JP2010503238A5 - - Google Patents

Download PDF

Info

Publication number
JP2010503238A5
JP2010503238A5 JP2009527564A JP2009527564A JP2010503238A5 JP 2010503238 A5 JP2010503238 A5 JP 2010503238A5 JP 2009527564 A JP2009527564 A JP 2009527564A JP 2009527564 A JP2009527564 A JP 2009527564A JP 2010503238 A5 JP2010503238 A5 JP 2010503238A5
Authority
JP
Japan
Prior art keywords
component
substrate
stretchable
level
stamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009527564A
Other languages
Japanese (ja)
Other versions
JP2010503238A (en
JP5578509B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2007/077759 external-priority patent/WO2008030960A2/en
Publication of JP2010503238A publication Critical patent/JP2010503238A/en
Publication of JP2010503238A5 publication Critical patent/JP2010503238A5/ja
Application granted granted Critical
Publication of JP5578509B2 publication Critical patent/JP5578509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (71)

デバイスにおける伸縮性コンポーネントであって、
第1の端部と、
第2の端部と、
前記第1の端部と前記第2の端部との間に配置された中心領域と
を備え、
当該伸縮性コンポーネントが基板によって支持され、
当該伸縮性コンポーネントの前記第1の端部及び前記第2の端部が、前記基板に接着されると共に、第1のデバイスコンポーネントを第2のデバイスコンポーネントに電気的に接続し、
当該伸縮性コンポーネントの前記中心領域の少なくとも一部分が、曲がり形態を持っており、この曲がり形態は、前記第1のデバイスコンポーネント及び前記第2のデバイスコンポーネントが互いに対して移動した時、電気的な接続を維持しつつデバイスの伸縮と曲げを可能とするように、湾曲されると共に、物理的に前記基板から分離されている、伸縮性コンポーネント。
An elastic component in the device,
A first end;
A second end;
A central region disposed between the first end and the second end;
The elastic component is supported by the substrate,
The first end and the second end of the stretchable component are bonded to the substrate and electrically connect the first device component to the second device component;
At least a portion of the central region of the stretchable component has a bend configuration that is electrically connected when the first device component and the second device component move relative to each other. A stretchable component that is curved and physically separated from the substrate so as to allow the device to stretch and bend while maintaining .
前記中心領域が、歪みを受けている、請求項1に記載の伸縮性コンポーネント。   The stretchable component of claim 1, wherein the central region is distorted. 前記中心領域が、弧形である、請求項1に記載の伸縮性コンポーネント。 The stretchable component of claim 1 , wherein the central region is arcuate. 当該伸縮性コンポーネントの前記中央領域が、約100nm〜1mmの範囲から選ばれた振幅を持っている、請求項3に記載の伸縮性コンポーネント。 The stretchable component of claim 3, wherein the central region of the stretchable component has an amplitude selected from a range of about 100 nm to 1 mm. 前記中心領域が、前記基板と物理的に接触していない複数の異なった湾曲部分領域を形成するように前記基板に接着された1つ又は複数の領域を備える、請求項1に記載の伸縮性コンポーネント。   The stretchability of claim 1, wherein the central region comprises one or more regions bonded to the substrate to form a plurality of different curved subregions that are not in physical contact with the substrate. component. 前記異なった湾曲部分領域の少なくとも1つの振幅が、他の湾曲部分領域の振幅と異なっている、請求項5に記載の伸縮性コンポーネント。 The stretchable component according to claim 5 , wherein the amplitude of at least one of the different curved partial areas is different from the amplitude of the other curved partial areas. 当該伸縮性コンポーネントが、100nmよりも大きい厚さを持っているリボン構造を備える、請求項1に記載の伸縮性コンポーネント。   The stretchable component of claim 1, wherein the stretchable component comprises a ribbon structure having a thickness greater than 100 nm. 前記リボン構造が、約300nm〜1mmの範囲内の厚さを有する、請求項7に記載の伸縮性コンポーネント。 The stretchable component of claim 7 , wherein the ribbon structure has a thickness in the range of about 300 nm to 1 mm. 金属、半導体、絶縁体、圧電性材料、強誘電性材料、磁気歪材料、電気歪材料、超伝導体、強磁性材料及び熱電気材料から成るグループから選ばれた1つ又は複数の材料を備える、請求項1に記載の伸縮性コンポーネント。   Comprising one or more materials selected from the group consisting of metals, semiconductors, insulators, piezoelectric materials, ferroelectric materials, magnetostrictive materials, electrostrictive materials, superconductors, ferromagnetic materials and thermoelectric materials The stretchable component according to claim 1. 電子デバイス、光学デバイス、光電子デバイス、機械デバイス、超小型電気機械デバイス、ナノ電気機械デバイス、超小型流体デバイス及び熱デバイスから成るグループから選ばれたデバイスのコンポーネントを備える、請求項1に記載の伸縮性コンポーネント。   The stretch of claim 1 comprising a component of a device selected from the group consisting of an electronic device, an optical device, an optoelectronic device, a mechanical device, a microelectromechanical device, a nanoelectromechanical device, a microfluidic device and a thermal device. Sex component. 前記曲がり形態によって与えられる前記中心領域の歪みのレベルに従って選択的に変化する少なくとも1つの電子特性、光学特性又は機械特性を持っている調整可能なデバイスコンポーネントである、請求項10に記載の伸縮性コンポーネント。 11. A stretchable device according to claim 10 , which is an adjustable device component having at least one electronic, optical or mechanical property that selectively varies according to the level of distortion of the central region provided by the bend form. component. 電子デバイスの伸縮性相互接続構造であり、
前記相互接続構造が、前記電子デバイスの2以上のデバイスコンポーネント間の電気接続を確立し、さらに圧縮又は伸張が可能である、請求項1に記載の伸縮性コンポーネント。
A stretch interconnect structure for electronic devices,
The stretchable component of claim 1, wherein the interconnect structure establishes an electrical connection between two or more device components of the electronic device and is further compressible or stretchable.
前記相互接続構造が、3以上の相互接続が延びている中心領域ピークを備えるブリッジ形態を持っている、請求項12に記載の伸縮性コンポーネント。 The stretchable component of claim 12 , wherein the interconnect structure has a bridge configuration with a central region peak from which three or more interconnects extend. 前記伸縮性相互接続構造が、前記第1の端部、前記第2の端部、又は前記第1と第2の端部の両方と電気的に接触している1つ又は複数のコンタクトパッドをさらに備える、請求項12に記載の伸縮性コンポーネント。 One or more contact pads wherein the stretch interconnect structure is in electrical contact with the first end, the second end, or both the first and second ends. The stretchable component of claim 12 , further comprising: 前記デバイスコンポーネントの少なくとも1つが、前記コンタクトパッドと電気的に接触している、請求項14に記載の相互接続。 The interconnect of claim 14 , wherein at least one of the device components is in electrical contact with the contact pad. 当該伸縮性コンポーネントが、電子デバイスの調整可能なデバイスコンポーネントであり、
前記調整可能なデバイスコンポーネントが、前記曲がり形態によって与えられる前記中心領域の歪みのレベルに従って選択的に変化する少なくとも1つの電子特性を持っている、請求項1に記載の伸縮性コンポーネント。
The stretchable component is an adjustable device component of an electronic device;
The stretchable component of claim 1, wherein the adjustable device component has at least one electronic property that selectively varies according to a level of distortion of the central region provided by the bend configuration.
前記少なくとも1つの電子特性が、電子移動度、共振周波数、コンダクタンス、及び抵抗から成るグループから選ばれる、請求項16に記載の伸縮性コンポーネント。 The stretchable component of claim 16 , wherein the at least one electronic property is selected from the group consisting of electron mobility, resonant frequency, conductance, and resistance. 前記調整可能なデバイスコンポーネントが、トランジスタの半導体チャネルを備える、請求項16に記載の伸縮性コンポーネント。 The stretchable component of claim 16 , wherein the tunable device component comprises a semiconductor channel of a transistor. 当該伸縮性コンポーネントが、光学デバイスの調整可能なデバイスコンポーネントであり、
前記調整可能なデバイスコンポーネントが、前記曲がり形態によって与えられる前記中心領域の歪みのレベルに従って選択的に変化する少なくとも1つの光学特性を持っている、請求項1に記載の伸縮性コンポーネント。
The stretchable component is an adjustable device component of an optical device;
The stretchable component of claim 1, wherein the adjustable device component has at least one optical property that selectively varies according to a level of distortion of the central region provided by the bend configuration.
前記少なくとも1つの光学特性が、前記調整可能なデバイスコンポーネントの屈折率又は前記中心領域の表面に対する電磁放射の入射ビームの入射角である、請求項19に記載の伸縮性コンポーネント。 20. A stretchable component according to claim 19 , wherein the at least one optical property is a refractive index of the adjustable device component or an incident angle of an incident beam of electromagnetic radiation relative to a surface of the central region. 前記調整可能なデバイスコンポーネントが、導波路、光変調器、光スイッチ、又は光学フィルタを備える、請求項19に記載の伸縮性コンポーネント。 The stretchable component of claim 19 , wherein the tunable device component comprises a waveguide, light modulator, optical switch, or optical filter. 当該伸縮性コンポーネントが、デバイスの調整可能なデバイスコンポーネントであり、前記調整可能なデバイスコンポーネントが、前記曲がり形態によって与えられる前記中心領域の歪みのレベルに従って選択的に変化する熱伝導率を持っている、請求項1に記載の伸縮性コンポーネント。   The stretchable component is a tunable device component of the device, and the tunable device component has a thermal conductivity that selectively varies according to the level of strain in the central region provided by the bend configuration. The stretchable component according to claim 1. 当該伸縮性コンポーネントが、デバイスの熱的分離コンポーネントであり、前記中心領域が前記基板と物理的に接触していない、請求項1に記載の伸縮性コンポーネント。   The stretchable component of claim 1, wherein the stretchable component is a thermal isolation component of a device and the central region is not in physical contact with the substrate. 前記中心領域が、前記基板と熱的に接触しておらず、前記中心領域が1つ又は複数のデバイスコンポーネントを支持し、もって、前記中心領域によって支持された前記1つ又は複数のデバイスコンポーネントの、前記基板から熱的に分離する、請求項23に記載の伸縮性コンポーネント。 The central region is not in thermal contact with the substrate, the central region supports one or more device components, and thus the one or more device components supported by the central region; 24. The stretchable component of claim 23 , wherein the stretchable component is thermally separated from the substrate. 前記デバイスが、長波長撮像システムである、請求項23に記載の伸縮性コンポーネント。 24. The stretchable component of claim 23 , wherein the device is a long wavelength imaging system. 当該伸縮性コンポーネントが、機械デバイスのアクチュエータであり、
前記中心領域が、湾曲し、さらに、前記伸縮性コンポーネントを圧縮又は伸張することによって、又は前記中心領域に電位を加えることによって、調節が可能な振幅を持っている、請求項1に記載の伸縮性コンポーネント。
The elastic component is an actuator of a mechanical device;
The stretch of claim 1, wherein the central region is curved and further has an adjustable amplitude by compressing or stretching the stretchable component or by applying an electrical potential to the central region. Sex component.
前記機械デバイスが、超小型電気機械デバイス、ナノ電気機械デバイス、及び超小型流体デバイスから成るグループから選ばれる、請求項26に記載の伸縮性コンポーネント。 27. The stretchable component of claim 26 , wherein the mechanical device is selected from the group consisting of a microelectromechanical device, a nanoelectromechanical device, and a microfluidic device. 前記基板が、エラストマ材料を備える、請求項1に記載の伸縮性コンポーネント。   The stretchable component of claim 1, wherein the substrate comprises an elastomeric material. 電気伝導性及び前記デバイスコンポーネントとの電気的接触を維持しつつ25%までの基板歪みを許容することができる、請求項1に記載の伸縮性コンポーネント。 The stretchable component of claim 1, wherein the substrate is capable of tolerating up to 25% substrate strain while maintaining electrical conductivity and electrical contact with the device component. 当該伸縮性コンポーネントの少なくとも一部分を埋め込む封入層をさらに備え、  An encapsulating layer that embeds at least a portion of the stretchable component;
前記封入層が前記基板により支持されている、請求項1に記載の伸縮性コンポーネント。  The stretchable component according to claim 1, wherein the encapsulating layer is supported by the substrate.
前記封入層がエラストマである、請求項30に記載の伸縮性コンポーネント。  The stretchable component according to claim 30, wherein the encapsulation layer is an elastomer. 前記エラストマがポリ(ジメチルシロキサン)である、請求項31に記載の伸縮性コンポーネント。  32. A stretchable component according to claim 31 wherein the elastomer is poly (dimethylsiloxane). 請求項1に記載の複数の伸縮性コンポーネントを備えるデバイスアレイ。   A device array comprising a plurality of stretchable components according to claim 1. 当該デバイスアレイが、グリッド形態、花模様形態、ブリッジ形態、又はこれらの任意の組合せを持っている、請求項33に記載のデバイスアレイ。 34. The device array of claim 33 , wherein the device array has a grid shape, a flower pattern shape, a bridge shape, or any combination thereof. 各デバイスコンポーネントが、伸縮性相互接続構造を備える複数の伸縮性コンポーネントによって、隣接のデバイスコンポーネントに接続されている、請求項33に記載のデバイスアレイ。 34. The device array of claim 33 , wherein each device component is connected to an adjacent device component by a plurality of elastic components comprising an elastic interconnect structure. 少なくとも1つの相互接続構造が、他の相互接続構造と異なる方向に向けられている、請求項35に記載のデバイスアレイ。 36. The device array of claim 35 , wherein at least one interconnect structure is oriented in a different direction than other interconnect structures. 少なくとも一部分が、互いに平行な方向に並べられた複数の相互接続構造又は2以上の方向に方向付けされた複数の相互接続を備える、請求項33に記載のデバイスアレイ。 34. The device array of claim 33 , wherein at least a portion comprises a plurality of interconnect structures arranged in a direction parallel to each other or a plurality of interconnects oriented in two or more directions. 前記複数の平行な相互接続の少なくとも1つは、前記相互接続の少なくとも1つの他のものと位相がずれている、請求項37に記載のデバイスアレイ。 38. The device array of claim 37 , wherein at least one of the plurality of parallel interconnects is out of phase with at least one other of the interconnects. 前記デバイスが、2以上の隣接した層を備え、各層が複数の前記伸縮性コンポーネントを備えている、請求項33に記載のデバイスアレイ。 34. The device array of claim 33 , wherein the device comprises two or more adjacent layers, each layer comprising a plurality of the stretchable components. 破損することなしに、約150%までの歪みを受けることができる、請求項33に記載のデバイスアレイ。 35. The device array of claim 33 , wherein the device array is capable of undergoing up to about 150% strain without being damaged. 前記基板が、湾曲状、凹形、凸形又は半球形である部分を少なくとも含んだ表面を持っている、請求項33に記載のデバイスアレイ。 34. The device array of claim 33 , wherein the substrate has a surface that includes at least a portion that is curved, concave, convex, or hemispherical. 前記デバイスが、1つ又は複数の伸縮性の光検出器、フォトダイオードアレイ、ディスプレイ、発光デバイス、光起電力デバイス、センサアレイ、薄板状スキャナ、LEDディスプレイ、半導体レーザアレイ、光撮像システム、大面積電子デバイス、トランジスタアレイ、論理ゲートアレイ、マイクロプロセッサ又は集積回路である、請求項33に記載のデバイスアレイ。 The device includes one or more stretchable photodetectors, photodiode arrays, displays, light emitting devices, photovoltaic devices, sensor arrays, thin plate scanners, LED displays, semiconductor laser arrays, optical imaging systems, large areas 34. The device array of claim 33 , wherein the device array is an electronic device, transistor array, logic gate array, microprocessor, or integrated circuit. デバイスの伸縮性コンポーネントの特性を調整する方法であって、
前記伸縮性コンポーネントを持っている前記デバイスを設けるステップであり、前記伸縮性コンポーネントが、第1の端部と、第2の端部と、前記第1の端部と前記第2の端部との間に配置された中心領域とを備え、前記伸縮性コンポーネントが基板によって支持され、前記伸縮性コンポーネントの前記第1の端部及び前記第2の端部が前記基板に接着され、前記伸縮性コンポーネントの前記中心領域の少なくとも一部分が曲がり形態を持ち、前記中心部分があるレベルの歪みを受けているものである、ステップと、
前記伸縮性コンポーネントを圧縮又は伸張することによって、前記伸縮性コンポーネントの歪みの前記レベルを調節し、もって、前記デバイスの前記伸縮性コンポーネントの前記特性を調整するステップと
を含む方法。
A method for adjusting the properties of a stretchable component of a device,
Providing the device having the stretchable component, the stretchable component comprising: a first end; a second end; the first end; and the second end. A central region disposed between the elastic component, the elastic component is supported by a substrate, the first and second ends of the elastic component are bonded to the substrate, and the elastic property At least a portion of the central region of the component has a curved configuration and the central portion is subjected to a level of distortion;
Adjusting the level of distortion of the stretchable component by compressing or stretching the stretchable component, thereby adjusting the properties of the stretchable component of the device.
デバイスの1つ又は複数の伸縮性コンポーネントを作製する方法であって、
受容表面を持っているエラストマ基板を設けるステップであり、前記基板が第1のレベルの歪みを受けている状態で設けられるステップと、
前記1つ又は複数のデバイスコンポーネントを、前記第1のレベルの歪みを受ける前記エラストマ基板の前記受容表面に接着するステップと、
前記第1のレベルから前記第1のレベルと異なる歪みの第2のレベルに前記基板の歪みのレベルの変化を引き起こす力を前記エラストマ基板に加えるステップと
を含み、
前記第1のレベルから前記第2のレベルへの前記基板の歪みのレベルの前記変化によって、前記1つ又は複数のコンポーネントを曲げ、もって、前記基板に接着された第1の端部及び第2の端部と、前記基板から物理的に分離された曲がり形態で生成された中心領域とを各々持っている前記1つ又は複数の伸縮性コンポーネントを生成する、方法。
A method of making one or more stretchable components of a device comprising:
Providing an elastomeric substrate having a receiving surface, the substrate being provided with a first level of strain;
Adhering the one or more device components to the receiving surface of the elastomer substrate subject to the first level of strain;
Applying a force to the elastomer substrate that causes a change in the level of strain of the substrate from the first level to a second level of strain different from the first level;
The change in the level of distortion of the substrate from the first level to the second level causes the one or more components to bend and thereby a first end bonded to the substrate and a second Generating the one or more stretchable components each having a central region generated in a bent form physically separated from the substrate .
前記接着するステップが、前記伸縮性コンポーネントの接着領域及び非接着領域のパターンを生成するステップを含み、前記伸縮性コンポーネントの前記接着領域が前記エラストマ基板に接着され、前記伸縮性コンポーネントの前記非接着領域が前記エラストマ基板に接着されない、請求項44に記載の方法。 The bonding step includes generating a pattern of bonded and non-bonded areas of the stretchable component, wherein the bonded area of the stretchable component is bonded to the elastomer substrate and the non-bonded of the stretchable component 45. The method of claim 44 , wherein a region is not adhered to the elastomer substrate. 前記非接着領域が、前記伸縮性コンポーネントの前記中心領域に対応し、前記1つ又は複数のデバイスコンポーネントの前記第1及び第2の端部が、前記接着領域に対応する、請求項45に記載の方法。 The non-adhesive region, corresponding to the central region of the stretchable components, said one or said first and second ends of the plurality of device components correspond to the bonding area, according to claim 45 the method of. 前記伸縮性コンポーネント又は前記エラストマ基板の前記受容表面上に、又は前記伸縮性コンポーネント上と前記エラストマ基板の前記受容表面上の両方に接着部位のパターンを生成するステップをさらに含む、請求項44に記載の方法。 45. The method of claim 44 , further comprising generating a pattern of adhesive sites on the receiving surface of the stretchable component or the elastomer substrate, or on both the stretchable component and the receiving surface of the elastomer substrate. the method of. 前記エラストマ基板が、複数のコンプライアント領域及び複数の剛性領域を備え、前記コンプライアント領域の曲げ剛性が前記剛性領域のそれよりも小さく、前記伸縮性コンポーネントの各々の前記第1の端部及び前記第2の端部が前記剛性領域の少なくとも1つに接着され、さらに前記伸縮性コンポーネントの各々の前記中心領域が前記コンプライアント領域の少なくとも1つに接着される、請求項44に記載の方法。 The elastomeric substrate comprises a plurality of compliant regions and a plurality of rigid regions, wherein the compliant region has a bending stiffness less than that of the rigid region, and the first end of each of the stretchable components and the 45. The method of claim 44 , wherein a second end is adhered to at least one of the rigid regions and the central region of each of the stretchable components is adhered to at least one of the compliant regions. 前記力を前記エラストマ基板に加える前記ステップが、機械的に実現される、請求項44に記載の方法。 45. The method of claim 44 , wherein the step of applying the force to the elastomeric substrate is mechanically realized. 前記第1のレベルの歪み、前記第2のレベルの歪み、又は両方が、前記エラストマ基板を伸ばすか圧縮することによって生成される、請求項49に記載の方法。 50. The method of claim 49 , wherein the first level of strain, the second level of strain, or both are generated by stretching or compressing the elastomer substrate. 前記第1のレベルの歪み、前記第2のレベルの歪み、又は両方が、前記エラストマ基板を硬化することによって生成される、請求項44に記載の方法。 45. The method of claim 44 , wherein the first level of strain, the second level of strain, or both are generated by curing the elastomeric substrate. 前記力を前記エラストマ基板に加える前記ステップが、熱的に実現される、請求項44に記載の方法。 45. The method of claim 44 , wherein the step of applying the force to the elastomeric substrate is accomplished thermally. 前記力を前記エラストマ基板に加える前記ステップが、前記エラストマ基板の温度を上げるか下げることによって実現される、請求項52に記載の方法。 53. The method of claim 52 , wherein the step of applying the force to the elastomer substrate is accomplished by increasing or decreasing the temperature of the elastomer substrate. 前記第1のレベルの歪み、前記第2のレベルの歪み、又は両方が、前記エラストマ基板の熱膨張又は熱誘起収縮によって生成される、請求項44に記載の方法。 45. The method of claim 44 , wherein the first level of strain, the second level of strain, or both are generated by thermal expansion or thermal induced contraction of the elastomer substrate. 前記第1のレベルの歪み又は前記第2のレベルの歪みが、0に等しい、請求項44に記載の方法。 45. The method of claim 44 , wherein the first level distortion or the second level distortion is equal to zero. 前記第1のレベルから前記第1のレベルと異なる第2のレベルの歪みに前記基板の歪みのレベルの変化を引き起こす前記力を前記エラストマ基板に加える前記ステップの前に、前記1つ又は複数のデバイスコンポーネントを前記エラストマ基板の前記受容表面に接着する前記ステップが行われる、請求項44に記載の方法。 Prior to the step of applying the force to the elastomeric substrate from the first level to a second level of strain different from the first level, causing the change in level of strain of the substrate, the one or more 45. The method of claim 44 , wherein the step of adhering a device component to the receiving surface of the elastomer substrate is performed. 前記第1のレベルから前記第1のレベルと異なる第2のレベルの歪みに前記基板の歪みのレベルの変化を引き起こす前記力を前記エラストマ基板に加える前記ステップの後で、前記1つ又は複数のデバイスコンポーネントを前記エラストマ基板の前記受容表面に接着する前記ステップが行われる、請求項44に記載の方法。 After the step of applying the force to the elastomeric substrate from the first level to a second level of strain different from the first level, causing the change in level of strain of the substrate, the one or more 45. The method of claim 44 , wherein the step of adhering a device component to the receiving surface of the elastomer substrate is performed. a)1つ又は複数のレリーフ特徴の付いた受容表面を有する基板を設けるステップと、
b)前記受容表面に少なくとも部分的に共形的に接触するようにデバイスコンポーネントを堆積させるステップと、
c)前記少なくとも部分的に共形的に接触された基板に重合体スタンプを押し付けて成形するステップと、
d)前記基板から前記重合体スタンプを取り除き、それによって、前記デバイスコンポーネントを前記スタンプに転写するステップと
を含む伸縮性デバイス又はデバイスコンポーネントを作製する方法であって、
前記スタンプに転写された前記デバイスコンポーネントが、前記デバイスコンポーネントを前記スタンプに接着する接着部位のパターンを持っている方法。
a) providing a substrate having a receiving surface with one or more relief features;
b) depositing a device component in at least partially conformal contact with the receiving surface;
c) pressing and molding a polymer stamp against the at least partially conformally contacted substrate;
d) removing the polymer stamp from the substrate, thereby transferring the device component to the stamp, the method of making a stretchable device or device component comprising:
The method wherein the device component transferred to the stamp has a pattern of adhesive sites that adheres the device component to the stamp.
a)基板表面上にコンポーネントを設けるステップと、
b)湾曲ジオメトリを持っているエラストマスタンプを設けるステップと、
c)i)実質的に平らなスタンプ表面を生成するように前記スタンプに変形力を加え、
ii)前記歪んだスタンプを前記基板上の前記コンポーネントと接触させ、
iii)前記基板から遠ざかる方向に前記スタンプを持ち上げることによって前記基板から前記コンポーネントを取り除き、もって、前記基板表面から前記エラストマスタンプ表面に前記コンポーネントを転写することによって、前記基板から前記スタンプに前記コンポーネントを転写するステップと、
d)前記スタンプを前記湾曲ジオメトリに弛緩させるように前記変形力を取り除き、それによって、ポップアップコンポーネントを作るステップと
を含むスタンプ表面上にポップアップコンポーネントを作製する方法。
a) providing a component on the substrate surface;
b) providing an elastomeric stamp having a curved geometry;
c) i) applying a deforming force to the stamp to produce a substantially flat stamp surface;
ii) contacting the distorted stamp with the component on the substrate;
iii) removing the component from the substrate by lifting the stamp away from the substrate, thereby transferring the component from the substrate to the stamp by transferring the component from the substrate surface to the elastomeric stamp surface. A transcription step;
d) removing the deformation force to relax the stamp into the curved geometry, thereby creating a pop-up component on the stamp surface.
前記湾曲ジオメトリが、前記スタンプが弛緩されたとき少なくとも部分的に半球形である、請求項59に記載の方法。 60. The method of claim 59 , wherein the curved geometry is at least partially hemispherical when the stamp is relaxed. 前記スタンプが、円形の周囲を持ち、さらに、前記変形力を加えている間に前記スタンプに半径方向の力を与えるために、前記円形周囲のまわりに成形リムをさらに備える、請求項60に記載の方法。 61. The stamp of claim 60 , wherein the stamp has a circular perimeter and further comprises a molded rim around the circular perimeter to impart a radial force to the stamp while applying the deformation force. the method of. 前記ポップアップコンポーネントをデバイス基板上に転写するステップをさらに含み、前記転写するステップが、
a)前記スタンプの湾曲ジオメトリに対応する湾曲表面形状を持っているデバイス基板を設けること、
b)接着剤又は接着剤先駆物質の液状膜層を前記デバイス基板表面上に生成するように前記デバイス基板湾曲表面に接着剤又は接着剤先駆物質を塗布すること、及び、
c)前記ポップアップコンポーネントを持っている前記スタンプ表面を前記デバイス基板上の前記接着剤層と接触させること
を含み、前記接触と同時に、前記接着剤液状層を、前記ポップアップコンポーネントの形に適合し前記コンポーネントを前記デバイス基板に接着するように流動させる、請求項59に記載の方法。
Transferring the pop-up component onto a device substrate, the transferring step comprising:
a) providing a device substrate having a curved surface shape corresponding to the curved geometry of the stamp;
b) applying an adhesive or adhesive precursor to the curved surface of the device substrate to produce a liquid film layer of adhesive or adhesive precursor on the surface of the device substrate; and
c) contacting the stamp surface having the pop-up component with the adhesive layer on the device substrate, and simultaneously with the contacting, the adhesive liquid layer is adapted to the shape of the pop-up component and 60. The method of claim 59 , wherein a component is flowed to adhere to the device substrate.
前記エラストマスタンプを取り除くステップをさらに含む、請求項62に記載の方法。 64. The method of claim 62 , further comprising removing the elastomeric stamp. 前記接着剤が、光重合体を含み、前記光重合体接着剤層が、前記スタンプ表面とデバイス基板を接触させる前記ステップ中又は後に、電磁放射を当てることによって硬化される、請求項62に記載の方法。 63. The adhesive of claim 62 , wherein the adhesive comprises a photopolymer, and the photopolymer adhesive layer is cured by applying electromagnetic radiation during or after the step of contacting the stamp surface with a device substrate. the method of. 前記スタンプが、約40%までの歪みに対して直線弾性応答を持っているポリ(ジメチルシロキサン)を備える、請求項62に記載の方法。 64. The method of claim 62 , wherein the stamp comprises poly (dimethylsiloxane) having a linear elastic response to strains up to about 40%. 前記コンポーネントが、伸縮性電極、伸縮性受動マトリックスLEDディスプレイ、又は光検出器アレイの部分である、請求項62に記載の方法。 64. The method of claim 62 , wherein the component is part of a stretchable electrode, a stretchable passive matrix LED display, or a photodetector array. a)基板上に半導体ナノメンブレン材料を設けるステップであって、前記材料の厚さが約40nm〜600nmの範囲内であるステップと、
b)エラストマ基板を設けるステップと、
c)前記エラストマ基板の1つの表面を活性化するステップと、
d)前記エラストマ基板に二軸歪みを加え、もって前記エラストマ基板を2方向に伸張させるステップと、
e)前記活性化され伸張されたエラストマ基板を基板上の前記半導体材料と接触させるステップと、
f)前記半導体を支持する前記基板から前記エラストマ基板を剥がし、もって前記半導体ナノメンブレンを前記エラストマ基板に転写するステップと、
g)前記エラストマ基板の前記二軸歪みを緩和し、もって2次元波形構造を持つナノメンブレンを生成するステップと
を含む二軸伸縮性半導体メンブレンを作製する方法。
a) providing a semiconductor nanomembrane material on a substrate, wherein the thickness of the material is in the range of about 40 nm to 600 nm;
b) providing an elastomer substrate;
c) activating one surface of the elastomer substrate;
d) applying biaxial strain to the elastomer substrate, thereby extending the elastomer substrate in two directions;
e) contacting the activated stretched elastomer substrate with the semiconductor material on the substrate;
f) peeling the elastomer substrate from the substrate supporting the semiconductor, thereby transferring the semiconductor nanomembrane to the elastomer substrate;
g) Relieving the biaxial strain of the elastomer substrate, thereby producing a nanomembrane having a two-dimensional corrugated structure, and producing a biaxial stretchable semiconductor membrane.
デバイスを作製する方法であって、
基板の受容表面で支持された1つ又は複数のデバイスコンポーネントが予めパターン形成されている前記基板を設けるステップと、
前記基板の前記受容表面又はその上に形成された1つ又は複数の構造上に印刷可能半導体要素を接触印刷することによって、複数の前記印刷可能半導体要素を前記基板上に組み立てるステップと
を含み、前記印刷可能半導体要素の少なくとも一部分が、前記基板で支持された1つ又は複数の前記デバイスコンポーネントと、又は両方と電気的に接触した状態で空間的に整列されるように位置付けされる方法。
A method of making a device comprising:
Providing the substrate pre-patterned with one or more device components supported on a receiving surface of the substrate;
Assembling a plurality of printable semiconductor elements on the substrate by contact printing the printable semiconductor elements on the receiving surface of the substrate or one or more structures formed thereon; A method wherein at least a portion of the printable semiconductor element is positioned to be spatially aligned in electrical contact with one or more of the device components supported by the substrate, or both.
前記印刷可能半導体要素の少なくとも一部分が、異種半導体要素を備える、請求項68に記載の方法。 69. The method of claim 68 , wherein at least a portion of the printable semiconductor element comprises a heterogeneous semiconductor element. 多層デバイス構造を作製する方法であって、
基板の受容表面によって支持された1つ又は複数のデバイスコンポーネントが予めパターン形成されている基板を設けるステップと、
前記基板の前記受容表面又はその上に設けられた1つ又は複数の構造上に印刷可能半導体要素を接触印刷することによって、前記基板上に第1の組の前記印刷可能半導体要素を組み立て、もって第1のデバイス層を生成するステップと、
前記第1の組の印刷可能半導体要素上に中間層を設けるステップであって、前記中間層が受容表面を持っているステップと、
前記中間層の前記受容表面又はその上に設けられた1つ又は複数の構造上に印刷可能半導体要素を接触印刷することによって第2の組の前記印刷可能半導体要素を中間層上に組み立て、もって第2のデバイス層を生成するステップと
を含む方法。
A method for making a multilayer device structure comprising:
Providing a substrate pre-patterned with one or more device components supported by a receiving surface of the substrate;
Assembling a first set of the printable semiconductor elements on the substrate by contact printing the printable semiconductor elements on the receiving surface of the substrate or on one or more structures provided thereon; Generating a first device layer;
Providing an intermediate layer on the first set of printable semiconductor elements, the intermediate layer having a receiving surface;
Assembling a second set of the printable semiconductor elements on the intermediate layer by contact printing the printable semiconductor elements on the receiving surface of the intermediate layer or on one or more structures provided thereon; Generating a second device layer.
a.接触表面を持っている基板と、
b.前記基板の接触表面の少なくとも一部分に接着されたコンポーネントと、を備える2次元伸縮性且つ湾曲性デバイスであって、前記コンポーネントが、少なくとも1つのレリーフ特徴領域及び少なくとも1つの実質的に平らな領域を持ち、前記レリーフ特徴領域が、前記基板から分離された部分を持ち、前記実質的に平らな領域が前記基板に少なくとも部分的に接着されている2次元伸縮性且つ湾曲性デバイス。
a. A substrate having a contact surface;
b. A two-dimensional stretchable and bendable device comprising a component bonded to at least a portion of the contact surface of the substrate, the component comprising at least one relief feature region and at least one substantially flat region. A two-dimensional stretchable and bendable device, wherein the relief feature region has a portion separated from the substrate and the substantially flat region is at least partially bonded to the substrate.
JP2009527564A 2006-09-06 2007-09-06 Method for bonding stretchable components to an elastomeric substrate Active JP5578509B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US82468306P 2006-09-06 2006-09-06
US60/824,683 2006-09-06
US94462607P 2007-06-18 2007-06-18
US60/944,626 2007-06-18
PCT/US2007/077759 WO2008030960A2 (en) 2006-09-06 2007-09-06 Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013131022A Division JP5735585B2 (en) 2006-09-06 2013-06-21 2D device array

Publications (3)

Publication Number Publication Date
JP2010503238A JP2010503238A (en) 2010-01-28
JP2010503238A5 true JP2010503238A5 (en) 2010-10-21
JP5578509B2 JP5578509B2 (en) 2014-08-27

Family

ID=39158048

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2009527564A Active JP5578509B2 (en) 2006-09-06 2007-09-06 Method for bonding stretchable components to an elastomeric substrate
JP2013131022A Active JP5735585B2 (en) 2006-09-06 2013-06-21 2D device array
JP2015084234A Pending JP2015216365A (en) 2006-09-06 2015-04-16 Two-dimensional stretchable and bendable device

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2013131022A Active JP5735585B2 (en) 2006-09-06 2013-06-21 2D device array
JP2015084234A Pending JP2015216365A (en) 2006-09-06 2015-04-16 Two-dimensional stretchable and bendable device

Country Status (7)

Country Link
EP (1) EP2064710A4 (en)
JP (3) JP5578509B2 (en)
KR (5) KR101814683B1 (en)
CN (2) CN103213935B (en)
MY (2) MY172115A (en)
TW (3) TWI485863B (en)
WO (1) WO2008030960A2 (en)

Families Citing this family (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557433B2 (en) 2004-10-25 2009-07-07 Mccain Joseph H Microelectronic device with integrated energy source
US8217381B2 (en) 2004-06-04 2012-07-10 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
EP2650905B1 (en) 2004-06-04 2022-11-09 The Board of Trustees of the University of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
WO2008036837A2 (en) 2006-09-20 2008-03-27 The Board Of Trustees Of The University Of Illinois Release strategies for making transferable semiconductor structures, devices and device components
KR101610885B1 (en) 2007-01-17 2016-04-08 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Optical systems fabricated by printing-based assembly
CN103872002B (en) 2008-03-05 2017-03-01 伊利诺伊大学评议会 Stretchable and foldable electronic device
US8470701B2 (en) 2008-04-03 2013-06-25 Advanced Diamond Technologies, Inc. Printable, flexible and stretchable diamond for thermal management
US7927976B2 (en) 2008-07-23 2011-04-19 Semprius, Inc. Reinforced composite stamp for dry transfer printing of semiconductor elements
WO2010036807A1 (en) 2008-09-24 2010-04-01 The Board Of Trustees Of The University Of Illinois Arrays of ultrathin silicon solar microcells
US8372726B2 (en) 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
US9289132B2 (en) 2008-10-07 2016-03-22 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US9119533B2 (en) 2008-10-07 2015-09-01 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US9123614B2 (en) 2008-10-07 2015-09-01 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
KR101041139B1 (en) * 2008-11-04 2011-06-13 삼성모바일디스플레이주식회사 Thin Film Transistor, The method for Using The Same and Organic Light Emitting Display Device Comprising the TFT
WO2010056857A2 (en) * 2008-11-12 2010-05-20 Mc10, Inc. Extremely stretchable electronics
KR101736722B1 (en) 2008-11-19 2017-05-17 셈프리어스 아이엔씨. Printing semiconductor elements by shear-assisted elastomeric stamp transfer
EP2386117A4 (en) * 2009-01-12 2017-12-27 Mc10, Inc. Methods and applications of non-planar imaging arrays
WO2010086034A1 (en) 2009-01-30 2010-08-05 Interuniversitair Microelektronica Centrum Vzw Stretchable electronic device
US8865489B2 (en) 2009-05-12 2014-10-21 The Board Of Trustees Of The University Of Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
FR2947063B1 (en) 2009-06-19 2011-07-01 Commissariat Energie Atomique OVERHEAD PROJECTOR
US8261660B2 (en) 2009-07-22 2012-09-11 Semprius, Inc. Vacuum coupled tool apparatus for dry transfer printing semiconductor elements
KR101077789B1 (en) 2009-08-07 2011-10-28 한국과학기술원 Manufacturing method for LED display and LED display manufactured by the same
KR101113692B1 (en) 2009-09-17 2012-02-27 한국과학기술원 A manufacturing method for solar cell and GaN solar cell manufactured by the same
WO2011041727A1 (en) 2009-10-01 2011-04-07 Mc10, Inc. Protective cases with integrated electronics
EP2513953B1 (en) 2009-12-16 2017-10-18 The Board of Trustees of the University of Illionis Electrophysiology using conformal electronics
US10441185B2 (en) 2009-12-16 2019-10-15 The Board Of Trustees Of The University Of Illinois Flexible and stretchable electronic systems for epidermal electronics
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
WO2011087301A2 (en) 2010-01-15 2011-07-21 성균관대학교산학협력단 Graphene protective film serving as a gas and moisture barrier, method for forming same, and use thereof
US8450779B2 (en) * 2010-03-08 2013-05-28 International Business Machines Corporation Graphene based three-dimensional integrated circuit device
TWI556802B (en) 2010-03-12 2016-11-11 美國伊利諾大學理事會 Implantable biomedical devices on bioresorbable substrates
CN105496423A (en) 2010-03-17 2016-04-20 伊利诺伊大学评议会 Implantable biomedical devices on bioresorbable substrates
CN103181025A (en) 2010-04-12 2013-06-26 塔夫茨大学 Silk electronic components
CN103249947B (en) * 2010-09-27 2017-03-29 特克通尼克股份有限公司 Undulating structure
CN102001622B (en) * 2010-11-08 2013-03-20 中国科学技术大学 Method for preparing air bridge type nano device
US9442285B2 (en) 2011-01-14 2016-09-13 The Board Of Trustees Of The University Of Illinois Optical component array having adjustable curvature
EP2681538B1 (en) 2011-03-11 2019-03-06 Mc10, Inc. Integrated devices to facilitate quantitative assays and diagnostics
TWI455341B (en) * 2011-03-21 2014-10-01 Motech Ind Inc Method for manufacturing solar cells
WO2012142707A1 (en) * 2011-04-18 2012-10-26 Bennett Fleet (Quebec) Inc. Process and apparatus for continuously encapsulating elongated components and encapsulated elongated components obtained
US9765934B2 (en) 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
JP2014523633A (en) 2011-05-27 2014-09-11 エムシー10 インコーポレイテッド Electronic, optical and / or mechanical devices and systems and methods of manufacturing these devices and systems
EP2713863B1 (en) 2011-06-03 2020-01-15 The Board of Trustees of the University of Illionis Conformable actively multiplexed high-density surface electrode array for brain interfacing
CN102244015B (en) * 2011-06-17 2012-12-19 华中科技大学 Method for performing flexible electronic patterning on pretensioning elastic base plate
WO2013022853A1 (en) 2011-08-05 2013-02-14 Mc10, Inc. Catheter balloon methods and apparatus employing sensing elements
US9757050B2 (en) 2011-08-05 2017-09-12 Mc10, Inc. Catheter balloon employing force sensing elements
EP3470830A1 (en) 2011-09-01 2019-04-17 MC10 Inc. Electronics for detection of a condition of tissue
JP6277130B2 (en) 2011-10-05 2018-02-14 エムシーテン、インコーポレイテッド Medical device and method of manufacturing the same
WO2013089867A2 (en) 2011-12-01 2013-06-20 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
FR2985371A1 (en) 2011-12-29 2013-07-05 Commissariat Energie Atomique METHOD FOR MANUFACTURING A MULTILAYER STRUCTURE ON A SUPPORT
US8492208B1 (en) * 2012-01-05 2013-07-23 International Business Machines Corporation Compressive (PFET) and tensile (NFET) channel strain in nanowire FETs fabricated with a replacement gate process
CN102610534A (en) * 2012-01-13 2012-07-25 华中科技大学 Stretchable RFID (Radio Frequency Identification) electronic tag and manufacturing method thereof
CN111554781B (en) 2012-03-19 2024-04-12 亮锐控股有限公司 Singulation of light emitting devices before and after phosphor application
CN102610672A (en) * 2012-03-23 2012-07-25 合肥工业大学 Heterojunction type photoelectric detector and manufacturing method thereof
KR20150004819A (en) 2012-03-30 2015-01-13 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Appendage mountable electronic devices conformable to surfaces
US9226402B2 (en) 2012-06-11 2015-12-29 Mc10, Inc. Strain isolation structures for stretchable electronics
US9247637B2 (en) 2012-06-11 2016-01-26 Mc10, Inc. Strain relief structures for stretchable interconnects
US9295842B2 (en) 2012-07-05 2016-03-29 Mc10, Inc. Catheter or guidewire device including flow sensing and use thereof
WO2014007871A1 (en) 2012-07-05 2014-01-09 Mc10, Inc. Catheter device including flow sensing
CN102903841B (en) * 2012-09-18 2015-09-09 中国科学院宁波材料技术与工程研究所 A kind of temperature controlled magnetic electron device, its preparation method and application
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
WO2014058473A1 (en) 2012-10-09 2014-04-17 Mc10, Inc. Conformal electronics integrated with apparel
CN102983791A (en) * 2012-10-26 2013-03-20 苏州大学 Temperature difference alternating current power generation device and power generation method thereof
WO2014104267A1 (en) 2012-12-28 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102051519B1 (en) 2013-02-25 2019-12-03 삼성전자주식회사 Thin Film Transistor on Fiber and Manufacturing Method of the same
WO2014169218A2 (en) 2013-04-12 2014-10-16 The Board Of Trustees Of The University Of Illinois Materials, electronic systems and modes for active and passive transience
US9706647B2 (en) * 2013-05-14 2017-07-11 Mc10, Inc. Conformal electronics including nested serpentine interconnects
JP2016527649A (en) 2013-08-05 2016-09-08 エムシー10 インコーポレイテッドMc10,Inc. Flexible temperature sensor including compatible electronics
US10467926B2 (en) 2013-10-07 2019-11-05 Mc10, Inc. Conformal sensor systems for sensing and analysis
CN103560157B (en) * 2013-11-19 2016-02-24 中国科学院上海微系统与信息技术研究所 Strain structure and preparation method thereof
US9949691B2 (en) 2013-11-22 2018-04-24 Mc10, Inc. Conformal sensor systems for sensing and analysis of cardiac activity
CA2935372C (en) 2014-01-06 2023-08-08 Mc10, Inc. Encapsulated conformal electronic systems and devices, and methods of making and using the same
JP6637896B2 (en) 2014-03-04 2020-01-29 エムシー10 インコーポレイテッドMc10,Inc. Conformal IC device with flexible multi-part encapsulated housing for electronic devices
EP3117206A4 (en) 2014-03-12 2017-11-15 Mc10, Inc. Quantification of a change in assay
CN103869607A (en) * 2014-03-18 2014-06-18 无锡中微掩模电子有限公司 Method for removing chromium metal film from binary mask
EP3138028A4 (en) 2014-05-02 2018-01-24 Synopsys, Inc. 3d tcad simulation
EP3148924A1 (en) 2014-05-28 2017-04-05 3M Innovative Properties Company Mems devices on flexible substrate
US10204855B2 (en) 2014-07-11 2019-02-12 Intel Corporation Bendable and stretchable electronic devices and methods
EP3170197B1 (en) * 2014-07-20 2021-09-01 X Display Company Technology Limited Apparatus and methods for micro-transfer printing
KR102161644B1 (en) 2014-08-20 2020-10-06 삼성디스플레이 주식회사 Stretchable display panel and display device having the same
CN104153128B (en) * 2014-08-26 2017-03-08 青岛大学 A kind of preparation method based on ordered arrangement distorted-structure flexible extensible device
US9899330B2 (en) 2014-10-03 2018-02-20 Mc10, Inc. Flexible electronic circuits with embedded integrated circuit die
US10297572B2 (en) 2014-10-06 2019-05-21 Mc10, Inc. Discrete flexible interconnects for modules of integrated circuits
USD781270S1 (en) 2014-10-15 2017-03-14 Mc10, Inc. Electronic device having antenna
US9398705B2 (en) * 2014-12-02 2016-07-19 Flextronics Ap, Llc. Stretchable printed electronic sheets to electrically connect uneven two dimensional and three dimensional surfaces
US9991326B2 (en) 2015-01-14 2018-06-05 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device comprising flexible substrate and light-emitting element
KR102356697B1 (en) * 2015-01-15 2022-01-27 삼성디스플레이 주식회사 Stretchable display device and manufacturing method of the same
KR102456698B1 (en) 2015-01-15 2022-10-19 삼성디스플레이 주식회사 Stretchable display device
KR102320382B1 (en) 2015-01-28 2021-11-02 삼성디스플레이 주식회사 Electronic device
EP3258837A4 (en) 2015-02-20 2018-10-10 Mc10, Inc. Automated detection and configuration of wearable devices based on on-body status, location, and/or orientation
WO2016140961A1 (en) 2015-03-02 2016-09-09 Mc10, Inc. Perspiration sensor
KR102335807B1 (en) * 2015-03-10 2021-12-08 삼성디스플레이 주식회사 Display device
KR102385327B1 (en) * 2015-04-06 2022-04-12 삼성디스플레이 주식회사 Flexible display device and method of manufacturing the same
CN107851208B (en) 2015-06-01 2021-09-10 伊利诺伊大学评议会 Miniaturized electronic system with wireless power supply and near field communication capability
WO2016196673A1 (en) 2015-06-01 2016-12-08 The Board Of Trustees Of The University Of Illinois Alternative approach to uv sensing
US9841548B2 (en) 2015-06-30 2017-12-12 Apple Inc. Electronic devices with soft input-output components
US10026721B2 (en) 2015-06-30 2018-07-17 Apple Inc. Electronic devices with soft input-output components
CN105049033B (en) * 2015-07-01 2017-11-24 东南大学 Nor gate based on GaAs base low-leakage current double cantilever beam switch
WO2017015000A1 (en) 2015-07-17 2017-01-26 Mc10, Inc. Conductive stiffener, method of making a conductive stiffener, and conductive adhesive and encapsulation layers
WO2017031129A1 (en) 2015-08-19 2017-02-23 Mc10, Inc. Wearable heat flux devices and methods of use
US10300371B2 (en) 2015-10-01 2019-05-28 Mc10, Inc. Method and system for interacting with a virtual environment
CN108289630A (en) 2015-10-05 2018-07-17 Mc10股份有限公司 Method and system for nerve modulation and stimulation
DE102015014256B4 (en) 2015-11-05 2020-06-18 Airbus Defence and Space GmbH Microelectronic module for cleaning a surface, modular array and method for cleaning a surface
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants
WO2017085849A1 (en) * 2015-11-19 2017-05-26 三井金属鉱業株式会社 Production method for printed wiring board having dielectric layer
CN105405983B (en) * 2015-12-14 2017-05-10 吉林大学 Stretching organic electroluminescence device with periodically regular crease structure
CN106920800B (en) * 2015-12-25 2019-07-23 昆山工研院新型平板显示技术中心有限公司 Flexible display device and forming method thereof
EP3420733A4 (en) 2016-02-22 2019-06-26 Mc10, Inc. System, device, and method for coupled hub and sensor node on-body acquisition of sensor information
US10277386B2 (en) 2016-02-22 2019-04-30 Mc10, Inc. System, devices, and method for on-body data and power transmission
KR102455039B1 (en) * 2016-03-18 2022-10-17 삼성디스플레이 주식회사 Stretchable display device
WO2017184705A1 (en) 2016-04-19 2017-10-26 Mc10, Inc. Method and system for measuring perspiration
ITUA20162943A1 (en) * 2016-04-27 2017-10-27 Pilegrowth Tech S R L Method for the industrial manufacture of a semiconductor structure with reduced bowing.
CN109073951B (en) * 2016-05-31 2022-05-13 伊英克公司 Stretchable electro-optic displays
US10002222B2 (en) * 2016-07-14 2018-06-19 Arm Limited System and method for perforating redundant metal in self-aligned multiple patterning
US10447347B2 (en) 2016-08-12 2019-10-15 Mc10, Inc. Wireless charger and high speed data off-loader
CN106229038B (en) * 2016-09-07 2017-10-24 东华大学 A kind of stretchable electrically conducting transparent method for producing elastomers based on multilevel hierarchy graphene
JP2018060932A (en) * 2016-10-06 2018-04-12 ローム株式会社 LED package
US10845449B2 (en) 2016-10-20 2020-11-24 Quantum Diamond Technologies Inc. Methods and apparatus for magnetic particle analysis using diamond magnetic imaging
JP2018078272A (en) * 2016-10-31 2018-05-17 スリーエム イノベイティブ プロパティズ カンパニー Three-dimensionally shaped thermally conductive molded body, and manufacturing method thereof
CN106601933B (en) * 2016-12-12 2018-02-23 吉林大学 Preparation method of stretchable electronic device with regular fold structure
US11513115B2 (en) 2016-12-23 2022-11-29 Quantum Diamond Technologies Inc. Methods and apparatus for magnetic multi-bead assays
DE102017100053A1 (en) 2017-01-03 2018-07-05 Infineon Technologies Ag Frame assembly after film expansion
WO2018153421A2 (en) * 2017-02-24 2018-08-30 Flexucell Aps Light emitting transducer
JP2018179501A (en) * 2017-04-03 2018-11-15 日本精工株式会社 Proximity sensor
WO2018191478A1 (en) * 2017-04-12 2018-10-18 Sense Photonics, Inc. Devices with ultra-small vertical cavity surface emitting laser emitters incorporating beam steering
US20180323239A1 (en) * 2017-05-03 2018-11-08 Innolux Corporation Display device
CN107248518B (en) 2017-05-26 2020-04-17 京东方科技集团股份有限公司 Photoelectric sensor, manufacturing method thereof and display device
JP7190453B2 (en) * 2017-06-12 2022-12-15 スリーエム イノベイティブ プロパティズ カンパニー elastic conductor
US11164982B2 (en) 2017-07-14 2021-11-02 King Abdullah University Of Science And Technology Flexible and strechable imager, method of making a flexible and stretchable imager, and method of using an imaging device having a flexible and stretchable imager
ES2932362T3 (en) 2017-07-31 2023-01-18 Quantum Diamond Tech Inc Sensor system comprising a sample cartridge including a flexible membrane to support a sample
CN107634054A (en) * 2017-09-18 2018-01-26 天津大学 Silicon nanometer film revolution word logic inverter and preparation method thereof in flexible substrate
US10205303B1 (en) * 2017-10-18 2019-02-12 Lumentum Operations Llc Vertical-cavity surface-emitting laser thin wafer bowing control
JP6512389B1 (en) * 2017-11-07 2019-05-15 大日本印刷株式会社 Stretchable circuit board and article
CN108009317A (en) * 2017-11-09 2018-05-08 武汉大学 A kind of conductivity studies emulation of composite material and modeling method
US11559438B2 (en) 2017-11-15 2023-01-24 Smith & Nephew Plc Integrated sensor enabled wound monitoring and/or therapy dressings and systems
CN109859623B (en) * 2017-11-30 2021-05-18 云谷(固安)科技有限公司 Array substrate, preparation method thereof and display screen
KR101974575B1 (en) * 2017-12-01 2019-05-02 포항공과대학교 산학협력단 Manufacturing method for microscopic multi-slope sturcutre using synchrotron x-ray
CN108417592A (en) * 2018-02-12 2018-08-17 中国科学院半导体研究所 Infrared imaging device and preparation method thereof, bionical infrared spherical surface camera
KR102077306B1 (en) * 2018-02-14 2020-02-13 광운대학교 산학협력단 Real-time Glucose Monitoring Sensor System and Method of Manufacturing Glucose Sensor Based on Low Temperature Solution Process
CN109346504B (en) * 2018-09-30 2021-06-29 云谷(固安)科技有限公司 Flexible display panel and display device
CN109437091A (en) * 2018-10-23 2019-03-08 中山大学 A method of preparing micro-nano structure in elastic substrate
CN111148364B (en) * 2018-11-05 2021-01-26 北京梦之墨科技有限公司 Flexible stretchable circuit and manufacturing method thereof
CN214083864U (en) * 2018-12-10 2021-08-31 康宁公司 Automobile interior display system capable of being bent dynamically
CN109671869B (en) * 2018-12-12 2020-06-16 武汉华星光电半导体显示技术有限公司 Manufacturing method of composite film layer and display device
CN109637366B (en) * 2018-12-28 2020-10-09 厦门天马微电子有限公司 Jig and bending method of display module
CN111724676B (en) * 2019-03-21 2022-09-02 昆山工研院新型平板显示技术中心有限公司 Stretchable wire, manufacturing method thereof and display device
CN110393507B (en) * 2019-08-01 2020-12-25 清华大学 Structural design of flexible extensible electronic device and manufacturing method thereof
CN110797148B (en) * 2019-10-08 2021-07-30 上海交通大学 Superconducting tape suitable for uninsulated coil, uninsulated coil and preparation method thereof
CN110683508B (en) * 2019-10-18 2023-05-23 北京元芯碳基集成电路研究院 Preparation method of carbon nano tube parallel array
CN110808295B (en) * 2019-11-11 2021-04-23 重庆中易智芯科技有限责任公司 Semiconductor detector of three-dimensional electrostriction collecting electrode and preparation method thereof
CN110697646A (en) * 2019-11-22 2020-01-17 上海幂方电子科技有限公司 Electronic skin and preparation method thereof
US11062936B1 (en) 2019-12-19 2021-07-13 X Display Company Technology Limited Transfer stamps with multiple separate pedestals
CN111063658B (en) * 2019-12-30 2020-09-29 清华大学 Method for producing flexible and extensible electronic device
US20230119125A1 (en) * 2020-02-12 2023-04-20 Rayleigh Solar Tech Inc. High performance perovskite solar cells, module design, and manufacturing processes therefor
GB2593864B (en) * 2020-02-28 2023-01-04 X Fab France Sas Improved transfer printing for RF applications
CN112967971B (en) * 2020-05-27 2023-04-18 重庆康佳光电技术研究院有限公司 Micro-LED transfer substrate and preparation method thereof
KR102393781B1 (en) * 2020-07-07 2022-05-04 서울대학교산학협력단 Flexible device
CN112133198B (en) * 2020-09-29 2022-04-22 厦门天马微电子有限公司 Stretchable display panel and stretchable display device
CN112606585B (en) * 2020-12-02 2022-05-31 潍坊歌尔微电子有限公司 Device transfer printing processing method and micro microphone dustproof device transfer printing processing method
KR102591096B1 (en) * 2020-12-15 2023-10-18 연세대학교 산학협력단 method of manufacturing photodetector by applying tensile strain, photodetector manufactured by the method, and apparatus for manufacturing the photodetector
KR102553142B1 (en) * 2021-06-25 2023-07-06 경희대학교 산학협력단 Pressure sensor using conductive polymer material including structure to improve sensitivity
KR102582188B1 (en) * 2021-07-22 2023-09-26 한국과학기술원 Stretchable oleds using laser patterned plastic substrate and method for manufacturing the same
CN113542755B (en) * 2021-07-27 2022-06-21 展讯通信(上海)有限公司 Method and system for generating two-dimensional wedge-shaped mask
US20240186095A1 (en) * 2021-08-25 2024-06-06 Beijing Boe Technology Development Co., Ltd. Radio frequency micro-electro-mechanical switch and radio frequency device
CN114286513B (en) * 2021-11-30 2024-02-06 通元科技(惠州)有限公司 Asymmetric prestress eliminating type LED backboard and manufacturing method thereof
CN114355489B (en) * 2022-01-13 2023-05-16 西华大学 Curved fly-eye lens based on DMD digital lithography and preparation method thereof
KR20230112256A (en) 2022-01-20 2023-07-27 공주대학교 산학협력단 Wave-shaped steretchable wiring and its manufacturing method
WO2023137539A1 (en) * 2022-01-21 2023-07-27 Decorby Raymond Monolithic optical pressure sensors and transducers
WO2023187834A1 (en) * 2022-03-30 2023-10-05 Council Of Scientific And Industrial Research Method for fabricating silicon chip carriers using wet bulk micromachining for ir detector applications

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763864A (en) * 1980-09-29 1982-04-17 Messerschmitt Boelkow Blohm Solar battery mechanism
US4766670A (en) * 1987-02-02 1988-08-30 International Business Machines Corporation Full panel electronic packaging structure and method of making same
US5086785A (en) * 1989-08-10 1992-02-11 Abrams/Gentille Entertainment Inc. Angular displacement sensors
US5475514A (en) 1990-12-31 1995-12-12 Kopin Corporation Transferred single crystal arrayed devices including a light shield for projection displays
US5375397B1 (en) * 1993-06-22 1998-11-10 Robert J Ferrand Curve-conforming sensor array pad and method of measuring saddle pressures on a horse
JPH08298334A (en) * 1995-04-26 1996-11-12 Mitsubishi Electric Corp Solar cell board
US6784023B2 (en) * 1996-05-20 2004-08-31 Micron Technology, Inc. Method of fabrication of stacked semiconductor devices
DE19637626A1 (en) * 1996-09-16 1998-03-26 Bosch Gmbh Robert Flexible interconnect connection
FR2786037B1 (en) * 1998-11-16 2001-01-26 Alstom Technology SHIELDED ELECTRICAL CONDUCTION BAR FOR HIGH VOLTAGE ELECTRICAL STATION
US6150602A (en) * 1999-05-25 2000-11-21 Hughes Electronics Corporation Large area solar cell extended life interconnect
ATE450895T1 (en) * 1999-07-21 2009-12-15 E Ink Corp PREFERRED METHOD OF MAKING ELECTRICAL CONDUCTORS FOR CONTROL OF AN ELECTRONIC DISPLAY
JP2001352089A (en) * 2000-06-08 2001-12-21 Showa Shell Sekiyu Kk Thermal expansion strain preventing solar cell module
US6743982B2 (en) * 2000-11-29 2004-06-01 Xerox Corporation Stretchable interconnects using stress gradient films
GB0029312D0 (en) * 2000-12-01 2001-01-17 Philips Corp Intellectual Pty Flexible electronic device
WO2002071137A1 (en) * 2001-03-06 2002-09-12 Koninklijke Philips Electronics N.V. Display device
US7273987B2 (en) * 2002-03-21 2007-09-25 General Electric Company Flexible interconnect structures for electrical devices and light sources incorporating the same
JP3980918B2 (en) * 2002-03-28 2007-09-26 株式会社東芝 Active matrix substrate, method for manufacturing the same, and display device
JP2003323741A (en) 2002-04-30 2003-11-14 National Institute Of Advanced Industrial & Technology Optical memory
US7465678B2 (en) * 2003-03-28 2008-12-16 The Trustees Of Princeton University Deformable organic devices
US20050227389A1 (en) * 2004-04-13 2005-10-13 Rabin Bhattacharya Deformable organic devices
US7491892B2 (en) * 2003-03-28 2009-02-17 Princeton University Stretchable and elastic interconnects
GB0323285D0 (en) * 2003-10-04 2003-11-05 Koninkl Philips Electronics Nv Device and method of making a device having a patterned layer on a flexible substrate
WO2005098969A1 (en) * 2004-04-08 2005-10-20 Sharp Kabushiki Kaisha Solar battery and solar battery module
EP2650905B1 (en) * 2004-06-04 2022-11-09 The Board of Trustees of the University of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US7521292B2 (en) * 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US7629691B2 (en) * 2004-06-16 2009-12-08 Honeywell International Inc. Conductor geometry for electronic circuits fabricated on flexible substrates
FR2875339B1 (en) * 2004-09-16 2006-12-08 St Microelectronics Sa MOS TRANSISTOR WITH DEFORMABLE GRID
US20060132025A1 (en) * 2004-12-22 2006-06-22 Eastman Kodak Company Flexible display designed for minimal mechanical strain
US20060160943A1 (en) * 2005-01-18 2006-07-20 Weir James P Water-based flock adhesives for thermoplastic substrates
CN2779218Y (en) * 2005-02-01 2006-05-10 广德利德照明有限公司 Connecting line of a tubular LED decorative lamp
MY151572A (en) * 2005-06-02 2014-06-13 Univ Illinois Printable semiconductor structures and related methods of making and assembling
JP7099160B2 (en) 2018-08-10 2022-07-12 住友電気工業株式会社 Optical fiber manufacturing method
US11394720B2 (en) 2019-12-30 2022-07-19 Itron, Inc. Time synchronization using trust aggregation

Similar Documents

Publication Publication Date Title
JP2010503238A5 (en)
JP6411423B2 (en) Highly extendable electronic components
US10383219B2 (en) Extremely stretchable electronics
JP6537043B2 (en) Stretchable and foldable electronic devices
JP6577564B2 (en) Flexible electronic device and associated method
Kim et al. Stretchable, curvilinear electronics based on inorganic materials
JP2007027713A5 (en)
JP5911144B2 (en) Micro mechanical system
US20210153347A1 (en) Stretchable/conformable electronic and optoelectronic circuits, methods, and applications
CA2780747C (en) Extremely stretchable electronics
CN114631183A (en) Variable stiffness module
US7858507B2 (en) Method and system for creating photosensitive array with integrated backplane
Rogers Materials and mechanics for stretchable electronics-from electronic eye cameras to conformal brain monitors
KR20190052529A (en) Flexible polyimide substrate and manufacturing method thereof
Wang Mechanics of Curvilinear Electronics and Transfer Printing