JP2010281258A - 蒸発燃料処理装置 - Google Patents

蒸発燃料処理装置 Download PDF

Info

Publication number
JP2010281258A
JP2010281258A JP2009135231A JP2009135231A JP2010281258A JP 2010281258 A JP2010281258 A JP 2010281258A JP 2009135231 A JP2009135231 A JP 2009135231A JP 2009135231 A JP2009135231 A JP 2009135231A JP 2010281258 A JP2010281258 A JP 2010281258A
Authority
JP
Japan
Prior art keywords
valve
fuel
canister
amount
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009135231A
Other languages
English (en)
Other versions
JP5232079B2 (ja
Inventor
Naoya Takagi
直也 高木
Yoshikazu Miyabe
善和 宮部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Toyota Motor Corp
Original Assignee
Aisan Industry Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd, Toyota Motor Corp filed Critical Aisan Industry Co Ltd
Priority to JP2009135231A priority Critical patent/JP5232079B2/ja
Publication of JP2010281258A publication Critical patent/JP2010281258A/ja
Application granted granted Critical
Publication of JP5232079B2 publication Critical patent/JP5232079B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

【課題】封鎖弁の開弁に伴う蒸発燃料の大気への漏れを抑制する。
【解決手段】蒸発燃料処理装置は、内燃機関(200)の燃料を貯留する燃料タンク(300)で生じる蒸発燃料を吸着可能なキャニスタ(400)と、燃料タンクとキャニスタとを連通させる蒸発燃料通路(360)と、蒸発燃料通路に設けられ、蒸発燃料通路を開閉可能な電磁弁である封鎖弁(381)と、燃料タンク内の圧力を特定する特定手段(345)と、燃料タンク内の圧力が所定の基準圧力以上である場合には、燃料タンク内の圧力が所定の目標圧力まで低下するように、且つ、燃料タンクからキャニスタへ単位時間当たりに流入する蒸発燃料の流入量がキャニスタの単位時間当たりに吸着可能な瞬間吸着可能量を超えないように、少なくとも特定手段によって特定される圧力に基づいて封鎖弁を開閉制御する封鎖弁制御手段(120)とを備える。
【選択図】図1

Description

本発明は、蒸発燃料を処理するための蒸発燃料処理装置の技術分野に関する。
内燃機関の燃料タンクで発生する蒸発燃料を処理するための蒸発燃料処理装置として、活性炭等の吸着材を収容したキャニスタを燃料タンクに接続する装置が知られている。このような装置では、キャニスタと燃料タンクとを連通させる通路に、燃料タンクを密閉するための封鎖弁が設けられる場合がある(例えば特許文献1から3参照)。
例えば、特許文献1には、封鎖弁の開度を調整することで蒸発燃料の流速を調整することにより、効率的な蒸発燃料の処理を可能とする技術が開示されている。特許文献2には、給油の際にポンプによりキャニスタ内の圧力を低下させることで、給油作業を早期に開始可能とする技術が開示されている。特許文献3には、内燃機関の作動中に、燃料タンク内の圧力が大気圧近傍となるように封鎖弁を開閉制御することにより、給油の際に発生する待ち時間を短縮する技術が開示されている。
特開2008−184910号公報 特開2006−299994号公報 特開2004−156496号公報
上述したような封鎖弁を備える蒸発燃料処理装置では、封鎖弁が閉弁されている期間中に、燃料タンク内での蒸発燃料の発生により燃料タンク内の圧力が高まり、燃料タンク内とキャニスタ内との圧力差が拡大している。このため、封鎖弁が開弁された際、キャニスタが単位時間に吸着可能な蒸発燃料よりも多量の蒸発燃料が単位時間に燃料タンクからキャニスタへ流入してしまい(つまり、キャニスタの単位時間あたりの吸着能力を超える多量の蒸発燃料が瞬間的に燃料タンクからキャニスタへ流入してしまい)、蒸発燃料がキャニスタの大気口から大気へ漏れ出てしまうおそれがあるという技術的問題点がある。
本発明は、例えば上述した問題点に鑑みなされたものであり、封鎖弁の開弁に伴う蒸発燃料の大気への漏れを抑制可能な蒸発燃料処理装置を提供することを課題とする。
本発明の蒸発燃料処理装置は上記課題を解決するために、内燃機関の燃料を貯留する燃料タンクで生じる蒸発燃料を吸着可能なキャニスタと、前記燃料タンクと前記キャニスタとを連通させる蒸発燃料通路と、前記蒸発燃料通路に設けられ、前記蒸発燃料通路を開閉可能な電磁弁である封鎖弁と、前記燃料タンク内の圧力を特定する特定手段と、前記燃料タンク内の圧力が所定の基準圧力以上である場合には、前記燃料タンク内の圧力が所定の目標圧力まで低下するように、且つ、前記燃料タンクから前記キャニスタへ単位時間当たりに流入する前記蒸発燃料の流入量が前記キャニスタの単位時間当たりに吸着可能な瞬間吸着可能量を超えないように、少なくとも前記特定手段によって特定される圧力に基づいて前記封鎖弁を開閉制御する封鎖弁制御手段とを備える。
本発明の蒸発燃料処理装置によれば、蒸発燃料通路に設けられた封鎖弁によって燃料タンクを密閉可能であり、燃料タンクと共に、いわゆる密閉燃料タンクシステムを構成する。本発明の蒸発燃料処理装置の動作時には、特定手段によって燃料タンク内の圧力(以下、「タンク内圧」と適宜称する)が特定される。尚、本発明に係る「特定」とは、検出、算出、推定、同定、導出、選択及び取得等、最終的に制御上参照し得る情報として真偽の程度はともかく確定させることを包括する概念であって、そのためのプロセスは、如何様にも限定されない趣旨である。例えば、特定手段は、圧力センサ等の各種検出手段であってもよいし、当該各種検出手段から検出結果としてタンク内圧を電気信号等として取得し得る手段であってもよいし、予めタンク内圧との対応関係が実験的、経験的若しくは理論的に又はシミュレーションにより既知である他の指標値、物理量或いは制御量に基づいて、例えばマップ等から該当する値を選択することにより或いは例えば各種演算処理を施すこと等により推定する手段であってもよい。
本発明では特に、封鎖弁制御手段は、タンク内圧が所定の基準圧力以上である場合には、燃料タンク内の圧力が所定の目標圧力まで低下するように、且つ、燃料タンクからキャニスタへ単位時間当たりに流入する蒸発燃料の流入量がキャニスタの単位時間当たりに吸着可能な瞬間吸着可能量を超えないように、少なくとも特定手段によって特定される圧力に基づいて封鎖弁を開閉制御する。例えば、封鎖弁制御手段は、特定手段によって特定されるタンク内圧が所定の基準圧力以上となった場合には、タンク内圧が低下して所定の目標圧力となるまで、封鎖弁が間欠的に所定の基準開弁期間ずつ開弁状態となるように封鎖弁を開閉制御する。つまり、封鎖弁制御手段は、タンク内圧が所定の基準圧力以上となった場合には、燃料タンク内の蒸発燃料をキャニスタに流入させて蒸発燃料をキャニスタに吸着させるために、封鎖弁が開弁状態となるように封鎖弁を制御するが、この際、封鎖弁が間欠的に所定の基準開弁期間ずつ開弁状態となるように封鎖弁を開閉制御する。
よって、キャニスタの瞬間吸着可能量を越えた蒸発燃料が燃料タンクからキャニスタへ流入することを抑制或いは防止でき、キャニスタに流入した蒸発燃料がキャニスタの大気口から大気へ漏れ出てしまうことを抑制或いは防止できる。更に、キャニスタに流入する蒸発燃料がキャニスタの瞬間吸着可能量を超えないので、キャニスタに収容された活性炭等の吸着材に蒸発燃料を効率的に或いは概ね均一に吸着させることができ、キャニスタの吸着材が部分的に偏って劣化してしまうことを低減或いは防止できる。
本発明の蒸発燃料処理装置の一態様では、前記封鎖弁制御手段は、前記封鎖弁が間欠的に開弁状態となるように、前記封鎖弁を開閉制御する。
この態様によれば、タンク内圧が所定の基準圧力以上となった場合には、封鎖弁は、間欠的に所定の基準開弁期間ずつ開弁状態となるように封鎖弁制御手段によって開閉制御される。尚、所定の基準開弁期間は、例えば、封鎖弁が開弁状態となったときに燃料タンクからキャニスタへ単位時間に流入する蒸発燃料の流入量がキャニスタの瞬間吸着可能量を超えないような期間として、実験的、経験的若しくは理論的に又はシミュレーションにより設定される。
よって、キャニスタに流入した蒸発燃料がキャニスタの大気口から大気へ漏れ出てしまうことを確実に抑制或いは防止できる。
上述した封鎖弁制御手段が、封鎖弁が間欠的に開弁状態となるように、封鎖弁を開閉制御する態様では、前記内燃機関の吸気通路と前記キャニスタとを連通させるパージ通路と、前記パージ通路に設けられ、前記パージ通路を開閉可能なパージ制御弁と、前記封鎖弁制御手段によって前記封鎖弁が間欠的に開弁状態とされる開弁期間毎に前記キャニスタに吸着される前記蒸発燃料の吸着量を算出すると共に、該算出した開弁期間毎の吸着量を積算することにより、前記キャニスタに吸着されている前記蒸発燃料の総吸着量を算出する算出手段と、前記算出手段によって算出される総吸着量が所定の吸着限界量に到達した場合には、前記内燃機関が始動するように前記内燃機関を制御すると共に、前記パージ制御弁が開弁状態となるように前記パージ制御弁を制御するパージ制御手段とを更に備えてもよい。
この構成によれば、封鎖弁が間欠的に開弁状態とされる開弁期間毎に、この開弁期間においてキャニスタに吸着される蒸発燃料の吸着量とキャニスタに吸着されている蒸発燃料の総吸着量とが算出手段によって算出され、この算出された総吸着量が所定の吸着限界量に到達した場合には、パージ制御手段によって内燃機関が始動されると共にパージ制御弁が開弁状態とされることでパージ処理が実行される。よって、キャニスタに流入した蒸発燃料がキャニスタの大気口から大気へ漏れ出てしまうことをより確実に抑制或いは防止できる。尚、所定の吸着限界量は、例えば、パージ処理を実行すべき蒸発燃料の総吸着量として、実験的、経験的若しくは理論的に又はシミュレーションにより、キャニスタが吸着可能な蒸発燃料の総量に基づいて設定される。
上述した封鎖弁制御手段が、封鎖弁が間欠的に開弁状態となるように、封鎖弁を開閉制御する態様では、前記封鎖弁制御手段は、前記封鎖弁を間欠的に開弁状態とする開弁期間を、前記燃料タンク内の燃料の燃料性状に応じて変更してもよい。
この構成によれば、例えば、夏場に燃料タンク内に、夏場用の燃料(即ち、夏燃料)よりも揮発性の高い(即ち、蒸発し易い)冬場用の燃料(即ち、冬燃料)が貯留されている場合には、封鎖弁制御手段は、封鎖弁を間欠的に開弁状態とする開弁期間を、夏場に燃料タンク内に夏燃料が貯留されている場合における開弁期間よりも短くする。よって、キャニスタの瞬間吸着可能量を越えた蒸発燃料が燃料タンクからキャニスタへ流入することをより確実に抑制或いは防止できる。従って、キャニスタに流入した蒸発燃料がキャニスタの大気口から大気へ漏れ出てしまうことをより確実に抑制或いは防止できる。尚、本発明に係る「燃料性状」とは、燃料の蒸発し易さ(即ち、揮発性)の度合いを意味する。
本発明の作用及び他の利得は次に説明する発明を実施するための形態から明らかにされる。
第1実施形態に係る蒸発燃料処理装置を備えた車両の模式図である。 第1実施形態における封鎖弁の開閉制御の流れを示すフローチャートである。 第1実施形態における吸着量の算出の流れを主に示すフローチャートである。 第1実施形態におけるパージ処理の実行の制御の流れを示すフローチャートである。 キャニスタに吸着されている蒸発燃料の吸着量とパージ量との関係を示すグラフである。 封鎖弁の開閉制御が開始された後のタンク内圧及びキャニスタに吸着されている蒸発燃料の総吸着量の経時的な変化を示すグラフである。 給油量とキャニスタに吸着される蒸発燃料の吸着量との関係を示すグラフである。 第2実施形態に係る蒸発燃料処理装置を備えた車両の模式図である。 第2実施形態における封鎖弁の開閉制御の流れを示すフローチャートである。 封鎖弁開弁期間が所定の基準開弁期間βに設定された場合における、封鎖弁の開閉制御が開始された後のタンク内圧及びキャニスタに吸着されている蒸発燃料の総吸着量の経時的な変化を示すグラフである。 給油量とキャニスタに吸着される蒸発燃料の吸着量との関係を、燃料タンク内の燃料が冬燃料である場合と夏燃料である場合とを対比して示すグラフである。 第3実施形態における封鎖弁の開閉制御を説明するためのグラフである。
以下では、本発明の実施形態について図を参照しつつ説明する。
<第1実施形態>
第1実施形態に係る蒸発燃料処理装置について、図1から図7を参照して説明する。
先ず、本実施形態に係る蒸発燃料処理装置を備えた車両の全体構成について、図1を参照して説明する。
図1は、本実施形態に係る蒸発燃料処理装置を備えた車両の模式図である。
図1において、本実施形態に係る蒸発燃料処理装置を備えた車両10は、エンジン200、モータジェネレータ600、燃料タンク300、キャニスタ400及びECU100を備えている。
車両10は、エンジン200と、電動機及び発電機として機能するモータジェネレータ600とを走行用の駆動源として搭載した、いわゆるパラレル型のハイブリッド車両として構成されている。エンジン200とモータジェネレータ600とは、図示しない動力伝達機構を介して互いに接続されている。車両10は、エンジン200及びモータジェネレータ600の両方の駆動力により走行するHV(hybrid Vehicle)走行と、エンジン200が停止され、モータジェネレータ600のみの駆動力により走行するEV(Electric Vehicle)走行とを選択的に行うことが可能に構成されている。尚、車両10は、エンジン200のみを駆動源とする車両であってもよい。
エンジン200は、本発明に係る「内燃機関」の一例であり、車両10の駆動源の一つとして機能するように構成された、ガソリンを燃料とするガソリンエンジンである。エンジン200は、そのシリンダ内部で燃料と吸入空気(即ち、外界から導かれる空気)との混合気を燃焼させると共に、爆発力に応じて生じる内部のピストン運動を回転運動に変換することで車両10を駆動可能に構成されている。尚、エンジン200は、ガソリンエンジンに限られず、軽油を燃料とするディーゼルエンジン又はアルコールとガソリンとの混合燃料を使用可能なバイフューエルエンジン等であってもよい。
エンジン200には、そのシリンダ内部に外界から吸入空気を導くための吸気通路210が設けられている。この吸気通路210には、エアクリーナ220が配設されており、外界から吸入される空気が浄化される。吸気通路210におけるエアクリーナ220の下流側(シリンダ側)には、シリンダ内部への吸入空気量を調節するスロットルバルブ212が配設されている。エンジン200では、吸気通路210によって外部から吸入された吸入空気と、燃料噴射装置であるインジェクタ214から噴射された燃料とが混合され(即ち、混合気を形成し)、この混合気が燃焼される。
燃料タンク300は、エンジン200の燃料を貯留するための燃料タンクである。燃料タンク300には、燃料タンク300内に燃料を供給するためのパイプであるインレットパイプ310が設けられている。インレットパイプ310の給油口311には、フューエルキャップ312が着脱可能に取り付けられている。インレットパイプ310の給油口311と反対側の端部には、燃料タンク300内の燃料がインレットパイプ310を逆流し燃料タンク300から給油口311側に流れることを防止する、逆止弁313が設けられている。インレットパイプ310の給油口311の近傍には、ベントライン320が接続されている。ベントライン320は、給油時に、燃料タンク300内の蒸発燃料をインレットパイプ310の給油口311付近まで戻し、大気が給油口11から燃料タンク300内に入り込む量を低減するために設けられている。
燃料タンク300内には、フューエルポンプ330及び残量センサ340が配設されている。フューエルポンプ330は、燃料タンク300内に貯留された燃料を吸い上げることが可能に構成されたポンプ装置である。フューエルポンプ330には、エンジン200のインジェクタ214に至るフィードパイプ350が連結されており、フューエルポンプ330によって吸い上げられた燃料は、フィードパイプ350を介してインジェクタ214に供給される。残量センサ340は、フロート式の液面高センサであり、燃料タンク300における燃料の残量(以下、「燃料残量」と適宜称する)を数値化して検出することが可能に構成されている。残量センサ340は、後述するECU100と電気的に接続されている。残量センサ340によって検出された燃料残量は、ECU100により一定又は不定の周期で参照される。
燃料タンク300の上部には、後述するキャニスタ400と燃料タンク300内の燃料液面上部空間とを連通させる、本発明に係る「蒸発燃料通路」の一例であるエバポライン360が接続されている。エバポライン360と燃料タンク300との接続部には、ORVRバルブ(Onboard refueling vapor recovery valve)371及びCOV(Cut Off Valve)372が設けられている。ORVRバルブ371は、給油時の液面上昇により閉弁し、エバポライン360と燃料タンク300との連通を遮断するように構成されている。また、ORVRバルブ371は、車両転倒時等においてもエバポライン360と燃料タンク300との連通を遮断する構成となっており、エバポライン360を介して燃料タンク300内の燃料が外部に漏洩しない構成となっている。COV372は、ORVRバルブ371と並列配置されており、ORVRバルブ371よりも更に液面が上昇した場合にエバポライン360と燃料タンク300との連通を遮断するように構成されている。COV372は、給油時の液面上昇に際しては、ORVRバルブ372の閉弁後も開弁状態を維持するが、車両旋回による液面の動揺等により液面がCOV372まで到達する場合には閉弁し、エバポライン360と燃料タンク300との連通を遮断するように構成されており、エバポライン360を介して燃料タンク300内の燃料が外部に漏洩しない構成となっている。
燃料タンク300の上面には、本発明に係る「特定手段」の一例である圧力センサ345が設けられている。圧力センサ345は、燃料タンク300内の圧力(即ち、タンク内圧)を検出可能に構成された圧力センサである。圧力センサ345は、ECU100と電気的に接続されている。圧力センサ345によって検出されたタンク内圧は、ECU100により一定又は不定の周期で参照される。
燃料タンク300の下面には、燃料温度センサ346が設けられている。燃料温度センサ346は、燃料タンク300内の燃料の温度(以下、「燃料温度」と適宜称する)を検出可能に構成された温度センサである。燃料温度センサ346は、ECU100と電気的に接続されている。燃料温度センサ346によって検出された燃料温度は、ECU100により一定又は不定の周期で参照される。
エバポライン360には、弁部材380が設けられている。弁部材380は、エバポライン360に設けられた封鎖弁381と、エバポライン360に対して封鎖弁381を迂回するように設けられた迂回通路389と、迂回通路389に設けられたメカ弁382とを有している。
封鎖弁381は、開閉動作によりエバポライン360を開閉可能に構成された電磁弁である。封鎖弁381が閉弁状態である場合には、エバポライン360は閉じられ(即ち、封鎖され)、燃料タンク300とキャニスタ400との連通が遮断される。封鎖弁381が開弁状態である場合には、エバポライン360は開かれ(即ち、開放され)、燃料タンク300とキャニスタ400とが連通する。封鎖弁381は、ECU100と電気的に接続されており、その開閉動作がECU100(より具体的には、後述する封鎖弁制御部120)により制御される。
メカ弁382は、ECU100に接続されておらず、迂回通路389における当該メカ弁382より燃料タンク300側の圧力が所定の開弁圧以上のときに開弁するように構成されている。
キャニスタ400は、その内部に、燃料タンク300内で発生する蒸発燃料(即ち、ベーパ)を吸着保持可能な活性炭等の吸着材410を備えた吸着装置である。キャニスタ400は、上述したエバポライン360、大気連通管420及びパージ用配管430の三種類の配管に接続されている。
大気連通管420は、車両10の車外空間(言い換えれば、大気)とキャニスタ400とを連通する管状部材である。大気連通管420は、後述するパージコントロールバルブ440が閉弁し且つ上述した封鎖弁381が開弁している場合には、エバポライン360を介してキャニスタ400に流入するガスのうち吸着材410による蒸発燃料の吸着後に残留する清浄な空気を車外へ導くと共に、パージコントロールバルブ440が開弁し且つ封鎖弁3381が閉弁している場合には、車外から外気をキャニスタ400に導くように構成されている。
パージ用配管430は、本発明に係る「パージ通路」の一例であり、一端部がキャニスタ400の下方に接続され、他端部が吸気通路210におけるスロットルバルブ212の下流側に接続された、パージガスの通路である。
ここで、「パージガス」とは、大気連通管420を介して適宜導かれる外気と吸着材410に吸着保持された蒸発燃料との混合体(即ち、蒸発燃料の吸着量がゼロであれば、外気そのもの)である。このようなパージガスは、エンジン200の稼働時に、パージ用配管430を介して吸気通路210に供給され、パージガスに含まれる蒸発燃料がエンジン200での燃焼に供される。尚、以下では、このように、キャニスタ400に吸着された蒸発燃料をエンジン200での燃焼に供する一連の処理を「パージ処理」と適宜称する。
パージ用配管430には、VSV(Vacuum Switching Valve)であるパージコントロールバルブ440が設けられている。パージコントロールバルブ440は、本発明に係る「パージ制御弁」の一例である。パージコントロールバルブ440の弁体は、エンジン200の非稼動時には、パージコントロールバルブ440の上流側と下流側(この場合の上流側及び下流側とは、パージガスの流れ方向を基準とした方向概念であって、上流側はキャニスタ440側を意味し、下流側は吸気通路210側を意味する)との連通を遮断する遮断位置で停止するようにコイルバネ等の弾性体により付勢されている。一方、エンジン200が稼動状態にある場合、吸気通路210には主として吸気行程において負圧が形成される。この負圧によって、VSVたるパージコントロールバルブ440の弁体位置は、上記遮断位置から変化し、パージコントロールバルブ440の上流側と下流側とが連通する。その結果、エンジン負圧により大気連通管420を介して外気が導かれ、また係る外気が、パージ用配管430へ到達する途上において吸着材410に保持された蒸発燃料と適宜混合されることによって、上述したパージガスとしてパージ用配管430を介して吸気通路210へ供給される。パージコントロールバルブ440は、ECU100と電気的に接続されており、その開閉動作がECU100(より具体的には、後述するパージ制御部130)により制御される。尚、パージコントロールバルブ440は、本実施形態ではVSVとして構成されるが、その構成はVSVに限定されない。パージコントロールバルブ440は、例えば、電磁アクチュエータ等により駆動される弁体を備えた電磁制御式の弁装置として構成されてもよい。
ECU100は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を備え、車両10の動作全体を制御することが可能に構成された電子制御ユニットである。
本実施形態では特に、ECU100は、吸着量算出部110、封鎖弁制御部120及びパージ制御部130を有している。
吸着量算出部110は、後述する封鎖弁制御部120によって封鎖弁381が間欠的に開弁状態とされる開弁期間(以下、「封鎖弁開弁期間」と適宜称する)毎にキャニスタ400(より具体的には、その吸着材410)に吸着される蒸発燃料の吸着量を算出すると共に、この算出した封鎖弁開弁期間毎の吸着量を積算することにより、キャニスタ400に吸着されている蒸発燃料の総吸着量を算出することが可能に構成されている。
より具体的には、吸着量算出部110は、先ず、燃料温度センサ346によって検出される燃料温度と、残量センサ340によって検出される燃料残量と、圧力センサ345によって検出されるタンク内圧と、燃料タンク300内の空間の容積(即ち、燃料タンク300内の容積のうち燃料残量が占める容積を除く容積。以下、「空間容積」と適宜称する)とに基づいて燃料タンク300内における蒸発燃料の濃度(以下、「蒸発燃料濃度」と適宜称する)を算出する。次に、吸着量算出部110は、この算出した蒸発燃料濃度に基づいて、封鎖弁開弁期間に燃料タンク300からキャニスタ400へ流入する単位時間当たりの蒸発燃料の流入量(即ち、流量)を算出する。次に、吸着量算出部110は、この算出した流量と封鎖弁開弁期間の長さとに基づいて、封鎖弁開弁期間にキャニスタ400に吸着される蒸発燃料の吸着量を算出する。吸着量算出部110は、このように封鎖弁開弁期間毎に算出する蒸発燃料の吸着量を積算することによりキャニスタ400に吸着されている蒸発燃料の総吸着量を算出する。尚、以下では、吸着量算出部110によって封鎖弁開弁期間毎の吸着量が積算されることにより算出された、キャニスタ400に吸着されている蒸発燃料の総吸着量に相当する値を「吸着量積算値」と適宜称する。
封鎖弁制御部120は、封鎖弁381を開閉制御することが可能に構成されている。封鎖弁制御部120は、タンク内圧が所定の基準圧力以上である場合には、タンク内圧が所定の目標圧力まで低下するように、且つ、燃料タンク300からキャニスタ400へ単位時間当たりに流入する蒸発燃料の流入量がキャニスタ400の単位時間当たりに吸着可能な瞬間吸着可能量を超えないように、封鎖弁381を開閉制御する。この際、封鎖弁制御部120は、封鎖弁381が間欠的に開弁状態となるように、封鎖弁381を開閉制御する。封鎖弁制御部120は、少なくとも圧力センサ345によって検出されるタンク内圧に基づいて、封鎖弁381を開閉制御する。
パージ制御部130は、上述したパージ処理の実行を制御することが可能に構成されている。具体的には、パージ制御部130は、上述した吸着量算出部110によって算出される蒸発燃料の総吸着量(即ち、吸着量積算値)が所定の吸着限界量に到達した場合には、パージ処理が実行されるように、エンジン200及びパージコントロールバルブ440を制御する。即ち、パージ制御部130は、吸着量算出部110によって算出される吸着量積算値が所定の吸着限界量に到達した場合には、エンジン200が始動するようにエンジン200を制御すると共に、パージコントロールバルブ440が開弁状態となるようにパージコントロールバルブ440を制御する。
次に、本実施形態に係る蒸発燃料処理装置の動作について、図1に加えて図2から図7を参照して説明する。
先ず、本実施形態に係る蒸発燃料処理装置における封鎖弁の開閉制御について、図1及び図2を参照して説明する。
図2は、本実施形態における封鎖弁の開閉制御の流れを示すフローチャートである。
図2において、先ず、車両10がEV走行中であるか否かがECU100によって判定される(ステップS100)。
EV走行中でないと判定された場合には(ステップS100:No)、その後の動作処理は行われずに終了する。即ち、封鎖弁381は、封鎖弁制御部120によって閉弁状態とされたままにされる。
一方、EV走行中であると判定された場合には(ステップS100:Yes)、タンク内圧力が所定の基準圧力A[kPa]以上であるか否かがECU100によって判定される(ステップS110)。
タンク内圧が所定の基準圧力A以上でない(即ち、タンク内圧が所定の基準圧力A未満である)と判定された場合には(ステップS110:No)、その後の動作処理は行われずに終了する。即ち、封鎖弁381は、封鎖弁制御部120によって閉弁状態とされたままにされる。
一方、タンク内圧が所定の基準圧力A以上であると判定された場合には(ステップS110:Yes)、ECU100によって吸着量算出実行フラグがON(オン)状態とされる(ステップS120)。ここで、吸着量算出実行フラグは、ECU100の吸着量算出部110による吸着量の算出を実行するか否かを示すフラグであり、吸着量算出実行フラグがON状態である場合には、吸着量算出部110による吸着量の算出が実行され、吸着量算出実行フラグがOFF(オフ)状態である場合には、吸着量算出部110による吸着量の算出が実行されない。尚、吸着量算出部110による吸着量の算出については、後に図3を参照して説明する。
次に、ECU100によって封鎖弁駆動フラグがON状態とされる(ステップS130)。ここで、封鎖弁駆動フラグは、ECU100の封鎖弁制御部120による封鎖弁381の開閉制御を行うか否かを示すフラグであり、封鎖弁駆動フラグがON状態である場合には、封鎖弁制御部120による封鎖弁381の開閉制御が行われ、封鎖弁駆動フラグがOFF状態である場合には、封鎖弁制御部120による封鎖弁381の開閉制御が行われずに、封鎖弁381は封鎖弁制御部120によって閉弁状態とされたままにされる。
封鎖弁駆動フラグがON状態とされる(ステップS130)と、封鎖弁制御部120による封鎖弁381の開閉制御が開始される(ステップS140)。即ち、封鎖弁制御部120は、封鎖弁381を作動させ、閉弁状態であった封鎖弁381を開弁状態とする。
次に、封鎖弁開弁期間が所定の基準開弁期間α[秒]以上であるか否かが封鎖弁制御部120によって判定される(ステップS150)。即ち、閉弁状態であった封鎖弁381が開弁状態となってから所定の基準開弁期間αが経過したか否かが封鎖弁制御部120によって判定される。
封鎖弁開弁期間が所定の基準開弁期間α以上でない(即ち、封鎖弁開弁期間が所定の開弁期間α未満である)と判定された場合には(ステップS150:No)、再びステップS130に係る動作処理がECU100によって行われる。
一方、封鎖弁開弁期間が所定の基準開弁期間α以上であると判定された場合には(ステップS150:Yes)、封鎖弁制御部120は、開弁状態である封鎖弁381を再び閉弁状態とした後に、タンク内圧が所定の目標圧力B[kPa]以下、又は吸着量積算値Dが所定の吸着限界量X以上であるか否かを判定する(ステップS160)。
タンク内圧が所定の目標圧力B以下、又は吸着量積算値Dが所定の吸着限界量X以上でない(即ち、タンク内圧が所定の目標圧力Bよりも大きく、且つ、吸着積算値Dが所定の吸着限界量よりも小さい)と判定された場合には(ステップS160:No)。再びステップS130に係る動作処理がECU100によって行われる。即ち、封鎖弁制御部120による封鎖弁381の開閉制御が継続される。つまり、封鎖弁制御部120は、タンク内圧が所定の目標圧力B以下、又は吸着量積算値Dが所定の吸着限界量X以上となるまで(言い換えれば、タンク内圧が所定の目標圧力Bよりも大きく、且つ、吸着積算値Dが所定の吸着限界量よりも小さい期間中には)、封鎖弁381が間欠的に所定の基準開弁期間αずつ開弁状態となるように、封鎖弁381を開閉制御する。
一方、タンク内圧が所定の目標圧力B以下、又は吸着量積算値Dが所定の吸着限界量X以上であると判定された場合には(ステップS160:Yes)、ECU100によって吸着量算出実行フラグがOFF状態とされ、吸着量算出部110による吸着量の算出が終了する(ステップS170)。続いて、ECU100によって封鎖弁駆動フラグがOFF状態とされ(ステップS180)、封鎖弁制御部120による封鎖弁381の開閉制御が停止される(ステップS190)。尚、この際、封鎖弁381は閉弁状態とされる。
次に、吸着量算出部110による吸着量の算出、及びパージ制御部130によるパージ処理の実行の制御について、図3及び図4を参照して説明する。
図3は、吸着量算出部110による吸着量の算出の流れを主に示すフローチャートである。
図3において、上述した吸着量算出実行フラグがON状態であるか否かが吸着量算出部110によって判定される(ステップ200)。
吸着量算出実行フラグがON状態でない(即ち、OFF状態である)と判定された場合には(ステップS200:No)、吸着量算出部110による吸着量の算出は実行されない。
一方、吸着量算出実行フラグがON状態であると判定された場合には(ステップS200:Yes)、吸着量算出部110による吸着量の算出が開始され、先ず、燃料残量が測定される(ステップS210)。即ち、残量センサ340によって検出される燃料残量が、吸着量算出部110によって参照される。
続いて、燃料タンク300内の燃料温度が測定される(ステップS220)。即ち、燃料温度センサ346によって検出される燃料温度が、吸着量算出部110によって参照される。
次に、燃料タンク300内における蒸発燃料濃度が、吸着量算出部110によって算出される(ステップS230)。
次に、封鎖弁開弁期間における蒸発燃料の流量(即ち、燃料タンク300からキャニスタ400へ流入する単位時間当たりの蒸発燃料の流入量)が、吸着量算出部110によって算出される(ステップS240)。
次に、封鎖弁開弁期間における蒸発燃料の吸着量が吸着量算出部110によって算出される(ステップS250)。即ち、吸着量算出部110は、ステップS240に係る動作処理によって算出した流量と封鎖弁開弁期間の長さ(言い換えれば所定の基準開弁期間αの長さ)とに基づいて、封鎖弁開弁期間にキャニスタ400に吸着される蒸発燃料の吸着量を算出する。この際、吸着量算出部110は、このように封鎖弁開弁期間毎に算出する蒸発燃料の吸着量を積算することにより吸着量積算値Dを算出する。
次に、吸着量積算値Dが吸着限界量X以上であるか否かがECU100によって判定される(ステップS260)。ここで、吸着限界量Xは、パージ処理を実行すべき蒸発燃料の総吸着量として予め設定された量であり、実験的、経験的若しくは理論的に又はシミュレーションにより、キャニスタが吸着可能な蒸発燃料の総量に基づいて設定される。
吸着量積算値Dが吸着限界量X以上であると判定された場合には(ステップS260:Yes)、吸着限界量判定フラグがECU100によってON状態とされる(ステップS270)。ここで、吸着限界量判定フラグは、キャニスタ400に吸着されている蒸発燃料の吸着量が吸着限界量X以上であるか否か、言い換えれば、パージ制御部130によるパージ処理を実行するか否かを示すフラグであり、吸着限界量判定フラグがON状態である場合には、パージ制御部130によるパージ処理が実行され、吸着限界量判定フラグがOFF状態である場合には、パージ制御部130によるパージ処理が実行されない。
一方、吸着量積算値Dが吸着限界量X以上でない(即ち、吸着量積算値Dが吸着限界量X未満である)場合には(ステップS260:No)、吸着限界量判定フラグは、ON状態とされず、OFF状態のままとされる(即ち、パージ制御部130によるパージ処理は実行されない)。
図4は、パージ制御部130によるパージ処理の実行の制御の流れを示すフローチャートである。
図4において、先ず、上述した吸着限界量判定フラグがON状態であるか否かがパージ制御部130によって判定される(ステップS300)。
吸着限界量判定フラグがON状態でない(即ち、OFF状態である)と判定された場合には(ステップS300:No)、パージ制御部130によるパージ処理は実行されない。
一方、吸着限界量判定フラグがON状態であると判定された場合には(ステップS300:Yes)、エンジン200がパージ制御部130によって始動される(ステップS310)。即ち、パージ制御部130は、エンジン200が始動するように、エンジン200を制御する。つまり、車両10がEV走行中であり、エンジン200が停止している場合において、吸着限界量判定フラグがON状態であると判定されたときには、パージ処理の実行のために、エンジン200がパージ制御部130によって始動される。
次に、パージ制御部130によってパージ処理が実行される(ステップS320)。即ち、パージ制御部130は、閉弁状態であったパージコントロールバルブ440が開弁状態となるように、パージコントロールバルブ440を制御する。これにより、パージ処理が実行される。
次に、パージ量Qp[L(リットル)]が必要パージ量C[L]以上であるか否かがパージ制御部130によって判定される(ステップS330)。ここで、パージ量Qpは、パージ処理の実行によってキャニスタ400から脱離してエンジン200での燃焼に供される蒸発燃料の量である。パージ量Qpは、パージ処理が実行される時間が長いほど多くなる。必要パージ量Cは、キャニスタ400に吸着されている蒸発燃料の吸着量が所定の吸着限界量X以上である場合に、パージ処理によってキャニスタ400から脱離させるべき最小限度の蒸発燃料の量として予め定められた量である。
図5は、キャニスタ400に吸着されている蒸発燃料の吸着量とパージ量との関係を示すグラフである。
図5において、パージ量Qpの増加に伴ってキャニスタ400に吸着されている蒸発燃料の吸着量は減少する。パージ量Qpが必要パージ量C以上である場合には、キャニスタ400に吸着されている蒸発燃料の吸着量は殆ど或いは実践上は完全にゼロとなる。言い換えれば、必要パージ量Cは、キャニスタ400に吸着されている蒸発燃料の吸着量は殆ど或いは実践上は完全にゼロとなるパージ量として予め定めることができる。
再び図4において、パージ量Qpが必要パージ量C以上であると判定された場合には(ステップS330:Yes)、パージ制御部130によるパージ処理が終了する(ステップS340)。即ち、パージ制御部130によって、パージコントロールバルブ440が閉弁状態とされると共にエンジン200が停止される。つまり、パージ制御部130は、パージコントロールバルブ440が閉弁状態となるように、パージコントロールバルブ440を制御すると共に、エンジン200が停止するように、エンジン200を制御する。
一方、パージ量Qpが必要パージ量C以上でない(即ち、必要パージ量C未満である)と判定された場合には(ステップS330:No)、パージ制御部130によるパージ処理は終了されず、継続される。つまり、パージ制御部130によるパージ処理は、パージ量Qpが必要パージ量C以上になるまで継続される。
パージ制御部130によるパージ処理が終了された(ステップS340)後には、吸着限界量判定フラグがECU100によってOFF状態とされる(ステップS350)。
次に、図2を参照して上述した封鎖弁の開閉制御、及び図3を参照して上述した吸着量の算出について、図6を参照して説明を加える。
図6は、封鎖弁の開閉制御が開始された後のタンク内圧及びキャニスタ400に吸着されている蒸発燃料の総吸着量の経時的な変化を示すグラフである。尚、図6に示すグラフの横軸は、封鎖弁の開閉制御が開始された時点からの時間である。
図6において、実線L1は、封鎖弁381の開閉制御が開始された後のタンク内圧の経時的な変化を示し、実線L2は、封鎖弁381の開閉制御が開始された後のキャニスタ400に吸着されている蒸発燃料の総吸着量の経時的な変化を示している。尚、一点鎖線R1は、比較例として、タンク内圧が所定の基準圧力Aとなったときに封鎖弁381が開弁状態とされ、そのまま維持される場合のタンク内圧の経時的な変化を示している。一点鎖線R2は、比較例として、タンク内圧が所定の基準圧力Aとなったときに封鎖弁381が開弁状態とされ、そのまま維持される場合のキャニスタ400に吸着されている蒸発燃料の吸着量の経時的な変化を示している。
図6において、タンク内圧が所定の基準圧力Aとなった場合(実線L1上の点m1参照)には、封鎖弁381の開閉制御が開始される。即ち、図2を参照して上述したように、本実施形態では特に、タンク内圧が所定の基準圧力A以上である場合には、封鎖弁制御部120は、タンク内圧が所定の目標圧力B以下、又は吸着量積算値Dが所定の吸着限界量X以上となるまで(言い換えれば、タンク内圧が所定の目標圧力Bよりも大きく、且つ、吸着積算値Dが所定の吸着限界量よりも小さい期間中には)、封鎖弁381が間欠的に所定の基準開弁期間αずつ開弁状態となるように、封鎖弁381を開閉制御する。
即ち、封鎖弁381の開閉制御が開始されると、封鎖弁381は、先ず、所定の基準開弁期間αだけ開弁状態とされ(この開弁状態とされる期間を「第1開弁期間To1」と適宜呼ぶ)、続く第1閉弁期間Tc1だけ閉弁状態とされ、続く所定の基準開弁期間αだけ開弁状態とされ(この開弁状態とされる期間を「第2開弁期間To2」と適宜呼ぶ)、続く第2閉弁期間Tc2だけ閉弁状態とされ、続く所定の基準閉弁期間αだけ開弁状態とされ(この開弁状態とされる期間を「第3開弁期間To3」と適宜呼ぶ)、続く第3閉弁期間Tc3だけ閉弁状態とされ、続く所定の基準開弁期間αだけ開弁状態とされる(この開弁状態とされる期間を「第4開弁期間To4」と適宜呼ぶ)。
実線L1に示されるように、第1開弁期間To1では、封鎖弁381が開弁状態となることにより、タンク内圧が所定の基準圧力Aから圧力P1まで低下し、第1閉弁期間Tc1では、封鎖弁381が閉弁状態となることによりタンク内圧が圧力P1から圧力P2まで増加し、第2開弁期間To2では、封鎖弁381が開弁状態となることにより、タンク内圧が圧力P2から圧力P3まで減少する。その後、同様に、タンク内圧は封鎖弁381の開閉制御に応じて増減を繰り返しつつ低下し、第4開弁期間To4の後には、タンク内圧は目標圧力Bとなる(実線L1上の点m2参照)。
このように、本実施形態では特に、封鎖弁制御部120は、タンク内圧が所定の基準圧力A以上である場合において、燃料タンク300からキャニスタ400へ蒸発燃料を流入させるために封鎖弁381を開弁状態とする際、封鎖弁381が間欠的に所定の基準開弁期間αずつ開弁状態となるように、封鎖弁381を開閉制御するので、燃料タンク300からキャニスタ400へ単位時間当たりに流入する蒸発燃料の流入量がキャニスタ400の瞬間吸着可能量(即ち、キャニスタ400が単位時間当たりに吸着可能な蒸発燃料の量)を超えてしまうのを抑制或いは防止できる。よって、燃料タンク300からキャニスタ400に流入した蒸発燃料がキャニスタ400の大気口である大気連通路420を介して大気へ漏れ出てしまうことを抑制或いは防止できる。
更に、このように、封鎖弁381が間欠的に所定の基準開弁期間αずつ開弁状態となるように封鎖弁制御部120によって開閉制御されることにより、例えばタンク内圧が所定の目標圧力となるまで封鎖弁381が開弁状態とされ続ける場合と比較してキャニスタ400に少量ずつの蒸発燃料が流入するので、キャニスタ400の吸着材410に蒸発燃料を効率的に或いは概ね均一に吸着させることができ、吸着材410が部分的に偏って劣化してしまうのを低減或いは防止できる。
図6において、実線L2に示すように、封鎖弁381が開弁状態とされる第1開弁期間To1、第2開弁期間To2、第3開弁期間To3及び第4開弁期間To4の各々において、燃料タンク300からキャニスタ400へ蒸発燃料が流入し、この流入した蒸発燃料がキャニスタ400に吸着される。一方、封鎖弁381が閉弁状態とされる期間には、燃料タンク300からキャニスタ400へ蒸発燃料が流入しないので、キャニスタ400に蒸発燃料が吸着されない。
本実施形態では特に、図1及び図3を参照して上述したように、吸着量算出部110は、封鎖弁開弁期間毎に吸着量を算出し、この算出した吸着量を積算することにより、キャニスタ400に吸着されている蒸発燃料の総吸着量としての吸着量積算値Dを算出する。図6に示す例では、吸着量算出部110は、第2開弁期間To2の終了時点では、第1開弁期間To1においてキャニスタ400に吸着される蒸発燃料の吸着量b1及び第2開弁期間To2においてキャニスタ400に吸着される蒸発燃料の吸着量b2を積算することにより吸着量積算値Dを算出する。吸着量算出部110は、第3開弁期間To3の終了時点では、第1開弁期間To1においてキャニスタ400に吸着される蒸発燃料の吸着量b1、第2開弁期間To2においてキャニスタ400に吸着される蒸発燃料の吸着量b2及び第3開弁期間To3においてキャニスタ400に吸着される蒸発燃料の吸着量b3を積算することにより吸着量積算値Dを算出する。吸着量算出部110は、第4開弁期間To4の終了時点では、第1開弁期間To1においてキャニスタ400に吸着される蒸発燃料の吸着量b1、第2開弁期間To2においてキャニスタ400に吸着される蒸発燃料の吸着量b2、第3開弁期間To3においてキャニスタ400に吸着される蒸発燃料の吸着量b3及び第4開弁期間To4においてキャニスタ400に吸着される蒸発燃料の吸着量b4を積算することにより吸着量積算値Dを算出する。
つまり、例えば、第4開弁期間To4の終了時点では、吸着量算出部110は、吸着量積算値D=吸着量b1+吸着量b2+吸着量b3+吸着量b4を、キャニスタ400に吸着されている蒸発燃料の総吸着量として算出する。
よって、封鎖弁開弁期間毎(図6の例では、第1開弁期間To1、第2開弁期間To2、第3開弁期間To3及び第4開弁期間To4毎)に、キャニスタ400に吸着されている蒸発燃料の総吸着量としての吸着量積算値Dをパージ制御部130が参照することができる。
尚、吸着量算出部110は、給油が行われた場合にキャニスタ400に吸着される蒸発燃料の吸着量(以下、「給油時吸着量」と適宜呼ぶ)を、封鎖弁開弁期間毎の吸着量に積算するように構成されてもよい。即ち、給油が行われることによりタンク内圧が所定の開弁圧以上となり図1を参照して上述したメカ弁382が開弁状態となることで、燃料タンク300からキャニスタ400にメカ弁382を介して蒸発燃料が流入してキャニスタ400に吸着された給油時吸着量Eを吸着量積算値Dに含めるようにしてもよい。つまり、例えば、上述した第4開弁期間To4の終了時点では、吸着量算出部110は、吸着量積算値D=吸着量b1+吸着量b2+吸着量b3+吸着量b4+給油時吸着量Eを、キャニスタ400に吸着されている蒸発燃料の総吸着量として算出してもよい。
図7は、給油量とキャニスタ400に吸着される蒸発燃料の吸着量との関係を示すグラフである。
図7に示すように、給油量(給油時に燃料タンク300に供給される燃料の量)が多いほど、燃料タンク300内で蒸発燃料が多く発生し、キャニスタ400に吸着される蒸発燃料の吸着量(即ち、給油時吸着量E)も多くなる。
図3から図5を参照して上述したように、本実施形態では特に、パージ制御部130は、吸着量算出部110によって算出された蒸発燃料の吸着量(即ち、吸着量積算値D)が吸着限界量X以上である場合には、パージ処理を実行する(即ち、エンジン200を始動させると共に、パージコントロールバルブ440を開弁状態とする)。
よって、キャニスタ400に所定の吸着限界量X以上の蒸発燃料が吸着した状態で燃料タンク300からキャニスタ400へ蒸発燃料が流入することにより、その流入した蒸発燃料が大気連通管420を介して大気へ漏れ出てしまうのを回避することができる。
以上説明したように、本実施形態によれば、タンク内圧が所定の基準圧力A以上である場合において、燃料タンク300からキャニスタ400へ蒸発燃料を流入させるために封鎖弁381が開弁状態とされる際、封鎖弁制御部120によって、封鎖弁381が間欠的に所定の基準開弁期間αずつ開弁状態となるように開閉制御されるので、燃料タンク300からキャニスタ400へ単位時間当たりに流入する蒸発燃料の流入量がキャニスタ400の瞬間吸着可能量を超えてしまうのを抑制或いは防止できる。よって、燃料タンク300からキャニスタ400に流入した蒸発燃料がキャニスタ400の大気口である大気連通路420を介して大気へ漏れ出てしまうことを抑制或いは防止できる。更に、吸着量算出部110によって算出された吸着量積算値Dが吸着限界量X以上である場合には、パージ制御部130によるパージ処理が実行されるので、燃料タンク300からキャニスタ400に流入した蒸発燃料がキャニスタ400の大気連通路420を介して大気へ漏れ出てしまうことをより確実に抑制或いは防止できる。
<第2実施形態>
次に、第2実施形態に係る蒸発燃料処理装置について、図8から図11を参照して説明する。
図8は、第2実施形態に係る蒸発燃料処理装置を備えた車両の模式図である。尚、図8において、図1に示した第1実施形態に係る構成要素と同様の構成要素に同一の参照符合を付し、それらの説明は適宜省略する。
図8において、第2実施形態に係る蒸発燃料処理装置は、給油時期記憶タイマー700を更に備える点及び上述した第1実施形態における封鎖弁制御部120(図1参照)に代えて封鎖弁制御部120bを備える点で、上述した第1実施形態に係る蒸発燃料処理装置と異なり、その他の点については、上述した第1実施形態に係る蒸発燃料処理装置と概ね同様に構成されている。
図8において、給油時期記憶タイマー700は、前回給油された時点(以下、「前回給油時点」と適宜称する)を記憶すると共に、前回給油時点から現時点までの期間を計測可能なタイマーである。給油時期記憶タイマー700は、ECU100と電気的に接続されている。給油時期記憶タイマー700によって記憶された前回給油時点及び計測された前回給油時点から現時点までの期間は、ECU100によって一定又は不定の周期で参照される。
封鎖弁制御部120bは、給油時期記憶タイマー700によって記憶された前回給油時点及び計測された前回給油時点から現時点までの期間に基づいて、燃料タンク300内の燃料の燃料性状を判定し、この判定した燃料性状に応じて、封鎖弁381を間欠的に開弁状態とする封鎖弁開弁期間を変更する点で、上述した第1実施形態における封鎖弁制御部120と異なり、その他の点については、上述した第1実施形態における封鎖弁制御部120と概ね同様に構成されている。
より具体的には、封鎖弁制御部120bは、封鎖弁381の開閉制御を行う際、現時点が夏場であって前回給油時点が冬場であるか否かを、給油時期記憶タイマー700によって記憶された前回給油時点及び計測された前回給油時点から現時点までの期間に基づいて判定する。つまり、封鎖弁制御部120bは、燃料タンク300内の燃料が、冬場に給油された燃料(つまり冬燃料)がそのまま夏場に持ち越されたものであるか否かを判定する。更に、封鎖弁制御部120bは、この判定した結果に応じて、封鎖弁381を間欠的に開弁状態とする封鎖弁開弁期間を、所定の基準開弁期間α又はこの所定の基準開弁期間αよりも短い所定の基準開弁期間βに設定する。具体的には、封鎖弁制御部120bは、現時点が夏場であって前回給油時点が冬場であると判定した場合には、封鎖弁381を間欠的に開弁状態とする封鎖弁開弁期間を所定の基準開弁期間βに設定し、現時点が夏場であって前回給油時点が冬場でない(即ち、前回給油時点も夏場である、つまり、燃料タンク300内の燃料が夏燃料である)と判定した場合には、封鎖弁381を間欠的に開弁状態とする封鎖弁開弁期間を所定の基準開弁期間αに設定する。このように、封鎖弁制御部120bは、燃料タンク300内の燃料性状に応じて、封鎖弁を間欠的に開弁状態とする封鎖弁開弁期間を変更するように構成されている。
次に、第2実施形態に係る蒸発燃料処理装置における封鎖弁の開閉制御について、図8及び図9を参照して説明する。
図9は、第2実施形態における封鎖弁の開閉制御の流れを示すフローチャートである。尚、図9において、図2に示した第1実施形態に係る動作処理と同様の動作処理に同一の参照符合を付し、それらの説明は適宜省略する。
図9において、タンク内圧が所定の基準圧力A以上であると判定された場合には(ステップS110:Yes)、現時点が夏場であって燃料タンク300内の燃料が冬燃料であるか否かが封鎖弁制御部120bによって判定される(ステップS410)。即ち、現時点が夏場であって前回給油時点が冬場であるか否かが封鎖弁制御部120bによって判定される。この際、封鎖弁制御部120bは、上述したように、給油時期記憶タイマー700によって記憶された前回給油時点及び計測された前回給油時点から現時点までの期間に基づいて判定する。
現時点が夏場であって燃料タンク300内の燃料が冬燃料であると判定された場合には(ステップS410:Yes)、封鎖弁制御部120bは、封鎖弁開弁期間を所定の基準開弁期間βに設定する(ステップS420)。尚、所定の基準開弁期間βは、上述したように所定の基準開弁期間αよりも短い。
一方、現時点が夏場であって燃料タンク300内の燃料が冬燃料でない(即ち、夏燃料である)と判定された場合には、封鎖弁制御部120bは、封鎖弁開弁期間を所定の基準開弁期間αに設定する(ステップS430)。
尚、封鎖弁制御部120bは、封鎖弁381の開閉制御を開始する(ステップS140)と、封鎖弁開弁期間が、設定された所定の基準開弁期間α又はβ[秒]以上であるか否かを判定する(ステップS440)。即ち、閉弁状態であった封鎖弁381が開弁状態となってから、設定された所定の基準開弁期間α又はβが経過したか否かが封鎖弁制御部120bによって判定される。
図10は、封鎖弁開弁期間が所定の基準開弁期間βに設定された場合(つまり、現時点が夏場であって燃料タンク300内の燃料が冬燃料であると判定された場合)における、図6と同趣旨のグラフである。
図10において、実線L3は、封鎖弁の開閉制御が開始された後のタンク内圧の経時的な変化を示し、実線L4は、封鎖弁の開閉制御が開始された後のキャニスタ400に吸着されている蒸発燃料の総吸着量の経時的な変化を示している。
図10において、タンク内圧が所定の基準圧力Aとなった場合(実線L3上の点m1参照)には、封鎖弁381の開閉制御が開始される。即ち、タンク内圧が所定の基準圧力A以上である場合には、封鎖弁制御部120bは、タンク内圧が所定の目標圧力B以下、又は吸着量積算値Dが所定の吸着限界量X以上となるまで、封鎖弁381が間欠的に所定の基準開弁期間βずつ開弁状態となるように、封鎖弁381を開閉制御する。
即ち、封鎖弁381の開閉制御が開始されると、封鎖弁381は、先ず、所定の基準開弁期間βだけ開弁状態とされ(この開弁状態とされる期間を「第1開弁期間To1」と適宜呼ぶ)、続く第1閉弁期間Tc1だけ閉弁状態とされ、続く所定の基準開弁期間βだけ開弁状態とされ(この開弁状態とされる期間を「第2開弁期間To2」と適宜呼ぶ)、続く第2閉弁期間Tc2だけ閉弁状態とされ、続く所定の基準閉弁期間βだけ開弁状態とされ(この開弁状態とされる期間を「第3開弁期間To3」と適宜呼ぶ)、続く第3閉弁期間Tc3だけ閉弁状態とされ、続く所定の基準開弁期間βだけ開弁状態とされ(この開弁状態とされる期間を「第4開弁期間To4」と適宜呼ぶ)、続く第4閉弁期間Tc4だけ閉弁状態とされ、続く所定の基準開弁期間βだけ開弁状態とされ(この開弁状態とされる期間を「第5開弁期間To5」と適宜呼ぶ)、続く第5閉弁期間Tc5だけ閉弁状態とされ、続く所定の基準開弁期間βだけ開弁状態とされる(この開弁状態とされる期間を「第6開弁期間To6」と適宜呼ぶ)。
尚、吸着量算出部110は、封鎖弁開弁期間毎に吸着量を算出し、この算出した吸着量を積算することにより、キャニスタ400に吸着されている蒸発燃料の総吸着量としての吸着量積算値Dを算出する。図10に示す例では、例えば、第6開弁期間To6の終了時点では、吸着量算出部110は、吸着量積算値D=吸着量b1+吸着量b2+吸着量b3+吸着量b4+吸着量b5+吸着量b6を、キャニスタ400に吸着されている蒸発燃料の総吸着量として算出する。また、吸着量算出部110は、給油が行われた場合にキャニスタ400に吸着される蒸発燃料の吸着量(即ち、給油時吸着量)を、封鎖弁開弁期間毎の吸着量に積算するように構成されてもよい。つまり、例えば、上述した第6開弁期間To6の終了時点では、吸着量算出部110は、吸着量積算値D=吸着量b1+吸着量b2+吸着量b3+吸着量b4+吸着量b5+吸着量b6+給油時吸着量Eを、キャニスタ400に吸着されている蒸発燃料の総吸着量として算出してもよい。
図11は、給油量とキャニスタ400に吸着される蒸発燃料の吸着量との関係を、燃料タンク300内の燃料が冬燃料である場合と夏燃料である場合とを対比して示すグラフである。
図11に示すように、例えば冬燃料のほうが夏燃料よりも揮発性が高いため、燃料タンク300内の燃料が冬燃料である場合のほうが夏燃料である場合よりも、キャニスタ400に吸着される吸着量が多い。
よって、仮に何らの対策も施さずに、封鎖弁を間欠的に開弁状態とする封鎖弁開弁期間を燃料タンク300内の燃料の燃料性状によらず一定の期間(例えば夏燃料に対応して設定された基準開弁期間α)に設定した場合には、現時点が夏場であって燃料タンク300内の燃料が冬燃料であるときに、封鎖弁開弁期間中にキャニスタ400の瞬間吸着可能量を越えた蒸発燃料が燃料タンクか300からキャニスタ400へ流入してしまうおそれがある。
しかるに、本実施形態によれば、上述したように、封鎖弁制御部120bは、現時点が夏場であって燃料タンク300内の燃料が冬燃料であると判定した場合には、封鎖弁開弁期間を所定の基準開弁期間α(即ち、燃料タンク300内の燃料が夏燃料である場合の基準開弁期間)よりも短い所定の基準開弁期間βに設定するので、封鎖弁開弁期間中にキャニスタ400の瞬間吸着可能量を越えた蒸発燃料が燃料タンクか300からキャニスタ400へ流入してしまうことを抑制或いは防止できる。従って、キャニスタ400に流入した蒸発燃料がキャニスタ400の大気連通路420から大気へ漏れ出てしまうことをより確実に抑制或いは防止できる。
<第3実施形態>
第3実施形態に係る蒸発燃料処理装置について、図12を参照して説明する。
第3実施形態に係る蒸発燃料処理装置は、封鎖弁制御部120(図1参照)が、封鎖弁開弁期間をタンク内圧の変動量(以下、「タンク内圧変化量」と適宜称する)に応じて変更する点で、上述した第1実施形態に係る蒸発燃料処理装置と異なり、その他の点については上述した第1実施形態に係る蒸発燃料処理装置と概ね同様に構成されている。
図12は、第3実施形態における封鎖弁の開閉制御を説明するための、タンク内圧変化量と封鎖弁開弁期間との関係を示すグラフである。
図12において、本実施形態では、封鎖弁制御部120は、封鎖弁381を間欠的に開弁状態とする開閉制御を行う際、直前の封鎖弁開弁期間中におけるタンク内圧変化量に基づいて今回の封鎖弁開弁期間の長さを変更する。具体的には、直前の封鎖弁開弁期間中におけるタンク内圧変化量が変化量ΔP1である場合には、今回の封鎖弁開弁期間を期間TLに設定し、直前の封鎖弁開弁期間中におけるタンク内圧変化量が変化量ΔP1よりも大きい変化量ΔP2である場合には、今回の封鎖弁開弁期間を期間TLよりも短い期間TMに設定し、直前の封鎖弁開弁期間中におけるタンク内圧変化量が変化量ΔP2よりも大きい変化量ΔP3である場合には、今回の封鎖弁開弁期間を期間TMよりも短い期間TSに設定する。つまり、本実施形態では、封鎖弁制御部120は、直前の封鎖弁制御期間中におけるタンク内圧変化量の大きさに応じて、今回の封鎖弁開弁期間を互いに長さの異なる期間TL、TM及びTS間で切り替える。言い換えれば、封鎖弁制御部120は、直前の封鎖弁制御期間中におけるタンク内圧の変化が比較的急な場合には、今回の封鎖弁開弁期間を比較的短い期間TSに設定し、直前の封鎖弁制御期間中におけるタンク内圧の変化が中程度の場合には、今回の封鎖弁開弁期間を中程度の長さの期間TMに設定し、直前の封鎖弁制御期間中におけるタンク内圧の変化が比較的緩やかな場合には、今回の封鎖弁開弁期間を比較的短い期間TSに設定する。
このように構成された本実施形態に係る蒸発燃料処理装置によれば、よって、キャニスタ400の瞬間吸着可能量を越えた蒸発燃料が燃料タンク300からキャニスタ400へ流入することをより確実に抑制或いは防止できる。従って、キャニスタ400に流入した蒸発燃料がキャニスタ400の大気連通路420から大気へ漏れ出てしまうことをより確実に抑制或いは防止できる。
尚、本実施形態では、封鎖弁開弁期間が互いに長さの異なる3種類の期間のいずれかに設定される構成を例に挙げて説明したが、封鎖弁開弁期間が互いに長さの異なる3種類よりも多い複数の期間のいずれかに設定されるように構成してもよい。
本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う蒸発燃料処理装置もまた本発明の技術的範囲に含まれるものである。
10…車両、100…ECU、110…吸着量算出部、120、120b…封鎖弁制御部、130…パージ制御部、200…エンジン、210…吸気通路、300…燃料タンク、340…残量センサ、345…圧力センサ、346…燃料温度センサ、360…エバポライン、380…弁部材、381…封鎖弁、382…メカ弁、400…キャニスタ、420…大気連通路、430…パージ用配管、440…パージコントロールバルブ、600…モータジェネレータ、700…給油時期記憶タイマー

Claims (4)

  1. 内燃機関の燃料を貯留する燃料タンクで生じる蒸発燃料を吸着可能なキャニスタと、
    前記燃料タンクと前記キャニスタとを連通させる蒸発燃料通路と、
    前記蒸発燃料通路に設けられ、前記蒸発燃料通路を開閉可能な電磁弁である封鎖弁と、
    前記燃料タンク内の圧力を特定する特定手段と、
    前記燃料タンク内の圧力が所定の基準圧力以上である場合には、前記燃料タンク内の圧力が所定の目標圧力まで低下するように、且つ、前記燃料タンクから前記キャニスタへ単位時間当たりに流入する前記蒸発燃料の流入量が前記キャニスタの単位時間当たりに吸着可能な瞬間吸着可能量を超えないように、少なくとも前記特定手段によって特定される圧力に基づいて前記封鎖弁を開閉制御する封鎖弁制御手段と
    を備えることを特徴とする蒸発燃料処理装置。
  2. 前記封鎖弁制御手段は、前記封鎖弁が間欠的に開弁状態となるように、前記封鎖弁を開閉制御する請求項1に記載の蒸発燃料処理装置。
  3. 前記内燃機関の吸気通路と前記キャニスタとを連通させるパージ通路と、
    前記パージ通路に設けられ、前記パージ通路を開閉可能なパージ制御弁と、
    前記封鎖弁制御手段によって前記封鎖弁が間欠的に開弁状態とされる開弁期間毎に前記キャニスタに吸着される前記蒸発燃料の吸着量を算出すると共に、該算出した開弁期間毎の吸着量を積算することにより、前記キャニスタに吸着されている前記蒸発燃料の総吸着量を算出する算出手段と、
    前記算出手段によって算出される総吸着量が所定の吸着限界量に到達した場合には、前記内燃機関が始動するように前記内燃機関を制御すると共に、前記パージ制御弁が開弁状態となるように前記パージ制御弁を制御するパージ制御手段と
    を更に備える請求項2に記載の蒸発燃料処理装置。
  4. 前記封鎖弁制御手段は、前記封鎖弁を間欠的に開弁状態とする開弁期間を、前記燃料タンク内の燃料の燃料性状に応じて変更する請求項2又は3に記載の蒸発燃料処理装置。
JP2009135231A 2009-06-04 2009-06-04 蒸発燃料処理装置 Active JP5232079B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009135231A JP5232079B2 (ja) 2009-06-04 2009-06-04 蒸発燃料処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009135231A JP5232079B2 (ja) 2009-06-04 2009-06-04 蒸発燃料処理装置

Publications (2)

Publication Number Publication Date
JP2010281258A true JP2010281258A (ja) 2010-12-16
JP5232079B2 JP5232079B2 (ja) 2013-07-10

Family

ID=43538202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009135231A Active JP5232079B2 (ja) 2009-06-04 2009-06-04 蒸発燃料処理装置

Country Status (1)

Country Link
JP (1) JP5232079B2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241622A (ja) * 2011-05-19 2012-12-10 Toyota Motor Corp 蒸発燃料処理装置
JP2013167177A (ja) * 2012-02-14 2013-08-29 Toyota Motor Corp 燃料タンクシステム
JP2014190310A (ja) * 2013-03-28 2014-10-06 Toyota Motor Corp 蒸発燃料処理装置
US20150013437A1 (en) * 2012-03-09 2015-01-15 Nissan Motor Co., Ltd. Device and method for diagnosing evaporated fuel processing device
US20150040645A1 (en) * 2012-03-09 2015-02-12 Nissan Motor Co., Ltd. Device and method for diagnosing evaporated fuel processing device
US9416756B2 (en) 2013-09-03 2016-08-16 Denso Corporation Flow control valve and vapor fuel processing apparatus having the same
US9421490B2 (en) 2013-11-25 2016-08-23 Aisan Kogyo Kabushiki Kaisha Fuel vapor processing apparatus
KR20160106663A (ko) * 2014-01-07 2016-09-12 르노 에스.아.에스. 차량의 탄화수소 증기를 제거하는 방법 및 장치
US9470161B2 (en) 2013-12-06 2016-10-18 Aisan Kogyo Kabushiki Kaisha Vaporized fuel processing apparatus
US9523316B2 (en) 2013-12-06 2016-12-20 Aisan Kogyo Kabushiki Kaisha Vaporized fuel processing apparatus
US9689324B2 (en) 2013-12-06 2017-06-27 Aisan Kogyo Kabushiki Kaisha Vaporized fuel processing apparatus
US9726120B2 (en) 2013-12-06 2017-08-08 Aisan Kogyo Kabushiki Kaisha Vaporized fuel processing apparatus
US10018159B2 (en) 2013-11-25 2018-07-10 Aisan Kogyo Kabushiki Kaisha Fuel vapor processing apparatus
US10029559B2 (en) 2012-11-27 2018-07-24 Toyota Jidosha Kabushiki Kaisha Fuel tank structure
JP2019173648A (ja) * 2018-03-28 2019-10-10 愛三工業株式会社 蒸発燃料処理装置
JP2019183677A (ja) * 2018-04-03 2019-10-24 トヨタ自動車株式会社 蒸発燃料処理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565856A (ja) * 1991-09-04 1993-03-19 Mitsubishi Electric Corp 内燃機関の蒸発燃料制御装置
JP2004156496A (ja) * 2002-11-05 2004-06-03 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2005155322A (ja) * 2003-09-04 2005-06-16 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2006299994A (ja) * 2005-04-22 2006-11-02 Toyota Motor Corp 蒸発燃料処理装置の制御装置
JP2007064154A (ja) * 2005-09-01 2007-03-15 Denso Corp 密閉タンクシステム
JP2008123731A (ja) * 2006-11-09 2008-05-29 Toyota Motor Corp 燃料電池システム
JP2008184910A (ja) * 2007-01-26 2008-08-14 Toyota Motor Corp 蒸発燃料処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565856A (ja) * 1991-09-04 1993-03-19 Mitsubishi Electric Corp 内燃機関の蒸発燃料制御装置
JP2004156496A (ja) * 2002-11-05 2004-06-03 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2005155322A (ja) * 2003-09-04 2005-06-16 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2006299994A (ja) * 2005-04-22 2006-11-02 Toyota Motor Corp 蒸発燃料処理装置の制御装置
JP2007064154A (ja) * 2005-09-01 2007-03-15 Denso Corp 密閉タンクシステム
JP2008123731A (ja) * 2006-11-09 2008-05-29 Toyota Motor Corp 燃料電池システム
JP2008184910A (ja) * 2007-01-26 2008-08-14 Toyota Motor Corp 蒸発燃料処理装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241622A (ja) * 2011-05-19 2012-12-10 Toyota Motor Corp 蒸発燃料処理装置
JP2013167177A (ja) * 2012-02-14 2013-08-29 Toyota Motor Corp 燃料タンクシステム
US9476793B2 (en) * 2012-03-09 2016-10-25 Nissan Motor Co., Ltd. Device and method for diagnosing evaporated fuel processing device
US20150013437A1 (en) * 2012-03-09 2015-01-15 Nissan Motor Co., Ltd. Device and method for diagnosing evaporated fuel processing device
US20150040645A1 (en) * 2012-03-09 2015-02-12 Nissan Motor Co., Ltd. Device and method for diagnosing evaporated fuel processing device
US9494481B2 (en) * 2012-03-09 2016-11-15 Nissan Motor Co., Ltd. Device and method for diagnosing evaporated fuel processing device
US10029559B2 (en) 2012-11-27 2018-07-24 Toyota Jidosha Kabushiki Kaisha Fuel tank structure
JP2014190310A (ja) * 2013-03-28 2014-10-06 Toyota Motor Corp 蒸発燃料処理装置
US9416756B2 (en) 2013-09-03 2016-08-16 Denso Corporation Flow control valve and vapor fuel processing apparatus having the same
US10018159B2 (en) 2013-11-25 2018-07-10 Aisan Kogyo Kabushiki Kaisha Fuel vapor processing apparatus
US9421490B2 (en) 2013-11-25 2016-08-23 Aisan Kogyo Kabushiki Kaisha Fuel vapor processing apparatus
US9470161B2 (en) 2013-12-06 2016-10-18 Aisan Kogyo Kabushiki Kaisha Vaporized fuel processing apparatus
US9523316B2 (en) 2013-12-06 2016-12-20 Aisan Kogyo Kabushiki Kaisha Vaporized fuel processing apparatus
US9689324B2 (en) 2013-12-06 2017-06-27 Aisan Kogyo Kabushiki Kaisha Vaporized fuel processing apparatus
US9726120B2 (en) 2013-12-06 2017-08-08 Aisan Kogyo Kabushiki Kaisha Vaporized fuel processing apparatus
KR20160106663A (ko) * 2014-01-07 2016-09-12 르노 에스.아.에스. 차량의 탄화수소 증기를 제거하는 방법 및 장치
JP2017503957A (ja) * 2014-01-07 2017-02-02 ルノー エス.ア.エス. 車両用の炭化水素蒸気削減方法及び装置
KR102087929B1 (ko) * 2014-01-07 2020-04-23 르노 에스.아.에스. 차량의 탄화수소 증기를 제거하는 방법 및 장치
JP2019173648A (ja) * 2018-03-28 2019-10-10 愛三工業株式会社 蒸発燃料処理装置
JP2019183677A (ja) * 2018-04-03 2019-10-24 トヨタ自動車株式会社 蒸発燃料処理装置
JP7028694B2 (ja) 2018-04-03 2022-03-02 トヨタ自動車株式会社 蒸発燃料処理装置

Also Published As

Publication number Publication date
JP5232079B2 (ja) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5232079B2 (ja) 蒸発燃料処理装置
US9732706B2 (en) System and methods for regulating fuel vapor flow in a fuel vapor recirculation line
US8495988B2 (en) Fuel storage and vapor recovery system
US10060367B2 (en) Method and system for high fuel vapor canister purge flow
US9151235B2 (en) Method and system for fuel vapor control
US9822719B2 (en) Systems and methods for fuel vapor canister purge
US9708990B2 (en) System and methods for fuel vapor canister flow
JP5835501B2 (ja) 蒸発燃料処理装置
US9845745B2 (en) EVAP system with valve to improve canister purging
US9605610B2 (en) System and methods for purging a fuel vapor canister
JP2010270618A (ja) 蒸発燃料処理装置
JP5726676B2 (ja) 燃料供給装置
US9303601B2 (en) Evaporative fuel treatment apparatus
US11530658B1 (en) Systems and methods for vehicle fuel tank refueling
JP4172167B2 (ja) 密閉タンクシステムの給油制御装置
JP6252565B2 (ja) 蒸発燃料処理装置
JP4952678B2 (ja) 内燃機関の蒸発燃料処理装置
JP5958356B2 (ja) 蒸発燃料処理装置
JP2012167598A (ja) 蒸発燃料処理装置
JP5991250B2 (ja) 蒸発燃料処理装置
JP2002332922A (ja) キャニスタパージシステム
JP6485621B2 (ja) 蒸散燃料処理装置
JP4468769B2 (ja) 蒸発燃料吸着装置
JP6052008B2 (ja) 蒸発燃料処理装置
JP6646253B2 (ja) 燃料蒸発ガス排出抑止装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5232079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250