JP2010285205A - Can making system - Google Patents

Can making system Download PDF

Info

Publication number
JP2010285205A
JP2010285205A JP2009142364A JP2009142364A JP2010285205A JP 2010285205 A JP2010285205 A JP 2010285205A JP 2009142364 A JP2009142364 A JP 2009142364A JP 2009142364 A JP2009142364 A JP 2009142364A JP 2010285205 A JP2010285205 A JP 2010285205A
Authority
JP
Japan
Prior art keywords
reference mark
workpiece
making system
detected
seam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009142364A
Other languages
Japanese (ja)
Other versions
JP5385021B2 (en
Inventor
Noboru Suzuki
昇 鈴木
Sadayuki Haga
貞幸 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGAO SEIKANSHO KK
Original Assignee
NAGAO SEIKANSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGAO SEIKANSHO KK filed Critical NAGAO SEIKANSHO KK
Priority to JP2009142364A priority Critical patent/JP5385021B2/en
Publication of JP2010285205A publication Critical patent/JP2010285205A/en
Application granted granted Critical
Publication of JP5385021B2 publication Critical patent/JP5385021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means capable of simply setting positioning reference usable in various processes irrespective of a type of a workpiece or a process rank by an automatic scheme with a reduced facility cost burden and accurately and reliably detecting the positioning reference without contact in a can making system in an automatic line. <P>SOLUTION: In an automatic line for continuously manufacturing a can product, a can body or a can lid from a metallic raw material plate or its work through various processes, a reference mark is painted with fluorescent ink at a required position on the surface of the workpiece. An ultraviolet ray is irradiated to the workpiece during or before a required working process on a downstream of the line to make the reference mark luminous and the mark is detected by a fluorescent sensor. The position is determined by the detected reference mark for required machining. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属原板又はその加工物から連続的に自動ラインでペール缶や角缶を始めとする各種の金属缶製品、その缶本体及び缶蓋等を製作する製缶システムに関する。   The present invention relates to a can manufacturing system for manufacturing various metal can products such as pail cans and square cans, a can body, a can lid, and the like, continuously and automatically from a metal original plate or a processed product thereof.

自動ラインによる製缶システムでは、ライン途上での各種加工の際にワークを位置決めするが、その位置決め基準としてワークの特定部位の検出を要する場合がある。例えば、ペール缶の缶本体の自動製作ラインでは、一般的に、シートフィーダー(原板供給)→スリッター(缶サイズに分割)→筒状フォーミング→シーム溶接→クリヤー塗装(シーム溶接部の外面側の錆止め)→エキスパンダー(テーパ付け)→カール・ビーダー(上端周縁のカール、ビード形成)→フランジャー(下端周縁にフランジ部形成)→地板シーマー→イヤーウェルダー→ロット付け→乾式テスター(漏れ試験)→内面シーム吹付け→ベロマチック(把手の取付け)の順で加工を行う。しかるに、イヤーウェルダーではシーム溶接部の上部位置とその径方向対向位置とに把手取付用耳部(イヤー)を溶接するが、通常、ワーク(円筒状の缶胴部)の送り姿勢がシーム溶接時の横向き状態からエキスパンダー以降の逆立ち状態に転換している上、ワークの回転方向の向きが中間の各加工を経る間に様々に変動して一定しないため、各ワークについてイヤーウェルダーに入る前にシーム溶接部の位置が耳部の溶接位置に来るように向きを調整する必要がある。   In a can-making system using an automatic line, a workpiece is positioned during various types of processing in the middle of the line. In some cases, a specific part of the workpiece needs to be detected as a positioning reference. For example, in the automatic production line of pail can bodies, sheet feeder (original plate supply) → slitter (divided into can sizes) → cylindrical forming → seam welding → clear coating (rust prevention on the outer surface side of seam welds) ) → Expander (tapered) → Curl beader (curl and bead formation on the upper edge) → Flanger (flange formed on the lower edge) → Ground plate seamer → Ear welder → Lot application → Dry tester (leakage test) → Inner seam blowing Processing is performed in the order of attachment → velmatic (attachment of handle). However, in the ear welder, the handle mounting ears (ears) are welded to the upper position of the seam welded part and the radial facing position. Normally, the feed posture of the workpiece (cylindrical can body part) is the same as during seam welding. Since the horizontal direction of the workpiece is changed to the inverted state after the expander, and the direction of the rotation direction of the workpiece varies variously during each intermediate processing, the seam before each of the workpieces enters the ear welder. It is necessary to adjust the orientation so that the position of the welded part comes to the welded position of the ear part.

従来、イヤーウェルダー前のワークの向き調整は、作業者が目視でシーム溶接部を確認して手作業でワークの向きを修正するか、もしくは該シーム溶接部に生じる厚み変化や段差をタッチセンサー等の接触方式で検出し、この検出位置に基づいて機械的にワークを回転させて所要の向きにする方法が一般的に採用されていた。また、他の方式として、ワークに低周波磁界を印加した際の反射磁界の変化によってシーム溶接部の位置を検出し、この検出位置に基づいて機械的にワークを回転させて所要の向きにすることも提案されている(特許文献1)。   Conventionally, the orientation of the workpiece before the ear welder is adjusted by the operator visually checking the seam welded part and manually correcting the workpiece orientation, or by touching the thickness change or level difference occurring in the seam welded part. In general, a method of detecting by the above contact method and mechanically rotating the workpiece based on the detected position to obtain a desired orientation has been adopted. As another method, the position of the seam welded portion is detected by a change in the reflected magnetic field when a low-frequency magnetic field is applied to the workpiece, and the workpiece is mechanically rotated based on the detected position to have a desired orientation. This has also been proposed (Patent Document 1).

特開平9−300080号公報Japanese Patent Laid-Open No. 9-300080

しかしながら、前記従来の作業者によるワークの向き調整では、手作業で能率が悪いことに加え、その向きのばらつきが避けられず、把手の取付精度が悪くなる。また、前記従来の接触方式によるシーム溶接部の検出手段では、その接触によってワーク表面に傷を生じ易く、缶品質及び歩留りを低下させる懸念がある上、振動等による誤検出や非検出が発生し、検出の信頼性に劣るという問題があった。一方、前記提案の反射磁界の変化による検出手段では、磁界送信機構、反射磁界受信機構、信号処理機構等を組み込んだ検出装置のために径方向設備コストが非常に高く付くと共に、検出部でのワークの位置ずれや周辺機器からの電磁ノイズによって反射磁界が乱れ易いため、シーム溶接部の検出精度に劣るという難点がある。   However, in the conventional work orientation adjustment by the worker, in addition to poor efficiency by manual work, variations in the orientation are unavoidable, and the handle mounting accuracy is poor. In addition, the conventional means for detecting a seam weld by the contact method is liable to cause scratches on the workpiece surface due to the contact, and there is a concern that can quality and yield may be reduced, and false detection or non-detection due to vibration or the like occurs. There was a problem that the reliability of detection was inferior. On the other hand, the detection means based on the change of the reflected magnetic field has a very high radial equipment cost due to the detection device incorporating the magnetic field transmission mechanism, the reflected magnetic field reception mechanism, the signal processing mechanism, etc. Since the reflected magnetic field is likely to be disturbed due to the displacement of the workpiece and electromagnetic noise from peripheral devices, there is a problem in that the detection accuracy of the seam weld is inferior.

更に、自動ラインによる製缶システムでは、前記イヤーウェルダーの他にも加工時にワークの位置決めを要する種々の工程があり、その加工対象のワークの種類や工程順位によっては前記シーム溶接部が位置決め基準にならない場合も多々あるが、これら工程には前記従来のシーム溶接部の検出手段は利用できない。   Furthermore, in the can-making system based on the automatic line, there are various processes that require positioning of the workpiece during processing in addition to the ear welder. Depending on the type of workpiece to be processed and the process order, the seam welded portion is used as a positioning reference. In many cases, the conventional means for detecting a seam weld cannot be used for these processes.

本発明は、上述の事情に鑑みて、自動ラインによる製缶システムにおいて、設備コスト負担の少ない自動方式により、ワークの種類や工程順位に影響されずに種々の工程で利用できる位置決め基準を簡単に設定できる上、該位置決め基準を無接触で精度よく確実に且つ容易に検出できる手段を提供することを目的としている。   In view of the above-described circumstances, the present invention makes it easy to use a positioning standard that can be used in various processes without being affected by the type of work and the order of processes, by an automatic method with a low equipment cost burden in a can-making system using an automatic line. Another object of the present invention is to provide a means that can set the positioning reference accurately, easily and accurately without contact.

上記目的を達成するための手段を図面の参照符号を付して示せば、請求項1の発明に係る製缶システムは、金属原板又はその加工物から連続的に諸加工を経て缶製品(角缶SC)もしくは缶本体1又は缶蓋(ペールラグ天板2B)を製作する自動ラインにおいて、蛍光インクによってワーク表面の所要位置に基準マークmを塗付し、ライン下流側の所要の加工工程又はその手前でワークに紫外光を照射して基準マークmを発光させて蛍光センサー7A〜7Cで検出し、この検出した基準マークmによって位置決めして所要の加工を行うことを特徴としている。   If the means for achieving the above object is shown with reference numerals in the drawings, the can making system according to the invention of claim 1 is a can product (corner) through various processes continuously from a metal original plate or a processed product thereof. In the automatic line for manufacturing the can SC) or the can body 1 or the can lid (pail lug top plate 2B), the reference mark m is applied to the required position on the work surface with the fluorescent ink, and the required processing step downstream of the line or the A feature is that the workpiece is irradiated with ultraviolet light in front and the reference mark m is emitted and detected by the fluorescent sensors 7A to 7C, and the workpiece is positioned by the detected reference mark m to perform the required processing.

請求項2の発明は、上記請求項1の製缶システムにおいて、蛍光インクが略無色透明である構成としている。   According to a second aspect of the present invention, in the can making system of the first aspect, the fluorescent ink is substantially colorless and transparent.

請求項3の発明は、上記請求項1又は2の製缶システムにおいて、基準マークmをインクジェットプリンター5によって塗付する構成としている。   According to a third aspect of the present invention, in the can making system according to the first or second aspect, the reference mark m is applied by the ink jet printer 5.

請求項4の発明は、上記請求項1〜3の何れかの製缶システムにおいて、基準マークmによってペール缶PCの缶胴部11における把手取付用耳部13の溶接位置を設定する構成としている。   According to a fourth aspect of the present invention, in the can making system according to any one of the first to third aspects, the welding position of the handle mounting ear 13 in the can body 11 of the pail can PC is set by the reference mark m. .

請求項5の発明は、上記請求項1〜3の何れかの製缶システムにおいて、基準マークmによって缶蓋(ペールラグ天板2B)における注出口(口金用穴27)の形成位置を設定する構成としている。   The invention according to claim 5 is the can making system according to any one of claims 1 to 3, wherein the formation position of the spout (base hole 27) in the can lid (pail lug top plate 2B) is set by the reference mark m. It is said.

請求項6の発明は、上記請求項1〜3の何れかの製缶システムにおいて、板体の両側縁をシーム溶接して得られる円筒体からエキスパンダーによって角缶SCの角筒状胴部を形成する際、基準マークmによって円筒体の曲げ位置を設定する構成としている。   The invention of claim 6 is the can making system according to any one of claims 1 to 3, wherein the rectangular cylindrical body of the square can SC is formed by an expander from a cylindrical body obtained by seam welding both side edges of the plate. In this case, the bending position of the cylindrical body is set by the reference mark m.

次に、本発明の効果について、図面の参照符号を付して説明する。まず、請求項1の発明に係る製缶システムによれば、その自動ラインにおいて、蛍光インクによってワーク(缶胴部11,31、ペールラグ天板2B)表面の所要位置に基準マークmを塗付し、ライン下流側の所要の加工工程又はその手前でワークに紫外光を照射して基準マークmを発光させて蛍光センサー7A〜7Cで検出し、この検出した基準マークmによって位置決めして所要の加工を行うことから、ワークの種類や工程順位に影響されずに種々の加工工程で利用できる上、該基準マークmの検出を無接触で行えるので缶表面に傷が付く懸念がない。しかも蛍光センサー7A〜7Cで蛍光発色を検出するから、該基準マークmが小さくても確実に容易に捉えることができると共に、ワーク表面に種々の着色塗装が施されていても検出精度に影響を受けず、また基準マークmを小さくすることで検出の位置精度を向上できる。更に、基準マークmの塗付手段、蛍光センサー、紫外線照射手段として、各別な専用仕様を必要とせず、普及型の市販品を利用できるから、設備コスト負担が少なくて済むという利点もある。   Next, effects of the present invention will be described with reference numerals in the drawings. First, according to the can manufacturing system according to the first aspect of the present invention, in the automatic line, the reference mark m is applied to the required position on the surface of the work (can body parts 11 and 31, pail lug top plate 2B) with fluorescent ink. The workpiece is irradiated with ultraviolet light before or at the required processing step on the downstream side of the line so that the reference mark m is emitted and detected by the fluorescence sensors 7A to 7C, and positioned by the detected reference mark m and required processing is performed. Therefore, the reference mark m can be detected in a non-contact manner without being affected by the type and process order of the workpiece, and there is no concern that the surface of the can is damaged. Moreover, since the fluorescent color is detected by the fluorescent sensors 7A to 7C, it can be easily and reliably captured even if the reference mark m is small, and the detection accuracy is affected even if various colored coatings are applied to the workpiece surface. In addition, the position accuracy of detection can be improved by reducing the reference mark m. Furthermore, there is an advantage that the equipment cost burden can be reduced because a spread type commercial product can be used as the means for applying the reference mark m, the fluorescence sensor, and the ultraviolet irradiation means without requiring special specifications for each.

請求項2の発明によれば、蛍光インクが略無色透明であるから、基準マークmが肉眼では略不可視になり、もって該基準マークmの存在によって缶の意匠及び外観が損なわれる懸念はない。   According to the invention of claim 2, since the fluorescent ink is substantially colorless and transparent, the reference mark m is substantially invisible to the naked eye, and there is no concern that the design and appearance of the can are impaired by the presence of the reference mark m.

請求項3の発明によれば、基準マークmをインクジェットプリンター5によって塗付するから、缶表面に該基準マークmを小さなサイズで精度よく確実に表出できる。   According to the invention of claim 3, since the reference mark m is applied by the ink jet printer 5, the reference mark m can be accurately and reliably displayed on the can surface with a small size.

請求項4の発明によれば、ペール缶C1を対象として、基準マークmを利用して把手取付用耳部13の溶接位置を設定できる。例えば、自動ラインのイヤーウェルダー工程において該耳部13を通常のように円筒状の缶胴部11のシーム溶接部sの上部位置とその径方向対向位置とに溶接する場合、ライン上流側のシーム溶接工程又は該工程の直後に、その溶接位置の径方向対向位置に基準マークmを塗付しておき、イヤーウェルダーに入る前に該基準マークmを検出し、その検出位置に基づいて缶胴部11(缶本体1)を回転させ、もって基準マークmとシーム溶接部sが耳部13の溶接位置に来るように該缶胴部11の向きを調整すればよい。   According to the invention of claim 4, the welding position of the handle mounting ear 13 can be set using the reference mark m for the pail can C1. For example, when the ear portion 13 is welded to the upper position of the seam welded portion s of the cylindrical can body portion 11 and the radially opposed position in the ear welder process of an automatic line as usual, the seam on the upstream side of the line is used. A reference mark m is applied to the welding process or immediately after the process in the radial direction, and the reference mark m is detected before entering the ear welder. Based on the detection position, the can body The portion 11 (can main body 1) is rotated, and the direction of the can body 11 may be adjusted so that the reference mark m and the seam welded portion s come to the welding position of the ear portion 13.

請求項5の発明によれば、缶蓋(ペールラグ天板2B)を対象として、基準マークmを利用して注出口23の形成位置を設定できる。例えば、自動ラインの打抜きプレス工程で丸い蓋形に打ち抜く前の金属板、又はスリッターで該金属板に断裁する前の原板に対し、設定した口金形成位置に基準マークmを塗付しておき、打抜きプレス、絞りプレス、ライニング(ガスケット被着)、乾燥の各工程を経たのち、口金用穴明けを行う前に該基準マークmを検出し、該基準マークmが穴明け位置に来るように円板状のワークを回転させればよい。   According to invention of Claim 5, the formation position of the spout 23 can be set using the reference mark m for the can lid (pail lug top plate 2B). For example, a reference mark m is applied to a set base forming position on a metal plate before being punched into a round lid shape in a punching press process of an automatic line, or an original plate before being cut into the metal plate with a slitter, After each step of punching press, squeezing press, lining (gasket deposition), and drying, detect the reference mark m before drilling the die, and make sure that the reference mark m is at the drilling position. What is necessary is just to rotate a plate-shaped workpiece.

請求項6の発明によれば、角缶SCを製作する自動ラインにおいて、板体の両側縁をシーム溶接して得られる円筒体30からエキスパンダーによる曲げ加工で角缶SCの角筒状胴部31を形成する場合に、前記シーム溶接中又は溶接直後の円筒体30にシーム溶接部sから特定距離の位置に基準マークmを塗付しておき、当該エキスパンダーに入る前に基準マークmを検出し、この基準マークmに基づいて円筒体の位置を調整して曲げ加工を施すことにより、角缶SCにおけるシーム溶接部sの位置を常に一定に設定できる。   According to the invention of claim 6, in the automatic line for manufacturing the rectangular can SC, the rectangular cylindrical body 31 of the rectangular can SC is obtained by bending the cylindrical body 30 obtained by seam welding the both side edges of the plate body with an expander. When the seam welding is performed, a reference mark m is applied to the cylindrical body 30 during or immediately after the seam welding at a specific distance from the seam welded portion s, and the reference mark m is detected before entering the expander. The position of the seam welded part s in the square can SC can be always set constant by adjusting the position of the cylindrical body based on the reference mark m and performing bending.

本発明の製缶システムを適用するペール缶の一例を示す斜視図である。It is a perspective view which shows an example of the pail can to which the can making system of this invention is applied. 同製缶システムを適用するペールラグ天板の一例を示す斜視図である。It is a perspective view which shows an example of the pail lug top plate to which the can system is applied. 同製缶システムを適用する角缶の一例を示す斜視図である。It is a perspective view which shows an example of the square can to which the can manufacturing system is applied. 本発明の第一実施形態に係る製缶システムのフローチャートである。It is a flowchart of the can manufacturing system which concerns on 1st embodiment of this invention. 同第一実施形態における基準マーク塗付工程を示す模式側面図である。It is a model side view which shows the reference mark application process in the first embodiment. 同基準マーク塗付工程における塗付状況を示し、(a)は斜視図、(b)は縦断正面図である。The application | coating situation in the same fiducial mark application | coating process is shown, (a) is a perspective view, (b) is a vertical front view. 同第一実施形態における缶本体の回転位置調整工程を示す模式平面図である。It is a schematic plan view which shows the rotation position adjustment process of the can main body in the first embodiment. 同向き調整における缶本体の回転操作を示し、(a)は横断平面図、(b)は縦断側面図である。The rotation operation of the can body in the same direction adjustment is shown, (a) is a cross-sectional plan view, (b) is a longitudinal side view. 本発明の第二実施形態に係る製缶システムのフローチャートである。It is a flowchart of the can manufacturing system which concerns on 2nd embodiment of this invention. 同第二実施形態における基準マークの設定状態を示し、(a)は基準マークを塗付した裁断原板を示す平面図、(b)は口金用穴明け前のペールラグ天板の平面図である。The setting state of the reference mark in the second embodiment is shown, (a) is a plan view showing a cut original plate to which a reference mark is applied, and (b) is a plan view of a pail lug top plate before the base is drilled. 本発明の第三実施形態に係る製缶システムのフローチャートである。It is a flowchart of the can manufacturing system which concerns on 3rd embodiment of this invention. 同第三実施形態におけるエキスバンダーによる曲げ加工状況を示す平面図である。It is a top view which shows the bending process condition by the expander in the same 3rd embodiment.

本発明の製缶システムの代表的な適用対象として、図1のペール缶PC、図2のペールラグ天板2B、図3の角缶SCを例示する。   As a typical application object of the can making system of the present invention, a pail can PC of FIG. 1, a pail lug top plate 2B of FIG. 2, and a square can SC of FIG. 3 are illustrated.

まず、図1で示すペール缶PCは、略円筒形の缶胴部11と缶底を構成する円板状の地板12とで鋼製の缶本体1が構成され、この缶本体1の上部外周の径方向両側に鋼製冠状の把手取付用耳部13が溶接され、両耳部13,13を介して、太い針金からなる弧状の把手14が上下回動自在に両端部で係着されており、また缶本体1の上端開口部に、ラグ天板2Aが周縁のラグ21─を介して着脱自在に嵌着されている。そして、缶本体1の缶胴部11は、金属平板を円形に曲成してシーム溶接したものであり、そのシーム溶接部s上に一方の耳部13が位置すると共に、上部側に外側へ膨出する上下2本の環状のビード11a,11bを有しており、その下側ビード11bよりも下位がテーパペール缶として僅かに下向きテーパになっている。   First, in the pail can PC shown in FIG. 1, a steel can body 1 is composed of a substantially cylindrical can body portion 11 and a disk-shaped ground plate 12 constituting the bottom of the can. The steel crown-shaped handle mounting ears 13 are welded to both sides in the radial direction, and an arc-shaped handle 14 made of a thick wire is engaged with both ends so as to be rotatable up and down via both ears 13 and 13. In addition, a lug top plate 2A is detachably fitted to the upper end opening of the can body 1 through a peripheral lug 21-. The can body 11 of the can body 1 is formed by bending a metal flat plate into a circular shape and performing seam welding. One ear portion 13 is located on the seam welded portion s and outward on the upper side. It has two upper and lower annular beads 11a, 11b that bulge, and the lower part of the lower bead 11b is slightly tapered downward as a taper pail can.

この缶本体1を製作する自動ラインのフローチャートを図4に示すが、その各工程の内容は次の通りである。
シートフィーダー・・・略正方形の原板(鋼板)を搬送ラインに供給する。
スリッター・・・・・・原板を1/2に裁断して2枚の帯板にする。
筒状フォーミング・・・各帯板を円形に曲成する。
シーム溶接・・・・・・曲成された帯板の両端部を溶接して円筒状の缶胴部とする。
クリヤー塗装・・・・・シーム溶接部の外面側に錆止め塗装する。
エキスパンダー・・・・缶胴部の内径を広げてペール缶形態とする。
カール・ビーダー・・・上端周縁を外側へカールさせると共にビードを形成する。
フランジャー・・・・・下端周縁に外向きフランジ部を形成する。
地板シーマー・・・・・別ラインで製作した地板を缶胴部の下端に固着する。
イヤーウェルダー・・・缶胴部の径方向両側に把手取付用耳部を溶接する。
ロット付け・・・・・・ロット番号を含む表示事項を印字する。
乾式テスター・・・・・空気吹込みによって漏れの有無を検査する。
内面シーム吹付け・・・シーム溶接部の内面側に錆止め塗装する。
ベロマチック・・・・・把手取付用耳部に把手を取り付けて缶本体を完成する。
FIG. 4 shows a flow chart of an automatic line for manufacturing the can body 1, and the contents of each process are as follows.
Sheet feeder: A substantially square original plate (steel plate) is supplied to the conveyance line.
Slitter: Cut the original plate in half to make two strips.
Cylindrical forming ... Each strip is bent into a circle.
Seam welding ··· Weld both ends of the bent strip to make a cylindrical can body.
Clear coating: Apply rust prevention coating on the outer surface of the seam weld.
Expander: Expands the inner diameter of the can body to form a pail can.
Curl beader: curls the outer edge of the upper edge outward and forms a bead.
Flanger: An outward flange is formed around the lower edge.
Base plate seamer: A base plate manufactured in a separate line is fixed to the lower end of the can body.
Ear welder: Weld the handle mounting ears on both sides of the can body in the radial direction.
Lot marking ················································· Display the display item including the lot number.
Dry tester: Check for leaks by blowing air.
Inner surface seam spraying: Rust prevention coating on the inner surface of the seam weld.
Velomatic: Complete the can body by attaching the handle to the handle mounting ear.

本発明の製缶システムの第一実施形態では、この缶本体1を製作する自動ラインにおいて、シーム溶接工程とクリヤー塗装工程との間に、基準マーク塗付工程を介在させると共に、イヤーウェルダー工程の手前に回転位置調整工程を加える。   In the first embodiment of the can manufacturing system of the present invention, in the automatic line for manufacturing the can body 1, a fiducial mark application process is interposed between the seam welding process and the clear coating process, and an ear welder process is performed. A rotational position adjustment process is added to the front.

基準マーク塗付工程は、図5で示すように、ワークとしての缶胴部11がシーム溶接時の横向き状態のままで搬送される搬送路4に、インクジェットプリンター5が設置されると共に、そのプリンターヘッド5bの手前の側方に透過センサー6が配置し、また下方位置には透過センサー6からの検知信号に基づいてインクジェットプリンター5を作動制御するコントローラ60が設置されている。そして、プリンターヘッド5bは、搬送路4を跨ぐ門形のヘッド取付枠51を介して通過する缶胴部11の真上に配置している。5cは下方のプンター本体5aからプリンターヘッド5bへ蛍光インクを送給するインクチューブ、52は該インクチューブ5cを支持するチューブ支持枠、53は加工状況を表示するシグナルランプである。   As shown in FIG. 5, the reference mark application process includes an inkjet printer 5 installed in a conveyance path 4 in which the can body 11 as a workpiece is conveyed in a sideways state during seam welding, and the printer A transmission sensor 6 is arranged on the side in front of the head 5b, and a controller 60 for controlling the operation of the ink jet printer 5 based on a detection signal from the transmission sensor 6 is installed at a lower position. The printer head 5 b is disposed immediately above the can body 11 that passes through a gate-shaped head mounting frame 51 that straddles the conveyance path 4. 5c is an ink tube for feeding fluorescent ink from the lower printer body 5a to the printer head 5b, 52 is a tube support frame for supporting the ink tube 5c, and 53 is a signal lamp for displaying the processing status.

この基準マーク塗付工程では、シーム溶接工程から搬送されてくる缶胴部11が透過センサー6の位置を通過した際、該透過センサー6から検知信号が出力され、この検知信号に基づいてコントローラ60よりジェットプリンター5の作動信号が発令され、プリンターヘッド5bから噴射された蛍光インクによって缶胴部11の頂部の所定位置に基準マークmが塗付される。しかして、図6(a)(b)で示すように、シーム溶接工程から搬送路4の搬送ローラ4aを介して横向き状態で搬送されてくる缶胴部11は、シーム溶接部sが最下部になっているため、その頂部に塗付される基準マークmがシーム溶接部sと径方向で対向することになる。なお、この塗付された基準マークmは、蛍光インクとして略無色透明のものを使用することにより、肉眼では略不可視の隠しマークとなる。   In the reference mark application process, when the can body 11 conveyed from the seam welding process passes the position of the transmission sensor 6, a detection signal is output from the transmission sensor 6, and the controller 60 is based on the detection signal. Accordingly, an operation signal of the jet printer 5 is issued, and the reference mark m is applied to a predetermined position on the top of the can body 11 by the fluorescent ink ejected from the printer head 5b. Thus, as shown in FIGS. 6A and 6B, the seam welded portion s of the can body portion 11 conveyed in a lateral direction from the seam welding process via the conveying roller 4a of the conveying path 4 has the lowest portion. Therefore, the reference mark m applied to the top portion of the seam weld portion s faces the seam weld portion s in the radial direction. The applied reference mark m becomes a substantially invisible hidden mark with the naked eye by using a substantially colorless and transparent fluorescent ink.

一方、回転位置調整工程では、地板シーマー工程から缶本体1が地板12側つまり底側を上にした逆立ち状態で搬送されてくるが、まず図7に示す一次調整部P1において、該缶本体1を搬送路4から持ち上げ、この持上げ状態で該缶本体1を周方向一方側(矢印a方向)に回転させると共に、紫外線投光部及び蛍光受光部を備える蛍光センサー7A,7Bにより、缶本体1の外周面に紫外線を投射し、蛍光発光した基準マークmを検出する。そして、該缶本体1を検出時の向きから規定角度だけ回転続行して停止させることにより、なお、図示のように、基準マークmが搬送方向Oに沿う径方向後端位置にくれば、当然に缶本体1のシーム溶接部sは同径方向の前端位置になる。   On the other hand, in the rotational position adjustment process, the can main body 1 is conveyed from the main plate seamer process in an inverted state with the main plate 12 side, that is, the bottom side up. First, in the primary adjustment portion P1 shown in FIG. The can body 1 is lifted from the conveyance path 4, and the can body 1 is rotated to one side in the circumferential direction (arrow a direction) in this lifted state, and the can body 1 is provided by the fluorescence sensors 7A and 7B including the ultraviolet light projecting section and the fluorescence light receiving section. A reference mark m that emits fluorescence is detected by projecting ultraviolet rays onto the outer peripheral surface of the lens. And, if the reference mark m comes to the rear end position in the radial direction along the conveying direction O as shown in the figure, by continuing to rotate the can body 1 by a specified angle from the direction at the time of detection and stopping it, of course, Further, the seam welded portion s of the can body 1 is at the front end position in the same radial direction.

この図7の例では、一次調整部P1の両蛍光センサー7A,7Bの投受光軸71,72は共に缶本体1の軸心に向いているが、缶本体1の回転方向aを基準として、蛍光センサー7Aの投受光軸71の搬送方向Oに対する角度αは50°、蛍光センサー7Bの投受光軸72は同角度βは130°に各々設定されている。この場合、一次調整部P1に到達した缶本体1の基準マークmが例えば図示のm1の位置にあれば、該缶本体1の回転によって先に蛍光センサー7Aにて検出されるから、その検出時から該缶本体1が130°回転して停止し、もって該基準マークmが搬送方向Oに沿う径方向後端位置に来る。また、同じく到達した缶本体1の基準マークmが例えば図示のm2の位置にあれば、先に蛍光センサー7Bにて検出されるから、その検出時から該缶本体1が410°回転して停止し、もって該基準マークmが同様に径方向後端位置に来る。   In the example of FIG. 7, the light projecting / receiving shafts 71 and 72 of both fluorescent sensors 7A and 7B of the primary adjustment unit P1 are both oriented toward the axis of the can body 1, but the rotation direction a of the can body 1 is used as a reference. The angle α of the fluorescent sensor 7A with respect to the conveying direction O of the light projecting / receiving shaft 71 is set to 50 °, and the light transmitting / receiving shaft 72 of the fluorescent sensor 7B is set to 130 °. In this case, if the reference mark m of the can body 1 that has reached the primary adjustment portion P1 is at the position of m1 shown in the drawing, for example, the fluorescence sensor 7A detects the rotation of the can body 1 first. The can body 1 is rotated by 130 ° and stopped, so that the reference mark m comes to the radial rear end position along the transport direction O. Similarly, if the reference mark m of the reached can body 1 is at, for example, the position of m2 shown in the drawing, it is detected by the fluorescent sensor 7B first. Accordingly, the reference mark m is similarly positioned at the radial rear end position.

なお、蛍光センサー7Bによる検出時から缶本体1を50°の回転で停止させても、基準マークmは同様に径方向後端位置に来る筈であるが、停止までの回転量が少な過ぎて急停止する形になるため、慣性力で停止位置がずれ易くなる。また、一次調整部P1の蛍光センサーが1基のみでも同様に基準マークmの検出と回転位置調整を行えるが、例えば蛍光センサー7Aのみである場合、到達した缶本体1の基準マークmがm2の位置であれば、その検出までに該缶本体1が略1回転する必要があり、それだけ回転位置調整に時間を要して自動ラインの製作効率が低下することになる。よって、製作効率面より2基の蛍光センサー7A,7Bを配置することが望ましいが、例示において両蛍光センサー7A,7Bを位相差を80°で配置しているのは、一次調整部P1に到達する缶本体1の基準マークmの位置変動が、通常は蛍光センサー7Aの投受光軸70の±数10°の角度範囲に納まることによる。無論、基準マークmの位置変動が大きければ、それに応じて両蛍光センサー7A,7Bを位相差を大きく取ればよく、該基準マークmが全周にわたってばらつくようであれば、両蛍光センサー7A,7Bを径方向両側(180°の位相差)に配置することが推奨される。   Even if the can body 1 is stopped by rotation of 50 ° from the detection by the fluorescent sensor 7B, the reference mark m should be at the rear end position in the radial direction as well, but the rotation amount until the stop is too small. Since it suddenly stops, the stop position is easily shifted by inertial force. Further, even if only one fluorescent sensor of the primary adjustment unit P1 is used, the detection of the reference mark m and the rotational position adjustment can be performed in the same manner. For example, when only the fluorescent sensor 7A is used, the reference mark m of the reached can body 1 is m2. If it is a position, the can main body 1 needs to make approximately one rotation before the detection, so that it takes time to adjust the rotation position and the production efficiency of the automatic line is lowered. Therefore, it is desirable to arrange the two fluorescent sensors 7A and 7B from the viewpoint of production efficiency, but in the example, both fluorescent sensors 7A and 7B are arranged with a phase difference of 80 ° to reach the primary adjustment unit P1. This is because the positional fluctuation of the reference mark m of the can main body 1 is normally within an angular range of ± several tens of degrees of the light projecting / receiving shaft 70 of the fluorescent sensor 7A. Of course, if the position variation of the reference mark m is large, the phase difference of both fluorescent sensors 7A and 7B may be increased accordingly, and if the reference mark m varies over the entire circumference, both fluorescent sensors 7A and 7B. Is recommended to be placed on both sides in the radial direction (180 ° phase difference).

図7で例示する回転位置調整工程にあっては、一次調整部P1で回転位置調整した缶本体1を二次調整部P2で更に略1/4回転させることにより、次のイヤーウェルダー工程における加工姿勢(搬送路4の幅方向両側からイヤー溶接)の向きに設定する。そして、この二次調整部P2において、一次調整部P1と同様に缶本体1を搬送路4から持ち上げた状態で周方向一方側(矢印a方向)に回転させるが、やはり紫外線投光部及び蛍光受光部を備える蛍光センサー7Cにより、該缶本体1の外周面に紫外線を投射して蛍光発光した基準マークmを検出し、該缶本体1を検出時の向きから規定角度だけ回転続行して停止させることにより、基準マークmとシーム溶接部sとが精密に搬送路4の幅方向Qに沿う径方向両側に来るように微調整する。すなわち、一次調整部P1から二次調整部P2へ移動する間に缶本体1の向きが多少変化する可能性もあるため、二次調整部P2では、該缶本体1を単に90°回転させるのではなく、この回転操作で前記移動に伴う向きの変化も修正する。   In the rotational position adjustment process illustrated in FIG. 7, the can main body 1 whose rotational position is adjusted by the primary adjustment part P1 is further rotated approximately 1/4 by the secondary adjustment part P2, thereby processing in the next ear welder process. The orientation is set to the orientation (ear welding from both sides in the width direction of the conveyance path 4). And in this secondary adjustment part P2, the can main body 1 is rotated in the circumferential direction one side (arrow a direction) in the state where it lifted from the conveyance path 4 similarly to the primary adjustment part P1. The fluorescent sensor 7C having a light receiving unit detects the reference mark m that is emitted by projecting ultraviolet rays onto the outer peripheral surface of the can body 1, and continues to rotate the can body 1 by a specified angle from the direction of detection and stops. By doing so, the fine adjustment is made so that the reference mark m and the seam welded portion s are precisely located on both sides in the radial direction along the width direction Q of the conveyance path 4. That is, the direction of the can body 1 may change slightly while moving from the primary adjustment section P1 to the secondary adjustment section P2. Therefore, the secondary adjustment section P2 simply rotates the can body 1 by 90 °. Rather, this rotational operation corrects the change in orientation accompanying the movement.

しかして、二次調整部P2における蛍光センサー7Cの投受光軸73は搬送路4の幅方向Qに対する角度γが−20°で缶本体1の軸心に向いており、低速で回転する缶本体1の基準マークmを検出すると、その検出時から該缶本体1を20°の回転で停止させ、もって基準マークmとシーム溶接部sとが精密に搬送路4の幅方向Qに沿う径方向両側に来るようにしている。なお、この二次調整部P2における缶本体1の回転は低速に設定するため、停止までの回転量が小さくとも高い停止位置精度を確保できる。かくして二次調整部P2で精密に向きを設定した缶本体1は、その回転姿勢でチャックされてイヤーウェルダー工程に搬入される。   Thus, the light projecting / receiving shaft 73 of the fluorescent sensor 7C in the secondary adjustment section P2 is oriented at the axis of the can body 1 at an angle γ of −20 ° with respect to the width direction Q of the transport path 4 and can rotate at a low speed. When one reference mark m is detected, the can body 1 is stopped by rotation of 20 ° from the time of detection, so that the reference mark m and the seam welded portion s are precisely in the radial direction along the width direction Q of the conveyance path 4. I try to come to both sides. In addition, since rotation of the can main body 1 in this secondary adjustment part P2 is set to low speed, even if the rotation amount until a stop is small, high stop position accuracy can be ensured. Thus, the can body 1 whose direction is precisely set by the secondary adjustment unit P2 is chucked in the rotational posture and carried into the ear welder process.

回転位置調整工程の一次及び二次調整部P1,P2における缶本体1の回転操作は、図8(a)(b)で示すように、まず逆立ち状態で搬入された缶本体1を、その下方に配置した複数個(図では4個)の周方向回転自在な昇降コーン81を上昇させることにより、各昇降コーン81のフランジ部81aで上端周縁11c(逆立ちで下端に配置)を支承して持ち上げる。そして、この持上げ状態の缶本体1の上端周縁11cと上側ビード11aとの間の外周部を、径方向両側から駆動ローラ82とバックアップローラ83との間で挟み付けると共に、上方に配置した昇降式缶押え9を降下させ、その台板90の下面側に周方向に等配して取り付けられた複数個(図では4個)の遊転ローラー91を、缶本体1の下端(逆立ちで上端に配置)の突周縁部12aに転接させ、この状態で駆動ローラ82を回転駆動して当該缶本体1を回転させる。そして、駆動ローラ82は、蛍光センサー7A〜7Cによって缶本体1の基準マークmが検出されると、図示を省略した制御装置を介して、検出時点から蛍光センサー7A〜7C毎の規定回転量で停止する。なお、缶本体1は、その回転開始から停止に至るまで、昇降コーン81によって芯振れが防止されると共に、昇降式缶押え9によって上方への跳ね上がりが防止されることにより、安定した回転状態に保持される。   As shown in FIGS. 8 (a) and 8 (b), the rotating operation of the can main body 1 in the primary and secondary adjusting portions P1 and P2 of the rotational position adjusting process is performed by first moving the can main body 1 carried in an upside down state. A plurality of (four in the figure) circumferentially rotatable lifting cones 81 arranged in the vertical direction are lifted by supporting and lifting the upper peripheral edge 11c (arranged at the lower end by handstand) by the flange portions 81a of the lifting cones 81. . And the outer peripheral part between the upper end peripheral edge 11c of the can body 1 in the lifted state and the upper bead 11a is sandwiched between the driving roller 82 and the backup roller 83 from both sides in the radial direction, and the lifting type disposed above. The can presser 9 is lowered, and a plurality (four in the figure) of idle rollers 91 attached to the lower surface side of the base plate 90 in the circumferential direction are attached to the lower end of the can main body 1 (the upper end is turned upside down). In this state, the drive roller 82 is rotationally driven to rotate the can body 1. Then, when the reference mark m of the can body 1 is detected by the fluorescent sensors 7A to 7C, the driving roller 82 has a predetermined rotation amount for each of the fluorescent sensors 7A to 7C from the detection point through a control device (not shown). Stop. In addition, the can body 1 is in a stable rotation state from the start to the stop of the rotation, by preventing the core swing from being caused by the elevating cone 81 and by preventing the upper can lift 9 from jumping upward. Retained.

上記の第一実施形態では、ペール缶PCの缶本体1を製作する自動ラインにおいて、缶本体1(缶胴部11)の送り姿勢が、シーム溶接時の横向き状態からエキスパンダー以降の逆立ち状態に転換し、且つ回転方向の向きが中間の各加工を経る間に様々に変動して一定しないが、イヤーウェルダーに入る前に基準マークmを利用して缶本体1の回転位置を精密に調整できるから、イヤーウェルダーにおいて把手取付用耳部13をシーム溶接部sとその径方向対向位置とに正確に溶接でき、もって把手の取付位置にバラツキのない缶本体1を安定的に提供できる。また、該基準マークmの検出を無接触で行えるので缶表面に傷が付く懸念がなく、しかも蛍光センサー7A〜7Cで蛍光発色を検出するから、該基準マークmが小さくても確実に容易に捉えることができると共に、缶胴部11の表面に通常施される種々の着色塗装による検出精度の低下もなく、またインクジェットプリンター5によって基準マークmを小さなサイズで精度よく確実に表出でき、もって検出の位置精度をより高めることができる。   In the first embodiment described above, in the automatic line for producing the can body 1 of the pail can PC, the feeding posture of the can body 1 (can body portion 11) is changed from a lateral state during seam welding to an inverted state after the expander. In addition, although the direction of the rotation direction varies and is not constant during each intermediate processing, the rotational position of the can body 1 can be precisely adjusted using the reference mark m before entering the ear welder. In the ear welder, the handle mounting ear 13 can be accurately welded to the seam welded portion s and the radially opposed position thereof, so that the can body 1 having no variation in the handle mounting position can be stably provided. Further, since the reference mark m can be detected without contact, there is no fear of scratching the surface of the can, and since the fluorescent color is detected by the fluorescence sensors 7A to 7C, the reference mark m is surely easily even if the reference mark m is small. It can be captured and there is no decrease in detection accuracy due to various colored coatings usually applied to the surface of the can body 11, and the reference mark m can be accurately and reliably expressed in a small size by the ink jet printer 5. The position accuracy of detection can be further increased.

図2で示すペールラグ天板2Bは、図1のペール缶PCに用いたペールラグ天板2Aと同様に、周縁のラグ22─を介して缶本体1(図1参照)の上端開口部に着脱自在に嵌着されるものであるが、キャップ23及びベロ24付きの注出口23を備えている。このペールラグ天板2Bを製作する自動ラインのフローチャートを図9に示すが、その各工程の内容は次の通りである。   The pail lug top plate 2B shown in FIG. 2 is detachable from the upper end opening of the can body 1 (see FIG. 1) via a peripheral lug 22- like the pail lug top plate 2A used in the pail can PC of FIG. The cap 23 and the spout 23 with the tongue 24 are provided. FIG. 9 shows a flowchart of an automatic line for manufacturing the pail lug top plate 2B. The contents of each process are as follows.

シートフィーダー・・・略正方形の原板(鋼板)を搬送ラインに供給する。
スリッター・・・・・・原板を1/2に裁断して2枚の帯板にする。
打抜きプレス・・・・・各帯板より二枚のラグ付き天板原形を打ち抜く。
絞りプレス・・・・・・各天板原形の周縁部を曲げてラグを立ち上げると共に、周辺に 沿って補強用環状凸部を形成する。
ライニング・・・・・・曲げた周縁部の内面側にガスケット材料を塗着する。
乾燥機・・・・・・・・ガスケット材料を発泡硬化させる。
口金用穴明け・・・・・口金用穴を打抜き形成する。
口金加締・・・・・・・口金用穴に口金を取り付けて加締固定する。
ベロ装着・・・・・・・口金用穴の口金に注出用のベロを装着する。
キャップ加締・・・・・口金用穴の口金にキャップを装着して締めつける。
漏れ試験・・・・・・・口金用穴部分における漏れの有無を検査する。
Sheet feeder: A substantially square original plate (steel plate) is supplied to the conveyance line.
Slitter: Cut the original plate in half to make two strips.
Punching press ... Punches two original rugged top plates from each strip.
Drawing press: Bends the peripheral edge of each original shape of the top plate to raise the lug, and forms an annular protrusion for reinforcement along the periphery.
Lining: Apply gasket material to the inner surface of the bent peripheral edge.
Dryer: foaming and curing the gasket material.
Die hole punching ... A hole for a die is punched and formed.
Clamping the base .... Attach the base to the hole for the base and fix it by crimping.
Velo mounting ... Install a bellow for pouring into the base of the hole for the base.
Cap tightening ··· Attach the cap to the base of the base hole and tighten.
Leak test .... Check for leaks in the hole for the cap.

本発明の製缶システムの第二実施形態では、このペールラグ天板2Bを製作する自動ラインにおいて、スリッター工程と打抜きプレス工程との間に、基準マーク塗付工程を介在させると共に、口金用穴明け工程の手前に回転位置調整工程を加える。すなわち、図10(a)で示すように、スリッター工程を経た帯板25からは打抜きプレス工程で図示の破線の如く二枚のラグ付き天板原形20が打ち抜かれるが、各天板原形20における口金用穴の形成位置に予め蛍光インクによって基準マークmを塗付しておく。そして、口金用穴明け工程の手前の回転位置調整工程において、乾燥機から搬送されてきた天板26の回転位置を、基準マークmが次の口金用穴明け工程における口金用穴27(図示仮想線)の形成位置に来るように調整し、この調整した回転位置で該天板26をチャックして口金用穴明け工程へ搬送する。   In the second embodiment of the can making system of the present invention, in the automatic line for producing the pail lug top plate 2B, a reference mark application process is interposed between the slitter process and the punching press process, and the hole for the die is formed. A rotational position adjustment step is added before the step. That is, as shown in FIG. 10 (a), from the strip plate 25 that has undergone the slitting process, two top plate prototypes 20 with lugs are punched out as shown by the broken lines in the punching press process. A reference mark m is applied in advance to the formation position of the hole for the die with fluorescent ink. Then, in the rotational position adjustment step before the base hole punching step, the rotational position of the top plate 26 conveyed from the dryer is used as the base mark 27 in the base base hole step 27 in the next base hole drilling step (illustrated virtual). The top plate 26 is chucked at this adjusted rotational position and conveyed to the die opening process.

しかして、基準マークmを塗付は、前記第一実施形態と同様にインクジェットプリンターを利用して自動的に行えばよい。また、回転位置調整工程における基準マークmの検出と、この検出位置に基づく天板26の回転位置調整についても、前記第一実施形態と同様に適宜の回転機構によって天板26を回転させながら、蛍光センサーで基準マークmの蛍光発光を検出し、その検出時から所定の回転量で天板26を停止させることにより、基準マークmが口金用穴27の形成位置に来るように設定すればよい。なお、この場合の蛍光センサーの数と設置位置、回転位置調整の段数は、回転停止の難易度や自動ラインの装置構成に応じて適宜設定できる。   Thus, the reference mark m may be applied automatically using an ink jet printer as in the first embodiment. In addition, for the detection of the reference mark m in the rotational position adjustment step and the rotational position adjustment of the top plate 26 based on this detection position, the top plate 26 is rotated by an appropriate rotation mechanism as in the first embodiment. By detecting the fluorescence emission of the reference mark m with the fluorescence sensor and stopping the top plate 26 with a predetermined amount of rotation from the detection, the reference mark m may be set so as to come to the position where the base hole 27 is formed. . In this case, the number of fluorescent sensors, the installation position, and the number of rotation position adjustment stages can be set as appropriate according to the difficulty level of rotation stop and the automatic line apparatus configuration.

図3で示す角缶SCは、横断面略矩形の缶胴部31の上下端に略矩形の天板32及び地板33が固着されており、天板32には把手34とキャップ36付きの注出口35が設けてある。そして、缶胴部31は、主面31aと側面31bとの境界部から側面31b側へやや入った位置に、縦方向に沿うシーム溶接部sを有している。この角缶SCを製作する自動ラインのフローチャートを図11に示すが、その各工程の内容は次の通りである。   The rectangular can SC shown in FIG. 3 has a substantially rectangular top plate 32 and a base plate 33 fixed to the upper and lower ends of a can body 31 having a substantially rectangular cross section, and the top plate 32 is provided with a handle 34 and a cap 36. An outlet 35 is provided. And the can body part 31 has the seam weld part s along a vertical direction in the position which entered into the side surface 31b side a little from the boundary part of the main surface 31a and the side surface 31b. FIG. 11 shows a flowchart of an automatic line for manufacturing this square can SC. The contents of each process are as follows.

シートフィーダー・・・略正方形の原板(鋼板)を搬送ラインに供給する。
スリッター・・・・・・原板を裁断して6〜8枚の帯板にする。
筒状フォーミング・・・各帯板を円形に曲成する。
シーム溶接・・・・・・曲成された帯板の両端部を溶接して円筒とする。
エキスパンダー・・・・円筒を内側から押し広げて角筒状の缶胴部とする。
フレンジ・・・・・・・缶胴部の両端開口縁を外側へ拡げる。
地板シーマー・・・・・別ラインで製作した地板を缶胴部の下端に固着する。
ロット付け・・・・・・ロット番号を含む表示事項を印字する。
天板シーマー・・・・・別ラインで製作した天板を缶胴部の上端に固着する。
乾式テスター・・・・・空気吹込みによって漏れの有無を検査する。
Sheet feeder: A substantially square original plate (steel plate) is supplied to the conveyance line.
Slitter: Cut the original plate into 6-8 strips.
Cylindrical forming ... Each strip is bent into a circle.
Seam welding ··· Weld both ends of the bent strip to make a cylinder.
Expander: The cylinder is pushed out from the inside to form a square cylindrical can body.
Frenzy ... Expands the opening edge of both ends of the can body to the outside.
Base plate seamer: A base plate manufactured in a separate line is fixed to the lower end of the can body.
Lot marking ················································· Display the display item including the lot number.
Top plate seamer: A top plate manufactured on a separate line is fixed to the upper end of the can body.
Dry tester: Check for leaks by blowing air.

本発明の製缶システムの第三実施形態では、この角缶SCを製作する自動ラインにおいて、シーム溶接工程とエキスパンダー工程との間に、前後して基準マーク塗付工程及び回転位置調整工程を加える。すなわち、基準マーク塗付工程では、図12の仮想線で示すように、シーム溶接を経て得られる円筒30に対し、そのシーム溶接部sと径方向で対向する位置に基準マークmを塗付しておく。そして、次の回転位置調整工程では、該円筒30を回転させながら、基準マークmの蛍光発光を蛍光センサーで検出し、その検出時から所定の回転量で該円筒30を停止させることにより、シーム溶接部sが次のエキスパンダー工程における曲げ加工で図示実線の如く主面31aと側面31bとの境界部から側面31b側へやや入った位置に来るように調整し、この調整した回転位置で該円筒30をチャックしてエキスパンダー工程へ搬送する。   In the third embodiment of the can making system of the present invention, in the automatic line for manufacturing the square can SC, a reference mark applying step and a rotational position adjusting step are added before and after the seam welding step and the expander step. . That is, in the fiducial mark application step, as shown by the phantom line in FIG. 12, the fiducial mark m is applied to the cylinder 30 obtained through seam welding at a position facing the seam weld s in the radial direction. Keep it. Then, in the next rotational position adjustment step, while the cylinder 30 is rotated, the fluorescence emission of the reference mark m is detected by the fluorescence sensor, and the cylinder 30 is stopped at a predetermined rotation amount from the detection time, thereby the seam. The welded portion s is adjusted in a bending process in the next expander process so that the welded portion s slightly enters the side surface 31b from the boundary between the main surface 31a and the side surface 31b as shown in the solid line in the drawing, and the cylinder is moved to the adjusted rotational position. 30 is chucked and conveyed to the expander process.

基準マーク塗付工程での基準マークmを塗付は、前記第一実施形態と全く同様にインクジェットプリンターを利用して自動的に行えばよい。また、回転位置調整工程における基準マークmの検出と、この検出位置に基づく円筒30の回転位置調整についても、前記第一実施形態と同様の回転機構を採用できる。   The application of the reference mark m in the reference mark application process may be automatically performed using an ink jet printer in the same manner as in the first embodiment. The same rotation mechanism as in the first embodiment can also be adopted for the detection of the reference mark m in the rotation position adjustment step and the rotation position adjustment of the cylinder 30 based on this detection position.

上記第二実施形態の製缶システムによれば、ペールラグ天板2Bの自動ラインによる製作において、常に口金用穴27が適正な一定位置にある高品位なものを安定的に量産できる。また、上記第三実施形態の製缶システムによれば、角缶SCの自動ラインによる製作において、缶胴部31のシーム溶接部sが適正な一定位置にある高品位なものを安定的に量産できる。   According to the can manufacturing system of the second embodiment, in the production of the pail lug top plate 2B by an automatic line, a high-quality product in which the mouthpiece hole 27 is always in an appropriate fixed position can be stably mass-produced. In addition, according to the can manufacturing system of the third embodiment, high-quality products in which the seam welded part s of the can body 31 is in an appropriate fixed position can be stably mass-produced in the production of the square can SC by an automatic line. it can.

基準マークmの塗付に用いる蛍光インクとしては、特に制約はないが、該基準マークmの存在によって缶の意匠及び外観が損なわれることがないように、肉眼では該基準マークmが略不可視となる略無色透明のものが好ましい。なお、この略無色透明とは、完全な無色透明と共に、黄味がかった透明等の極淡い色合いを持つ透明を包含する。インクジェットプリンター用蛍光インクの好適な市販品としては、紀州技研工業社製の商品名CN9不可視インク(蛍光波長450nm)、ユニオンコーポレーション社製の商品名LINX−UVインビジブルインク3160(蛍光波長385nm)、日立産機システム社製の商品名JPS−92(蛍光波長565nm)等が挙げられる。   The fluorescent ink used for application of the reference mark m is not particularly limited, but the reference mark m is substantially invisible to the naked eye so that the design and appearance of the can are not impaired by the presence of the reference mark m. A substantially colorless and transparent material is preferable. The substantially colorless and transparent includes completely colorless and transparent as well as transparent having a very light hue such as yellowish transparency. Commercially available fluorescent inks for inkjet printers include trade name CN9 invisible ink (fluorescence wavelength 450 nm) manufactured by Kishu Giken Kogyo Co., Ltd., trade name LINX-UV invisible ink 3160 (fluorescence wavelength 385 nm) manufactured by Union Corporation, Hitachi, Ltd. Examples include trade name JPS-92 (fluorescence wavelength 565 nm) manufactured by Sanki System Co., Ltd.

基準マークmを蛍光発光させる紫外線については、蛍光体を励起発光させるエネルギーを有する波長・強度であればよいが、特に人の目に対して有害性のない波長300〜400nm程度の近紫外線が好適である。基準マークmに対する紫外線の照射は、実施形態のように蛍光センサー自体の紫外線投光部による以外に、ブラックライトを始めとする様々な紫外線ランプで行うようにしてもよい。また、基準マークmの蛍光発光を検出する蛍光センサーとしては、使用した蛍光インクの蛍光波長に応じて、その波長域での充分な検出感度を有するものであればよく、蛍光発光が可視域である場合には可視光センサー、紫外域のみの場合には紫外線センサーを使用すればよい。   The ultraviolet light that causes the reference mark m to emit fluorescence may be any wavelength / intensity that has the energy to excite and emit the phosphor, but near ultraviolet light having a wavelength of about 300 to 400 nm that is not harmful to human eyes is particularly suitable. It is. Irradiation of the reference mark m with ultraviolet rays may be performed by various ultraviolet lamps such as black light in addition to the ultraviolet light projecting unit of the fluorescent sensor itself as in the embodiment. In addition, the fluorescence sensor for detecting the fluorescence emission of the reference mark m may be any sensor having sufficient detection sensitivity in the wavelength range according to the fluorescence wavelength of the fluorescent ink used. In some cases, a visible light sensor may be used, and in the case of only the ultraviolet region, an ultraviolet sensor may be used.

既述の第一〜第三実施形態ではペール缶PC、ペールラグ天板2B、角缶SCを対象とした自動ラインの製缶システムを例示したが、本発明の製缶システムは、他の様々な金属製缶における缶製品、缶本体、缶蓋を製作する自動ラインにおいて、ライン途上での各種加工の際のワークを位置決めする際に、位置決め基準としてワークの特定部位の検出を要する場合に適用できる。また、第一〜第三実施形態では各々単一の加工のための基準マークmを設定しているが、同じ自動ラインにおける複数種の加工における位置決め基準を設定するために、ワークの複数箇所に各加工に対応した基準マークmを設けることも可能である。更に、基準マークmの設定位置は、加工時のワークの位置決め基準になればよく、第一及び第二実施形態のように加工位置に一致させる必要はなく、ワークの形態や表面デザインによる制約、自動ラインにおける塗付ヘッドや蛍光センサーの設置位置の制約等に応じて適宜設定できる。   In the first to third embodiments described above, the automatic line can manufacturing system for the pail can PC, the pail lug top plate 2B, and the square can SC is illustrated, but the can manufacturing system of the present invention can be used in various other ways. It can be applied to the case where it is necessary to detect a specific part of a workpiece as a positioning reference when positioning a workpiece in various processes on the line in an automatic line for producing a can product, a can body and a can lid in a metal can. . In the first to third embodiments, the reference mark m for a single machining is set. However, in order to set the positioning reference for a plurality of types of machining on the same automatic line, the reference mark m is set at a plurality of locations on the workpiece. It is also possible to provide a reference mark m corresponding to each processing. Furthermore, the setting position of the reference mark m only needs to be a positioning reference of the workpiece at the time of processing, and does not need to match the processing position as in the first and second embodiments, and is limited by the shape of the workpiece and the surface design, It can be set as appropriate according to restrictions on the installation position of the coating head and fluorescent sensor in the automatic line.

1 缶本体(ワーク)
11 缶胴部(ワーク)
13 把手取付用耳部
14 把手
2B ペールラグ天板(缶蓋,ワーク)
26 帯板(金属原板)
27 口金用穴(注出口)
30 円筒(ワーク)
31 缶胴部(ワーク)
5 インクジェットプリンター
7A〜7C 蛍光センサー
PC ペール缶
SC 角缶
m 基準マーク
s シーム溶接部
1 Can body (work)
11 Can body (work)
13 Handle mounting ear 14 Handle 2B Pail lug top (can lid, workpiece)
26 Band plate (metal plate)
27 Hole for base (outlet)
30 cylinder (work)
31 Can body (work)
5 Inkjet printer 7A-7C Fluorescence sensor PC Pail can SC Square can m Reference mark s Seam weld

Claims (6)

金属原板又はその加工物から連続的に諸加工を経て缶製品もしくは缶本体又は缶蓋を製作する自動ラインにおいて、蛍光インクによってワーク表面の所要位置に基準マークを塗付し、ライン下流側の所要の加工工程又はその手前でワークに紫外光を照射して前記基準マークを発光させて蛍光センサーで検出し、この検出した基準マークによって位置決めして所要の加工を行うことを特徴とする製缶システム。   In an automatic line for manufacturing can products or can bodies or can lids through various processes continuously from the original metal plate or its processed material, a reference mark is applied to the required position on the work surface with fluorescent ink, and the downstream side of the line is required. A can-making system characterized in that a reference mark is emitted by irradiating a work piece with ultraviolet light before or in front of the processing step, the reference mark is emitted and detected by a fluorescence sensor, and the required processing is performed by positioning with the detected reference mark . 前記蛍光インクが略無色透明である請求項1に記載の製缶システム。   The can manufacturing system according to claim 1, wherein the fluorescent ink is substantially colorless and transparent. 前記基準マークをインクジェットプリンターによって塗付する請求項1又は2に記載の製缶システム。   The can-making system according to claim 1 or 2, wherein the reference mark is applied by an inkjet printer. 前記基準マークによってペール缶の缶胴部における把手取付用耳部の溶接位置を設定する請求項1〜3の何れかに記載の製缶システム。   The can manufacturing system according to any one of claims 1 to 3, wherein a welding position of a handle mounting ear in a can body of a pail can is set by the reference mark. 前記基準マークによって缶蓋における注出口の形成位置を設定する請求項1〜3の何れかに記載の製缶システム。   The can making system according to any one of claims 1 to 3, wherein a position for forming a spout in the can lid is set by the reference mark. 板体の両側縁をシーム溶接して得られる円筒体からエキスパンダーによって角缶の角筒状胴部を形成する際、前記基準マークによって円筒体の曲げ位置を設定する請求項1〜3の何れかに記載の製缶システム。   The bending position of the cylindrical body according to any one of claims 1 to 3, wherein when the square cylindrical body of the square can is formed by an expander from a cylindrical body obtained by seam welding both side edges of the plate body, the bending position of the cylindrical body is set by the reference mark. The can-making system described in 1.
JP2009142364A 2009-06-15 2009-06-15 Can making system Active JP5385021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142364A JP5385021B2 (en) 2009-06-15 2009-06-15 Can making system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142364A JP5385021B2 (en) 2009-06-15 2009-06-15 Can making system

Publications (2)

Publication Number Publication Date
JP2010285205A true JP2010285205A (en) 2010-12-24
JP5385021B2 JP5385021B2 (en) 2014-01-08

Family

ID=43541234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142364A Active JP5385021B2 (en) 2009-06-15 2009-06-15 Can making system

Country Status (1)

Country Link
JP (1) JP5385021B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027981A (en) * 2011-07-26 2013-02-07 Ricoh Co Ltd Image forming apparatus, and image forming method
JP2014112105A (en) * 2014-02-25 2014-06-19 Japan Pail Corp Handle orientation device
JP2015208758A (en) * 2014-04-25 2015-11-24 三菱電機株式会社 Method of manufacturing sheet metal structure, and sheet metal structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258680A (en) * 1975-11-10 1977-05-14 Kawatetsu Kontenaa Kk Method and device for producing square can
JPS53149488A (en) * 1977-05-31 1978-12-26 Fuji Kogyosho Kk Method of and device for forming rectangular thin plate can
JPS5968603A (en) * 1982-10-14 1984-04-18 Maakutetsuku:Kk Method and device for detecting and following up weld line of welded steel pipe
JPS59187206A (en) * 1983-04-08 1984-10-24 Nippon Steel Corp Method for detecting welded position of seam welded pipe
JPH02311703A (en) * 1989-05-26 1990-12-27 Mazda Motor Corp Position detecting method
JPH08193828A (en) * 1995-01-11 1996-07-30 Sankyo Numazu Kk Method for measuring velocity/moving amount of one-dimensionally moving object
JPH09300080A (en) * 1996-05-16 1997-11-25 Mitsuba Seisakusho:Kk Seam position deciding device
JP2009028792A (en) * 2008-09-26 2009-02-12 Toyo Seikan Kaisha Ltd Method of processing can body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258680A (en) * 1975-11-10 1977-05-14 Kawatetsu Kontenaa Kk Method and device for producing square can
JPS53149488A (en) * 1977-05-31 1978-12-26 Fuji Kogyosho Kk Method of and device for forming rectangular thin plate can
JPS5968603A (en) * 1982-10-14 1984-04-18 Maakutetsuku:Kk Method and device for detecting and following up weld line of welded steel pipe
JPS59187206A (en) * 1983-04-08 1984-10-24 Nippon Steel Corp Method for detecting welded position of seam welded pipe
JPH02311703A (en) * 1989-05-26 1990-12-27 Mazda Motor Corp Position detecting method
JPH08193828A (en) * 1995-01-11 1996-07-30 Sankyo Numazu Kk Method for measuring velocity/moving amount of one-dimensionally moving object
JPH09300080A (en) * 1996-05-16 1997-11-25 Mitsuba Seisakusho:Kk Seam position deciding device
JP2009028792A (en) * 2008-09-26 2009-02-12 Toyo Seikan Kaisha Ltd Method of processing can body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027981A (en) * 2011-07-26 2013-02-07 Ricoh Co Ltd Image forming apparatus, and image forming method
JP2014112105A (en) * 2014-02-25 2014-06-19 Japan Pail Corp Handle orientation device
JP2015208758A (en) * 2014-04-25 2015-11-24 三菱電機株式会社 Method of manufacturing sheet metal structure, and sheet metal structure

Also Published As

Publication number Publication date
JP5385021B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5324415B2 (en) Can unevenness detector
RU2701243C1 (en) System and method of adjusting paint assembly of printing machine on cylinders and tubes
RU2639968C2 (en) Installation and method for orienting end sealing device of drink tank and applying marking on specified section
JP2010285205A (en) Can making system
JP2011013417A5 (en) Image forming apparatus and method of controlling image forming apparatus
US8556113B2 (en) Lid adapter
CN110328706B (en) Packaging bag easy-to-tear line embossing machine capable of automatically adjusting notch position
CN101695788A (en) Process for assembling and spot welding of circular seams of tank body of container
JP6530273B2 (en) Printing device
US10543708B2 (en) Printing plate forming method and cylindrical forming apparatus for printing plate
US20220404818A1 (en) Apparatus and method of engraving machine readable information on a metallic workpiece during manufacturing and tracking systems related thereto
CN205290047U (en) Nut butt -joint electrode error proofing device
JP5480707B2 (en) Manufacturing method of can body
RU2707302C2 (en) Device and method for orienting end cover of container for beverages and applying signs in predetermined place
JP2002355906A (en) Container processing apparatus and processing method using the same
JP2010214430A (en) Apparatus and method for can seaming
KR101189302B1 (en) Detecting apparatus for welding part using reflecting light
JP2002282977A (en) Can body
US20150367440A1 (en) Method and device for roll seam welding container frames
JP2007302008A (en) Apparatus for manufacturing heat insulating container
JP3311702B2 (en) Container processing equipment
JP7019998B2 (en) can
NZ226647A (en) Tabs on bale ear welded to paint can blank prior to can formation
CN205310206U (en) Support arrangement for be used for a service tower section of thick bamboo
CN110155795B (en) Aluminum foil reverse flanging device and processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131003

R150 Certificate of patent or registration of utility model

Ref document number: 5385021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250