JP2010280554A - Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell - Google Patents

Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell Download PDF

Info

Publication number
JP2010280554A
JP2010280554A JP2009137479A JP2009137479A JP2010280554A JP 2010280554 A JP2010280554 A JP 2010280554A JP 2009137479 A JP2009137479 A JP 2009137479A JP 2009137479 A JP2009137479 A JP 2009137479A JP 2010280554 A JP2010280554 A JP 2010280554A
Authority
JP
Japan
Prior art keywords
glass
dye
solar cell
sensitized solar
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009137479A
Other languages
Japanese (ja)
Inventor
Masahiro Sawada
正弘 澤田
Tomohiro Nagakane
知浩 永金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2009137479A priority Critical patent/JP2010280554A/en
Publication of JP2010280554A publication Critical patent/JP2010280554A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a dye-sensitized solar cell having high long-term reliability by creating a glass hard to be eroded in an iodine electrolyte, and a material using the same. <P>SOLUTION: In the glass for a dye-sensitized solar cell, the average ion radius of cations in a glass composition is ≤0.80 Å. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、色素増感型太陽電池用ガラスおよび色素増感型太陽電池用材料に関し、具体的には色素増感型太陽電池の透明電極基板と対極基板の封着および集電電極の被覆に好適な色素増感型太陽電池用ガラスおよび色素増感型太陽電池用材料に関する。   The present invention relates to a glass for a dye-sensitized solar cell and a material for a dye-sensitized solar cell, and specifically to sealing of a transparent electrode substrate and a counter electrode substrate of a dye-sensitized solar cell and covering of a collecting electrode. The present invention relates to a suitable dye-sensitized solar cell glass and a dye-sensitized solar cell material.

グレッチェルらが開発した色素増感型太陽電池は、シリコン半導体を使用した太陽電池に比べ、低コストであり、且つ製造に必要な原料が豊富にあるため、次世代の太陽電池として期待されている。   The dye-sensitized solar cell developed by Gretcher et al. Is expected to be a next-generation solar cell because it is less expensive than solar cells using silicon semiconductors and has abundant raw materials necessary for production. .

色素増感型太陽電池は、透明導電膜が形成された透明電極基板と、透明電極基板に形成された多孔質酸化物半導体層(主にTiO層)からなる多孔質酸化物半導体電極と、その多孔質酸化物半導体電極に吸着されたRu色素等の色素と、ヨウ素を含むヨウ素電解液と、触媒膜と透明導電膜が形成された対極基板等で構成される。 The dye-sensitized solar cell includes a transparent electrode substrate on which a transparent conductive film is formed, and a porous oxide semiconductor electrode composed of a porous oxide semiconductor layer (mainly a TiO 2 layer) formed on the transparent electrode substrate, It comprises a dye such as Ru dye adsorbed on the porous oxide semiconductor electrode, an iodine electrolyte containing iodine, a counter electrode substrate on which a catalyst film and a transparent conductive film are formed, and the like.

透明電極基板と対極基板には、ガラス基板やプラスチック基板等が使用される。透明電極基板にプラスチック基板を使用すると、透明電極膜の抵抗値が大きくなり、色素増感型太陽電池の光電変換効率が低下する。一方、透明電極基板にガラス基板を使用すると、透明電極膜の抵抗値が上昇し難く、色素増感型太陽電池の光電変換効率を維持することができる。このような事情から、近年では、透明電極基板として、ガラス基板が使用されている。   A glass substrate, a plastic substrate, or the like is used as the transparent electrode substrate and the counter electrode substrate. When a plastic substrate is used as the transparent electrode substrate, the resistance value of the transparent electrode film increases, and the photoelectric conversion efficiency of the dye-sensitized solar cell decreases. On the other hand, when a glass substrate is used as the transparent electrode substrate, the resistance value of the transparent electrode film hardly increases, and the photoelectric conversion efficiency of the dye-sensitized solar cell can be maintained. Under such circumstances, in recent years, a glass substrate has been used as a transparent electrode substrate.

色素増感型太陽電池は、透明電極基板と対極基板の間にヨウ素電解液が充填される。色素増感型太陽電池からヨウ素電解液の漏れを防止するために、透明電極基板と対極基板の外周縁を封止する必要がある。また、発生した電子を効率良く取り出すために、集電電極(例えば、Ag等が用いられる)を透明電極基板上に形成することがある。このとき、集電電極を被覆し、ヨウ素電解液により、集電電極が侵食される事態を防止する必要がある。さらに、一枚のガラス基板上に電池回路を形成する場合、透明電極基板と対極基板の間に隔壁を形成することがある。   In the dye-sensitized solar cell, an iodine electrolyte is filled between the transparent electrode substrate and the counter electrode substrate. In order to prevent the iodine electrolyte from leaking from the dye-sensitized solar cell, it is necessary to seal the outer peripheral edges of the transparent electrode substrate and the counter electrode substrate. Moreover, in order to take out generated electrons efficiently, a collecting electrode (for example, Ag or the like is used) may be formed on the transparent electrode substrate. At this time, it is necessary to cover the current collecting electrode and prevent the current collecting electrode from being eroded by the iodine electrolyte. Furthermore, when a battery circuit is formed on a single glass substrate, a partition wall may be formed between the transparent electrode substrate and the counter electrode substrate.

特開平1−220380号公報Japanese Patent Laid-Open No. 1-220380 特開2002−75472号公報JP 2002-75472 A 特開2004−292247号公報JP 2004-292247 A

R.D.Shannon,「Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides」,Acta Cryst,1976,A32,751−767R. D. Shannon, “Revised effective radicals and systematic studies of intermediaries in halides and charcogenides”, Acta Cryst, 1976, A32, 751-767.

色素増感型太陽電池は、長期耐久性の向上が実用化への課題である。長期耐久性を損なう原因の一つは、太陽電池部材(集電電極、封止材料等)とヨウ素電解液が反応し、太陽電池部材やヨウ素電解液が劣化することが挙げられる。特に、封止材料に樹脂を用い、ヨウ素電解液にアセトニトリル等の有機溶媒を用いたときに、その傾向が顕著である。この場合、樹脂がヨウ素電解液により侵食されるため、太陽電池からヨウ素電解液が漏洩し、電池特性が著しく低下する。同様にして、集電電極の被覆や隔壁の形成に樹脂を使用した場合も、樹脂がヨウ素電解液により侵食されるため、集電電極の劣化や隔壁の破れ等が生じる。   In dye-sensitized solar cells, improvement of long-term durability is a problem for practical use. One of the causes of impairing the long-term durability is that the solar cell member (collecting electrode, sealing material, etc.) reacts with the iodine electrolyte, and the solar cell member and the iodine electrolyte are deteriorated. This tendency is particularly remarkable when a resin is used as the sealing material and an organic solvent such as acetonitrile is used as the iodine electrolyte. In this case, since the resin is eroded by the iodine electrolytic solution, the iodine electrolytic solution leaks from the solar cell, and the battery characteristics are remarkably deteriorated. Similarly, when a resin is used for covering the collector electrode or forming the partition wall, the resin is eroded by the iodine electrolyte solution, so that the collector electrode is deteriorated or the partition wall is broken.

このような事情に鑑み、封止材料に樹脂を使用しない方法が提案されている。例えば、特許文献1には、透明電極基板と対極基板の外周縁をガラスで封着することが記載されている。また、特許文献2、3には、透明電極基板と対極基板の外周縁を鉛ガラスで封着することが記載されている。   In view of such circumstances, a method in which no resin is used for the sealing material has been proposed. For example, Patent Document 1 describes that the outer peripheral edges of a transparent electrode substrate and a counter electrode substrate are sealed with glass. Patent Documents 2 and 3 describe sealing the outer peripheral edges of the transparent electrode substrate and the counter electrode substrate with lead glass.

しかし、鉛ガラスは、ヨウ素電解液に侵食されやすいため、封着材料に鉛ガラスを使用した場合でも、長期間の使用により、鉛ガラスの成分がヨウ素電解液中に溶出し、その結果、ヨウ素電解液が劣化し、電池特性が低下してしまう。また、集電電極の被覆や隔壁の形成に鉛ガラスを用いた場合でも、長期間の使用により、集電電極の劣化や隔壁の破れが生じる。これらの現象も、鉛ガラスがヨウ素電解液により侵食されることが原因である。   However, since lead glass is easily eroded by iodine electrolyte, even when lead glass is used as a sealing material, the components of lead glass are eluted in iodine electrolyte by long-term use. The electrolytic solution deteriorates and the battery characteristics are deteriorated. Further, even when lead glass is used for covering the current collecting electrode and forming the partition walls, deterioration of the current collecting electrodes and breakage of the partition walls occur due to long-term use. These phenomena are also caused by the erosion of lead glass by iodine electrolyte.

そこで、本発明は、ヨウ素電解液に侵食され難いガラスおよびこれを用いた材料を創案することにより、長期信頼性の高い色素増感型太陽電池を得ることを技術的課題とする。   Therefore, the present invention has a technical problem of obtaining a dye-sensitized solar cell with high long-term reliability by creating a glass that is not easily eroded by iodine electrolyte and a material using the glass.

本発明者等は、種々の検討を行った結果、ガラス組成中のカチオンの平均イオン半径を所定範囲に規制することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。ここで、「イオン半径」は、[非特許文献1]に記載の値を用い、構造が明確なものを除いて、6配位のときのイオン半径を用いる。   As a result of various studies, the present inventors have found that the above technical problem can be solved by regulating the average ionic radius of the cation in the glass composition to a predetermined range, and propose as the present invention. is there. Here, as the “ion radius”, the value described in [Non-Patent Document 1] is used, and the ionic radius at the time of 6-coordination is used, except for the case where the structure is clear.

ガラスの侵食メカニズムは、主にヨウ素イオン(I )が、ガラス網目構造を構成するカチオンと酸素の結合を切断するためである。本発明の色素増感型太陽電池用ガラスは、ガラス組成中のカチオンの平均イオン半径が0.80Å以下であることを特徴とするが、カチオンのイオン半径が小さい程、カチオンが酸素を引き付ける力が大きくなるため、両者の距離が縮まり構造が密になる。そのため、イオン半径の大きなヨウ素イオン(I )がガラス構造内に進入し難くなり、その結果、ガラス網目構造を構成するカチオンと酸素の結合を切断し難くなる。 The erosion mechanism of glass is mainly because iodine ions (I 3 ) break the bond between cations and oxygen constituting the glass network structure. The glass for a dye-sensitized solar cell according to the present invention is characterized in that the average ionic radius of the cation in the glass composition is 0.80 mm or less. The smaller the ionic radius of the cation, the more the cation attracts oxygen. Increases, the distance between the two decreases, and the structure becomes dense. For this reason, iodine ions (I 3 ) having a large ion radius do not easily enter the glass structure, and as a result, it is difficult to break the bond between the cation and oxygen constituting the glass network structure.

第二に、本発明の色素増感型太陽電池用ガラスは、[ガラス組成中のカチオンの平均価数]を[ガラス組成中のカチオンの平均イオン半径の2乗]で除した値が4.30/Å以上であることを特徴とする。カチオンの作る電場の強度は、カチオンの価数が大きい程、またカチオンのイオン半径が小さい程、強くなり、カチオンの価数をイオン半径の2乗で除した値で示される。カチオンの作る電場の強度が大きくなると、カチオンが酸素を引き付ける力が大きくなり、また構造が密になるため、イオン半径の大きなヨウ素イオン(I )が進入し難くなり、その結果、ガラス網目構造を構成するカチオンと酸素の結合を切断し難くなる。 Second, the glass for a dye-sensitized solar cell of the present invention has a value obtained by dividing [the average valence of cations in the glass composition] by [the square of the average ionic radius of cations in the glass composition]. 30 / Å 2 or more. The strength of the electric field generated by the cation increases as the cation valence increases and the cation radius decreases, and is indicated by a value obtained by dividing the cation valence by the square of the ion radius. When the strength of the electric field generated by the cation increases, the cation attracts more oxygen, and the structure becomes dense, so that it becomes difficult for iodine ions (I 3 ) having a large ionic radius to enter. It becomes difficult to break the bond between the cation and oxygen constituting the structure.

第三に、本発明の色素増感型太陽電池用ガラスは、ガラス組成中のカチオンの平均イオン半径が0.80Å以下であり、且つ[ガラス組成中のカチオンの平均価数]を[ガラス組成中のカチオンの平均イオン半径の2乗]で除した値が4.30/Å以上であることを特徴とする。 Third, the glass for a dye-sensitized solar cell of the present invention has an average ionic radius of cations in the glass composition of 0.80 mm or less, and the [average valence of cations in the glass composition] is [glass composition]. and wherein the value obtained by dividing the square] of the average ionic radius in the cation is 4.30 / Å 2 or more.

第四に、本発明の色素増感型太陽電池用ガラスは、25℃のヨウ素電解液に2週間浸漬したときの質量減が0.14mg/cm以下であることを特徴とする。ここで、質量減の算出に用いるヨウ素電解液には、アセトニトリル中に、ヨウ化リチウム0.1M、ヨウ素0.05M、tert−ブチルピリジン0.5M、および1,2−ジメチル−3−プロピルイミダゾリウムヨーダイド0.6Mを溶解させたものを使用する。また、「質量減」は、上記ガラスからなるガラス粉末を緻密に焼き付けたガラス基板(ガラス粉末の軟化点以上の温度で焼き付けた焼成膜付きガラス基板)を、密閉容器中にてヨウ素電解液に浸漬し、浸漬前の質量から2週間経過後の質量を減じた値を、ヨウ素電解液に接する焼成膜の面積で除することで算出する。なお、ガラス基板は、ヨウ素電解液によって侵食されないものを用いる。 Fourth, the glass for a dye-sensitized solar cell of the present invention is characterized in that the mass loss when immersed in an iodine electrolyte at 25 ° C. for 2 weeks is 0.14 mg / cm 2 or less. Here, the iodine electrolyte used for the calculation of mass loss includes 0.1M lithium iodide, 0.05M iodine, 0.5M tert-butylpyridine, and 1,2-dimethyl-3-propylimidazo in acetonitrile. A solution in which 0.6M of lithium iodide is dissolved is used. In addition, “mass loss” means that a glass substrate (glass substrate with a fired film baked at a temperature equal to or higher than the softening point of the glass powder) obtained by densely baking the glass powder made of the above glass into an iodine electrolytic solution in a sealed container. It is calculated by immersing and dividing the value obtained by subtracting the mass after two weeks from the mass before immersion by the area of the fired film in contact with the iodine electrolyte. A glass substrate that is not eroded by the iodine electrolyte is used.

一般的に、ヨウ素電解液は、ヨウ素、アルカリ金属ヨウ化物、イミダゾリウムヨウ化物、四級アンモニウム塩等のヨウ素化合物を有機溶媒に溶解させたものを指すが、ヨウ素化合物以外にもtert−ブチルピリジン、1メトキシベンゾイミダゾール等を溶解させたものもある。溶媒として、アセトニトリル、メトキシアセトニトリル、プロピオニトリル等のニトリル系溶媒、炭酸エチレン、炭酸プロピレン等のカーボネート系溶媒、ラクトン系溶媒等が用いられる。これら化合物や溶媒で構成されるヨウ素電解液であっても、ガラスがヨウ素電解液に侵食される上記問題は生じ得る。したがって、本発明の色素増感型太陽電池用ガラスは、これらのヨウ素電解液に25℃で2週間浸漬したときの質量減も、0.14mg/cm以下であることが好ましい。 In general, the iodine electrolyte refers to a solution obtained by dissolving an iodine compound such as iodine, alkali metal iodide, imidazolium iodide, quaternary ammonium salt, etc. in an organic solvent. Some have 1 methoxybenzimidazole dissolved. As the solvent, nitrile solvents such as acetonitrile, methoxyacetonitrile, propionitrile, carbonate solvents such as ethylene carbonate and propylene carbonate, lactone solvents and the like are used. Even in the case of an iodine electrolytic solution composed of these compounds and solvents, the above problem that the glass is eroded by the iodine electrolytic solution may occur. Therefore, the dye-sensitized solar cell glass of the present invention preferably has a mass loss of 0.14 mg / cm 2 or less when immersed in these iodine electrolytes at 25 ° C. for 2 weeks.

第五に、本発明の色素増感型太陽電池用ガラスは、25℃のヨウ素電解液に2週間浸漬したときの質量減が0.1mg/cm以下であることを特徴とする。 Fifth, the glass for a dye-sensitized solar cell of the present invention is characterized in that the mass loss when immersed in an iodine electrolyte at 25 ° C. for 2 weeks is 0.1 mg / cm 2 or less.

第六に、本発明の色素増感型太陽電池用ガラスは、熱膨張係数が65〜120×10−7/℃であることを特徴とする。 Sixth, the glass for a dye-sensitized solar cell of the present invention has a thermal expansion coefficient of 65 to 120 × 10 −7 / ° C.

第七に、本発明の色素増感型太陽電池用材料は、上記の色素増感型太陽電池用ガラスからなるガラス粉末 50〜100体積%と、耐火性フィラー粉末 0〜50体積%とを含有することを特徴とする。ここで、本発明の色素増感型太陽電池用材料は、上記の色素増感型太陽電池用ガラスからなるガラス粉末のみで構成される態様を含む。なお、本発明の色素増感型太陽電池用材料において、耐火性フィラー粉末の含有量は、流動性の観点から10体積%以下、5体積%以下、特に1体積%以下が好ましく、実質的に耐火性フィラー粉末を含有しないこと(具体的には耐火性フィラー粉末の含有量が0.5体積%以下)がより好ましい。特に、封着に用いる場合、耐火性フィラー粉末の含有量を低減すると、透明電極基板と対極基板のギャップを狭小化しやすくなり、また均一化しやすくなる。   Seventh, the material for a dye-sensitized solar cell of the present invention contains 50 to 100% by volume of a glass powder made of the above glass for a dye-sensitized solar cell and 0 to 50% by volume of a refractory filler powder. It is characterized by doing. Here, the dye-sensitized solar cell material of the present invention includes an embodiment composed only of glass powder made of the above-described dye-sensitized solar cell glass. In the dye-sensitized solar cell material of the present invention, the content of the refractory filler powder is preferably 10% by volume or less, 5% by volume or less, and particularly preferably 1% by volume or less, from the viewpoint of fluidity. It is more preferable not to contain the refractory filler powder (specifically, the content of the refractory filler powder is 0.5% by volume or less). In particular, when used for sealing, if the content of the refractory filler powder is reduced, the gap between the transparent electrode substrate and the counter electrode substrate can be easily narrowed and uniformized.

第八に、本発明の色素増感型太陽電池用材料は、軟化点が550℃以下であることを特徴とする。ここで、「軟化点」とは、マクロ型示差熱分析(DTA)装置で測定した値を指し、DTAは室温から測定を開始し、昇温速度は10℃/分とする。なお、マクロ型DTA装置で測定した軟化点は、図2に示す第四屈曲点の温度(Ts)を指す。   Eighth, the dye-sensitized solar cell material of the present invention has a softening point of 550 ° C. or lower. Here, the “softening point” refers to a value measured with a macro-type differential thermal analysis (DTA) apparatus, DTA starts measurement from room temperature, and the rate of temperature rise is 10 ° C./min. In addition, the softening point measured with the macro type | mold DTA apparatus points out the temperature (Ts) of the 4th bending point shown in FIG.

第九に、本発明の色素増感型太陽電池用材料は、封着に用いることを特徴とする。ここで、封着には、透明電極基板と対極基板の封着に加えて、ガラス管の封着等が含まれる。なお、透明電極基板と対極基板等に複数の開口部を設けて、各開口部にガラス管を封着した後、ガラス管を介して、色素増感型太陽電池内に色素を含有させた液体等を循環させて、多孔質酸化物半導体に色素を吸着させる場合がある。このような場合、本発明の色素増感型太陽電池用材料でガラス管を封着すると、液体等の漏れ等が発生し難くなる。   Ninth, the dye-sensitized solar cell material of the present invention is characterized by being used for sealing. Here, the sealing includes sealing of a glass tube in addition to sealing of the transparent electrode substrate and the counter electrode substrate. In addition, after providing a plurality of openings in the transparent electrode substrate and the counter electrode substrate, and sealing the glass tube in each opening, the liquid containing the dye in the dye-sensitized solar cell through the glass tube Etc. may be circulated to adsorb the dye to the porous oxide semiconductor. In such a case, when the glass tube is sealed with the material for the dye-sensitized solar cell of the present invention, leakage of liquid or the like hardly occurs.

第十に、本発明の色素増感型太陽電池用材料は、集電電極の被覆に用いることを特徴とする。   Tenth, the dye-sensitized solar cell material of the present invention is characterized in that it is used for coating a collecting electrode.

第十一に、本発明の色素増感型太陽電池用材料は、レーザー光による封着処理に供されることを特徴とする。   Eleventh, the dye-sensitized solar cell material of the present invention is characterized by being subjected to a sealing treatment with a laser beam.

本発明の色素増感型太陽電池用ガラスは、ガラス組成中のカチオンの平均イオン半径を0.80Å以下に規制することにより、ヨウ素電解液による侵食が顕著に抑制される。また、本発明の色素増感型太陽電池用ガラスは、25℃のヨウ素電解液に2週間浸漬したときの質量減を0.14mg/cm以下、特に0.1mg/cm以下にすることができる。その結果、封着、被覆および隔壁部位がヨウ素電解液に侵食され難くなり、長期間に亘り、ヨウ素電解液や電池特性の劣化を防止することができる。 In the glass for a dye-sensitized solar cell of the present invention, erosion by the iodine electrolyte is remarkably suppressed by regulating the average ionic radius of the cation in the glass composition to 0.80 mm or less. Further, dye-sensitized solar cell glass of the present invention, 25 ° C. iodine electrolyte 2 weeks immersed in the mass down to 0.14 mg / cm 2 or less when, in particular to the 0.1 mg / cm 2 or less Can do. As a result, the sealing, covering, and partition wall portions are less likely to be eroded by the iodine electrolyte solution, and deterioration of the iodine electrolyte solution and battery characteristics can be prevented over a long period of time.

ガラス組成中のカチオンの平均イオン半径とヨウ素電解液による侵食量の関係を示すデータである。It is data which shows the relationship between the average ionic radius of the cation in a glass composition, and the erosion amount by an iodine electrolyte. マクロ型DTA装置で測定した時のガラスの軟化点を示す模式図である。It is a schematic diagram which shows the softening point of glass when it measures with a macro type | mold DTA apparatus. [ガラス組成中のカチオンの平均価数]を[ガラス組成中のカチオンの平均イオン半径の2乗]で除した値とヨウ素電解液による侵食量の関係を示すデータである。It is data showing the relationship between the value obtained by dividing [the average valence of cations in the glass composition] by [the square of the average ionic radius of cations in the glass composition] and the amount of erosion by the iodine electrolyte.

本発明の色素増感型太陽電池用ガラスにおいて、ガラス組成中のカチオンの平均イオン半径は0.80Å以下、好ましくは0.78Å以下、より好ましくは0.76Å以下である。ガラス組成中のカチオンの平均イオン半径が0.80Åより大きいと、ガラス網目構造を構成するカチオンが酸素を引き付ける力が小さくなり、カチオンと酸素の距離が離れて、ガラス網目構造にヨウ素イオン(I )が進入し、ヨウ素イオン(I )によってカチオンと酸素の結合が切断されやすくなる。 In the glass for a dye-sensitized solar cell of the present invention, the average ionic radius of the cation in the glass composition is 0.80 cm or less, preferably 0.78 cm or less, more preferably 0.76 cm or less. When the average ionic radius of the cation in the glass composition is larger than 0.80 mm, the cation constituting the glass network structure has a small force to attract oxygen, and the distance between the cation and oxygen is increased so that the iodine ion (I 3 -) enters, iodine ions (I 3 - becomes by) likely to be cut binding cations and oxygen.

本発明の色素増感型太陽電池用ガラスにおいて、[ガラス組成中のカチオンの平均価数]を[ガラス組成中のカチオンの平均イオン半径の2乗]で除した値は4.30/Å以上、4.40/Å以上、特に4.50/Å以上が好ましい。この値が4.30/Åより小さいと、カチオンが酸素を引き付ける力が小さくなり、ガラス構造が疎になり、ヨウ素イオン(I )がガラス網目構造に進入し、カチオンと酸素の結合が切断されやすくなる。 In the glass for a dye-sensitized solar cell of the present invention, the value obtained by dividing [the average valence of cations in the glass composition] by [the square of the average ionic radius of cations in the glass composition] is 4.30 / Å 2. above, 4.40 / Å 2 or more, particularly 4.50 / Å 2 or more. And this value is 4.30 / Å 2 less than the cation is a force to attract oxygen is small, the glass structure becomes sparse, iodine ions (I 3 -) enters the glass network structure, the binding of cations and oxygen Becomes easier to cut.

本発明の色素増感型太陽電池用ガラスにおいて、ガラス組成中のカチオンの平均イオン半径を0.80Å以下にするため、また[ガラス組成中のカチオンの平均価数]を[ガラス組成中のカチオンの平均イオン半径の2乗]で除した値を4.30/Å以上にするためには、ガラス組成中にSi、Al等の元素の含有量を増加させ、或いはPb、Bi、Ba等の元素の含有量を減少させればよい。 In the glass for a dye-sensitized solar cell of the present invention, the average ionic radius of cations in the glass composition is 0.80 mm or less, and the [average valence of cations in the glass composition] is set to [cations in the glass composition]. to the average value obtained by dividing the square] ion radius 4.30 / Å 2 or more, Si in the glass composition increases the content of elements such as Al, or Pb, Bi, Ba, etc. What is necessary is just to reduce content of the element.

本発明の色素増感型太陽電池用ガラスは、Bi−B系ガラス、SnO−P系ガラス、SiO−B系ガラス、V系ガラス等を用いることができる。ここで、「〜系ガラス」とは、明示の成分を必須成分として、15モル%以上含有するガラスを指す。 The glass for dye-sensitized solar cells of the present invention includes Bi 2 O 3 —B 2 O 3 glass, SnO—P 2 O 5 glass, SiO 2 —B 2 O 3 glass, and V 2 O 5 glass. Etc. can be used. Here, “to glass” refers to a glass containing 15 mol% or more of an explicit component as an essential component.

Bi−B系ガラスは、ガラス組成として、モル%で、Bi 25〜45%、B 20〜35%、ZnO 0〜35%、SiO+Al+ZrO 0.5〜15%含有することが好ましい。このようにすれば、熱的安定性、低融点特性およびヨウ素電解液に対する耐性(耐電解液性)を高いレベルで両立させることができる。以下に、ガラス組成範囲を上記のように限定した理由を述べる。 Bi 2 O 3 -B 2 O 3 based glass, a glass composition, in mol%, Bi 2 O 3 25~45% , B 2 O 3 20~35%, ZnO 0~35%, SiO 2 + Al 2 O It is preferable to contain 0.5-15% of 3 + ZrO 2 . If it does in this way, thermal stability, a low melting-point characteristic, and the tolerance (electrolytic solution resistance) with respect to an iodine electrolyte solution can be made compatible at a high level. The reason for limiting the glass composition range as described above will be described below.

Biは、軟化点を下げるための主要成分であり、その含有量は25〜45%、特に30〜40%が好ましい。ガラスを構成する成分の内、Bi3+はイオン半径が1.17Åと大きい。よって、Biの含有量が少ないと、ガラス組成中のカチオンの平均イオン半径は小さくなり、Biの含有量が多いと、平均イオン半径が大きくなりやすい。また、Bi3+の価数をイオン半径の2乗で除した値は2.19/Åである。よって、Biの含有量が少ないと、[ガラス組成中のカチオンの平均価数]を[ガラス組成中のカチオンの平均イオン半径の2乗]で除した値が大きくなりやすく、ヨウ素イオンによる侵食を受け難くなる。さらに、Biの含有量が少ないと、軟化点が高くなり過ぎ、低温で封着し難くなる。一方、Biの含有量が多いと、ガラスが熱的に不安定になり、溶融時または焼成時にガラスが失透しやすくなる。 Bi 2 O 3 is a main component for lowering the softening point, and its content is preferably 25 to 45%, particularly preferably 30 to 40%. Among the components constituting the glass, Bi 3+ has a large ionic radius of 1.17 mm. Therefore, when the content of Bi 2 O 3 is small, the average ionic radius of the cation in the glass composition is small, and when the content of Bi 2 O 3 is large, the average ionic radius tends to be large. The value obtained by dividing the valency of Bi 3+ in the square of the ionic radius is 2.19 / Å 2. Therefore, when the content of Bi 2 O 3 is small, the value obtained by dividing [the average valence of the cation in the glass composition] by [the square of the average ionic radius of the cation in the glass composition] tends to increase, and the iodine ion It becomes difficult to receive erosion by. Furthermore, if the content of Bi 2 O 3 is small, the softening point becomes too high and it becomes difficult to seal at low temperatures. On the other hand, when the content of Bi 2 O 3 is large, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing.

は、ビスマス系ガラスのガラスネットワークを形成する成分であり、その含有量は20〜35%、特に23〜30%が好ましい。ガラスを構成する成分の内、B3+はイオン半径が0.25Åと小さい。よって、Bの含有量が少ないと、ガラス組成中のカチオンの平均イオン半径が大きくなり、Bの含有量が多いと、平均イオン半径が小さくなりやすい。また、B3+の価数をイオン半径の2乗で除した値は、48.00/Åである。よって、Bの含有量が多いと、[ガラス組成中のカチオンの平均価数]を[ガラス組成中のカチオンの平均イオン半径の2乗]で除した値が大きくなり、ヨウ素イオンによる侵食を受け難くなる。さらに、Bの含有量が少ないと、ガラスが熱的に不安定になり、溶融時または焼成時にガラスが失透しやすくなる。一方、Bの含有量が多過ぎると、粘性が高くなり過ぎ、低温で封着することが困難になる。 B 2 O 3 is a component that forms a glass network of bismuth-based glass, and its content is preferably 20 to 35%, particularly preferably 23 to 30%. Among the components constituting the glass, B 3+ has a small ionic radius of 0.25 mm. Therefore, when the content of B 2 O 3 is small, the average ionic radius of the cation in the glass composition increases, and when the content of B 2 O 3 is large, the average ionic radius tends to decrease. The value obtained by dividing the valency by the square of the ionic radius of B 3+ is 48.00 / Å 2. Therefore, when the content of B 2 O 3 is large, the value obtained by dividing [the average valence of the cation in the glass composition] by [the square of the average ionic radius of the cation in the glass composition] becomes large, which is caused by iodine ions. Less susceptible to erosion. Further, when the content of B 2 O 3 is small, the glass becomes thermally unstable, and the glass is easily devitrified at the time of melting or firing. On the other hand, when the content of B 2 O 3 is too large, the viscosity is too high, it becomes difficult to seal at low temperatures.

ZnOは、溶融時または焼成時に失透を抑制する成分であり、その含有量は0〜35%、より好ましくは10〜30%、特に20〜30%が好ましい。しかし、ZnOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなる。なお、Zn2+のイオン半径が0.74Å、価数をイオン半径の2乗で除した値が3.65/Åであるため、ヨウ素電解液による侵食を可及的に防止することを目的とする場合、ZnOの含有量は少ない方が好ましい。 ZnO is a component that suppresses devitrification during melting or firing, and its content is preferably 0 to 35%, more preferably 10 to 30%, and particularly preferably 20 to 30%. However, when there is too much content of ZnO, the component balance of a glass composition will be impaired and it will become easy to devitrify glass conversely. In addition, since the ionic radius of Zn 2+ is 0.74 Å and the value obtained by dividing the valence by the square of the ionic radius is 3.65 / Å 2 , the object is to prevent erosion by the iodine electrolyte as much as possible. In this case, the content of ZnO is preferably small.

SiO+Alは、ヨウ素電解液による侵食を生じ難くする成分であり、その含有量は0.5〜15%、特に2〜10%が好ましい。SiO+Alの含有量が少ないと、Si4+のイオン半径、Al3+のイオン半径がそれぞれ0.40Å、0.64Å、価数をイオン半径の2乗で除した値がそれぞれ25.00/Å、6.68/Åであるため、ガラスがヨウ素電解液に侵食されやすくなり、長期間に亘り、ヨウ素電解液や電池特性の劣化を防止することができる。SiO+Alの含有量が多いと、軟化点が高くなり過ぎ、低温で封着することが困難となる。 SiO 2 + Al 2 O 3 is a component that hardly causes erosion by the iodine electrolyte, and its content is preferably 0.5 to 15%, particularly preferably 2 to 10%. When the content of SiO 2 + Al 2 O 3 is small, the ionic radius of Si 4+ and the ionic radius of Al 3+ are 0.40Å and 0.64Å, respectively, and the values obtained by dividing the valence by the square of the ionic radius are 25. Since it is 00 / Å 2 and 6.68 / Å 2 , the glass is easily eroded by the iodine electrolyte solution, and the deterioration of the iodine electrolyte solution and battery characteristics can be prevented for a long period of time. When the content of SiO 2 + Al 2 O 3 is large, too high softening point, it is difficult to seal at low temperatures.

SiOは、ヨウ素電解液による侵食を生じ難くする成分であり、その含有量は0〜15%、0.1〜10%、特に2〜8%が好ましい。SiOの含有量が多いと、軟化点が高くなり過ぎ、低温で封着することが困難となる。 SiO 2 is a component that makes it difficult to cause erosion by the iodine electrolyte, and its content is preferably 0 to 15%, 0.1 to 10%, and particularly preferably 2 to 8%. When the content of SiO 2 is large, the softening point becomes too high, and it becomes difficult to seal at a low temperature.

Alは、ヨウ素電解液による侵食を生じ難くする成分であり、その含有量は0〜10%、特に0.1〜3.5%が好ましい。Alの含有量が多いと、軟化点が高くなり過ぎ、低温で封着することが困難となる。 Al 2 O 3 is a component that makes it difficult to cause erosion by the iodine electrolyte, and its content is preferably 0 to 10%, particularly preferably 0.1 to 3.5%. When the content of Al 2 O 3 is large, too high softening point, it is difficult to seal at low temperatures.

上記ガラス組成範囲において、上記成分以外にも、例えば、下記の成分をガラス組成中に25%(好ましくは20%、より好ましくは15%、更に好ましくは10%)まで含有させることができる。   In the above glass composition range, in addition to the above components, for example, the following components can be contained in the glass composition up to 25% (preferably 20%, more preferably 15%, still more preferably 10%).

CuOは、溶融時または焼成時に失透を抑制する成分であり、その含有量は0〜10%、より好ましくは0〜7%である。CuOの含有量が多過ぎると、Cu2+のイオン半径が0.87Å、価数をイオン半径の2乗で除した値が2.64/Åであるため、耐電解液性が乏しくなる。また、CuOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなり、流動性が損なわれやすくなる。特に、CuOの含有量を0.1〜2%に規制すれば、熱的安定性を顕著に高めることができる。 CuO is a component that suppresses devitrification during melting or firing, and its content is 0 to 10%, more preferably 0 to 7%. When there is too much content of CuO, since the ion radius of Cu < 2+ > is 0.87? And the value obtained by dividing the valence by the square of the ion radius is 2.64 /? 2 , the resistance to electrolyte solution becomes poor. Moreover, when there is too much content of CuO, the component balance of a glass composition will be impaired, conversely, it will become easy to devitrify glass and fluidity | liquidity will be easy to be impaired. In particular, if the CuO content is restricted to 0.1 to 2%, the thermal stability can be remarkably enhanced.

Feは、溶融時または焼成時に失透を抑制する成分であり、その含有量は0〜5%、好ましくは0〜2%である。Feの含有量が多いと、Fe3+のイオン半径が0.69Å、価数をイオン半径の2乗で除した値は6.30/Åであるため、耐電解液性が向上するが、Feの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなる。また、Feの含有量を0.1〜2%に規制すれば、熱的安定性を顕著に高めることができる。 Fe 2 O 3 is a component that suppresses devitrification during melting or firing, and its content is 0 to 5%, preferably 0 to 2%. When the content of Fe 2 O 3 is large, the ionic radius of Fe 3+ is 0.69Å, and the value obtained by dividing the valence by the square of the ionic radius is 6.30 / Å 2 , which improves the resistance to electrolyte. Suruga, the content of Fe 2 O 3 is too large, is impaired balance of components glass composition, the glass tends to be devitrified reversed. Moreover, if the content of Fe 2 O 3 is restricted to 0.1 to 2%, the thermal stability can be remarkably improved.

BaO、SrO、MgO、CaOは、溶融時または焼成時に失透を抑制する成分であり、これらの成分は合量で15%までガラス組成中に含有させることができる。これらの成分の合量が多いと、軟化点が高くなり過ぎ、低温で封着し難くなる。   BaO, SrO, MgO, and CaO are components that suppress devitrification at the time of melting or firing, and these components can be contained in the glass composition up to 15% in total. If the total amount of these components is large, the softening point becomes too high and it becomes difficult to seal at low temperatures.

BaOの含有量は0〜10%、特に0.1〜8%が好ましい。BaOの含有量が多過ぎると、Ba2+のイオン半径が1.49Å、価数をイオン半径の2乗で除した値は0.90/Åであるため、耐電解液性が乏しくなる。また、BaOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなる。そのため、熱的安定性を高める観点から、BaOの含有量を1%以上とするのが好ましい。 The content of BaO is preferably 0 to 10%, particularly preferably 0.1 to 8%. When the content of BaO is too large, the ionic radius of Ba 2+ is 1.49 Å, and the value obtained by dividing the valence by the square of the ionic radius is 0.90 / Å 2 . Moreover, when there is too much content of BaO, the component balance of a glass composition will be impaired and it will become easy to devitrify glass conversely. Therefore, from the viewpoint of improving the thermal stability, the BaO content is preferably 1% or more.

SrO、MgO、CaOのそれぞれの含有量は0〜5%、特に0〜2%が好ましい。Sr2+、Mg2+、Ca2+のイオン半径は、それぞれ1.32Å、0.86Å、1.14Åであり、また価数をイオン半径の2乗で除した値はそれぞれ1.15/Å、2.70/Å、1.54/Åである。よって、各成分の含有量が多いと、耐電解液性が乏しくなる。また、各成分の含有量が多過ぎると、ガラスが失透、或いは分相しやすくなる。 Each content of SrO, MgO, and CaO is preferably 0 to 5%, particularly preferably 0 to 2%. The ionic radii of Sr 2+ , Mg 2+ and Ca 2+ are 1.32 Å, 0.86 Å and 1.14 そ れ ぞ れ, respectively, and the values obtained by dividing the valence by the square of the ionic radius are 1.15 / Å 2 , respectively. 2.70 / Å 2, which is 1.54 / Å 2. Therefore, when there is much content of each component, electrolyte solution resistance will become scarce. Moreover, when there is too much content of each component, it will become easy to devitrify or phase-separate glass.

Sbは、失透を抑制するための成分であり、その含有量は0〜5%、特に0〜2%が好ましい。一方、Sbは、ビスマス系ガラスのネットワーク構造を安定化させる効果があり、ビスマス系ガラスにおいて、Sbを適宜添加すれば、Biの含有量が多い場合、例えばBiの含有量が35%以上であっても、熱的安定性が低下し難くなる。ただし、Sbの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなる。Sb3+のイオン半径は0.90Å、価数をイオン半径の2乗で除した値は5.19/Åである。 Sb 2 O 3 is a component for suppressing devitrification, and its content is preferably 0 to 5%, particularly preferably 0 to 2%. On the other hand, Sb 2 O 3 has an effect of stabilizing the network structure of the bismuth-based glass. If Sb 2 O 3 is appropriately added to the bismuth-based glass, when the content of Bi 2 O 3 is large, for example, Bi Even if the content of 2 O 3 is 35% or more, the thermal stability is hardly lowered. However, when the content of Sb 2 O 3 is too large, is impaired balance of components glass composition, the glass is easily devitrified reversed. Ionic radius of sb 3+ is 0.90 Å, the value obtained by dividing the valency by the square of the ionic radius is 5.19 / Å 2.

WOは、ガラス失透を抑制するための成分であり、その含有量は0〜10%、特に0〜4%が好ましい。WOは、WO6+のイオン半径が0.74Åであるため、ガラス組成中のカチオンの平均イオン半径を若干小さくするが、価数をイオン半径の2乗で除した値は15.61/Åと大きく、耐電解液性を向上させる成分である。しかし、WOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなる。 WO 3 is a component for suppressing glass devitrification, and its content is preferably 0 to 10%, particularly preferably 0 to 4%. In WO 3 , since the ionic radius of WO 6+ is 0.74Å, the average ionic radius of cations in the glass composition is slightly reduced, but the value obtained by dividing the valence by the square of the ionic radius is 15.61 / Å. 2 is a component that improves the electrolytic solution resistance. However, when the content of WO 3 is too large, is impaired balance of components glass composition, the glass tends to be devitrified reversed.

In、Gaは必須成分ではないが、失透を抑制するための成分であり、その含有量は合量で0〜5%、特に0〜3%が好ましい。ただし、In、Gaの合量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなる。なお、Inの含有量は0〜1%が好ましく、Gaの含有量は0〜0.5%が好ましい。なお、In3+、Ga3+のイオン半径はそれぞれ0.94Å、0.76Åであり、価数をイオン半径の2乗で除した値はそれぞれ3.40/Å、5.19/Åである。 In 2 O 3 and Ga 2 O 3 are not essential components, but are components for suppressing devitrification, and the total content is preferably 0 to 5%, particularly preferably 0 to 3%. However, when the total content of In 2 O 3, Ga 2 O 3 is too large, is impaired balance of components glass composition, the glass tends to be devitrified reversed. In addition, the content of In 2 O 3 is preferably 0 to 1%, and the content of Ga 2 O 3 is preferably 0 to 0.5%. The ion radii of In 3+ and Ga 3+ are 0.94Å and 0.76Å, respectively, and the values obtained by dividing the valence by the square of the ion radius are 3.40 / Å 2 and 5.19 / Å 2 , respectively. is there.

Li、Na、KおよびCsの酸化物は、軟化点を低下させる成分であるが、溶融時に失透を促進する作用を有するため、その含有量は合量で2%以下とするのが好ましい。また、Li、Na、KおよびCsのイオン半径はそれぞれ0.90Å、1.16Å、1.52Å、1.81Åであり、価数をイオン半径の2乗で除した値はそれぞれ1.23/Å、0.74/Å、0.43/Å、0.31/Åである。よって、各成分の含有量が多過ぎると、耐電解液性が乏しくなる。 The oxides of Li, Na, K, and Cs are components that lower the softening point. However, since they have an action of promoting devitrification at the time of melting, the total content is preferably 2% or less. The ionic radii of Li + , Na + , K + and Cs + are 0.90 そ れ ぞ れ, 1.16Å, 1.52Å and 1.81Å, respectively, and the values obtained by dividing the valence by the square of the ionic radius are respectively 1.23 / 23 2 , 0.74 / Å 2 , 0.43 / Å 2 , and 0.31 / Å 2 . Therefore, when there is too much content of each component, electrolyte solution resistance will become scarce.

MoO、La、YおよびGdは、溶融時に分相を抑制する成分であるが、これらの合量が3%より多いと、軟化点が高くなり過ぎ、低温で封着し難くなる。なお、各成分のイオン半径は、それぞれ0.73Å、1.17Å、1.04Å、1.08Åである。また、価数をイオン半径の2乗で除した値はそれぞれ11.26/Å、2.19/Å、2.77/Å、2.57/Åである。 MoO 3 , La 2 O 3 , Y 2 O 3, and Gd 2 O 3 are components that suppress phase separation at the time of melting. However, if the total amount thereof is more than 3%, the softening point becomes too high, and the temperature is low. It becomes difficult to seal with. The ionic radii of each component are 0.730.7, 1.17Å, 1.04Å, and 1.08Å, respectively. Further, each 11.26 / Å 2 is a value obtained by dividing the valency by the square of the ionic radius, 2.19 / Å 2, 2.77 / Å 2, which is 2.57 / Å 2.

CeOは、溶融時または焼成時に失透を抑制する成分であり、その含有量は0〜5%、特に0〜2%が好ましい。CeOの含有量が多過ぎると、Ce4+のイオン半径が1.15Å、価数をイオン半径の2乗で除した値が3.02/Åであるため、耐電解液性が乏しくなる。また、CeOの含有量が多過ぎると、ガラス組成の成分バランスを欠き、逆に熱的安定性が損なわれて、その結果、ガラスが失透しやすくなり、流動性が損なわれやすくなる。 CeO 2 is a component that suppresses devitrification during melting or firing, and its content is preferably 0 to 5%, particularly preferably 0 to 2%. When the content of CeO 2 is too large, the ionic radius of Ce 4+ is 1.15 価, and the value obtained by dividing the valence by the square of the ionic radius is 3.02 / Å 2 , so that the electrolytic solution resistance becomes poor. . If the content of CeO 2 is too large, lacking component balance of the glass composition, contrary to thermal stability is impaired, resulting in the glass is easily devitrified, the fluidity is easily impaired.

は、溶融時に失透を抑制する成分であるが、その添加量が1%より多いと、溶融時にガラスが分相しやすくなるため好ましくない。 P 2 O 5 is a component that suppresses devitrification at the time of melting. However, if the amount of P 2 O 5 added is more than 1%, the glass tends to phase-separate at the time of melting.

また、その他の成分であっても、ガラス特性を損なわない範囲で10%(好ましくは5%)までガラス組成中に添加することができる。   Moreover, even if it is another component, it can add to a glass composition to 10% (preferably 5%) in the range which does not impair a glass characteristic.

SiO−B系ガラスは、ガラス組成として、モル%で、SiO 20〜50%、B 15〜35%、ZnO 0〜35%含有することが好ましい。このようにすれば、熱的安定性、低融点特性および耐電解液性を高いレベルで両立させることができる。以下に、ガラス組成範囲を上記のように限定した理由を以下に述べる。 SiO 2 -B 2 O 3 -based glass, as a glass composition, in mol%, SiO 2 20~50%, B 2 O 3 15~35%, preferably contains 0 to 35% ZnO. In this way, thermal stability, low melting point characteristics, and electrolyte resistance can be achieved at a high level. The reason why the glass composition range is limited as described above will be described below.

SiOは、ガラスネットワークを形成し、且つヨウ素電解液による侵食を生じ難くする成分であり、その含有量は20〜50%、特に25〜45%が好ましい。SiOの含有量が多いと、Si4+のイオン半径が0.40Å、価数をイオン半径の2乗で除した値は25.00/Åであるため、耐電解液性が向上する。また、SiOの含有量が少ないと、ガラスが熱的に不安定になり、溶融時または焼成時にガラスが失透しやすくなる。一方、SiOの含有量が多いと、軟化点が高くなり過ぎ、低温で封着することが困難となる。 SiO 2 is a component that forms a glass network and hardly causes erosion by the iodine electrolyte, and its content is preferably 20 to 50%, particularly preferably 25 to 45%. When the content of SiO 2 is large, the ionic radius of Si 4+ is 0.40Å, and the value obtained by dividing the valence by the square of the ionic radius is 25.00 / Å 2 , so that the resistance to electrolytic solution is improved. If the content of SiO 2 is small, glass becomes thermally unstable, the glass tends to be devitrified when melted or during sintering. On the other hand, when the content of SiO 2 is large, the softening point becomes too high, and it becomes difficult to seal at a low temperature.

は、ガラスネットワークを形成する成分であり、その含有量は15〜35%、特に20〜30%が好ましい。Bの含有量が少ないと、B3+のイオン半径が0.25Åであるため、ガラス組成中のカチオンの平均イオン半径が大きくなり、Bの含有量が多いと、平均イオン半径が小さくなりやすい。また、B3+の価数をイオン半径の2乗で除した値は48.00/Åである。よって、Bの含有量が多いと、[ガラス組成中のカチオンの平均価数]を[ガラス組成中のカチオンの平均イオン半径の2乗]で除した値が大きくなり、ヨウ素イオンによる侵食を受け難くなる。また、Bの含有量が少ないと、ガラスが熱的に不安定になり、溶融時または焼成時にガラスが失透しやすくなる。一方、Bの含有量が多いと、粘性が高くなり過ぎ、低温で封着することが困難になる。 B 2 O 3 is a component that forms a glass network, and its content is preferably 15 to 35%, particularly preferably 20 to 30%. When the content of B 2 O 3 is small, the ionic radius of B 3+ is 0.25%, so that the average ionic radius of the cation in the glass composition increases, and when the content of B 2 O 3 is large, the average ion The radius tends to be small. The value of the valence divided by the square of the ionic radius of B 3+ is 48.00 / Å 2. Therefore, when the content of B 2 O 3 is large, a value obtained by dividing [average valence of cations in glass composition] by [square of average ionic radius of cations in glass composition] increases, and iodine ions Less susceptible to erosion. If the content of B 2 O 3 is less, glass becomes thermally unstable, the glass tends to be devitrified when melted or during sintering. On the other hand, if the content of B 2 O 3 is large, the viscosity is too high, it becomes difficult to seal at low temperatures.

ZnOは、溶融時または焼成時に失透を抑制する成分であり、その含有量は0〜35%、より好ましくは10〜30%、特に20〜30%が好ましい。しかし、ZnOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなる。なお、Zn2+のイオン半径が0.74Å、価数をイオン半径の2乗で除した値は3.65/Åであるため、ヨウ素電解液による侵食を可及的に防止することを目的とする場合、ZnOの含有量は少ない方が好ましい。 ZnO is a component that suppresses devitrification during melting or firing, and its content is preferably 0 to 35%, more preferably 10 to 30%, and particularly preferably 20 to 30%. However, when there is too much content of ZnO, the component balance of a glass composition will be impaired and it will become easy to devitrify glass conversely. In addition, since the ionic radius of Zn 2+ is 0.74 Å and the value obtained by dividing the valence by the square of the ionic radius is 3.65 / Å 2 , the object is to prevent erosion by iodine electrolyte as much as possible. In this case, the content of ZnO is preferably small.

SnO−P系ガラスは、ガラス組成として、モル%で、SnO 35〜70%、P 18〜50%含有することが好ましい。このようにすれば、熱的安定性、低融点特性および耐電解液性を高いレベルで両立させることができる。以下に、ガラス組成範囲を上記のように限定した理由を述べる。 SnO-P 2 O 5 based glass, a glass composition, in mol%, SnO 35 to 70%, preferably contains P 2 O 5 18~50%. In this way, thermal stability, low melting point characteristics, and electrolyte resistance can be achieved at a high level. The reason for limiting the glass composition range as described above will be described below.

SnOは、ガラスを低融点化する成分であり、必須成分である。その含有量は35〜70%、40〜65%、特に48〜63%が好ましい。特に、SnOの含有量が40%以上であれば、流動性が高まり、気密信頼性を高めることができる。SnOの含有量が少ないと、粘性が高くなり過ぎ、封着温度が不当に高くなるおそれがある。一方、SnOの含有量が多いと、耐電解液性が乏しくなり、またガラス化が困難になる。Sn2+のイオン半径は0.83Å、価数をイオン半径の2乗で除した値は2.90/Åである。 SnO is a component that lowers the melting point of glass and is an essential component. The content is preferably 35 to 70%, 40 to 65%, particularly 48 to 63%. In particular, if the SnO content is 40% or more, the fluidity is increased and the airtight reliability can be improved. If the content of SnO is small, the viscosity becomes too high and the sealing temperature may be unduly high. On the other hand, when there is much content of SnO, electrolyte solution resistance will become scarce and vitrification will become difficult. Ionic radius of Sn 2+ is 0.83A, the value obtained by dividing the valency by the square of the ionic radius is 2.90 / Å 2.

は、ガラス形成酸化物であると同時に、ヨウ素電解液による侵食を生じ難くする成分であり、しかもガラスを低融点化させる成分であり、その含有量は18〜50%、20〜35%、特に23〜30%が好ましい。Pの含有量が少ないと、P5+のイオン半径が0.31Å、価数をイオン半径の2乗で除した値が52.03/Åであるため、耐電解液性は乏しくなり、また熱的安定性が低下しやすくなる。一方、Pの含有量が多いと、耐水性が低下し、長期信頼性を確保し難くなるが、耐電解液性は向上する。 P 2 O 5 is a glass-forming oxide and a component that makes it difficult to cause erosion by an iodine electrolyte, and is a component that lowers the melting point of glass, and its content is 18 to 50%, 20 to 20%. 35%, particularly 23 to 30% is preferable. When the content of P 2 O 5 is small, the ionic radius of P 5+ is 0.31 Å, and the value obtained by dividing the valence by the square of the ionic radius is 52.03 / Å 2 , so that the resistance to electrolyte is poor. In addition, the thermal stability tends to decrease. On the other hand, when the high content of P 2 O 5, water resistance is lowered and becomes difficult to ensure long-term reliability, electrolyte resistance is improved.

上記ガラス組成範囲において、上記成分以外にも、例えば、下記の成分をガラス組成中に40%まで含有させることができる。   In the glass composition range, in addition to the above components, for example, the following components can be contained up to 40% in the glass composition.

ZnOは、中間酸化物であり、ガラスを安定化させる成分である。その含有量は0〜30%、0〜20%、特に3〜15%が好ましい。特にZnOの含有量を3%以上にすれば、熱的安定性を高めることができる。一方、ZnOが多過ぎると、Zn2+のイオン半径が0.74Å、価数をイオン半径の2乗で除した値が3.65/Åであるため、耐電解液性が乏しくなり、またガラス組成の成分バランスが損なわれて、逆に熱的安定性が低下しやすくなる。 ZnO is an intermediate oxide and a component that stabilizes the glass. The content is preferably 0 to 30%, 0 to 20%, particularly preferably 3 to 15%. In particular, if the ZnO content is 3% or more, the thermal stability can be improved. On the other hand, if there is too much ZnO, the ionic radius of Zn 2+ is 0.74 Å, and the value obtained by dividing the valence by the square of the ionic radius is 3.65 / Å 2. The component balance of the glass composition is impaired, and conversely, the thermal stability tends to decrease.

は、ガラス形成酸化物であり、ガラスを安定化させる成分であるとともに、B3+のイオン半径は0.25Å、価数をイオン半径の2乗で除した値は48.00/Åであるため、耐電解液性を高める成分であり、その含有量は0〜20%、特に0〜16%が好ましい。Bの含有量が多いと、粘性が高くなり過ぎ、流動性が低下しやすくなる。 B 2 O 3 is a glass-forming oxide and is a component that stabilizes the glass. B 3+ has an ionic radius of 0.25Å and a value obtained by dividing the valence by the square of the ionic radius is 48.00 / because it is Å 2, or to enhance the electrolyte solution resistance, the content of 0-20%, especially 0-16% is preferred. If the content of B 2 O 3 is large, the viscosity is too high, the fluidity tends to decrease.

SiOは、ガラス形成酸化物であり、ガラスを安定化させる成分であるとともに、Si4+のイオン半径が0.40Å、価数をイオン半径の2乗で除した値は25.00/Åであるため、耐電解液性を高める成分であり、その含有量は0〜15%、特に0〜5%が好ましい。SiOの含有量が多いと、軟化点が上昇し、低温で封着し難くなる。 SiO 2 is a glass-forming oxide, and is a component that stabilizes the glass. The ionic radius of Si 4+ is 0.40Si, and the value obtained by dividing the valence by the square of the ionic radius is 25.00 / Å 2. Therefore, it is a component that increases the resistance to electrolytic solution, and its content is preferably 0 to 15%, particularly preferably 0 to 5%. When the content of SiO 2 is large, the softening point is increased and it is difficult to sealing at low temperatures.

Alは、中間酸化物であり、ガラスを安定化させる成分であるとともに、熱膨張係数を低下させる成分であるとともに、Al3+のイオン半径が0.64Å、価数をイオン半径の2乗で除した値が6.68/Åであるため、耐電解液性を高める成分であり、その含有量は0〜10%、特に0〜5%が好ましい。Alの含有量が多いと、軟化点が不当に上昇し、低温で封着し難くなる。 Al 2 O 3 is an intermediate oxide, a component that stabilizes the glass, a component that lowers the thermal expansion coefficient, Al 3+ has an ionic radius of 0.64Å, and a valence of 2 of the ionic radius. since a value obtained by dividing a power of it is 6.68 / Å 2, or to enhance the electrolyte solution resistance, the content of 0-10%, especially 0-5% is preferred. When the content of Al 2 O 3 is large, softening point unduly increased, it becomes difficult to sealing at low temperatures.

Inは、熱的安定性を高める成分であり、その含有量は0〜5%が好ましい。Inの含有量が多いと、バッチコストが高騰する。なお、In3+のイオン半径は0.94Å、価数をイオン半径の2乗で除した値は3.40/Åである。 In 2 O 3 is a component that enhances thermal stability, and its content is preferably 0 to 5%. When the content of In 2 O 3 is large, batch cost soars. Incidentally, the ionic radius of In 3+ is 0.94 Å, the value obtained by dividing the valency by the square of the ionic radius is 3.40 / Å 2.

Taは、熱的安定性を高める成分であり、その含有量は0〜5%が好ましい。Taの含有量が多いと、軟化点が不当に上昇し、低温で封着し難くなる。なお、Ta5+のイオン半径は0.88Å、価数をイオン半径の2乗で除した値は6.48/Åである。 Ta 2 O 5 is a component that enhances thermal stability, and its content is preferably 0 to 5%. When the content of Ta 2 O 5 is large, softening point unduly increased, it becomes difficult to sealing at low temperatures. The ion radius of Ta 5+ is 0.88A, the value obtained by dividing the square of the valence ion radius is 6.48 / Å 2.

Laは、熱的安定性を高める成分であるとともに、耐候性を高める成分であり、その含有量は0〜15%、0〜10%、特に0〜5%が好ましい。Laの含有量が多いと、軟化点が不当に上昇し、低温で封着し難くなる。なお、La3+のイオン半径は1.17Å、価数をイオン半径の2乗で除した値は2.19/Åである。 La 2 O 3 is a component that enhances thermal stability and a component that improves weather resistance, and its content is preferably 0 to 15%, 0 to 10%, and particularly preferably 0 to 5%. When the content of La 2 O 3 is large, softening point unduly increased, it becomes difficult to sealing at low temperatures. The ion radius of La 3+ is 1.17 Å, the value obtained by dividing the valency by the square of the ionic radius is 2.19 / Å 2.

MoOは、熱的安定性を高める成分であり、その含有量は0〜5%が好ましい。MoOの含有量が多いと、軟化点が不当に上昇し、低温で封着し難くなる。なお、Mo6+のイオン半径は0.73Å、価数をイオン半径の2乗で除した値は11.26/Åである。 MoO 3 is a component that enhances thermal stability, and its content is preferably 0 to 5%. When the content of MoO 3 is large, softening point unduly increased, it becomes difficult to sealing at low temperatures. The ion radius of Mo 6+ is 0.73A, the value obtained by dividing the square of the valence ion radius is 11.26 / Å 2.

WOは、熱的安定性を高める成分であり、その含有量は0〜5%が好ましい。WOの含有量が多いと、軟化点が不当に上昇し、低温で封着し難くなる。なお、WOは、W6+のイオン半径は0.74Å、価数をイオン半径の2乗で除した値は15.61/Åである。 WO 3 is a component that enhances thermal stability, and its content is preferably 0 to 5%. When the content of WO 3 is large, the softening point is unreasonably raised and it becomes difficult to seal at a low temperature. Incidentally, WO 3, the ion radius of W 6+ is 0.74A, the value obtained by dividing the square of the valence ion radius is 15.61 / Å 2.

LiOは、ガラスを低融点化する成分であり、その含有量は0〜5%が好ましい。LiOの含有量が多いと、熱的安定性が低下しやすくなり、またLiのイオン半径が0.90Å、価数をイオン半径の2乗で除した値が1.23/Åであるため、耐電解液性が乏しくなる。 Li 2 O is a component that lowers the melting point of glass, and its content is preferably 0 to 5%. When the content of Li 2 O is large, the thermal stability tends to decrease, the Li + ion radius is 0.900.9, and the value obtained by dividing the valence by the square of the ion radius is 1.23 / Å 2. Therefore, the resistance to electrolytic solution becomes poor.

NaOは、ガラスを低融点化する成分であり、その含有量は0〜10%、特に0〜5%が好ましい。NaOの含有量が多いと、熱的安定性が低下しやすくなり、またNaのイオン半径が1.16Å、価数をイオン半径の2乗で除した値が0.74/Åであるため、耐電解液性が乏しくなる。 Na 2 O is a component that lowers the melting point of glass, and its content is preferably 0 to 10%, particularly preferably 0 to 5%. When the content of Na 2 O is large, the thermal stability tends to be lowered, and the ion radius of Na + is 1.16 Å, and the value obtained by dividing the valence by the square of the ionic radius is 0.74 / Å 2. Therefore, the resistance to electrolytic solution becomes poor.

Oは、ガラスを低融点化する成分であり、その含有量は0〜5%が好ましい。KOの含有量が多いと、熱的安定性が低下しやすくなり、またKのイオン半径が1.52Å、価数をイオン半径の2乗で除した値は0.43/Åであるため、耐電解液性が乏しくなる。 K 2 O is a component that lowers the melting point of glass, and its content is preferably 0 to 5%. When the content of K 2 O is large, the thermal stability tends to be lowered, the ion radius of K + is 1.52Å, and the value obtained by dividing the valence by the square of the ion radius is 0.43 / Å 2. Therefore, the resistance to electrolytic solution becomes poor.

MgOは、熱的安定性を高める成分であり、その含有量は0〜15%が好ましい。MgOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなり、またMg2+のイオン半径が0.86Å、価数をイオン半径の2乗で除した値が2.70/Åであるため、耐電解液性が乏しくなる。 MgO is a component that enhances thermal stability, and its content is preferably 0 to 15%. If the content of MgO is too large, the balance of the composition of the glass composition is impaired, and conversely, the glass tends to be devitrified, and the ionic radius of Mg 2+ is 0.86%, and the valence is divided by the square of the ionic radius. since value is 2.70 / Å 2, electrolyte resistance becomes poor.

BaOは、熱的安定性を高める成分であり、その含有量は0〜10%が好ましい。BaOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなり、またBa2+のイオン半径が1.49Å、価数をイオン半径の2乗で除した値が0.90/Åであるため、耐電解液性が乏しくなる。 BaO is a component that enhances thermal stability, and its content is preferably 0 to 10%. If the content of BaO is too large, the balance of the composition of the glass composition will be impaired, and conversely, the glass will be easily devitrified, and the ionic radius of Ba 2+ is 1.49%, and the valence is divided by the square of the ionic radius. since value is 0.90 / Å 2, electrolyte resistance becomes poor.

は、ガラスを低融点化する成分であり、その含有量は0〜5%が好ましい。Fの含有量が多いと、熱的安定性が低下しやすくなる。 F 2 is a component for lowering the melting point of the glass, its content is preferably 0-5%. When the content of F 2 is large, the thermal stability tends to decrease.

熱的安定性および低融点特性のバランスを考慮すれば、In、Ta、La、MoO、WO、LiO、NaO、KO、MgO、BaOおよびFの合量は15%以下が好ましい。 In consideration of the balance between thermal stability and low melting point characteristics, In 2 O 3 , Ta 2 O 5 , La 2 O 3 , MoO 3 , WO 3 , Li 2 O, Na 2 O, K 2 O, MgO, The total amount of BaO and F 2 is preferably 15% or less.

−P系ガラスは、ガラス組成として、モル%で、V 25〜55%、P 15〜45%含有することが好ましい。このようにすれば、熱的安定性、低融点特性および耐電解液性を高いレベルで両立させることができる。以下に、ガラス組成範囲を上記のように限定した理由を述べる。 V 2 O 5 -P 2 O 5 based glass, a glass composition, in mol%, V 2 O 5 25~55% , preferably contains P 2 O 5 15~45%. In this way, thermal stability, low melting point characteristics, and electrolyte resistance can be achieved at a high level. The reason for limiting the glass composition range as described above will be described below.

は、ガラスを低融点化する成分であり、必須成分であり、その含有量は25〜55%、28〜53%、特に30〜50%が好ましい。特に、Vの含有量が25%以上であれば、流動性が高まり、気密信頼性を高めることができる。Vの含有量が少ないと、V5+のイオン半径が0.68Å、価数をイオン半径の2乗で除した値が10.81/Åであるため、耐電解液性が乏しくなり、また粘性が高くなり過ぎ、封着温度が不当に高くなるおそれがある。一方、Vの含有量が多いと、耐電解液性が向上するが、ガラス化が困難になる傾向がある。 V 2 O 5 is a component that lowers the melting point of glass and is an essential component, and its content is preferably 25 to 55%, 28 to 53%, particularly preferably 30 to 50%. In particular, when the content of V 2 O 5 is 25% or more, the fluidity is increased and the airtight reliability can be improved. When the content of V 2 O 5 is less, the ionic radius of V 5+ is 0.68A, since the value obtained by dividing the valency by the square of the ionic radius of 10.81 / Å 2, is poor electrolyte resistance And the viscosity becomes too high, and the sealing temperature may be unduly high. On the other hand, when the content of V 2 O 5 is large, the electrolytic solution resistance is improved, but vitrification tends to be difficult.

は、ガラス形成酸化物であると同時に、ヨウ素電解液による侵食を生じ難くする成分であり、しかもガラスを低融点化させる成分であり、その含有量は15〜45%、17〜40%、特に20〜35%が好ましい。Pの含有量が少ないと、イオン半径が0.31Å、価数をイオン半径の2乗で除した値は52.03/Åであるため、耐電解液性は乏しくなり、また熱的安定性が低下しやすくなる。一方、Pの含有量が多いと、耐電解液性は向上するが、耐水性が低下し、長期信頼性を確保し難くなる。 P 2 O 5 is a glass-forming oxide and at the same time is a component that makes it difficult to cause erosion by the iodine electrolyte, and is a component that lowers the melting point of the glass, and its content is 15 to 45%, 17 to 40%, especially 20-35% is preferred. When the content of P 2 O 5 is small, the ionic radius is 0.31 Å, and the value obtained by dividing the valence by the square of the ionic radius is 52.03 / Å 2. Thermal stability tends to decrease. On the other hand, when the content of P 2 O 5 is large, the electrolytic solution resistance is improved, but the water resistance is lowered and it is difficult to ensure long-term reliability.

上記ガラス組成範囲において、上記成分以外にも、例えば、下記の成分をガラス組成中に40%まで含有させることができる。   In the glass composition range, in addition to the above components, for example, the following components can be contained up to 40% in the glass composition.

ZnOは、中間酸化物であり、ガラスを安定化させる成分である。その含有量は0〜30%、0〜20%、特に3〜15%が好ましい。特にZnOの含有量を3%以上にすれば、熱的安定性を高めることができる。一方、ZnOが多過ぎると、Zn2+のイオン半径が0.74Å、価数をイオン半径の2乗で除した値が3.65/Åであるため、耐電解液性が乏しくなり、またガラス組成の成分バランスが損なわれて、逆に熱的安定性が低下しやすくなる。 ZnO is an intermediate oxide and a component that stabilizes the glass. The content is preferably 0 to 30%, 0 to 20%, particularly preferably 3 to 15%. In particular, if the ZnO content is 3% or more, the thermal stability can be improved. On the other hand, if there is too much ZnO, the ionic radius of Zn 2+ is 0.74 Å, and the value obtained by dividing the valence by the square of the ionic radius is 3.65 / Å 2. The component balance of the glass composition is impaired, and conversely, the thermal stability tends to decrease.

SrOは、熱的安定性を高める成分であり、その含有量は0〜25%が好ましい。SrOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなり、またSr2+のイオン半径が1.32Å、価数をイオン半径の2乗で除した値が1.15/Åであるため、耐電解液性が乏しくなる。 SrO is a component that enhances thermal stability, and its content is preferably 0 to 25%. If the SrO content is too large, the balance of the composition of the glass composition will be impaired, and conversely, the glass will be easily devitrified, and the ionic radius of Sr 2+ will be 1.32 mm, and the valence will be divided by the square of the ionic radius. since value is 1.15 / Å 2, electrolyte resistance becomes poor.

BaOは、熱的安定性を高める成分であり、その含有量は0〜30%が好ましい。BaOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなり、またBa2+のイオン半径が1.49Å、価数をイオン半径の2乗で除した値が0.90/Åであるため、耐電解液性が乏しくなる。 BaO is a component that enhances thermal stability, and its content is preferably 0 to 30%. If the content of BaO is too large, the balance of the composition of the glass composition will be impaired, and conversely, the glass will be easily devitrified, and the ionic radius of Ba 2+ is 1.49%, and the valence is divided by the square of the ionic radius. since value is 0.90 / Å 2, electrolyte resistance becomes poor.

CuOは、溶融時または焼成時に失透を抑制する成分であり、その含有量は0〜25%、特に0〜20%が好ましい。CuOの含有量が多過ぎると、Cu2+のイオン半径が0.87Å、価数をイオン半径の2乗で除した値が2.64/Åであるため、耐電解液性が乏しくなる。また、CuOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなり、流動性が損なわれやすくなる。 CuO is a component that suppresses devitrification during melting or firing, and its content is preferably 0 to 25%, particularly preferably 0 to 20%. When there is too much content of CuO, since the ion radius of Cu < 2+ > is 0.87? And the value obtained by dividing the valence by the square of the ion radius is 2.64 /? 2 , the resistance to electrolyte solution becomes poor. Moreover, when there is too much content of CuO, the component balance of a glass composition will be impaired, conversely, it will become easy to devitrify glass and fluidity | liquidity will be easy to be impaired.

なお、本発明の色素増感型太陽電池用ガラスは、必ずしもPbOの含有を排除するものではないが、環境的観点およびヨウ素電解液による侵食を防止する観点から、実質的にPbOを含有しないことが好ましい。ここで、「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm以下の場合を指す。   The glass for dye-sensitized solar cells of the present invention does not necessarily exclude the inclusion of PbO, but it does not substantially contain PbO from the environmental viewpoint and the viewpoint of preventing erosion by iodine electrolyte. Is preferred. Here, “substantially does not contain PbO” refers to a case where the content of PbO in the glass composition is 1000 ppm or less.

本発明の色素増感型太陽電池用ガラスにおいて、25℃のヨウ素電解液に2週間浸漬したときの質量減は0.14mg/cm以下、0.1mg/cm以下、特に0.05mg/cm以下が好ましく、実質的に質量減がないことが望ましい。質量減が小さい程、長期間に亘り、ヨウ素電解液や電池特性の劣化を防止することができる。ここで、「実質的に質量減がない」とは、質量減が0.01mg/cm以下の場合を指す。 In the dye-sensitized solar glass battery of the present invention, decrease weight when immersed for two weeks in an iodine electrolyte solution of 25 ° C. is 0.14 mg / cm 2 or less, 0.1 mg / cm 2 or less, especially 0.05 mg / cm 2 or less, and it is desirable that substantially no mass decrease. The smaller the mass loss, the more the iodine electrolyte and battery characteristics can be prevented from deteriorating over a long period of time. Here, “substantially no weight loss” refers to a case where the weight loss is 0.01 mg / cm 2 or less.

本発明の色素増感型太陽電池用ガラスにおいて、熱膨張係数は91×10−7/℃未満、88×10−7/℃未満、86×10−7/℃未満、特に84×10−7/℃未満が好ましい。本発明の色素増感型太陽電池用ガラスと、透明電極基板等に用いられるガラス基板(例えば、ソーダガラス基板)の熱膨張係数の差が大き過ぎると、耐火性フィラー粉末を添加しない限り、焼成後にガラス基板や封着部位等に不当な応力が残留し、ガラス基板や封着部位等にクラックが発生しやすくなり、或いは封着部位に剥れが生じやすくなる。ここで、「熱膨張係数」は、押棒式熱膨張係数測定装置(TMA装置)により測定した値を指す。 In the glass for a dye-sensitized solar cell of the present invention, the thermal expansion coefficient is less than 91 × 10 −7 / ° C., less than 88 × 10 −7 / ° C., less than 86 × 10 −7 / ° C., particularly 84 × 10 −7. Less than / ° C is preferred. If the difference in thermal expansion coefficient between the glass for the dye-sensitized solar cell of the present invention and the glass substrate (for example, soda glass substrate) used for the transparent electrode substrate is too large, it is fired unless a refractory filler powder is added. Later, undue stress remains on the glass substrate, the sealing part, etc., and cracks are likely to occur in the glass substrate, the sealing part, etc., or the sealing part tends to peel off. Here, the “thermal expansion coefficient” refers to a value measured by a push rod type thermal expansion coefficient measuring apparatus (TMA apparatus).

本発明の色素増感型太陽電池用材料は、実質的に耐火性フィラー粉末を含有しないことが好ましい。このようにすれば、太陽電池のセルギャップを小さく、且つ均一化しやすくなるとともに、耐火性フィラー粉末等の混合工程等が不要になるため、色素増感型太陽電池用材料の製造コストを低廉化することができる。   The dye-sensitized solar cell material of the present invention preferably contains substantially no refractory filler powder. In this way, the cell gap of the solar cell can be made smaller and more uniform, and the mixing process of the refractory filler powder or the like is not required, thereby reducing the manufacturing cost of the dye-sensitized solar cell material. can do.

本発明の色素増感型太陽電池用材料は、機械的強度を向上、或いは熱膨張係数を低下させるために、耐火性フィラー粉末を含有してもよい。一方、耐火性フィラー粉末の添加量を低減すれば、色素増感型太陽電池用材料の流動性、特に封着性を高めることができる。したがって、その混合割合はガラス粉末50〜100体積%、耐火性フィラー粉末0〜50体積%、好ましくはガラス粉末70〜100体積%、耐火性フィラー粉末0〜30体積%、より好ましくはガラス粉末95〜100体積%、耐火性フィラー粉末0〜5体積%であり、既述の理由により、実質的に耐火性フィラー粉末を含有しないことが望ましい。耐火性フィラー粉末の含有量が50体積%より多いと、相対的にガラス粉末の割合が低くなり過ぎて、所望の流動性を得難くなる。   The dye-sensitized solar cell material of the present invention may contain a refractory filler powder in order to improve the mechanical strength or lower the thermal expansion coefficient. On the other hand, if the addition amount of the refractory filler powder is reduced, the fluidity, particularly the sealing property, of the dye-sensitized solar cell material can be improved. Therefore, the mixing ratio is 50-100 volume% of glass powder, 0-50 volume% of refractory filler powder, preferably 70-100 volume% of glass powder, 0-30 volume% of refractory filler powder, more preferably glass powder 95. -100% by volume, refractory filler powder 0-5% by volume, and for the reasons already described, it is desirable that the refractory filler powder is substantially not contained. When there is more content of a refractory filler powder than 50 volume%, the ratio of glass powder will become comparatively too low, and it will become difficult to obtain desired fluidity | liquidity.

色素増感型太陽電池のセルギャップは、一般的に、50μm以下と非常に小さいため、耐火性フィラー粉末の粒子経が大き過ぎると、封着部位に局所的に突起物が発生するため、セルギャップを均一化し難くなる。このような事態を防止するため、耐火性フィラー粉末の最大粒子径は25μm以下が好ましく、15μm以下がより好ましい。ここで、「最大粒子径」とは、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。   Since the cell gap of a dye-sensitized solar cell is generally very small as 50 μm or less, if the particle size of the refractory filler powder is too large, protrusions are locally generated at the sealing site. It becomes difficult to make the gap uniform. In order to prevent such a situation, the maximum particle size of the refractory filler powder is preferably 25 μm or less, and more preferably 15 μm or less. Here, the “maximum particle size” represents a particle size whose cumulative amount is 99% cumulative from the smaller particle size in a volume-based cumulative particle size distribution curve measured by a laser diffraction method.

耐火性フィラー粉末は、特に材質が限定されないが、本発明の色素増感型太陽電池用ガラスからなるガラス粉末およびヨウ素電解液と反応し難いものが好ましい。具体的には、耐火性フィラー粉末として、ジルコン、ジルコニア、酸化錫、チタン酸アルミニウム、石英、β−スポジュメン、ムライト、チタニア、石英ガラス、β−ユークリプタイト、β−石英、リン酸ジルコニウム、リン酸タングステン酸ジルコニウム、タングステン酸ジルコニウム、ウイレマイト、[AB(MO]等のNZP型の基本構造をもつ化合物、
A:Li、Na、K、Mg、Ca、Sr、Ba、Zn、Cu、Ni、Mn等
B:Zr、Ti、Sn、Nb、Al、Sc、Y等
M:P、Si、W、Mo等
若しくはこれらの固溶体が使用可能である。
The material of the refractory filler powder is not particularly limited, but is preferably a glass powder made of the dye-sensitized solar cell glass of the present invention and a material that does not easily react with the iodine electrolyte. Specifically, as refractory filler powder, zircon, zirconia, tin oxide, aluminum titanate, quartz, β-spodumene, mullite, titania, quartz glass, β-eucryptite, β-quartz, zirconium phosphate, phosphorus A compound having a basic structure of NZP type, such as zirconium tungstate, zirconium tungstate, willemite, [AB 2 (MO 4 ) 3 ],
A: Li, Na, K, Mg, Ca, Sr, Ba, Zn, Cu, Ni, Mn etc. B: Zr, Ti, Sn, Nb, Al, Sc, Y etc. M: P, Si, W, Mo etc. Alternatively, these solid solutions can be used.

封着材料の軟化点が、ガラス基板の歪点より高いと、封着工程で、ガラス基板が変形しやすくなる。このため、封着材料(封着材料に使用されるガラス)には、低融点特性が要求される。そこで、本発明の色素増感型太陽電池用材料において、軟化点は575℃以下が好ましく、550℃以下がより好ましく、535℃以下が更に好ましい。軟化点が575℃より高いと、粘性が高くなり過ぎ、封着温度が不当に上昇し、ガラス基板が変形しやすくなる。また、色素増感型太陽電池用材料と多孔質酸化物半導体層を同時焼成する場合、封着温度が高過ぎると、酸化物半導体粒子の融着が進行し過ぎるおそれがあり、このような場合、多孔質酸化物半導体層の表面積が減少し、色素を吸着させ難くなる。   When the softening point of the sealing material is higher than the strain point of the glass substrate, the glass substrate is easily deformed in the sealing step. For this reason, a low melting point characteristic is requested | required of sealing material (glass used for sealing material). Therefore, in the dye-sensitized solar cell material of the present invention, the softening point is preferably 575 ° C. or less, more preferably 550 ° C. or less, and further preferably 535 ° C. or less. When the softening point is higher than 575 ° C., the viscosity becomes too high, the sealing temperature rises unreasonably, and the glass substrate tends to be deformed. In addition, when the dye-sensitized solar cell material and the porous oxide semiconductor layer are fired simultaneously, if the sealing temperature is too high, the fusion of the oxide semiconductor particles may proceed excessively. The surface area of the porous oxide semiconductor layer is reduced, making it difficult to adsorb the dye.

本発明の色素増感型太陽電池用材料において、25℃のヨウ素電解液に2週間浸漬したときの質量減は0.14mg/cm以下、0.1mg/cm以下、特に0.05mg/cm以下が好ましく、実質的に質量減がないことが望ましい。質量減が小さい程、長期間に亘り、ヨウ素電解液や電池特性の劣化を防止することができる。 In the dye-sensitized solar cell material of the present invention, decrease weight when immersed for two weeks in an iodine electrolyte solution of 25 ° C. is 0.14 mg / cm 2 or less, 0.1 mg / cm 2 or less, especially 0.05 mg / cm 2 or less, and it is desirable that substantially no mass decrease. The smaller the mass loss, the more the iodine electrolyte and battery characteristics can be prevented from deteriorating over a long period of time.

本発明の色素増感型太陽電池用材料は、粉末のまま使用に供してもよいが、ビークルと均一に混練し、ペーストに加工すると取り扱いやすい。ビークルは、主に溶媒と樹脂とからなり、樹脂はペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。作製されたペーストは、ディスペンサーやスクリーン印刷機等の塗布機を用いて塗布される。   The dye-sensitized solar cell material of the present invention may be used as it is in powder form, but is easy to handle when it is uniformly kneaded with a vehicle and processed into a paste. The vehicle mainly includes a solvent and a resin, and the resin is added for the purpose of adjusting the viscosity of the paste. Moreover, surfactant, a thickener, etc. can also be added as needed. The produced paste is applied using an applicator such as a dispenser or a screen printer.

樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、ニトロセルロースは、熱分解性が良好であるため、好ましい。   As the resin, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic acid esters and nitrocellulose are preferable because they have good thermal decomposability.

溶媒としては、N、N’−ジメチルホルムアミド(DMF)、α−ターピネオール、高級アルコール、γ−ブチルラクトン(γ−BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3−メトキシ−3−メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン等が使用可能である。特に、α−ターピネオールは、高粘性であり、樹脂等の溶解性も良好であるため、好ましい。   As the solvent, N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, triethylene glycol Propylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N-me -2-pyrrolidone and the like can be used. In particular, α-terpineol is preferable because it is highly viscous and has good solubility in resins and the like.

本発明の色素増感型太陽電池用材料は、封着に用いることが好ましく、特に透明電極基板と対極基板の封着に用いることが好ましい。本発明の色素増感型太陽電池用材料は、低融点特性を有し、ヨウ素電解液に侵食され難いため、長期間の使用により、ヨウ素電解液が漏洩し難く、太陽電池の長寿命化を図ることができる。また、透明電極基板と対極基板の封着に用いる場合、太陽電池のセルギャップを均一化するために、本発明の色素増感型太陽電池用材料にガラスビーズ等のスペーサーを添加してもよい。   The dye-sensitized solar cell material of the present invention is preferably used for sealing, and particularly preferably used for sealing a transparent electrode substrate and a counter electrode substrate. Since the dye-sensitized solar cell material of the present invention has a low melting point property and is not easily eroded by iodine electrolyte solution, the iodine electrolyte solution is less likely to leak through long-term use, thereby extending the life of the solar cell. Can be planned. Further, when used for sealing the transparent electrode substrate and the counter electrode substrate, a spacer such as glass beads may be added to the dye-sensitized solar cell material of the present invention in order to make the cell gap of the solar cell uniform. .

本発明の色素増感型太陽電池用材料は、レーザー光による封着処理に供することが好ましい。レーザー光を用いると、色素増感型太陽電池用材料を局所加熱することができ、ヨウ素電解液等の構成部材の熱劣化を防止した上で、透明電極基板と対極基板を封着することができる。本発明の色素増感型太陽電池用材料は、レーザー光を用いて透明電極基板と対極基板を封着する場合、ガラス組成として、遷移金属酸化物(例えば、CuO、Fe)を合量で0.1%以上、0.5%以上、1.5%以上、2%以上、特に3%以上含有することが好ましい。このようにすれば、レーザー光の光エネルギーを熱エネルギーに効率良く変換することができるため、換言すればガラスに的確にレーザー光を吸収させることができるため、封着すべき部位のみを局所加熱することができる。ここで、レーザー光として、種々のレーザー光を使用することができるが、特に、半導体レーザー、YAGレーザー、COレーザー、エキシマレーザー、赤外レーザー等は、取り扱いが容易な点で好適である。また、ガラスに的確にレーザー光を吸収させるために、レーザー光は、500〜1600nm、好ましくは750〜1300nmの発光中心波長を有することが好ましい。 The dye-sensitized solar cell material of the present invention is preferably subjected to a sealing treatment with a laser beam. When laser light is used, the dye-sensitized solar cell material can be locally heated, and the transparent electrode substrate and the counter electrode substrate can be sealed after preventing thermal deterioration of components such as iodine electrolyte. it can. When the transparent electrode substrate and the counter electrode substrate are sealed using laser light, the dye-sensitized solar cell material of the present invention contains a transition metal oxide (for example, CuO, Fe 2 O 3 ) as a glass composition. The content is preferably 0.1% or more, 0.5% or more, 1.5% or more, 2% or more, and particularly preferably 3% or more. In this way, the light energy of the laser light can be efficiently converted into heat energy, in other words, the laser light can be absorbed accurately into the glass, so only the part to be sealed is heated locally. can do. Here, various laser beams can be used as the laser beam. In particular, a semiconductor laser, a YAG laser, a CO 2 laser, an excimer laser, an infrared laser, and the like are preferable in terms of easy handling. Moreover, in order to make a glass absorb a laser beam exactly, it is preferable that a laser beam has an emission center wavelength of 500-1600 nm, Preferably it is 750-1300 nm.

本発明の色素増感型太陽電池用材料は、集電電極の被覆に用いることが好ましい。一般的に、集電電極にはAgが使用されるが、Agはヨウ素電解液に侵食されやすい。したがって、集電電極にAgを使用する場合、集電電極を保護する必要がある。本発明の色素増感型太陽電池用材料は、低融点特性を有するため、緻密な被覆層を低温で形成できるとともに、ヨウ素電解液に侵食され難いため、長期間に亘って、集電電極を保護することができる。   The dye-sensitized solar cell material of the present invention is preferably used for coating the current collecting electrode. Generally, Ag is used for the current collecting electrode, but Ag is easily eroded by the iodine electrolyte. Therefore, when using Ag for a current collection electrode, it is necessary to protect a current collection electrode. Since the dye-sensitized solar cell material of the present invention has a low melting point characteristic, it can form a dense coating layer at low temperature and is not easily eroded by iodine electrolyte solution. Can be protected.

本発明の色素増感型太陽電池用材料は、隔壁の形成に用いることができる。一般的に、色素増感型太陽電池内に隔壁を形成する場合、セル内は、ヨウ素電解液で満たされる。本発明の色素増感型太陽電池用材料は、低融点特性を有するため、緻密な隔壁を低温で形成できるとともに、ヨウ素電解液に侵食され難いため、長期間に亘って、隔壁の破れを防止することができる。   The dye-sensitized solar cell material of the present invention can be used for forming partition walls. Generally, when a partition is formed in a dye-sensitized solar cell, the cell is filled with an iodine electrolyte. Since the dye-sensitized solar cell material of the present invention has a low melting point property, it can form dense barrier ribs at low temperatures and is less susceptible to erosion by iodine electrolytes, thus preventing the barrier ribs from breaking for a long period of time. can do.

実施例に基づいて、本発明を詳細に説明する。表1〜4は、本発明の実施例(試料No.1〜22)、比較例(試料No.23〜26)を示している。   The present invention will be described in detail based on examples. Tables 1 to 4 show examples of the present invention (sample Nos. 1 to 22) and comparative examples (samples No. 23 to 26).

表中に記載の各試料は、次のようにして調製した。まず、表中のガラス組成になるように、各種酸化物、炭酸塩等の原料を調合したガラスバッチを準備し、これを白金坩堝またはアルミナ坩堝に入れて1000〜1200℃で1〜2時間溶融した。溶融は、SnOを含有するガラスついては窒素雰囲気下、それ以外は大気雰囲気下で行った。次に、溶融ガラスの一部をTMA用サンプルとしてステンレス製の金型に流し出し、その他の溶融ガラスは、水冷ローラーにより薄片状に成形した。TMA用サンプルは、成形後に所定の徐冷(アニール)処理を行った。最後に、薄片状のガラスをボールミルにて粉砕後、目開き75μmの篩いを通過させて、平均粒子径が約10μmの各ガラス粉末を得た。   Each sample described in the table was prepared as follows. First, a glass batch prepared by preparing raw materials such as various oxides and carbonates so as to have the glass composition in the table is prepared, and this is put into a platinum crucible or an alumina crucible and melted at 1000 to 1200 ° C. for 1 to 2 hours. did. Melting was performed in a nitrogen atmosphere for glass containing SnO and in an air atmosphere for the other glass. Next, a part of the molten glass was poured out as a TMA sample into a stainless steel mold, and the other molten glass was formed into a thin piece with a water-cooled roller. The sample for TMA was subjected to a predetermined slow cooling (annealing) treatment after molding. Finally, the glass flakes were pulverized with a ball mill and passed through a sieve having an opening of 75 μm to obtain glass powders having an average particle diameter of about 10 μm.

次いで、各ガラス粉末と、ビークル(エチルセルロースまたはポリエチレンカーボネートをα−ターピネオールに溶解させたもの、或いはジエチルペンタンジオール)を混錬し、ペースト状とした。これをソーダガラス基板(熱膨張係数:100×10−7/℃)に、直径40mmで40〜80μm厚となるようにスクリーン印刷し、電気炉で120℃10分間乾燥した後、500〜550℃30分間焼成し、質量減の評価用試料を得た。なお、焼成は、SnOを含有するガラスについては窒素雰囲気下、それ以外は大気雰囲気下で行った。 Next, each glass powder and a vehicle (ethyl cellulose or polyethylene carbonate dissolved in α-terpineol or diethylpentanediol) were kneaded to obtain a paste. This was screen-printed on a soda glass substrate (coefficient of thermal expansion: 100 × 10 −7 / ° C.) to a thickness of 40 to 80 μm with a diameter of 40 mm, dried in an electric furnace at 120 ° C. for 10 minutes, and then 500 to 550 ° C. Baking for 30 minutes gave a sample for mass reduction evaluation. In addition, baking was performed in the nitrogen atmosphere about the glass containing SnO, and the air atmosphere other than that.

以上の試料を用いて、熱膨張係数、軟化点およびヨウ素電解液に対する質量減を評価した。その結果を表1〜4に示す。   Using the above samples, the thermal expansion coefficient, softening point, and mass loss with respect to iodine electrolyte were evaluated. The results are shown in Tables 1-4.

熱膨張係数は、TMA装置により測定した。熱膨張係数は、30〜300℃の温度範囲で測定した。   The thermal expansion coefficient was measured with a TMA apparatus. The thermal expansion coefficient was measured in a temperature range of 30 to 300 ° C.

軟化点は、DTA装置により求めた。測定は、空気中で行い、昇温速度は10℃/分とした。   The softening point was determined with a DTA apparatus. The measurement was performed in air, and the rate of temperature increase was 10 ° C./min.

質量減は、以下のようにして算出した。まず上記の質量減の評価用試料の質量およびヨウ素電解液に接する焼成膜の表面積を測定し、次にガラス製密閉容器中のヨウ素電解液にこの試料を浸漬し、25℃の恒温槽にガラス製密閉容器を静置し、浸漬前の試料の質量から2週間経過した後の試料の質量を減じた値を、焼成膜の表面積で除することで算出した。質量減の評価に使用したヨウ素電解液は、アセトニトリルに対し、ヨウ化リチウム0.1M、ヨウ素0.05M、tert−ブチルピリジン0.5M、および1,2−ジメチル−3−プロピルイミダゾリウムヨーダイド0.6Mを加えたものを使用した。   The weight loss was calculated as follows. First, the mass of the sample for evaluation of mass reduction and the surface area of the fired film in contact with the iodine electrolyte solution were measured, and then this sample was immersed in an iodine electrolyte solution in a glass sealed container, and the glass was placed in a thermostatic bath at 25 ° C. The value was obtained by dividing the value obtained by subtracting the mass of the sample after 2 weeks from the mass of the sample before immersion and leaving the mass of the sample before immersion by the surface area of the fired film. The iodine electrolyte used for evaluation of mass loss was 0.1M lithium iodide, 0.05M iodine, 0.5M tert-butylpyridine, and 1,2-dimethyl-3-propylimidazolium iodide with respect to acetonitrile. What added 0.6M was used.

表1〜4から明らかなように、試料No.1〜22は、熱膨張係数が64〜124×10−7/℃、軟化点が348〜535℃であった。また、いずれの質量減の測定用試料においても、焼成膜が剥れることなく、ガラス基板に良好に密着していた。さらに、試料No.1〜22は、質量減が0.10mg/cm以下であり、ヨウ素電解液に侵食され難かった。一方、試料No.23〜26は、質量減が大きく、ヨウ素電解液に侵食されやすかった。 As is apparent from Tables 1 to 4, sample No. 1 to 22 had a thermal expansion coefficient of 64 to 124 × 10 −7 / ° C. and a softening point of 348 to 535 ° C. Moreover, in any measurement sample for weight loss, the fired film was not peeled off and was in good contact with the glass substrate. Furthermore, sample no. 1 to 22 had a mass loss of 0.10 mg / cm 2 or less, and were hardly eroded by the iodine electrolyte. On the other hand, sample No. Nos. 23 to 26 had a large mass loss and were easily eroded by the iodine electrolyte.

ガラス組成中のカチオンの平均イオン半径とヨウ素電解液による侵食量の関係を調査した。   The relationship between the average ionic radius of cations in the glass composition and the amount of erosion by iodine electrolyte was investigated.

実施例1と同様の方法により、各種ガラスにつき、ヨウ素電解液に対する質量減を評価した。次に、図1にガラス組成中のカチオンの平均イオン半径とヨウ素電解液による侵食量の関係をプロットした。   By the same method as Example 1, the mass loss with respect to iodine electrolyte solution was evaluated about various glasses. Next, the relationship between the average ionic radius of cations in the glass composition and the amount of erosion by the iodine electrolyte is plotted in FIG.

図1から明らかなように、ガラス組成中のカチオンの平均イオン半径が小さい程、ヨウ素電解液による侵食量が小さくなることが分かる。   As is apparent from FIG. 1, it can be seen that the smaller the average ionic radius of the cations in the glass composition, the smaller the amount of erosion by the iodine electrolyte.

[ガラス組成中のカチオンの平均価数]を[ガラス組成中のカチオンの平均イオン半径の2乗]で除した値とヨウ素電解液による侵食量の関係を調査した。   The relationship between the value obtained by dividing [the average valence of cations in the glass composition] by [the square of the average ionic radius of cations in the glass composition] and the amount of erosion by the iodine electrolyte was investigated.

実施例1と同様の方法により、各種ガラスにつき、ヨウ素電解液に対する質量減を評価した。次に、図2にガラス組成中のカチオンの平均価数をカチオンの平均イオン半径の2乗で除した値とヨウ素電解液による侵食量の関係をプロットした。   By the same method as Example 1, the mass loss with respect to iodine electrolyte solution was evaluated about various glasses. Next, FIG. 2 plots the relationship between the value obtained by dividing the average valence of cations in the glass composition by the square of the average ionic radius of cations and the amount of erosion by the iodine electrolyte.

図2から明らかなように、ガラス組成中のカチオンの平均価数をカチオンの平均イオン半径の2乗で除した値が大きい程、ヨウ素電解液による侵食量が小さくなることが分かる。   As can be seen from FIG. 2, the larger the value obtained by dividing the average valence of the cation in the glass composition by the square of the average ionic radius of the cation, the smaller the amount of erosion by the iodine electrolyte.

本発明の色素増感型太陽電池用ガラスおよび色素増感型太陽電池用材料は、色素増感型太陽電池の透明電極基板と対極基板の封着、集電電極の被覆、セル間を仕切るための隔壁の形成等に好適である。   The glass for a dye-sensitized solar cell and the material for a dye-sensitized solar cell of the present invention are used for sealing a transparent electrode substrate and a counter electrode substrate of a dye-sensitized solar cell, covering a collecting electrode, and partitioning cells. It is suitable for forming a partition wall.

Claims (11)

ガラス組成中のカチオンの平均イオン半径が0.80Å以下であることを特徴とする色素増感型太陽電池用ガラス。   A glass for a dye-sensitized solar cell, wherein an average ionic radius of cations in the glass composition is 0.80 mm or less. [ガラス組成中のカチオンの平均価数]を[ガラス組成中のカチオンの平均イオン半径の2乗]で除した値が4.30/Å以上であることを特徴とする色素増感型太陽電池用ガラス。 The value obtained by dividing [average valence of cations in glass composition] by [square of average ionic radius of cations in glass composition] is 4.30 /] 2 or more, Battery glass. ガラス組成中のカチオンの平均イオン半径が0.80Å以下であり、且つ[ガラス組成中のカチオンの平均価数]を[ガラス組成中のカチオンの平均イオン半径の2乗]で除した値が4.30/Å以上であることを特徴とする色素増感型太陽電池用ガラス。 The average ionic radius of cations in the glass composition is 0.80 mm or less, and the value obtained by dividing [the average valence of cations in the glass composition] by [the square of the average ionic radius of cations in the glass composition] is 4. .30 / Å 2 or more, dye-sensitized solar cell glass. 25℃のヨウ素電解液に2週間浸漬したときの質量減が0.14mg/cm以下であることを特徴とする請求項1〜3のいずれかに記載の色素増感型太陽電池用ガラス。 The glass for dye-sensitized solar cells according to any one of claims 1 to 3, wherein a mass loss when immersed in an iodine electrolyte at 25 ° C for 2 weeks is 0.14 mg / cm 2 or less. 25℃のヨウ素電解液に2週間浸漬したときの質量減が0.1mg/cm以下であることを特徴とする請求項1〜4いずれかに記載の色素増感型太陽電池用ガラス。 The glass for dye-sensitized solar cells according to any one of claims 1 to 4, wherein a weight loss when immersed in an iodine electrolyte at 25 ° C for 2 weeks is 0.1 mg / cm 2 or less. 熱膨張係数が65〜120×10−7/℃であることを特徴とする請求項1〜5のいずれかに記載の色素増感型太陽電池用ガラス。 The coefficient of thermal expansion is 65 to 120 × 10 −7 / ° C., The dye-sensitized solar cell glass according to claim 1. 請求項1〜6のいずれかに記載の色素増感型太陽電池用ガラスからなるガラス粉末 50〜100体積%と、耐火性フィラー粉末 0〜50体積%とを含有することを特徴とする色素増感型太陽電池用材料。   Dye sensitization comprising: 50 to 100% by volume of a glass powder comprising the glass for a dye-sensitized solar cell according to any one of claims 1 to 6; and 0 to 50% by volume of a refractory filler powder. Sensitive solar cell material. 軟化点が550℃以下であることを特徴とする請求項7に記載の色素増感型太陽電池用材料。   8. The dye-sensitized solar cell material according to claim 7, having a softening point of 550 ° C. or lower. 封着に用いることを特徴とする請求項7または8に記載の色素増感型太陽電池用材料。   The dye-sensitized solar cell material according to claim 7 or 8, which is used for sealing. 集電電極の被覆に用いることを特徴とする請求項7または8に記載の色素増感型太陽電池用材料。   The material for a dye-sensitized solar cell according to claim 7 or 8, which is used for covering a collecting electrode. レーザー光による封着処理に供されることを特徴とする請求項9に記載の色素増感型太陽電池用材料。   The material for a dye-sensitized solar cell according to claim 9, which is subjected to a sealing treatment with a laser beam.
JP2009137479A 2009-06-08 2009-06-08 Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell Pending JP2010280554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137479A JP2010280554A (en) 2009-06-08 2009-06-08 Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137479A JP2010280554A (en) 2009-06-08 2009-06-08 Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2010280554A true JP2010280554A (en) 2010-12-16

Family

ID=43537687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137479A Pending JP2010280554A (en) 2009-06-08 2009-06-08 Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2010280554A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108290A1 (en) * 2011-02-10 2012-08-16 セントラル硝子株式会社 Electroconductive paste and solar cell element obtained using the electroconductive paste
WO2013069668A1 (en) * 2011-11-09 2013-05-16 日立化成株式会社 Electronic component, conductive paste for aluminum electrodes used in same, and glass composition for aluminum electrodes
WO2014010553A1 (en) * 2012-07-09 2014-01-16 日本電気硝子株式会社 Sealing material for dye-sensitized solar cells
JP5548276B2 (en) * 2011-08-29 2014-07-16 新電元工業株式会社 Semiconductor junction protecting glass composition, semiconductor device manufacturing method, and semiconductor device
JP2015199620A (en) * 2014-04-07 2015-11-12 旭硝子株式会社 Sealing material and sealed body
JP2019043845A (en) * 2018-10-31 2019-03-22 Agc株式会社 Sealing material, and sealing body
JP7132735B2 (en) 2018-03-30 2022-09-07 日本山村硝子株式会社 Metal Vacuum Double Container Sealing Glass Composition and Metal Vacuum Double Container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055888A (en) * 1996-06-06 1998-02-24 Idemitsu Kosan Co Ltd Multi-color light emitting device and manufacture thereof
JPH1071176A (en) * 1996-08-30 1998-03-17 Yamaha Motor Co Ltd Motor-driven wheelchair
JP2004292247A (en) * 2003-03-27 2004-10-21 Fujikura Ltd Joining method of glass substrate
JP2009120462A (en) * 2007-11-19 2009-06-04 Asahi Glass Co Ltd Lead-free glass for manufacturing dye-sensitized type solar cell and glass ceramic composition
JP2010228998A (en) * 2009-03-27 2010-10-14 Asahi Glass Co Ltd Glass member with sealing material layer, electronic device using the same, and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055888A (en) * 1996-06-06 1998-02-24 Idemitsu Kosan Co Ltd Multi-color light emitting device and manufacture thereof
JPH1071176A (en) * 1996-08-30 1998-03-17 Yamaha Motor Co Ltd Motor-driven wheelchair
JP2004292247A (en) * 2003-03-27 2004-10-21 Fujikura Ltd Joining method of glass substrate
JP2009120462A (en) * 2007-11-19 2009-06-04 Asahi Glass Co Ltd Lead-free glass for manufacturing dye-sensitized type solar cell and glass ceramic composition
JP2010228998A (en) * 2009-03-27 2010-10-14 Asahi Glass Co Ltd Glass member with sealing material layer, electronic device using the same, and production method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108290A1 (en) * 2011-02-10 2012-08-16 セントラル硝子株式会社 Electroconductive paste and solar cell element obtained using the electroconductive paste
JP5548276B2 (en) * 2011-08-29 2014-07-16 新電元工業株式会社 Semiconductor junction protecting glass composition, semiconductor device manufacturing method, and semiconductor device
WO2013069668A1 (en) * 2011-11-09 2013-05-16 日立化成株式会社 Electronic component, conductive paste for aluminum electrodes used in same, and glass composition for aluminum electrodes
JP2013100201A (en) * 2011-11-09 2013-05-23 Hitachi Chemical Co Ltd Electronic component, conductive paste for aluminum electrode applied to the same, and glass composition for aluminum electrode
WO2014010553A1 (en) * 2012-07-09 2014-01-16 日本電気硝子株式会社 Sealing material for dye-sensitized solar cells
JP2015199620A (en) * 2014-04-07 2015-11-12 旭硝子株式会社 Sealing material and sealed body
JP7132735B2 (en) 2018-03-30 2022-09-07 日本山村硝子株式会社 Metal Vacuum Double Container Sealing Glass Composition and Metal Vacuum Double Container
JP2019043845A (en) * 2018-10-31 2019-03-22 Agc株式会社 Sealing material, and sealing body

Similar Documents

Publication Publication Date Title
JP5534550B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
JP5489054B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
JP5713422B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
JP6455801B2 (en) Sealing material
JP5349791B2 (en) Lead-free glass and glass-ceramic composition for manufacturing dye-sensitized solar cells
JP2010280554A (en) Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell
JP2009067632A (en) Sealing glass for optical component, and method for sealing optical component
JP6075715B2 (en) Bismuth glass and sealing material using the same
KR20200071675A (en) Glass composition, glass powder, sealing material, glass paste, sealing method, sealing package, and organic electroluminescence element
JP5713189B2 (en) Dye-sensitized solar cell glass and dye-sensitized solar cell material
JP2013155059A (en) Glass composition for dye-sensitized solar cell and material for the dye-sensitized solar cell
WO2014010553A1 (en) Sealing material for dye-sensitized solar cells
JP5534553B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
JP5354447B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
JP2007186395A (en) Bismuth based glass composition and bismuth based sealing material
JP2019151539A (en) Glass powder and sealing material using the same
JP2015020914A (en) Manufacturing method of glass package
JP5892467B2 (en) Glass substrate with sealing material layer and glass package using the same
JP6768194B2 (en) Bismuth-based glass, manufacturing method of bismuth-based glass and sealing material
JP2014037334A (en) Lead-free glass for laser sealing and glass ceramic composition using the same
JP2020117421A (en) Glass powder and sealing material including the same
KR102427006B1 (en) Bismuth-based glass, bismuth-based glass manufacturing method and sealing material
JP6885445B2 (en) Glass composition, glass powder, sealing material, glass paste, sealing method, sealing package and organic electroluminescence device
JP6840982B2 (en) Bismuth glass and sealing materials using it
KR20240017761A (en) Glass composition, glass paste, sealing package, and organic electroluminescence element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140114