JP5385021B2 - Can making system - Google Patents

Can making system Download PDF

Info

Publication number
JP5385021B2
JP5385021B2 JP2009142364A JP2009142364A JP5385021B2 JP 5385021 B2 JP5385021 B2 JP 5385021B2 JP 2009142364 A JP2009142364 A JP 2009142364A JP 2009142364 A JP2009142364 A JP 2009142364A JP 5385021 B2 JP5385021 B2 JP 5385021B2
Authority
JP
Japan
Prior art keywords
adjustment
reference mark
detected
seam
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009142364A
Other languages
Japanese (ja)
Other versions
JP2010285205A (en
Inventor
昇 鈴木
貞幸 芳賀
Original Assignee
株式会社長尾製缶所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社長尾製缶所 filed Critical 株式会社長尾製缶所
Priority to JP2009142364A priority Critical patent/JP5385021B2/en
Publication of JP2010285205A publication Critical patent/JP2010285205A/en
Application granted granted Critical
Publication of JP5385021B2 publication Critical patent/JP5385021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Description

本発明は、金属原板又はその加工物から連続的に自動ラインで把手付きのペール缶を製作する製缶システムに関する。 The present invention relates to a can-making system for producing a pail with a handle continuously from an original metal plate or a processed product thereof by an automatic line.

自動ラインによる製缶システムでは、ライン途上での各種加工の際にワークを位置決めするが、その位置決め基準としてワークの特定部位の検出を要する場合がある。例えば、ペール缶の缶本体の自動製作ラインでは、一般的に、シートフィーダー(原板供給)→スリッター(缶サイズに分割)→筒状フォーミング→シーム溶接→クリヤー塗装(シーム溶接部の外面側の錆止め)→エキスパンダー(テーパ付け)→カール・ビーダー(上端周縁のカール、ビード形成)→フランジャー(下端周縁にフランジ部形成)→地板シーマー→イヤーウェルダー→ロット付け→乾式テスター(漏れ試験)→内面シーム吹付け→ベロマチック(把手の取付け)の順で加工を行う。しかるに、イヤーウェルダーではシーム溶接部の上部位置とその径方向対向位置とに把手取付用耳部(イヤー)を溶接するが、通常、ワーク(円筒状の缶胴部)の送り姿勢がシーム溶接時の横向き状態からエキスパンダー以降の逆立ち状態に転換している上、ワークの回転方向の向きが中間の各加工を経る間に様々に変動して一定しないため、各ワークについてイヤーウェルダーに入る前にシーム溶接部の位置が耳部の溶接位置に来るように向きを調整する必要がある。   In a can-making system using an automatic line, a workpiece is positioned during various types of processing in the middle of the line. In some cases, a specific part of the workpiece needs to be detected as a positioning reference. For example, in the automatic production line of pail can bodies, sheet feeder (original plate supply) → slitter (divided into can sizes) → cylindrical forming → seam welding → clear coating (rust prevention on the outer surface side of seam welds) ) → Expander (tapered) → Curl beader (curl and bead formation on the upper edge) → Flanger (flange formed on the lower edge) → Ground plate seamer → Ear welder → Lot application → Dry tester (leakage test) → Inner seam blowing Processing is performed in the order of attachment → velmatic (attachment of handle). However, in the ear welder, the handle mounting ears (ears) are welded to the upper position of the seam welded part and the radial facing position. Normally, the feed posture of the workpiece (cylindrical can body part) is the same as during seam welding. Since the horizontal direction of the workpiece is changed to the inverted state after the expander, and the direction of the rotation direction of the workpiece varies variously during each intermediate processing, the seam before each of the workpieces enters the ear welder. It is necessary to adjust the orientation so that the position of the welded portion comes to the weld position of the ear portion.

従来、イヤーウェルダー前のワークの向き調整は、作業者が目視でシーム溶接部を確認して手作業でワークの向きを修正するか、もしくは該シーム溶接部に生じる厚み変化や段差をタッチセンサー等の接触方式で検出し、この検出位置に基づいて機械的にワークを回転させて所要の向きにする方法が一般的に採用されていた。また、他の方式として、ワークに低周波磁界を印加した際の反射磁界の変化によってシーム溶接部の位置を検出し、この検出位置に基づいて機械的にワークを回転させて所要の向きにすることも提案されている(特許文献1)。   Conventionally, the orientation of the workpiece before the ear welder is adjusted by the operator visually checking the seam welded part and manually correcting the workpiece orientation, or by touching the thickness change or level difference occurring in the seam welded part. In general, a method of detecting by the above contact method and mechanically rotating the workpiece based on the detected position to obtain a desired orientation has been adopted. As another method, the position of the seam welded portion is detected by a change in the reflected magnetic field when a low-frequency magnetic field is applied to the workpiece, and the workpiece is mechanically rotated based on the detected position to have a desired orientation. This has also been proposed (Patent Document 1).

特開平9−300080号公報Japanese Patent Laid-Open No. 9-300080

しかしながら、前記従来の作業者によるワークの向き調整では、手作業で能率が悪いことに加え、その向きのばらつきが避けられず、把手の取付精度が悪くなる。また、前記従来の接触方式によるシーム溶接部の検出手段では、その接触によってワーク表面に傷を生じ易く、缶品質及び歩留りを低下させる懸念がある上、振動等による誤検出や非検出が発生し、検出の信頼性に劣るという問題があった。一方、前記提案の反射磁界の変化による検出手段では、磁界送信機構、反射磁界受信機構、信号処理機構等を組み込んだ検出装置のために設備コストが非常に高く付くと共に、検出部でのワークの位置ずれや周辺機器からの電磁ノイズによって反射磁界が乱れ易いため、シーム溶接部の検出精度に劣るという難点がある。 However, in the conventional work orientation adjustment by the worker, in addition to poor efficiency by manual work, variations in the orientation are unavoidable, and the handle mounting accuracy is poor. In addition, the conventional means for detecting a seam weld by the contact method is liable to cause scratches on the workpiece surface due to the contact, and there is a concern that can quality and yield may be reduced, and false detection or non-detection due to vibration or the like occurs. There was a problem that the reliability of detection was inferior. On the other hand, the detection means according to a change in the reflection field of the proposed magnetic transmission mechanism, reflecting the magnetic field receiving mechanism, with equipment costs for the detection device incorporating the signal processing mechanism or the like is very expensive, work at the detector Since the reflected magnetic field is likely to be disturbed due to the position shift of the position and electromagnetic noise from peripheral devices, there is a problem that the detection accuracy of the seam weld is inferior.

本発明は、上述の事情に鑑みて、自動ラインによる把手付きペール缶の製缶システムにおいて、設備コスト負担の少ない自動方式により、把手取付用耳部を溶接するための位置決め基準を簡単に設定できる上、該位置決め基準を無接触で精度よく確実に且つ容易に検出できる手段を提供することを目的としている。 In view of the above-described circumstances, the present invention can easily set a positioning reference for welding handle mounting ears by an automatic method with a small equipment cost burden in a can manufacturing system for a pail can with a handle by an automatic line. Another object of the present invention is to provide a means that can accurately and easily detect the positioning reference without contact.

上記目的を達成するための手段を図面の参照符号を付して示せば、請求項1の発明に係る製缶システムは、金属原板又はその加工物から、少なくともライン上流側より筒状フォーミング工程、シーム溶接工程、地板シーマー工程、イヤーウェルダー工程、ベロマチック工程を含む連続工程によってペール缶PCを製作する自動ラインにおいて、
前記シーム溶接工程の次に基準マーク塗付工程を加えると共に、前記イヤーウェルダー工程の手前に回転位置調整工程を設け、
前記筒状フォーミング工程で円形に曲成された帯板の両端部を、前記シーム溶接工程でシーム溶接して円筒状の缶胴部11を形成したのち、
前記基準マーク塗付工程において、シーム溶接部sを最下部として横向きに搬送されてくる該缶胴部11の頂部の所定位置に、インクジェットプリンター5によって略無色透明の蛍光インキを噴射して基準マークmを塗付し、
前記地板シーマー工程において逆立ち状態の該缶胴部11の下端に地板12を固着して缶本体1としたのち、
前記回転位置調整工程において逆立ち状態で搬送されてくる前記缶本体1を搬送路から持ち上げ、
一次調整として、持上げ状態の該缶本体1を周方向一方側へ回転させると共に、該缶本体の周面に定位置から紫外線を投射して蛍光発光した前記基準マークmを検出し、この検出時の向きから規定角度だけ回転続行して停止させることにより、該基準マークmが次の二次調整における紫外線照射位置の回転方向手前にくるように缶本体1の向きを設定し、
続いて二次調整として、一次調整よりも低速で該缶本体1を回転させると共に、該缶本体1の周面に定位置から紫外線を投射して蛍光発光した前記基準マークmを検出し、この検出時の向きから規定角度だけ回転続行して停止させることにより、該缶本体1を次のイヤーウェルダー工程における加工姿勢の向きに精密設定し、
前記イヤーウェルダー工程において、前記の設定した向きで搬入された該缶本体1の缶胴部11のシーム溶接部sの上部位置とその径方向対向位置とに把手取付用耳部13を溶接し、前記ベロマチック工程において該把手取付用耳部13に把手14を取り付けることを特徴としている。
If the means for achieving the above object is shown with reference numerals in the drawings, the can-making system according to the invention of claim 1 is a cylindrical forming step from at least the upstream side of the line from a metal original plate or a processed product thereof. In an automatic line that manufactures a pail can PC by a continuous process including a seam welding process, a ground plate seamer process, an ear welder process, and a velmatic process,
A reference mark application step is added next to the seam welding step, and a rotational position adjustment step is provided before the ear welder step.
After forming the cylindrical can body 11 by seam welding the both ends of the strip bent in a circular shape in the cylindrical forming step in the seam welding step,
In the reference mark coat-step, in a predetermined position of the top of the can body portion 11 which the seam weld s conveyed sideways as the bottom, by injecting fluorescent ink substantially colorless and transparent by the ink jet printer 5 reference Apply the mark m,
After fixing the base plate 12 to the lower end of the can body portion 11 in the inverted state in the base plate seamer process,
Lifting the can body 1 that is transported in an inverted state in the rotational position adjustment step from the transport path,
As a primary adjustment, the can body 1 in a lifted state is rotated to one side in the circumferential direction, and the reference mark m that emits fluorescence by projecting ultraviolet rays from a fixed position onto the peripheral surface of the can body is detected. The orientation of the can body 1 is set so that the reference mark m is positioned in front of the rotation direction of the ultraviolet irradiation position in the next secondary adjustment by continuing the rotation by a specified angle from the orientation and stopping.
Subsequently, as the secondary adjustment, the can body 1 is rotated at a lower speed than the primary adjustment, and the reference mark m that is fluorescently emitted by projecting ultraviolet rays from a fixed position on the peripheral surface of the can body 1 is detected. The can body 1 is precisely set to the orientation of the processing posture in the next ear welder process by continuing to rotate by a specified angle from the direction of detection and stopping.
In the ear welder process, the handle mounting ear 13 is welded to the upper position of the seam welded portion s of the can body 11 of the can body 1 carried in the set direction and the radially opposed position thereof, A handle 14 is attached to the handle mounting ear 13 in the velmatic process.

請求項2の発明は、上記請求項1又は2の製缶システムにおいて、前記回転位置調整工程における一次調整として、回転する缶本体に対して周方向に異なる二か所から紫外線を投射することにより、先に基準マークmを検出した缶本体1の向きから規定角度だけ該缶本体1を回転続行して停止させることを特徴としている。 The invention according to claim 2 is the can making system according to claim 1 or 2, wherein as the primary adjustment in the rotational position adjustment step, ultraviolet rays are projected from two different locations in the circumferential direction on the rotating can body 1 . Thus, the can body 1 is continuously rotated by a predetermined angle from the direction of the can body 1 where the reference mark m is previously detected, and is stopped.

請求項3の発明は、上記請求項1又は2の製缶システムにおいて、前記回転位置調整工程の一次調整において、検出した基準マークmが搬送方向Oに沿う径方向後端位置にくるように缶本体1を停止させ、次いで二次調整において該缶本体1を略1/4回転させることを特徴としている。 According to a third aspect of the present invention, in the can making system according to the first or second aspect, in the primary adjustment of the rotational position adjustment step, the detected reference mark m is positioned at the radial rear end position along the conveying direction O. The main body 1 is stopped, and then the can main body 1 is rotated approximately 1/4 in the secondary adjustment.

請求項4の発明は、上記請求項1〜3の何れかの製缶システムにおいて、前記回転位置調整工程は、前記一次調整を行う一次調整部P1と、前記二次調整を行う二次調整部P2とを有し、一次調整後の缶本体1を二次調整部P2へ移動させることを特徴としている。 The invention according to claim 4 is the can making system according to any one of claims 1 to 3, wherein the rotational position adjustment step includes a primary adjustment unit P1 that performs the primary adjustment and a secondary adjustment unit that performs the secondary adjustment. P2 and moving the can body 1 after the primary adjustment to the secondary adjustment portion P2.

次に、本発明の効果について、図面の参照符号を付して説明する。まず、請求項1の発明に係る製缶システムによれば、シーム溶接工程の次位の基準マーク塗付工程において、シーム溶接部sを最下部として横向きに搬送されてくる該缶胴部11の頂部の所定位置に、ジェットプリンター5によって略無色透明の蛍光インキを噴射して基準マークmを塗付し、イヤーウェルダー工程の手前の回転位置調整工程において、缶本体1に紫外光を照射して基準マークmを発光させて蛍光センサー7A〜7Cで検出し、この検出した基準マークmによって位置決めして、次のイヤーウェルダー工程において把手取付用耳部13の溶接を行うようにしている。この場合、基準マークmの検出を無接触で行えるので缶表面に傷が付く懸念がなく、しかも蛍光センサー7A〜7Cで蛍光発色を検出するから、該基準マークmが小さくても確実に容易に捉えることができると共に、缶胴部11の表面に種々の着色塗装が施されていても検出精度に影響を受けず、また基準マークmをインクジェットプリンター5によって塗付するから、缶表面に該基準マークmを小さなサイズで精度よく確実に表出でき、もって検出の位置精度を向上できる。更に、蛍光センサー、紫外線照射手段として、各別な専用仕様を必要とせず、普及型の市販品を利用できるから、設備コスト負担が少なくて済むという利点もある。また、蛍光インクが略無色透明であるから、基準マークmが肉眼では略不可視になり、もって該基準マークmの存在によって缶の意匠及び外観が損なわれる懸念もない。 Next, effects of the present invention will be described with reference numerals in the drawings. First, according to the can manufacturing system according to the first aspect of the present invention, in the fiducial mark application process next to the seam welding process , the can body part 11 conveyed sideways with the seam welded part s as the lowermost part. The reference mark m is applied by jetting a substantially colorless and transparent fluorescent ink by a jet printer 5 to a predetermined position on the top, and the can body 1 is irradiated with ultraviolet light in the rotational position adjustment process before the ear welder process. The reference mark m is emitted, detected by the fluorescent sensors 7A to 7C, and positioned by the detected reference mark m, and the handle mounting ear 13 is welded in the next ear welder process. In this case, since the detection of the reference mark m can be performed without contact, there is no fear of scratching the surface of the can, and the fluorescent color is detected by the fluorescent sensors 7A to 7C. In addition to being able to catch, even if various colored coatings are applied to the surface of the can body 11, the detection accuracy is not affected, and the reference mark m is applied by the ink jet printer 5, so that the reference is applied to the surface of the can. The mark m can be accurately and reliably expressed with a small size, and the position accuracy of detection can be improved. In addition, there is an advantage that the equipment cost burden can be reduced because a wide range of commercially available products can be used as fluorescent sensors and ultraviolet irradiation means without the need for separate dedicated specifications. Further, since the fluorescent ink is substantially colorless and transparent, the reference mark m is substantially invisible to the naked eye, and there is no concern that the design and appearance of the can may be impaired due to the presence of the reference mark m.

加えて、上記の回転位置調整工程では、逆立ち状態で搬送されてくる缶本体1を搬送路から持ち上げ、該缶本体1の回転による位置調整を一次調整と二次調整の二段階で行うことにより、高い位置精度を確保している。すなわち、一次調整では、持上げ状態の該缶本体1を周方向一方側へ回転させると共に、該缶本体の周面に定位置から紫外線を投射して蛍光発光した基準マークmを検出し、この検出時の向きから規定角度だけ回転続行して停止させることにより、該基準マークmが次の二次調整における紫外線照射位置の回転方向手前にくるように缶本体1の向きを設定し、続いて二次調整として、一次調整よりも低速で該缶本体1を回転させると共に、該缶本体1の周面に定位置から紫外線を投射して蛍光発光した基準マークmを検出し、この検出時の向きから規定角度だけ回転続行して停止させることにより、該缶本体1を次のイヤーウェルダー工程における加工姿勢の向きに精密設定している。In addition, in the rotational position adjustment step, the can body 1 conveyed in an upright state is lifted from the conveyance path, and the position adjustment by the rotation of the can body 1 is performed in two stages of primary adjustment and secondary adjustment. High position accuracy is ensured. That is, in the primary adjustment, the can body 1 in the lifted state is rotated to one side in the circumferential direction, and the reference mark m that emits fluorescence is detected by projecting ultraviolet rays from a fixed position onto the peripheral surface of the can body. The rotation of the can body 1 is set so that the reference mark m is positioned in front of the rotation direction of the ultraviolet irradiation position in the next secondary adjustment by continuing the rotation by a specified angle from the direction of time and stopping. As the next adjustment, the can body 1 is rotated at a lower speed than the primary adjustment, and the reference mark m that is emitted by irradiating ultraviolet rays from a fixed position onto the peripheral surface of the can body 1 to detect the fluorescence is emitted. The can body 1 is precisely set to the orientation of the processing posture in the next ear welder process by continuing the rotation by a predetermined angle and stopping.

請求項2の発明によれば、回転位置調整工程における一次調整として、回転する缶本体に対して周方向に異なる二か所から紫外線を投射することにより、先に基準マークmを検出した缶本体1の向きから規定角度だけ該缶本体1を回転続行して停止させるようにしているから、基準マークmの検出に要する缶本体1の回転量を少なくでき、それだけ回転位置調整の時間を短くして自動ラインの製作効率を高め得る。 According to the invention of claim 2, as a primary adjustment in the rotational position adjustment step, the can which has previously detected the reference mark m by projecting ultraviolet rays from two different places in the circumferential direction to the rotating can body 1 Since the can body 1 is continuously rotated by a predetermined angle from the direction of the main body 1 and stopped, the amount of rotation of the can body 1 required to detect the reference mark m can be reduced, and the rotation position adjustment time can be shortened accordingly. Thus, the production efficiency of the automatic line can be increased.

請求項3の発明によれば、回転位置調整工程の一次調整において、検出した基準マークmが搬送方向Oに沿う径方向後端位置にくるように缶本体1を停止させ、次いで二次調整において該缶本体1を略1/4回転させることから、より高い位置精度及び製作効率を確保できる。 According to the invention of claim 3, in the primary adjustment of the rotational position adjustment step, the can main body 1 is stopped so that the detected reference mark m comes to the radial rear end position along the transport direction O, and then in the secondary adjustment. Since the can body 1 is rotated approximately ¼, higher positional accuracy and manufacturing efficiency can be secured.

請求項4の発明によれば、回転位置調整工程において、一次調整部P1で一次調整した缶本体1を二次調整部P2へ移動させるから、同じ位置で一次調整及び二次調整を行う場合に比較して自動ラインの製作効率が向上する。 According to invention of Claim 4, in the rotation position adjustment process, since the can main body 1 which was primarily adjusted by the primary adjustment portion P1 is moved to the secondary adjustment portion P2, when primary adjustment and secondary adjustment are performed at the same position, Compared with this, the production efficiency of the automatic line is improved.

本発明の製缶システムを適用するペール缶の一例を示す斜視図である。It is a perspective view which shows an example of the pail can to which the can making system of this invention is applied. 本発明の一実施形態に係る製缶システムのフローチャートである。It is a flowchart of the can making system which concerns on one Embodiment of this invention. 同実施形態における基準マーク塗付工程を示す模式側面図である。It is a schematic side view which shows the reference mark application process in the embodiment. 同基準マーク塗付工程における塗付状況を示し、(a)は斜視図、(b)は縦断正面図である。The application | coating situation in the same fiducial mark application | coating process is shown, (a) is a perspective view, (b) is a vertical front view. 同実施形態における缶本体の回転位置調整工程を示す模式平面図である。It is a schematic plan view which shows the rotation position adjustment process of the can main body in the embodiment. 同位置調整における缶本体の回転操作を示し、(a)は横断平面図、(b)は縦断側面図である。The rotation operation of the can main body in the same position adjustment is shown, (a) is a transverse plan view, (b) is a longitudinal side view.

1で示すペール缶PCは、略円筒形の缶胴部11と缶底を構成する円板状の地板12とで鋼製の缶本体1が構成され、この缶本体1の上部外周の径方向両側に鋼製冠状の把手取付用耳部13が溶接され、両耳部13,13を介して、太い針金からなる弧状の把手14が上下回動自在に両端部で係着されており、また缶本体1の上端開口部に、ラグ天板2Aが周縁のラグ21─を介して着脱自在に嵌着されている。そして、缶本体1の缶胴部11は、金属平板を円形に曲成してシーム溶接したものであり、そのシーム溶接部s上に一方の耳部13が位置すると共に、上部側に外側へ膨出する上下2本の環状のビード11a,11bを有しており、その下側ビード11bよりも下位がテーパペール缶として僅かに下向きテーパになっている。 In the pail can PC shown in FIG. 1, a steel can body 1 is composed of a substantially cylindrical can body portion 11 and a disk-shaped base plate 12 constituting a can bottom. Steel crown-shaped handle mounting ears 13 are welded to both sides in the direction, and an arc-shaped handle 14 made of a thick wire is attached to both ends so as to be rotatable up and down via both ear portions 13, 13. In addition, a lug top plate 2A is detachably fitted to the upper end opening of the can body 1 through a peripheral lug 21-. The can body 11 of the can body 1 is formed by bending a metal flat plate into a circular shape and performing seam welding. One ear portion 13 is located on the seam welded portion s and outward on the upper side. It has two upper and lower annular beads 11a, 11b that bulge, and the lower part of the lower bead 11b is slightly tapered downward as a taper pail can.

この缶本体1を製作する自動ラインのフローチャートを図2に示すが、その各工程の内容は次の通りである。
シートフィーダー・・・略正方形の原板(鋼板)を搬送ラインに供給する。
スリッター・・・・・・原板を1/2に裁断して2枚の帯板にする。
筒状フォーミング・・・各帯板を円形に曲成する。
シーム溶接・・・・・・曲成された帯板の両端部を溶接して円筒状の缶胴部とする。
クリヤー塗装・・・・・シーム溶接部の外面側に錆止め塗装する。
エキスパンダー・・・・缶胴部の内径を広げてペール缶形態とする。
カール・ビーダー・・・上端周縁を外側へカールさせると共にビードを形成する。
フランジャー・・・・・下端周縁に外向きフランジ部を形成する。
地板シーマー・・・・・別ラインで製作した地板を缶胴部の下端に固着する。
イヤーウェルダー・・・缶胴部の径方向両側に把手取付用耳部を溶接する。
ロット付け・・・・・・ロット番号を含む表示事項を印字する。
乾式テスター・・・・・空気吹込みによって漏れの有無を検査する。
内面シーム吹付け・・・シーム溶接部の内面側に錆止め塗装する。
ベロマチック・・・・・把手取付用耳部に把手を取り付けて缶本体を完成する。
FIG. 2 shows a flowchart of an automatic line for manufacturing the can body 1, and the contents of each process are as follows.
Sheet feeder: A substantially square original plate (steel plate) is supplied to the conveyance line.
Slitter: Cut the original plate in half to make two strips.
Cylindrical forming ... Each strip is bent into a circle.
Seam welding ··· Weld both ends of the bent strip to make a cylindrical can body.
Clear coating: Apply rust prevention coating on the outer surface of the seam weld.
Expander: Expands the inner diameter of the can body to form a pail can.
Curl beader: curls the outer edge of the upper edge outward and forms a bead.
Flanger: An outward flange is formed around the lower edge.
Base plate seamer: A base plate manufactured in a separate line is fixed to the lower end of the can body.
Ear welder: Weld the handle mounting ears on both sides of the can body in the radial direction.
Lot marking ················································· Display the display item including the lot number.
Dry tester: Check for leaks by blowing air.
Inner surface seam spraying: Rust prevention coating on the inner surface of the seam weld.
Velomatic: Complete the can body by attaching the handle to the handle mounting ear.

本発明の製缶システムの第一実施形態では、この缶本体1を製作する自動ラインにおいて、シーム溶接工程とクリヤー塗装工程との間に、基準マーク塗付工程を介在させると共に、イヤーウェルダー工程の手前に回転位置調整工程を加える。   In the first embodiment of the can manufacturing system of the present invention, in the automatic line for manufacturing the can body 1, a fiducial mark application process is interposed between the seam welding process and the clear coating process, and an ear welder process is performed. A rotational position adjustment process is added to the front.

基準マーク塗付工程は、図3で示すように、ワークとしての缶胴部11がシーム溶接時の横向き状態のままで搬送される搬送路4に、インクジェットプリンター5が設置されると共に、そのプリンターヘッド5bの手前の側方に透過センサー6が配置し、また下方位置には透過センサー6からの検知信号に基づいてインクジェットプリンター5を作動制御するコントローラ60が設置されている。そして、プリンターヘッド5bは、搬送路4を跨ぐ門形のヘッド取付枠51を介して通過する缶胴部11の真上に配置している。5cは下方のプンター本体5aからプリンターヘッド5bへ蛍光インクを送給するインクチューブ、52は該インクチューブ5cを支持するチューブ支持枠、53は加工状況を表示するシグナルランプである。 As shown in FIG. 3 , the reference mark application process includes an inkjet printer 5 installed in a conveyance path 4 in which the can body 11 as a workpiece is conveyed in a sideways state during seam welding, and the printer A transmission sensor 6 is arranged on the side in front of the head 5b, and a controller 60 for controlling the operation of the ink jet printer 5 based on a detection signal from the transmission sensor 6 is installed at a lower position. The printer head 5 b is disposed immediately above the can body 11 that passes through a gate-shaped head mounting frame 51 that straddles the conveyance path 4. 5c is an ink tube for feeding fluorescent ink from the lower printer body 5a to the printer head 5b, 52 is a tube support frame for supporting the ink tube 5c, and 53 is a signal lamp for displaying the processing status.

この基準マーク塗付工程では、シーム溶接工程から搬送されてくる缶胴部11が透過センサー6の位置を通過した際、該透過センサー6から検知信号が出力され、この検知信号に基づいてコントローラ60よりインクジェットプリンター5の作動信号が発令され、プリンターヘッド5bから噴射された蛍光インクによって缶胴部11の頂部の所定位置に基準マークmが塗付される。しかして、図4(a)(b)で示すように、シーム溶接工程から搬送路4の搬送ローラ4aを介して横向き状態で搬送されてくる缶胴部11は、シーム溶接部sが最下部になっているため、その頂部に塗付される基準マークmがシーム溶接部sと径方向で対向することになる。なお、この塗付された基準マークmは、蛍光インクとして略無色透明のものを使用することにより、肉眼では略不可視の隠しマークとなる。
In the reference mark application process, when the can body 11 conveyed from the seam welding process passes the position of the transmission sensor 6, a detection signal is output from the transmission sensor 6, and the controller 60 is based on the detection signal. more actuation signal of the ink jet printer 5 is issued, the reference mark m is assigned coated by fluorescent ink ejected from the printer head 5b at a predetermined position of the top of the can body 11. Thus, as shown in FIGS. 4A and 4B, the seam welded portion s of the can body portion 11 conveyed in a lateral direction from the seam welding process via the conveying roller 4a of the conveying path 4 has the lowermost portion. Therefore, the reference mark m applied to the top portion of the seam weld portion s faces the seam weld portion s in the radial direction. The applied reference mark m becomes a substantially invisible hidden mark with the naked eye by using a substantially colorless and transparent fluorescent ink.

一方、回転位置調整工程では、地板シーマー工程から缶本体1が地板12側つまり底側を上にした逆立ち状態で搬送されてくるが、まず図5に示す一次調整部P1において、該缶本体1を搬送路4から持ち上げ、この持上げ状態で該缶本体1を周方向一方側(矢印a方向)に回転させると共に、紫外線投光部及び蛍光受光部を備える蛍光センサー7A,7Bにより、缶本体1の外周面に紫外線を投射し、蛍光発光した基準マークmを検出する。そして、該缶本体1を検出時の向きから規定角度だけ回転続行して停止させることにより、なお、図示のように、基準マークmが搬送方向Oに沿う径方向後端位置にくれば、当然に缶本体1のシーム溶接部sは同径方向の前端位置になる。 On the other hand, in the rotational position adjustment process, the can main body 1 is conveyed from the main plate seamer process in an inverted state with the main plate 12 side, that is, the bottom side up . First, in the primary adjustment portion P1 shown in FIG. The can body 1 is lifted from the conveyance path 4, and the can body 1 is rotated to one side in the circumferential direction (arrow a direction) in this lifted state, and the can body 1 is provided by the fluorescence sensors 7A and 7B including the ultraviolet light projecting section and the fluorescence light receiving section. A reference mark m that emits fluorescence is detected by projecting ultraviolet rays onto the outer peripheral surface of the lens. And, if the reference mark m comes to the rear end position in the radial direction along the conveying direction O as shown in the figure, by continuing to rotate the can body 1 by a specified angle from the direction at the time of detection and stopping it, of course, Further, the seam welded portion s of the can body 1 is at the front end position in the same radial direction.

この図5の例では、一次調整部P1の両蛍光センサー7A,7Bの投受光軸71,72は共に缶本体1の軸心に向いているが、缶本体1の回転方向aを基準として、蛍光センサー7Aの投受光軸71の搬送方向Oに対する角度αは50°、蛍光センサー7Bの投受光軸72は同角度βは130°に各々設定されている。この場合、一次調整部P1に到達した缶本体1の基準マークmが例えば図示のm1の位置にあれば、該缶本体1の回転によって先に蛍光センサー7Aにて検出されるから、その検出時から該缶本体1が130°回転して停止し、もって該基準マークmが搬送方向Oに沿う径方向後端位置に来る。また、同じく到達した缶本体1の基準マークmが例えば図示のm2の位置にあれば、先に蛍光センサー7Bにて検出されるから、その検出時から該缶本体1が410°回転して停止し、もって該基準マークmが同様に径方向後端位置に来る。 In the example of FIG. 5, the light projecting / receiving shafts 71 and 72 of both fluorescent sensors 7A and 7B of the primary adjustment unit P1 are both oriented toward the axis of the can body 1, but the rotation direction a of the can body 1 is used as a reference. The angle α of the fluorescent sensor 7A with respect to the conveying direction O of the light projecting / receiving shaft 71 is set to 50 °, and the light transmitting / receiving shaft 72 of the fluorescent sensor 7B is set to 130 °. In this case, if the reference mark m of the can body 1 that has reached the primary adjustment portion P1 is at the position of m1 shown in the drawing, for example, the fluorescence sensor 7A detects the rotation of the can body 1 first. The can body 1 is rotated by 130 ° and stopped, so that the reference mark m comes to the radial rear end position along the transport direction O. Similarly, if the reference mark m of the reached can body 1 is at, for example, the position of m2 shown in the drawing, it is detected by the fluorescent sensor 7B first. Accordingly, the reference mark m is similarly positioned at the radial rear end position.

なお、蛍光センサー7Bによる検出時から缶本体1を50°の回転で停止させても、基準マークmは同様に径方向後端位置に来る筈であるが、停止までの回転量が少な過ぎて急停止する形になるため、慣性力で停止位置がずれ易くなる。また、一次調整部P1の蛍光センサーが1基のみでも同様に基準マークmの検出と回転位置調整を行えるが、例えば蛍光センサー7Aのみである場合、到達した缶本体1の基準マークmがm2の位置であれば、その検出までに該缶本体1が略1回転する必要があり、それだけ回転位置調整に時間を要して自動ラインの製作効率が低下することになる。よって、製作効率面より2基の蛍光センサー7A,7Bを配置することが望ましいが、例示において両蛍光センサー7A,7Bを位相差を80°で配置しているのは、一次調整部P1に到達する缶本体1の基準マークmの位置変動が、通常は蛍光センサー7Aの投受光軸71の±数10°の角度範囲に納まることによる。無論、基準マークmの位置変動が大きければ、それに応じて両蛍光センサー7A,7Bを位相差を大きく取ればよく、該基準マークmが全周にわたってばらつくようであれば、両蛍光センサー7A,7Bを径方向両側(180°の位相差)に配置することが推奨される。 Even if the can body 1 is stopped by rotation of 50 ° from the detection by the fluorescent sensor 7B, the reference mark m should be at the rear end position in the radial direction as well, but the rotation amount until the stop is too small. Since it suddenly stops, the stop position is easily shifted by inertial force. Further, even if only one fluorescent sensor of the primary adjustment unit P1 is used, the detection of the reference mark m and the rotational position adjustment can be performed in the same manner. For example, when only the fluorescent sensor 7A is used, the reference mark m of the reached can body 1 is m2. If it is a position, the can main body 1 needs to make approximately one rotation before the detection, so that it takes time to adjust the rotation position and the production efficiency of the automatic line is lowered. Therefore, it is desirable to arrange the two fluorescent sensors 7A and 7B from the viewpoint of production efficiency, but in the example, both fluorescent sensors 7A and 7B are arranged with a phase difference of 80 ° to reach the primary adjustment unit P1. This is because the positional fluctuation of the reference mark m of the can main body 1 is normally within an angular range of ± several tens of the light projecting / receiving shaft 71 of the fluorescent sensor 7A. Of course, if the position variation of the reference mark m is large, the phase difference of both fluorescent sensors 7A and 7B may be increased accordingly, and if the reference mark m varies over the entire circumference, both fluorescent sensors 7A and 7B. Is recommended to be placed on both sides in the radial direction (180 ° phase difference).

図5で例示する回転位置調整工程にあっては、一次調整部P1で回転位置調整した缶本体1を二次調整部P2で更に略1/4回転させることにより、次のイヤーウェルダー工程における加工姿勢(搬送路4の幅方向両側からイヤー溶接)の向きに設定する。そして、この二次調整部P2において、一次調整部P1と同様に缶本体1を搬送路4から持ち上げた状態で周方向一方側(矢印a方向)に回転させるが、やはり紫外線投光部及び蛍光受光部を備える蛍光センサー7Cにより、該缶本体1の外周面に紫外線を投射して蛍光発光した基準マークmを検出し、該缶本体1を検出時の向きから規定角度だけ回転続行して停止させることにより、基準マークmとシーム溶接部sとが精密に搬送路4の幅方向Qに沿う径方向両側に来るように微調整する。すなわち、一次調整部P1から二次調整部P2へ移動する間に缶本体1の向きが多少変化する可能性もあるため、二次調整部P2では、該缶本体1を単に90°回転させるのではなく、この回転操作で前記移動に伴う向きの変化も修正する。 In the rotational position adjustment process illustrated in FIG. 5 , the can main body 1 whose rotational position is adjusted by the primary adjustment part P1 is further rotated approximately 1/4 by the secondary adjustment part P2, thereby processing in the next ear welder process. The orientation is set to the orientation (ear welding from both sides in the width direction of the conveyance path 4). And in this secondary adjustment part P2, the can main body 1 is rotated in the circumferential direction one side (arrow a direction) in the state where it lifted from the conveyance path 4 similarly to the primary adjustment part P1. The fluorescent sensor 7C having a light receiving unit detects the reference mark m that is emitted by projecting ultraviolet rays onto the outer peripheral surface of the can body 1, and continues to rotate the can body 1 by a specified angle from the direction of detection and stops. By doing so, the fine adjustment is made so that the reference mark m and the seam welded portion s are precisely located on both sides in the radial direction along the width direction Q of the conveyance path 4. That is, the direction of the can body 1 may change slightly while moving from the primary adjustment section P1 to the secondary adjustment section P2. Therefore, the secondary adjustment section P2 simply rotates the can body 1 by 90 °. Rather, this rotational operation corrects the change in orientation accompanying the movement.

しかして、二次調整部P2における蛍光センサー7Cの投受光軸73は搬送路4の幅方向Qに対する角度γが−20°で缶本体1の軸心に向いており、低速で回転する缶本体1の基準マークmを検出すると、その検出時から該缶本体1を20°の回転で停止させ、もって基準マークmとシーム溶接部sとが精密に搬送路4の幅方向Qに沿う径方向両側に来るようにしている。なお、この二次調整部P2における缶本体1の回転は低速に設定するため、停止までの回転量が小さくとも高い停止位置精度を確保できる。かくして二次調整部P2で精密に向きを設定した缶本体1は、その回転姿勢でチャックされてイヤーウェルダー工程に搬入される。   Thus, the light projecting / receiving shaft 73 of the fluorescent sensor 7C in the secondary adjustment section P2 is oriented at the axis of the can body 1 at an angle γ of −20 ° with respect to the width direction Q of the transport path 4 and can rotate at a low speed. When one reference mark m is detected, the can body 1 is stopped by rotation of 20 ° from the time of detection, so that the reference mark m and the seam welded portion s are precisely in the radial direction along the width direction Q of the conveyance path 4. I try to come to both sides. In addition, since rotation of the can main body 1 in this secondary adjustment part P2 is set to low speed, even if the rotation amount until a stop is small, high stop position accuracy can be ensured. Thus, the can body 1 whose direction is precisely set by the secondary adjustment unit P2 is chucked in the rotational posture and carried into the ear welder process.

回転位置調整工程の一次及び二次調整部P1,P2における缶本体1の回転操作は、図6(a)(b)で示すように、まず逆立ち状態で搬入された缶本体1を、その下方に配置した複数個(図では4個)の周方向回転自在な昇降コーン81を上昇させることにより、各昇降コーン81のフランジ部81aで上端周縁11c(逆立ちで下端に配置)を支承して持ち上げる。そして、この持上げ状態の缶本体1の上端周縁11cと上側ビード11aとの間の外周部を、径方向両側から駆動ローラ82とバックアップローラ83との間で挟み付けると共に、上方に配置した昇降式缶押え9を降下させ、その台板90の下面側に周方向に等配して取り付けられた複数個(図では4個)の遊転ローラー91を、缶本体1の下端(逆立ちで上端に配置)の突周縁部12aに転接させ、この状態で駆動ローラ82を回転駆動して当該缶本体1を回転させる。そして、駆動ローラ82は、蛍光センサー7A〜7Cによって缶本体1の基準マークmが検出されると、図示を省略した制御装置を介して、検出時点から蛍光センサー7A〜7C毎の規定回転量で停止する。なお、缶本体1は、その回転開始から停止に至るまで、昇降コーン81によって芯振れが防止されると共に、昇降式缶押え9によって上方への跳ね上がりが防止されることにより、安定した回転状態に保持される。 As shown in FIGS. 6 (a) and 6 (b), the rotating operation of the can body 1 in the primary and secondary adjusting portions P1 and P2 of the rotational position adjusting process is performed by first moving the can body 1 carried in an upside down state. A plurality of (four in the figure) circumferentially rotatable lifting cones 81 arranged in the vertical direction are lifted by supporting and lifting the upper peripheral edge 11c (arranged at the lower end by handstand) by the flange portions 81a of the lifting cones 81. . And the outer peripheral part between the upper end peripheral edge 11c of the can body 1 in the lifted state and the upper bead 11a is sandwiched between the driving roller 82 and the backup roller 83 from both sides in the radial direction, and the lifting type disposed above. The can retainer 9 is lowered, and a plurality (four in the figure) of idle rollers 91 attached to the lower surface side of the base plate 90 in the circumferential direction are attached to the lower end of the can main body 1 (the upper end is turned upside down). In this state, the drive roller 82 is rotationally driven to rotate the can body 1. Then, when the reference mark m of the can body 1 is detected by the fluorescent sensors 7A to 7C, the driving roller 82 has a predetermined rotation amount for each of the fluorescent sensors 7A to 7C from the detection point through a control device (not shown). Stop. In addition, the can body 1 is in a stable rotation state from the start to the stop of the rotation, by preventing the core swing from being caused by the elevating cone 81 and by preventing the upper can lift 9 from jumping upward. Retained.

記実施形態では、ペール缶PCの缶本体1を製作する自動ラインにおいて、缶本体1(缶胴部11)の送り姿勢が、シーム溶接時の横向き状態からエキスパンダー以降の逆立ち状態に転換し、且つ回転方向の向きが中間の各加工を経る間に様々に変動して一定しないが、イヤーウェルダーに入る前に基準マークmを利用して缶本体1の回転位置を精密に調整できるから、イヤーウェルダーにおいて把手取付用耳部13をシーム溶接部sとその径方向対向位置とに正確に溶接でき、もって把手の取付位置にバラツキのない缶本体1を安定的に提供できる。また、該基準マークmの検出を無接触で行えるので缶表面に傷が付く懸念がなく、しかも蛍光センサー7A〜7Cで蛍光発色を検出するから、該基準マークmが小さくても確実に容易に捉えることができると共に、缶胴部11の表面に通常施される種々の着色塗装による検出精度の低下もなく、またインクジェットプリンター5によって基準マークmを小さなサイズで精度よく確実に表出でき、もって検出の位置精度をより高めることができる。 Above you facilities embodiment, the automatic line for fabricating a can body 1 of the pail PC, feeding posture of the can body 1 (the can body 11), converted from landscape state when seam welding headstand state after the expander And, since the direction of the rotation direction varies variously during each intermediate processing, it is not constant, but the rotational position of the can body 1 can be precisely adjusted using the reference mark m before entering the ear welder. In the ear welder, the handle mounting ear 13 can be accurately welded to the seam welded portion s and its radially opposing position, and the can body 1 having no variation in the handle mounting position can be stably provided. Further, since the reference mark m can be detected without contact, there is no fear of scratching the surface of the can, and since the fluorescent color is detected by the fluorescence sensors 7A to 7C, the reference mark m is surely easily even if the reference mark m is small. It can be captured and there is no decrease in detection accuracy due to various colored coatings usually applied to the surface of the can body 11, and the reference mark m can be accurately and reliably expressed in a small size by the ink jet printer 5. The position accuracy of detection can be further increased.

缶本体
11 缶胴部
13 把手取付用耳部
14 把手
5 インクジェットプリンター
7A〜7C 蛍光センサー
PC ペール缶
m 基準マーク
s シーム溶接部
1 can of body 11 can body 13 for bail ears 14 handle 5 inkjet printer 7A~7C fluorescence sensor PC pail m reference marks s seam weld

Claims (4)

金属原板又はその加工物から、少なくともライン上流側より筒状フォーミング工程、シーム溶接工程、地板シーマー工程、イヤーウェルダー工程、ベロマチック工程を含む連続工程によってペール缶を製作する自動ラインにおいて、
前記シーム溶接工程の次に基準マーク塗付工程を加えると共に、前記イヤーウェルダー工程の手前に回転位置調整工程を設け、
前記筒状フォーミング工程で円形に曲成された帯板の両端部を、前記シーム溶接工程でシーム溶接して円筒状の缶胴部を形成したのち、
前記基準マーク塗付工程において、シーム溶接部を最下部として横向きに搬送されてくる該缶胴部の頂部の所定位置に、インクジェットプリンターによって略無色透明の蛍光インキを噴射して基準マークを塗付し、
前記地板シーマー工程において逆立ち状態の該缶胴部の下端に地板を固着して缶本体としたのち、
前記回転位置調整工程において逆立ち状態で搬送されてくる前記缶本体を搬送路から持ち上げ、
一次調整として、持上げ状態の該缶本体を周方向一方側へ回転させると共に、該缶本体の周面に定位置から紫外線を投射して蛍光発光した前記基準マークを検出し、この検出時の向きから規定角度だけ回転続行して停止させることにより、該基準マークが次の二次調整における紫外線照射位置の回転方向手前にくるように缶本体の向きを設定し、
続いて二次調整として、一次調整よりも低速で該缶本体を回転させると共に、該缶本体の周面に定位置から紫外線を投射して蛍光発光した前記基準マークを検出し、この検出時の向きから規定角度だけ回転続行して停止させることにより、該缶本体を次のイヤーウェルダー工程における加工姿勢の向きに精密設定し、
前記イヤーウェルダー工程において、前記の設定した向きで搬入された該缶本体の缶胴部のシーム溶接部の上部位置とその径方向対向位置とに把手取付用耳部を溶接し、前記ベロマチック工程において該把手取付用耳部に把手を取り付けることを特徴とする製缶システム。
In an automatic line that manufactures a pail can from a metal original plate or a processed product thereof by a continuous process including at least a tubular forming process, a seam welding process, a ground plate seamer process, an ear welder process, and a velmatic process from the upstream side of the line,
A reference mark application step is added next to the seam welding step, and a rotational position adjustment step is provided before the ear welder step.
After forming the cylindrical can body part by seam welding the both ends of the strip bent in the cylindrical forming process in the seam welding process,
In the reference mark coat-step, the seam weld at a predetermined position of the top of the can barrel which is conveyed sideways as the bottom, coating the reference mark by injecting fluorescent ink substantially colorless and transparent by the ink jet printer Attached,
After fixing the base plate to the lower end of the can body portion in the inverted state in the base plate seamer process,
Lift the can body that is conveyed in an inverted state in the rotational position adjustment step from the conveyance path,
As a primary adjustment, the can body in a lifted state is rotated to one side in the circumferential direction, and the reference mark that emits fluorescent light by projecting ultraviolet rays from a fixed position on the peripheral surface of the can body is detected, and the direction at the time of detection is detected. By continuing the rotation from the specified angle and stopping it, the orientation of the can body is set so that the reference mark comes before the rotation direction of the ultraviolet irradiation position in the next secondary adjustment,
Subsequently, as a secondary adjustment, the can body is rotated at a lower speed than the primary adjustment, and the reference mark that emits fluorescence by projecting ultraviolet rays from a fixed position onto the peripheral surface of the can body is detected. By continuing to rotate by a specified angle from the direction and stopping, the can body is precisely set to the orientation of the processing posture in the next ear welder process,
In the ear welder process, the handle mounting ears are welded to the upper position of the seam welded portion of the can body portion of the can body carried in the set direction and the radially opposed position, A can manufacturing system, wherein a handle is attached to the handle mounting ear.
前記回転位置調整工程における一次調整として、回転する缶本体に対して周方向に異なる二か所から紫外線を投射することにより、先に基準マークを検出した缶本体の向きから規定角度だけ該缶本体を回転続行して停止させることを特徴とする請求項1に記載の製缶システム。 As a primary adjustment in the rotational position adjustment step, the can body is projected by a specified angle from the direction of the can body that previously detected the reference mark by projecting ultraviolet rays from two different locations in the circumferential direction to the rotating can body. The can-making system according to claim 1, wherein the rotation is stopped by continuing the rotation . 前記回転位置調整工程の一次調整において、検出した基準マークが搬送方向に沿う径方向後端位置にくるように缶本体を停止させ、次いで二次調整において該缶本体を略1/4回転させることを特徴とする請求項1又は2に記載の製缶システム。 In the primary adjustment of the rotational position adjusting process, the can body is stopped so that the detected reference mark is positioned at the radial rear end position along the transport direction, and then the can body is rotated approximately ¼ in the secondary adjustment. The can-making system according to claim 1 or 2. 前記回転位置調整工程は、前記一次調整を行う一次調整部と、前記二次調整を行う二次調整部とを有し、一次調整後の缶本体を二次調整部へ移動させることを特徴とする請求項1〜3のいずれかに記載の製缶システム。 The rotational position adjustment step includes a primary adjustment unit that performs the primary adjustment, and a secondary adjustment unit that performs the secondary adjustment, and moves the can body after the primary adjustment to the secondary adjustment unit. The can-making system according to any one of claims 1 to 3.
JP2009142364A 2009-06-15 2009-06-15 Can making system Active JP5385021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142364A JP5385021B2 (en) 2009-06-15 2009-06-15 Can making system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142364A JP5385021B2 (en) 2009-06-15 2009-06-15 Can making system

Publications (2)

Publication Number Publication Date
JP2010285205A JP2010285205A (en) 2010-12-24
JP5385021B2 true JP5385021B2 (en) 2014-01-08

Family

ID=43541234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142364A Active JP5385021B2 (en) 2009-06-15 2009-06-15 Can making system

Country Status (1)

Country Link
JP (1) JP5385021B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027981A (en) * 2011-07-26 2013-02-07 Ricoh Co Ltd Image forming apparatus, and image forming method
JP5661210B2 (en) * 2014-02-25 2015-01-28 株式会社ジャパンペール Vine orientation device
JP6381271B2 (en) * 2014-04-25 2018-08-29 三菱電機株式会社 Sheet metal structure manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258680A (en) * 1975-11-10 1977-05-14 Kawatetsu Kontenaa Kk Method and device for producing square can
JPS53149488A (en) * 1977-05-31 1978-12-26 Fuji Kogyosho Kk Method of and device for forming rectangular thin plate can
JPS5968603A (en) * 1982-10-14 1984-04-18 Maakutetsuku:Kk Method and device for detecting and following up weld line of welded steel pipe
JPS59187206A (en) * 1983-04-08 1984-10-24 Nippon Steel Corp Method for detecting welded position of seam welded pipe
JPH02311703A (en) * 1989-05-26 1990-12-27 Mazda Motor Corp Position detecting method
JPH08193828A (en) * 1995-01-11 1996-07-30 Sankyo Numazu Kk Method for measuring velocity/moving amount of one-dimensionally moving object
JPH09300080A (en) * 1996-05-16 1997-11-25 Mitsuba Seisakusho:Kk Seam position deciding device
JP4775424B2 (en) * 2008-09-26 2011-09-21 東洋製罐株式会社 Can barrel processing method

Also Published As

Publication number Publication date
JP2010285205A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP3218234U (en) Product processing equipment including units for detecting defective products
JP5385021B2 (en) Can making system
EP2969288B1 (en) Apparatus for inspecting a metallic bottle
EP3313592B1 (en) Spiral forming
JP6223447B2 (en) Embossing flat metal blanks (methods, instruments and objects)
CN202097486U (en) Automatic girth welder for soldering slit between printing roller and end cap
CN102218586B (en) Full-automatic circular welding machine for welding gap between roller and plug
JP6027105B2 (en) Cylindrical film body fitting apparatus and method
EP3336201B1 (en) Gluing machine
JP7031106B2 (en) Tire inner surface shape measuring device and tire inner surface shape measuring method
JP4743051B2 (en) APPARATUS AND METHOD FOR TAPEING TERMINAL OF COIL OF SHEET
CN113039130B (en) Printing system
KR101286512B1 (en) Automatic projection welding apparatus
JP5398875B2 (en) Roll base paper positioning device
KR20180063482A (en) Manufacturing device of inner ring for coil packaging
JP2012137404A (en) Flatness measuring device and flatness measuring method
JP2007040866A (en) Inspection device and inspection method
KR101189302B1 (en) Detecting apparatus for welding part using reflecting light
EP2647290B1 (en) Assembly and method for orienting a dough piece
JP4034075B2 (en) Insulated container manufacturing equipment
WO2021153715A1 (en) Detection device
JP6299267B2 (en) Tab plate cutting device and tab plate cutting method
JP5503470B2 (en) Mark spotting method and mark spotting apparatus
JP2009014694A (en) Adhesive application omission inspecting apparatus
JP5661210B2 (en) Vine orientation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131003

R150 Certificate of patent or registration of utility model

Ref document number: 5385021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250