PMMA (Polymethymethacrylate: methyl methacrylate). It is desirable to include at least a resin.

図3Aを参照すれば、溝301に対応する形状の突出部201を設けるために、突出部201に対応する凹部101を備えた金型100を利用する。この金型100で初期に平板状を有する第1テンプレート200aを押して成形する。図3Bに示すように、第1テンプレート200aの表面に金属を蒸着して第1蒸着膜202aを形成し、図3Cに示すように、第1蒸着膜202aの表面にエンベロープ400を構成する金属をメッキして第1金属板300aを形成する。第1蒸着膜202a及び第1金属板300aを構成する金属は同一であるものが望ましいが、互いに異なる材質であっても良い。第1金属板300aを電気炉に入れて加熱して、高分子ポリマーからなる第1テンプレート200aを除去する。   Referring to FIG. 3A, in order to provide the protrusion 201 having a shape corresponding to the groove 301, the mold 100 including the recess 101 corresponding to the protrusion 201 is used. The first template 200a having a flat plate shape is initially pressed with the mold 100 to be molded. As shown in FIG. 3B, a metal is vapor-deposited on the surface of the first template 200a to form a first vapor-deposited film 202a. As shown in FIG. 3C, the metal constituting the envelope 400 is formed on the surface of the first vapor-deposited film 202a. The first metal plate 300a is formed by plating. Although the metal which comprises the 1st vapor deposition film 202a and the 1st metal plate 300a is desirable, the mutually different material may be sufficient. The first metal plate 300a is placed in an electric furnace and heated to remove the first template 200a made of a polymer.

次いで、図3A乃至図3Cを反復して、第2金属板300bを形成し、第2テンプレート200bをバーンアウトさせる。次いで、図3Dに示すように、第1金属板300a及び第2金属板300bを接合部303で溶接すれば、図3Eに示すエンベロープ400が完成される。エンベロープ400の内壁を洗浄して真空状態にした後、作動流体を入れて密封すれば、熱輸送または熱消散素子として使用可能なマイクロ熱制御装置が得られる。   3A to 3C are repeated to form the second metal plate 300b, and the second template 200b is burned out. Next, as shown in FIG. 3D, if the first metal plate 300a and the second metal plate 300b are welded at the joint portion 303, the envelope 400 shown in FIG. 3E is completed. If the inner wall of the envelope 400 is cleaned and evacuated and then sealed with a working fluid, a micro heat control device that can be used as a heat transport or heat dissipation element is obtained.

本発明の熱制御装置において、エンベロープの断面形状は、図示されたところに限定されない。多角形または円形の断面を有するエンベロープを製作できるということは言うまでもない。エンベロープの大きさも制限されない。   In the thermal control device of the present invention, the cross-sectional shape of the envelope is not limited to the illustrated shape. It goes without saying that envelopes having a polygonal or circular cross section can be produced. The envelope size is not limited.

図4A乃至図4Dは、本発明のマイクロ熱制御装置の製作方法に関する第2実施例を順次に示す断面図である。熱制御装置の製作方法に関する第2実施例は、1対の金型100a、100bを利用して一体型テンプレート200cを成形し、一体型テンプレート200c上に蒸着膜202cを蒸着させることによって、金属を塗布しうる条件を形成した後、蒸着膜202c上にエンベロープ400を構成する金属を所望の厚さにメッキして一体型金属板300cを積層する。一体型金属板300cを加熱して一体型テンプレート200cをバーンアウトさせればエンベロープ400の内壁401が露出される。   4A to 4D are cross-sectional views sequentially showing a second embodiment relating to a method of manufacturing a micro thermal control device of the present invention. In the second embodiment relating to the manufacturing method of the thermal control device, the metal template is formed by forming an integrated template 200c using a pair of molds 100a and 100b and depositing a deposition film 202c on the integrated template 200c. After forming the conditions that can be applied, the metal forming the envelope 400 is plated on the vapor deposition film 202c to a desired thickness, and the integrated metal plate 300c is laminated. When the integrated metal plate 300c is heated to burn out the integrated template 200c, the inner wall 401 of the envelope 400 is exposed.

1対の金型100a、100bを利用して一体型テンプレート200cを成形する場合、例えば、フォトリソグラフィー工程によるエッチング工程よりさらに簡単にマイクロ構造を形成できるということはもとより、加工精度及び工数の単純化を図ることができる。一体型テンプレート200cは、突出部201の成形及びバーンアウトの容易性を考慮して高分子ポリマーを材質とし、前記高分子ポリマーはPMMAを少なくとも含むことが望ましい。   When the integrated template 200c is formed using the pair of molds 100a and 100b, for example, the micro structure can be formed more easily than the etching process by the photolithography process, and the processing accuracy and the man-hour can be simplified. Can be achieved. The integrated template 200c is preferably made of a high molecular polymer in consideration of the ease of molding and burnout of the protrusion 201, and the high molecular polymer preferably includes at least PMMA.

図4Aを参照すれば、溝301に対応する形状の突出部201を設けるために、凹部101を備えた1対の金型100a、100bを利用して初期に平板状を有する一体型テンプレート200cを押して成形する。図4Bに示すように、一体型テンプレート200cの表面に金属を蒸着して蒸着膜202cを形成し、図4Cに示すように、蒸着膜202cの表面にエンベロープ400を構成する金属をメッキして一体型金属板300cを形成する。一体型金属板300cを電気炉に入れて加熱することによって、高分子ポリマーからなる一体型テンプレート200cを除去すれば、図4Dに示す一体型エンベロープ400が完成される。エンベロープ400の内壁を洗浄して真空状態にした後、作動流体を入れて密封すれば、熱輸送または熱消散素子として使用可能なマイクロ熱制御装置が得られる。   Referring to FIG. 4A, in order to provide the protruding portion 201 having a shape corresponding to the groove 301, an integrated template 200 c having a flat plate shape is initially formed using a pair of molds 100 a and 100 b provided with a recess 101. Press to mold. As shown in FIG. 4B, a metal is vapor-deposited on the surface of the integrated template 200c to form a vapor-deposited film 202c. As shown in FIG. 4C, the metal constituting the envelope 400 is plated on the surface of the vapor-deposited film 202c. A body-shaped metal plate 300c is formed. When the integrated metal plate 300c is placed in an electric furnace and heated to remove the integrated template 200c made of a polymer, the integrated envelope 400 shown in FIG. 4D is completed. If the inner wall of the envelope 400 is cleaned and evacuated and then sealed with a working fluid, a micro heat control device that can be used as a heat transport or heat dissipation element is obtained.

第2実施例によれば、1対の金型100a、100bを同時に利用して成形することによって、継ぎ目のないエンベロープ400を一体型に製作しうる長所がある。また、1対の金属板を接合させる別途の溶接工程が不要となる。   According to the second embodiment, there is an advantage that the seamless envelope 400 can be manufactured integrally by using a pair of molds 100a and 100b simultaneously. Further, a separate welding process for joining the pair of metal plates is not necessary.

図3A乃至図4Dによれば、本発明の製造方法によって製造された熱制御装置は、エンベロープ400及びそれに備えられる溝301を備える。テンプレート200a、200b、200c、蒸着膜202a、202b、202c、金属板300a、300b、300cを順次に製作し、それらをエンベロープ400及び溝301の成形に活用する。すなわち、高分子ポリマーからなるテンプレート200a、200b、200cに突出部201を形成し、蒸着膜202a、202b、202cを形成した後、エンベロープ400を構成する金属板300a、300b、300cを積層し、テンプレート200a、200b、200cをバーンアウトさせることによって、エンベロープ400及び溝301が形成されることが特徴である。   3A to 4D, the thermal control device manufactured by the manufacturing method of the present invention includes an envelope 400 and a groove 301 provided therein. Templates 200a, 200b, and 200c, vapor deposition films 202a, 202b, and 202c, and metal plates 300a, 300b, and 300c are sequentially manufactured, and these are used for forming the envelope 400 and the groove 301. That is, after the protrusions 201 are formed on the templates 200a, 200b, and 200c made of a high molecular polymer and the deposited films 202a, 202b, and 202c are formed, the metal plates 300a, 300b, and 300c constituting the envelope 400 are stacked, and the template is formed. The feature is that the envelope 400 and the groove 301 are formed by burning out 200a, 200b, and 200c.

図5A乃至図5Dは、本発明のマイクロ熱制御装置の製作方法に関する第3実施例を順次に示す断面図である。熱制御装置の第3実施例は、一側に金属からなる補強膜203を備え、他側に溝301が形成される露出領域を備え、初期に平板状となる1対の補強テンプレート200d、200eを必要とする。1対の補強テンプレート200d、200eに対して1つの金型100を用いて、それぞれの溝301を直接形成する。溝301が形成された1対の補強テンプレート200d、200eを互いに対向させた後、金属をメッキして一体型金属板300cを積層する。補強テンプレート200d、200eは、バーンアウトされず、それ自体でエンベロープ400の内壁401及び溝301を形成する。1対の補強テンプレート200d、200eは、溶接工程によって接合されなくても、一体型金属板300cによって結合される。一体型金属板300cによって溝301が形成されるものではないために、一体型金属板300cは非常に薄く積層されても良い。   5A to 5D are cross-sectional views sequentially showing a third embodiment relating to a method of manufacturing a micro thermal control device of the present invention. The third embodiment of the thermal control device includes a reinforcing film 203 made of metal on one side, an exposed region in which a groove 301 is formed on the other side, and a pair of reinforcing templates 200d and 200e that are initially flat. Need. The respective grooves 301 are directly formed using one mold 100 for the pair of reinforcing templates 200d and 200e. The pair of reinforcing templates 200d and 200e formed with the grooves 301 are made to face each other, and then a metal is plated to laminate the integrated metal plate 300c. The reinforcing templates 200d and 200e are not burned out, and themselves form the inner wall 401 and the groove 301 of the envelope 400. The pair of reinforcing templates 200d and 200e are joined by the integrated metal plate 300c even if they are not joined by a welding process. Since the groove 301 is not formed by the integrated metal plate 300c, the integrated metal plate 300c may be stacked very thinly.

補強テンプレート200d、200eは、溝301の成形を容易にするために、高分子ポリマーからなることが望ましく、一実施例として、前記高分子ポリマーはPMMAを少なくとも含むことが望ましい。金型100を利用して溝301を形成する場合、例えば、フォトリソグラフィー工程によるエッチング工程よりさらに簡単にマイクロ構造を形成しうる長所がある。   The reinforcing templates 200d and 200e are preferably made of a high molecular polymer in order to facilitate the formation of the groove 301. As an example, the high molecular polymer preferably includes at least PMMA. When the groove 301 is formed using the mold 100, for example, there is an advantage that a microstructure can be formed more easily than an etching process by a photolithography process.

図5Aを参照すれば、溝301に対応する形状の突出部201を備えた金型100を利用して1対の補強テンプレート200d、200eを成形する。図5B及び図5Cに示すように、1対の補強テンプレート200d、200eを互いに対向するように組立てる。それらは接着剤によって簡単に組立てられうる。そして、図5Dに示すように、補強テンプレート200d、200eの周囲をメッキして一体型金属板300cを積層すれば、エンベロープ400が完成される。エンベロープ400の内壁を洗浄して真空状態にした後、作動流体を入れて密封すれば、熱輸送または熱消散素子として使用可能なマイクロ熱制御装置が得られる。第3実施例によれば、既に備えられた補強膜203に一体型金属板300cを積層するので、別途の溶接工程やメッキのための蒸着膜を形成する必要がなく、補強テンプレート200d、200eを除去する必要もない。   Referring to FIG. 5A, a pair of reinforcing templates 200d and 200e is formed using a mold 100 having a protrusion 201 having a shape corresponding to the groove 301. As shown in FIGS. 5B and 5C, the pair of reinforcing templates 200d and 200e are assembled so as to face each other. They can be easily assembled by adhesive. Then, as shown in FIG. 5D, the envelope 400 is completed by plating the periphery of the reinforcing templates 200d and 200e and stacking the integrated metal plate 300c. If the inner wall of the envelope 400 is cleaned and evacuated and then sealed with a working fluid, a micro heat control device that can be used as a heat transport or heat dissipation element is obtained. According to the third embodiment, since the integrated metal plate 300c is laminated on the already provided reinforcing film 203, there is no need to form a separate welding process or a vapor deposition film for plating, and the reinforcing templates 200d and 200e are formed. There is no need to remove it.

本発明は、熱制御装置及び熱制御装置の製作方法を提供する。本発明は、電子機器から発生する熱を作動流体の潜熱によって制御する熱制御装置及び熱制御装置の製作方法を提供する。   The present invention provides a thermal control device and a method for manufacturing the thermal control device. The present invention provides a heat control device that controls heat generated from an electronic device by latent heat of a working fluid, and a method for manufacturing the heat control device.

Claims (16)

潜熱熱伝逹方式で熱を吸収/放出する作動流体の通路となるエンベロープ及び前記エンベロープの内壁に形成されて、前記作動流体を移動させる毛細管力を発生させる溝を備える熱制御装置の製造方法において、
(a1)前記溝に対応する形状の突出部を備えた第1及び第2テンプレートを設ける段階と、
(b1)前記第1及び第2テンプレートに金属を蒸着して第1及び第2蒸着膜を形成する段階と、
(c1)前記第1及び第2蒸着膜上に第1及び第2金属板を各々積層する段階と、
(d1)前記第1及び第2金属板に対して前記第1及び第2テンプレートをバーンアウトさせる段階と、
(e1)前記バーンアウトされた第1及び第2金属板を互いに接合して、前記エンベロープを形成する段階と
を含むことを特徴とする熱制御装置の製造方法。
In a manufacturing method of a thermal control device comprising an envelope serving as a passage for a working fluid that absorbs / releases heat by a latent heat transfer method, and a groove that generates a capillary force that moves the working fluid, and is formed on an inner wall of the envelope. ,
(A1) providing first and second templates having protrusions having shapes corresponding to the grooves;
(B1) depositing metal on the first and second templates to form first and second deposited films;
(C1) laminating first and second metal plates on the first and second deposited films, respectively;
(D1) burning out the first and second templates with respect to the first and second metal plates;
(E1) joining the burned out first and second metal plates together to form the envelope. A method for manufacturing a thermal control device, comprising:
前記(a1)段階は、前記突出部に対応する凹部を備える金型を利用して、前記第1及び第2テンプレートを各々設けることを特徴とする請求項1に記載の熱制御装置の製造方法。   2. The method of manufacturing a thermal control device according to claim 1, wherein in the step (a1), each of the first and second templates is provided using a mold having a recess corresponding to the protruding portion. . 前記第1及び第2テンプレートは、高分子ポリマーからなることを特徴とする請求項2に記載の熱制御装置の製造方法。   The method for manufacturing a thermal control device according to claim 2, wherein the first and second templates are made of a polymer. 前記高分子ポリマーは、PMMA(Polymethly Methacrylate:メタクリル酸メチル樹脂)を少なくとも含むことを特徴とする請求項3に記載の熱制御装置の製造方法。   The method for manufacturing a thermal control device according to claim 3, wherein the high molecular polymer includes at least PMMA (Polymethymethacrylate). 前記(c1)段階は、前記第1及び第2蒸着膜上に前記エンベロープを構成する金属をメッキし、前記第1及び第2金属板を各々積層することを特徴とする請求項2に記載の熱制御装置の製造方法。   3. The method of claim 2, wherein in the step (c1), a metal constituting the envelope is plated on the first and second deposited films, and the first and second metal plates are laminated. Manufacturing method of thermal control device. 潜熱熱伝逹方式で熱を吸収/放出する作動流体の通路となるエンベロープ及び前記エンベロープの内壁に形成されて、前記作動流体を移動させる毛細管力を発生させる溝を備える熱制御装置の製造方法において、
(a2)前記溝に対応する形状の突出部を備えた一体型テンプレートを設ける段階と、
(b2)前記一体型テンプレートに金属を蒸着して蒸着膜を形成する段階と、
(c2)前記蒸着膜を包囲する一体型金属板を積層する段階と、
(d2)前記一体型金属板から前記一体型テンプレートをバーンアウトさせる段階と
を含むことを特徴とする熱制御装置の製造方法。
In a manufacturing method of a thermal control device comprising an envelope serving as a passage for a working fluid that absorbs / releases heat by a latent heat transfer method, and a groove that generates a capillary force that moves the working fluid, and is formed on an inner wall of the envelope. ,
(A2) providing an integrated template having a protrusion having a shape corresponding to the groove;
(B2) forming a deposited film by depositing metal on the integrated template;
(C2) laminating an integrated metal plate surrounding the deposited film;
(D2) Burning out the integrated template from the integrated metal plate. A method for manufacturing a thermal control device, comprising:
前記(a2)段階は、前記突出部に対応する凹部を各々備える1対の金型を利用して、前記一体型テンプレートを設けることを特徴とする請求項6に記載の熱制御装置の製造方法。   The method according to claim 6, wherein the step (a2) includes providing the integrated template by using a pair of molds each having a recess corresponding to the protrusion. . 前記一体型テンプレートは、高分子ポリマーからなることを特徴とする請求項7に記載の熱制御装置の製造方法。   The method of manufacturing a thermal control device according to claim 7, wherein the integrated template is made of a polymer. 前記高分子ポリマーは、PMMAを少なくとも含むことを特徴とする請求項8に記載の熱制御装置の製造方法。   The method for manufacturing a thermal control device according to claim 8, wherein the high molecular polymer includes at least PMMA. 前記(c2)段階は、前記蒸着膜上に前記エンベロープを構成する金属をメッキして、前記一体型金属板を積層することを特徴とする請求項7に記載の熱制御装置の製造方法。   8. The method of manufacturing a thermal control device according to claim 7, wherein in the step (c2), the metal constituting the envelope is plated on the deposited film, and the integrated metal plate is laminated. 潜熱熱伝逹方式で熱を吸収/放出する作動流体の通路となるエンベロープ及び前記エンベロープの内壁に形成されて、前記作動流体を移動させる毛細管力を発生させる溝を備える熱制御装置の製造方法において、
(a3)一側に補強膜が形成され、他側に溝が形成される1対の補強テンプレートを設ける段階と、
(b3)前記1対の補強テンプレートを当接させる段階と、
(c3)前記1対の補強テンプレート上に一体型金属板を積層して前記エンベロープを形成する段階と
を含むことを特徴とする熱制御装置の製造方法。
In a manufacturing method of a thermal control device comprising an envelope serving as a passage for a working fluid that absorbs / releases heat by a latent heat transfer method, and a groove that generates a capillary force that moves the working fluid, and is formed on an inner wall of the envelope. ,
(A3) providing a pair of reinforcing templates in which a reinforcing film is formed on one side and a groove is formed on the other side;
(B3) contacting the pair of reinforcing templates;
(C3) laminating an integral metal plate on the pair of reinforcing templates to form the envelope. A method for manufacturing a thermal control device, comprising:
前記(a3)段階は、前記溝に対応する形状の突出部を備える金型を利用して、前記1対の補強テンプレートを各々設けることを特徴とする請求項11に記載の熱制御装置の製造方法。   The manufacturing of the thermal control device according to claim 11, wherein in the step (a3), each of the pair of reinforcing templates is provided using a mold having a protruding portion having a shape corresponding to the groove. Method. 前記補強テンプレートは、前記補強膜上に高分子ポリマーを積層したことを特徴とする請求項12に記載の熱制御装置の製造方法。   The method for manufacturing a thermal control device according to claim 12, wherein the reinforcing template is formed by laminating a polymer on the reinforcing film. 前記高分子ポリマーは、少なくともPMMA(Polymethly Methacrylate:メタクリル酸メチル樹脂)を含むことを特徴とする請求項13に記載の熱制御装置の製造方法。   The method for manufacturing a thermal control device according to claim 13, wherein the high molecular polymer includes at least PMMA (Polymethymethacrylate). 前記(c3)段階は、前記補強膜上に前記エンベロープを構成する金属をメッキして前記一体型金属板を積層することを特徴とする請求項12に記載の熱制御装置の製造方法。   13. The method of manufacturing a thermal control device according to claim 12, wherein in the step (c3), the integral metal plate is laminated by plating a metal constituting the envelope on the reinforcing film. 潜熱熱伝逹方式で熱を吸収/放出する作動流体の通路となるエンベロープ及び前記エンベロープの内壁に形成されて、前記作動流体を移動させる毛細管力を発生させる溝を備え、
高分子ポリマーからなるテンプレートに前記溝または前記溝に対応する形状の突出部を形成し、前記テンプレートに金属の蒸着膜を形成した後、前記蒸着膜に前記エンベロープを構成する金属を積層し、前記テンプレートをバーンアウトさせることによって、前記エンベロープを形成することを特徴とする熱制御装置。
An envelope serving as a passage for a working fluid that absorbs / releases heat in a latent heat transfer system, and a groove that generates a capillary force that moves the working fluid, and is formed on the inner wall of the envelope;
Forming the groove or a protrusion corresponding to the groove on a template made of a polymer, forming a metal vapor deposition film on the template, laminating the metal constituting the envelope on the vapor deposition film, The thermal control device, wherein the envelope is formed by burning out a template.
JP2009540128A 2006-12-07 2007-10-31 Thermal control device and manufacturing method of thermal control device Expired - Fee Related JP5250559B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2006-0124119 2006-12-07
KR1020060124119A KR100759826B1 (en) 2006-12-07 2006-12-07 Heat control device and method for manufacturing the same
PCT/KR2007/005459 WO2008069453A1 (en) 2006-12-07 2007-10-31 Heat control device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2010511853A true JP2010511853A (en) 2010-04-15
JP5250559B2 JP5250559B2 (en) 2013-07-31

Family

ID=38738200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009540128A Expired - Fee Related JP5250559B2 (en) 2006-12-07 2007-10-31 Thermal control device and manufacturing method of thermal control device

Country Status (4)

Country Link
US (1) US20100059212A1 (en)
JP (1) JP5250559B2 (en)
KR (1) KR100759826B1 (en)
WO (1) WO2008069453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121355A (en) * 2013-12-24 2015-07-02 東芝ホームテクノ株式会社 Sheet-type heat pipe

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929813B (en) * 2010-08-24 2012-07-25 山东大学 Flat-plate heat pipe
GB201222711D0 (en) 2012-12-17 2013-01-30 Takeda Pharmaceutical Novel compounds
JP6112242B1 (en) * 2016-02-01 2017-04-12 ダイキン工業株式会社 Production equipment for heat exchanger fins
JP6767303B2 (en) * 2017-04-21 2020-10-14 新光電気工業株式会社 Heat pipe and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140392A (en) * 1984-12-14 1986-06-27 Daido Steel Co Ltd Lining method on inside surface of hollow body
JPH09239437A (en) * 1996-03-12 1997-09-16 Mitsubishi Shindoh Co Ltd Blank for production of hollow member and production of hollow member
JPH11287578A (en) * 1998-03-31 1999-10-19 Fujikura Ltd Manufacture of flat plate type heat pipe
JPH11304381A (en) * 1998-04-23 1999-11-05 Fujikura Ltd Heat pipe
JP2005257174A (en) * 2004-03-11 2005-09-22 Yazaki Corp Manufacturing method of heat pipe, heat pipe, attachment method for heat pipe, and attachment structure for heat pipe
US20060005952A1 (en) * 2004-06-29 2006-01-12 Lan-Kai Yeh Heat dissipating appatatus having micro-structure layer and method of fabricating the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2944338A (en) * 1953-12-30 1960-07-12 Gen Electric Spray metal process for making precision articles
US3665573A (en) * 1970-05-18 1972-05-30 Atomic Energy Commission Method of fabricating a heat pipe
US4087893A (en) * 1974-11-08 1978-05-09 Nippon Gakki Seizo Kabushiki Kaisha Process for producing a heat pipe
JPS61225025A (en) 1985-03-29 1986-10-06 Nippon Kogaku Kk <Nikon> Preparation of embossed mark
US5079974A (en) * 1991-05-24 1992-01-14 Carnegie-Mellon University Sprayed metal dies
US7131487B2 (en) * 2001-12-14 2006-11-07 Intel Corporation Use of adjusted evaporator section area of heat pipe that is sized to match the surface area of an integrated heat spreader used in CPU packages in mobile computers
JP4085693B2 (en) 2002-05-22 2008-05-14 三菱電機株式会社 Heat pipe and heat pipe adapter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140392A (en) * 1984-12-14 1986-06-27 Daido Steel Co Ltd Lining method on inside surface of hollow body
JPH09239437A (en) * 1996-03-12 1997-09-16 Mitsubishi Shindoh Co Ltd Blank for production of hollow member and production of hollow member
JPH11287578A (en) * 1998-03-31 1999-10-19 Fujikura Ltd Manufacture of flat plate type heat pipe
JPH11304381A (en) * 1998-04-23 1999-11-05 Fujikura Ltd Heat pipe
JP2005257174A (en) * 2004-03-11 2005-09-22 Yazaki Corp Manufacturing method of heat pipe, heat pipe, attachment method for heat pipe, and attachment structure for heat pipe
US20060005952A1 (en) * 2004-06-29 2006-01-12 Lan-Kai Yeh Heat dissipating appatatus having micro-structure layer and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121355A (en) * 2013-12-24 2015-07-02 東芝ホームテクノ株式会社 Sheet-type heat pipe

Also Published As

Publication number Publication date
WO2008069453A1 (en) 2008-06-12
KR100759826B1 (en) 2007-09-18
US20100059212A1 (en) 2010-03-11
JP5250559B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
US10704838B2 (en) Loop heat pipe
TWI768335B (en) Vapor chamber and manufacturing method of the same
TWI236870B (en) Heat dissipation apparatus with microstructure layer and manufacture method thereof
US20100044014A1 (en) Flat-plate loop heat conduction device and manufacturing method thereof
US10352626B2 (en) Heat pipe
TWI582367B (en) A hot plate and a method for manufacturing the same
US7044201B2 (en) Flat heat transferring device and method of fabricating the same
TWI325047B (en) Heat pipe and manufacturing method thereof
JP5250559B2 (en) Thermal control device and manufacturing method of thermal control device
WO2017124754A1 (en) Ultrathin soaking plate and manufacturing method thereof
KR100917599B1 (en) The flat plate type micro heat spreading device
TWI582368B (en) Multiple heat pipe loop and its manufacturing method
TW200926953A (en) Vapor chamber structure and method for manufacturing the same
US20100108297A1 (en) Heat Pipe and Making Method Thereof
WO2006102838A1 (en) An heat conductive pipe with flat end and its manufacturing method
TWM416320U (en) Cooling device and electronic apparatus
US10247488B2 (en) Heat dissipation device
TWI296039B (en) Heat dissipation module and heat column thereof
US20060081360A1 (en) Heat dissipation apparatus and manufacturing method thereof
TWI259051B (en) Heat dispersion module
CN100526787C (en) Radiation module and its heat pipe
KR102174500B1 (en) Pulsating heat pipe with multi loop and manufacturing method thereof
TWI687644B (en) Heat transferring module and manufacturing method thereof
TWI337248B (en)
TW202028677A (en) Ultra-thin heat sink characterized by having a total thickness of less than 0.5 mm and excellent heat dissipation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees