JP7132735B2 - Metal Vacuum Double Container Sealing Glass Composition and Metal Vacuum Double Container - Google Patents

Metal Vacuum Double Container Sealing Glass Composition and Metal Vacuum Double Container Download PDF

Info

Publication number
JP7132735B2
JP7132735B2 JP2018067491A JP2018067491A JP7132735B2 JP 7132735 B2 JP7132735 B2 JP 7132735B2 JP 2018067491 A JP2018067491 A JP 2018067491A JP 2018067491 A JP2018067491 A JP 2018067491A JP 7132735 B2 JP7132735 B2 JP 7132735B2
Authority
JP
Japan
Prior art keywords
glass
sealing
double container
vacuum double
metal vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018067491A
Other languages
Japanese (ja)
Other versions
JP2019178022A (en
Inventor
浩三 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2018067491A priority Critical patent/JP7132735B2/en
Publication of JP2019178022A publication Critical patent/JP2019178022A/en
Application granted granted Critical
Publication of JP7132735B2 publication Critical patent/JP7132735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Landscapes

  • Glass Compositions (AREA)

Description

本発明は金属製真空二重容器の封着用のガラス組成物と金属製真空二重容器、詳しくは、魔法瓶、携帯用保温ボトル等の金属製真空二重容器を低温で真空封着でき、真空を良好に保持できる金属製真空二重容器封着用ガラス組成物と、該ガラス組成物で封着した金属製真空二重容器に関するものである。 The present invention can vacuum seal a glass composition for sealing a metal vacuum double container and a metal vacuum double container, more specifically, a thermos bottle, a portable heat-retaining bottle, or the like, at a low temperature. The present invention relates to a glass composition for sealing a vacuum double container made of metal capable of holding well, and a vacuum double container made of metal sealed with the glass composition.

金属製真空二重容器の作製は、金属製の二重容器を真空炉にて加熱しながら、排気孔より内外容器間のガスを真空排気する、いわゆる脱ガス処理を実施した後、更に高温処理し、排気孔に設置したガラスをフローさせて排気孔を塞ぐ、いわゆる封着処理を実施することによりなされている。
真空での封着処理には真空炉を使用する必要があるが、真空炉における伝熱は輻射のみであり、一般的な炉に比べて温度の炉内ばらつきが大きくなる傾向にある。
また封着処理の前の脱ガス処理の際、ガラス中に結晶核が発生することがあり、更に高温での封着処理の際に、この核を中心として結晶析出が促進される。結晶析出が促進されるとフロー性が悪化し、封着が不完全となる。
よって脱ガス中の炉内ばらつきにより結晶析出の度合いが異なると、フロー性にばらつきが生じる。また封着処理の際の炉内ばらつきも結晶析出の度合い、フロー性に影響するので、封着処理の条件も封着性能に大きく影響を及ぼす。従って封着性能のばらつきを抑制するには、ガラスを結晶析出し難くすると共に、低温で封着させるために軟化点が低い組成の開発が必要となる。
金属製真空二重容器の封着には、従来、上記観点から鉛ガラスが使用されてきたが、近年の環境問題から無鉛化が望まれている。無鉛であるガラスとしては、例えばビスマス系ガラス、リン酸塩ガラス等が知られている。ビスマス系ガラスの場合、軟化点を低温化するためにはビスマス量を多く含んだ組成にしなければならず、ビスマス量が多い組成は結晶化が生じ易いという問題がある。結晶化させないためには、ビスマス量を制限しなければならず、そのため軟化点が高くなる傾向がある。
ビスマス系ガラスとしては下記の先行技術文献がある。
The metal vacuum double container is manufactured by performing a so-called degassing process, in which the gas between the inner and outer containers is evacuated from the exhaust hole while heating the metal double container in a vacuum furnace, followed by further high temperature treatment. Then, a so-called sealing process is performed to close the exhaust hole by causing the glass installed in the exhaust hole to flow.
A vacuum furnace needs to be used for the vacuum sealing process, but the only heat transfer in the vacuum furnace is radiation, and the temperature tends to vary more within the furnace than in a general furnace.
In addition, crystal nuclei may be generated in the glass during the degassing treatment prior to the sealing treatment, and crystal precipitation is promoted around these nuclei during the sealing treatment at high temperature. If crystal precipitation is accelerated, flowability deteriorates and sealing becomes incomplete.
Therefore, if the degree of crystal precipitation differs due to variations in the furnace during degassing, variations in flowability occur. In addition, variations in the furnace during the sealing process also affect the degree of crystal precipitation and the flowability, so the conditions of the sealing process also greatly affect the sealing performance. Therefore, in order to suppress variations in sealing performance, it is necessary to develop a composition that makes it difficult for glass crystals to crystallize and that has a low softening point for sealing at a low temperature.
Conventionally, lead glass has been used for sealing metal vacuum double containers from the above viewpoints, but lead-free glass has been desired in view of recent environmental problems. Examples of lead-free glass include bismuth-based glass and phosphate glass. In the case of bismuth-based glass, a composition containing a large amount of bismuth must be used in order to lower the softening point. In order not to crystallize, the amount of bismuth must be limited, which tends to increase the softening point.
As for bismuth-based glasses, there are the following prior art documents.

特開2000-128574号公報JP-A-2000-128574 特開2006-321665号公報JP 2006-321665 A 特開2008-24558号公報JP 2008-24558 A

特許文献1には、封着用途として500℃以下の温度で焼成可能なビスマス系ガラス組成物が開示されている。
しかしながら特許文献1に開示されているガラス組成物は、選択した組成によって非結晶性のガラスであったり、結晶性のガラスとなったりするため、安定性に欠け、ガラスのフロー性に問題があり、よって封着性能に問題がある。
また特許文献2には、500℃まで結晶化ピークが発現しないビスマス系無鉛ガラス組成物が開示されている。
しかしながら特許文献2の場合、結晶化温度が存在する組成が提示されるため、真空封着用として使用した場合、結晶が析出する可能性がある。
また特許文献3には、金属製真空二重容器の真空封着用に適したビスマス系の封着用無鉛ガラス組成物が開示されている。
しかしながら特許文献3に開示されているガラス組成物は、SiOを含有していないため、耐水性に問題がある。またBiの量が多いため、真空封着時に結晶が析出する可能性が高い。
Patent Document 1 discloses a bismuth-based glass composition that can be fired at a temperature of 500° C. or lower for sealing applications.
However, the glass composition disclosed in Patent Document 1 may be non-crystalline glass or crystalline glass depending on the selected composition, and therefore lacks stability and has problems with the flowability of the glass. , so there is a problem with the sealing performance.
Further, Patent Document 2 discloses a bismuth-based lead-free glass composition that does not exhibit a crystallization peak up to 500°C.
However, in the case of Patent Document 2, since a composition having a crystallization temperature is presented, crystals may precipitate when used for vacuum sealing.
Further, Patent Document 3 discloses a bismuth-based lead-free sealing glass composition suitable for vacuum sealing of a metal vacuum double container.
However, since the glass composition disclosed in Patent Document 3 does not contain SiO 2 , it has a problem of water resistance. Also, since the amount of Bi 2 O 3 is large, there is a high possibility that crystals will precipitate during vacuum sealing.

そこで本発明は上記従来技術の問題点を解消し、脱ガス及び真空封着等の焼成時において結晶析出がなく、金属製真空二重容器の真空封着を低温で、良好に且つ歩留まりよく行うことができ、また金属に対する接着性、密着性に優れた金属製真空二重容器封着用ガラス組成物と、該ガラス組成物で封着した金属製真空二重容器の提供を課題とする。 Therefore, the present invention solves the above-mentioned problems of the prior art, and performs vacuum sealing of a metal vacuum double container at a low temperature, favorably, and with a high yield without crystal precipitation during firing such as degassing and vacuum sealing. It is an object of the present invention to provide a glass composition for sealing a vacuum double container made of metal, which can be used to seal a vacuum double container made of metal and has excellent adhesiveness and adhesion to metal, and a vacuum double container made of metal sealed with the glass composition.

本発明者らは、上記の課題を解決すべく研究を重ねた結果、ビスマスガラスにおいて、ビスマス量を増やすのではなく、アルカリ金属であるNaOを添加し、ある特定の成分範囲のときに結晶化せず、軟化点が低い組成になることを見出し、この知見に基づき更に検討を重ねて本発明を完成させるに至った。 As a result of repeated research to solve the above problems, the present inventors added Na 2 O, which is an alkali metal, to bismuth glass instead of increasing the amount of bismuth, and when it was within a certain range of components, The inventors have found that the composition does not crystallize and has a low softening point.

即ち、本発明の金属製真空二重容器封着用ガラス組成物は、実質的にPbOを含まず、質量%表示で、Bi:72~76%、ただし72%と76%を除く、B:2~17%、SiO:0.1~9%、ZnO:5~20%、NaO:0.9~2%、MgO、CaO、SrO、BaOの内の少なくとも1種以上を合計で0.1~5%、を含有し、更に、CuO、CoOの合計含有量を、0%を含まず、4%以下の範囲とし、Li O、K Oの合計含有量を、0%を含み、1%を超えない範囲とした、ことを第1の特徴としている。
また本発明の金属製真空二重容器封着用ガラス組成物は、上記第1の特徴に加えて、質量%表示で、Alを2%以下含有することを第2の特徴としている
た本発明の金属製真空二重容器は、請求項1又は2に記載の金属製真空二重容器封着用ガラス組成物で真空封着したことを第3の特徴としている。
That is, the glass composition for sealing a metal vacuum double container of the present invention does not substantially contain PbO, and in terms of mass%, Bi 2 O 3 : 72 to 76%, excluding 72% and 76%. B 2 O 3 : 2 to 17%, SiO 2 : 0.1 to 9%, ZnO: 5 to 20%, Na 2 O: 0.9 to 2%, at least one of MgO, CaO, SrO and BaO 0.1 to 5% in total of more than seeds , and further, the total content of CuO and CoO is in the range of 4% or less, not including 0%, and the total content of Li 2 O and K 2 O A first feature is that the amount is set to a range that includes 0% and does not exceed 1% .
In addition to the first feature, the glass composition for sealing a double vacuum container made of a metal according to the present invention has a second feature that it contains 2% or less of Al 2 O 3 in terms of % by mass .
A third feature of the metal vacuum double container of the present invention is that it is vacuum-sealed with the glass composition for sealing a metal vacuum double container according to claim 1 or 2 .

請求項1に記載の金属真空二重容器封着用ガラス組成物によれば、焼成時に結晶が析出し難く、フロー性に優れ、低温で確実に封着することができる無鉛の金属製真空二重容器の封着用ガラスを提供でき、保温性を良好に保つのに好適である。CuO、CoOの合計含有量を、0%を含まず、4%以下の範囲としたので、ガラスの軟化点を下げ、流動性を上げることができる。またLi O、K Oの合計含有量を、0%を含み、1%を超えない範囲としたので、封着時にガラスの結晶化が起こり易くならず、よって封着がうまくできなくなる恐れがなくなる。 According to the glass composition for sealing a metal vacuum double container according to claim 1, a lead-free metal vacuum double container that is resistant to precipitation of crystals during firing, has excellent flowability, and can be reliably sealed at a low temperature. The glass for sealing heavy containers can be provided, and it is suitable for keeping good heat retention. Since the total content of CuO and CoO is in the range of 4% or less, not including 0%, the softening point of the glass can be lowered and the fluidity can be improved. In addition, since the total content of Li 2 O and K 2 O is set to a range that includes 0% and does not exceed 1%, crystallization of the glass does not easily occur during sealing, and sealing may not be performed well. disappears.

また請求項2に記載の金属製真空二重容器封着用ガラス組成物によれば、上記請求項1に記載の構成による作用効果に加えて、質量%表示で、Alを2%以下含有することにより、一層、結晶が析出し難い金属製真空二重容器の封着用ガラスを提供することができる。 According to the glass composition for sealing a double vacuum container made of metal according to claim 2, in addition to the effects of the configuration according to claim 1, the content of Al 2 O 3 is 2% or less in terms of mass%. By containing it, it is possible to provide a glass for sealing a metal vacuum double container in which crystals are much less likely to precipitate .

本発明の金属製真空二重容器によれば、請求項1又は2に記載の金属製真空二重容器封着用ガラス組成物で真空封着することにより、現に良好に封着された金属製真空二重容器を安価に提供することができる。 According to the metal vacuum double container of the present invention, by vacuum sealing with the glass composition for sealing a metal vacuum double container according to claim 1 or 2, the metal vacuum is actually well sealed. A double container can be provided at low cost.

本発明の実施形態に係る金属製真空二重容器封着用ガラス組成物は、金属製真空二重容器を低温焼成で真空封着し、真空を良好に保持できる封着用ガラスとして好適に適用できる。
以下に、本実施形態の金属製真空二重容器封着用ガラス組成物について、各成分の含有量の限定理由等について説明する。以下は全て質量%とする。
The glass composition for sealing a metal vacuum double container according to the embodiment of the present invention can be suitably applied as a sealing glass capable of vacuum-sealing a metal vacuum double container by firing at a low temperature and maintaining a good vacuum.
Reasons for limiting the content of each component of the glass composition for sealing a metal vacuum double container of the present embodiment will be described below. All the following are mass %.

Biは本発明のガラスの網目を形成する酸化物であり、70~77%の範囲で含有させる。
Biが70%未満の場合、ガラスは得られるが、軟化点が高いために低温での封着ができないおそれがある。
一方、77%を超える場合、結晶が析出する可能性があり、封着が不安定になるおそれがあり、好ましくない。
Biの含有量は、ガラスの軟化点、結晶化等を考慮すると、72~76%であることが好ましく、73~75%未満であることがより好ましい。
Bi 2 O 3 is an oxide that forms the network of the glass of the present invention and is contained in the range of 70 to 77%.
If the Bi 2 O 3 content is less than 70%, glass can be obtained, but sealing at a low temperature may not be possible due to the high softening point.
On the other hand, if it exceeds 77%, crystals may precipitate, and sealing may become unstable, which is not preferable.
The content of Bi 2 O 3 is preferably 72 to 76%, more preferably 73 to less than 75%, in consideration of the softening point of the glass, crystallization, and the like.

はガラスの網目を形成する酸化物であり、2~17%の範囲で含有させる。
が2%未満の場合、ガラスが得られないおそれがあり、また得られたとしてもガラスの成形性が悪く、或いは結晶が析出するおそれがある。
一方、17%を超える場合、軟化点が高くなるため、低温での封着ができなくなるおそれがあり、好ましくない。
の含有量は、ガラスの成形性、軟化点等を考慮すると、5~12%であることが好ましく、6~10%であることがより好ましい。
B 2 O 3 is an oxide that forms a network of glass and is contained in the range of 2 to 17%.
If the B 2 O 3 content is less than 2%, the glass may not be obtained, and even if it is obtained, the formability of the glass may be poor, or crystals may precipitate.
On the other hand, if it exceeds 17%, the softening point becomes high, and there is a possibility that sealing at a low temperature may not be possible, which is not preferable.
The content of B 2 O 3 is preferably 5 to 12%, more preferably 6 to 10%, in consideration of moldability, softening point, etc. of the glass.

SiOはガラスの網目を形成する酸化物で、ガラスの成形性を向上させる成分であり、0.1~9%の範囲で含有させる。
SiOが0.1%未満の場合、ガラスの成形性を向上させる効果がない。
またSiOが9%を超える場合、ガラスの軟化点が高くなるため、低温での封着ができなくなるおそれがあり、好ましくない。
SiOの含有量は、ガラスの成形性、軟化点等を考慮すると、0.6~7%であることが好ましく、1~5%であることがより好ましい。
SiO 2 is an oxide that forms a network of glass, is a component that improves the formability of glass, and is contained in the range of 0.1 to 9%.
If SiO2 is less than 0.1%, there is no effect of improving the moldability of the glass.
On the other hand, if the SiO 2 content exceeds 9%, the softening point of the glass becomes high, and sealing at a low temperature may not be possible, which is not preferable.
The content of SiO 2 is preferably 0.6 to 7%, more preferably 1 to 5%, in consideration of moldability, softening point, etc. of the glass.

ZnOはガラスの軟化点を下げ、流動性を上げる効果がある成分であり、5~20%の範囲で含有させる。
ZnOが5%未満の場合、ガラスが得られないおそれがあり、また得られたとしてもガラスの成形性が悪く、或いは結晶が析出するおそれがある。
また20%を超える場合、ガラスが得られない可能性あり、また得られたとしても結晶が析出する可能性がある。
ZnOの含有量は、ガラスの成形性、軟化点を考慮すると、10~15%であることが好ましく、11~14%であることがより好ましい。
ZnO is a component that has the effect of lowering the softening point of glass and increasing fluidity, and is contained in the range of 5 to 20%.
If the ZnO content is less than 5%, the glass may not be obtained, and even if it is obtained, the moldability of the glass may be poor, or crystals may precipitate.
If it exceeds 20%, glass may not be obtained, and even if it is obtained, crystals may precipitate.
The content of ZnO is preferably 10 to 15%, more preferably 11 to 14%, in consideration of the moldability and softening point of the glass.

MgO、CaO、SrO、BaOは、ZnOとの共存によりガラスの安定性を向上させる成分であり、それらの合計量が0.1~5%の範囲で含有させる。
合計量が0.1%未満の場合、安定性向上の効果が得られない可能性がある。
また5%を超える場合、ガラスが得られないか、或いは結晶が析出するため、好ましくない。
MgO、CaO、SrO、BaOの合計量は、ガラスの安定性、結晶化等を考慮すると、0.4~3%であるのが好ましく、0.4~1.5%がより好ましい。
MgO, CaO, SrO, and BaO are components that improve the stability of the glass by coexistence with ZnO, and the total amount thereof is contained within the range of 0.1 to 5%.
If the total amount is less than 0.1%, the effect of improving stability may not be obtained.
On the other hand, if it exceeds 5%, glass cannot be obtained or crystals are precipitated, which is not preferable.
The total amount of MgO, CaO, SrO and BaO is preferably 0.4 to 3%, more preferably 0.4 to 1.5%, in consideration of the stability and crystallization of the glass.

NaOはガラスの軟化点を下げ、ガラスの流動性を上げる成分であり、0.1~2.5%の範囲で含有させる。
NaOが0.1%未満の場合、軟化点を下げる効果が得られない可能性がある。
一方、NaOが2.5%を超える場合、ガラスが得られない可能性があり、また得られたとしても結晶が析出する可能性がある。
NaOの含有量は、ガラスの成形性、軟化点を考慮すると、0.4~2.0%であることが好ましく、0.9~2%であることがより好ましい。
Na 2 O is a component that lowers the softening point of the glass and increases the fluidity of the glass, and is contained in the range of 0.1 to 2.5%.
If the Na 2 O content is less than 0.1%, the effect of lowering the softening point may not be obtained.
On the other hand, when Na 2 O exceeds 2.5%, glass may not be obtained, and even if it is obtained, crystals may precipitate.
The content of Na 2 O is preferably 0.4 to 2.0%, more preferably 0.9 to 2%, in consideration of the moldability and softening point of the glass.

Alはガラスの網目を形成する酸化物で、ガラスの成形性を向上させる成分であり、2%まで含有させてもよい。
Alの含有量が2%を超える場合、ガラスの軟化点が高くなるため、低温での封着ができなくなるおそれがあり、或いはガラス中に溶解しないおそれがあり、好ましくない。
含有させる場合は、0.1~1%であることが好ましく、0.1~0.5%であることがより好ましい。
Al 2 O 3 is an oxide that forms a network of glass and is a component that improves formability of glass, and may be contained up to 2%.
If the content of Al 2 O 3 exceeds 2%, the softening point of the glass becomes high, and sealing at a low temperature may not be possible, or the Al 2 O 3 may not dissolve in the glass, which is not preferable.
When it is contained, it is preferably 0.1 to 1%, more preferably 0.1 to 0.5%.

CuO、CoOはガラスの軟化点を下げ、流動性を上げる成分である。合計で4%まで含有させてもよい。
CuO、CoOの合計量が4%を超える場合、結晶が析出して、封着がうまくできなくなるおそれがある。
CuO、CoOの含有量は、結晶化等を考慮すると、合計で2%以下含有させるのがよい。またCuO、CoOの含有量は、合計で0.1~2%とするのがより好ましい。
CuO and CoO are components that lower the softening point of glass and increase fluidity. It may be contained up to 4% in total.
If the total amount of CuO and CoO exceeds 4%, crystals may precipitate and sealing may not be performed well.
The total content of CuO and CoO is preferably 2% or less in consideration of crystallization and the like. Further, the total content of CuO and CoO is more preferably 0.1 to 2%.

LiOやKOは、合計で1%まで含有させることができる。LiOやKOは、NaOと比べて液相粘度を下げる効果が高いため、単独で添加すると、ガラスの安定性が下がり、封着時に結晶化が起こり易い。一方、LiOやKOは、NaOと同時に添加することにより、混合アルカリ効果でガラスを安定化させると共に、ガラスの軟化点を下げることができる。よってLiOやKOを含有させる場合は、NaOと一緒に含有させるのがよい。
LiOやKOは、その合計量が1%を超えると、液相粘度が下がるため、結晶化が起こり易くなり、封着がうまくできなくなるおそれがある。
LiOやKOは、ガラスの結晶化を考慮すると、添加しないのが好ましい。
Li 2 O and K 2 O can be contained up to 1% in total. Li 2 O and K 2 O are more effective than Na 2 O in lowering the liquidus viscosity, so if they are added alone, the stability of the glass is lowered and crystallization is likely to occur during sealing. On the other hand, when Li 2 O and K 2 O are added together with Na 2 O, the mixed alkali effect stabilizes the glass and lowers the softening point of the glass. Therefore, when Li 2 O and K 2 O are contained, it is preferable to contain them together with Na 2 O.
When the total amount of Li 2 O and K 2 O exceeds 1%, the liquidus viscosity is lowered, so crystallization is likely to occur, and sealing may not be performed well.
Li 2 O and K 2 O are preferably not added in consideration of crystallization of the glass.

上記成分に加えて、ガラス製造時の安定性の向上、金属との反応抑制、接着性の改善を目的として、Fe、La、Y、Yb、CeO、TiO、ZrOを合計で2%以下含有させることができる。 In addition to the above components, Fe 2 O 3 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 , CeO are added for the purpose of improving stability during glass production, suppressing reaction with metals, and improving adhesion. 2 , TiO 2 and ZrO 2 can be contained in a total amount of 2% or less.

酸化鉛(PbO)は実質的に含有させない。ここで「実質的に含有させない」との表現は、本発明においては酸化鉛(PbO)を有効成分とする原料は使用しないとの意であり、ガラスを構成する各成分の原料、その他に由来する微量分が不純物として混入したものを排除するものではない。言い換えれば、不純物として含有しているものまで本発明の範囲に入らないと言う意味ではない。具体的には、酸化鉛(PbO)は酸化物換算において、それらの合計量が1000ppm以下であれば、本発明の封着用ガラス組成物に含有されても実質上問題になるおそれはなく、本発明において「実質的に・・・含まない」に該当する。 Lead oxide (PbO) is not substantially contained. Here, the expression "substantially does not contain" means that the raw material containing lead oxide (PbO) as an active ingredient is not used in the present invention. It does not exclude those in which a trace amount of water is mixed as an impurity. In other words, it does not mean that even those contained as impurities do not fall within the scope of the present invention. Specifically, if lead oxide (PbO) is contained in the sealing glass composition of the present invention in a total amount of 1000 ppm or less in terms of oxide, there is no possibility of substantially causing a problem. It corresponds to "substantially not including" in the invention.

本発明の金属製真空二重容器封着用ガラス組成物は、480℃以下のガラス軟化点Ts、室温から300℃の範囲において90~120×10-7/℃の平均熱膨張係数αを有し、金属製真空二重容器の真空封着に好適である。
本発明の金属製真空二重容器は、二重容器間の空間を減圧状態に保ち、その挿通孔を前記ガラス組成物で封着することで得られる。
封着する真空二重容器を構成する金属材料としては、ステンレス鋼、その他の鋼、鉄材料、チタン材料、アルミニウム材料、その他の金属材料を対象とすることができる。
本発明の封着用ガラスは、例えば球状、半球状、おはじき状、或いは前記に類似した形状で使用することができる。
The glass composition for sealing a double metal vacuum container of the present invention has a glass softening point Ts of 480°C or less and an average thermal expansion coefficient α of 90 to 120 × 10 -7 /°C in the range of room temperature to 300°C. , suitable for vacuum sealing of metal vacuum double containers.
The metal vacuum double container of the present invention is obtained by keeping the space between the double containers in a decompressed state and sealing the insertion hole with the glass composition.
Metal materials constituting the vacuum double container to be sealed include stainless steel, other steels, iron materials, titanium materials, aluminum materials, and other metal materials.
The sealing glass of the present invention can be used, for example, in spherical, hemispherical, marble-like, or similar shapes.

以下に、実施例を挙げて本発明を更に詳細に説明する。本発明はこれらの実施例により何ら限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples. The present invention is by no means limited by these examples.

(ガラスの製造)
原料として、酸化ビスマス、酸化亜鉛、水酸化マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、酸化ケイ素、ホウ酸、水酸化アルミニウム、酸化銅、酸化コバルト等を用いた。
表1~表5に示すように、実施例1~27及び比較例1~3に示すガラス組成となるように原料を調合、混合した。
得られた混合物を白金るつぼに入れ、850~950℃の温度で1時間溶融した後、双ロール法で急冷してガラスフレークを得ると共に、予め加熱しておいたカーボン板に流し出してブロックを作製した。
その後、ブロックは予想されるガラス転移点Tgより約50℃高い温度に設定した電気炉に入れ、徐冷を行った。
作製したガラスフレークを900~1000℃の温度範囲で再溶融し、軟化点よりも200~300℃高い温度まで下げて適当な粘度にした後、摘下し、直径約5mm、高さ約2mm、重量約140mgの半球状の成形体を成形した。
(Manufacture of glass)
Bismuth oxide, zinc oxide, magnesium hydroxide, calcium carbonate, strontium carbonate, barium carbonate, lithium carbonate, sodium carbonate, potassium carbonate, silicon oxide, boric acid, aluminum hydroxide, copper oxide, cobalt oxide, etc. were used as raw materials. .
As shown in Tables 1 to 5, raw materials were prepared and mixed so as to obtain the glass compositions shown in Examples 1 to 27 and Comparative Examples 1 to 3.
The resulting mixture is placed in a platinum crucible, melted at a temperature of 850 to 950° C. for 1 hour, then quenched by a twin roll method to obtain glass flakes, and poured onto a preheated carbon plate to form a block. made.
After that, the block was placed in an electric furnace set to a temperature about 50° C. higher than the expected glass transition point Tg, and slowly cooled.
The produced glass flakes are remelted in a temperature range of 900 to 1000 ° C., lowered to a temperature 200 to 300 ° C. higher than the softening point to an appropriate viscosity, and then cut down, having a diameter of about 5 mm, a height of about 2 mm, A hemispherical molded body weighing about 140 mg was molded.

(評価)
実施例1~27、比較例1~3について、下記の方法によりガラス粉末のガラス転移点、軟化点、結晶化温度、ガラスブロックの熱膨張係数αを測定すると共に、ガラスのフロー性を判定した。
結果を表1~表5に示す。
(evaluation)
For Examples 1 to 27 and Comparative Examples 1 to 3, the glass transition point, softening point, crystallization temperature, and thermal expansion coefficient α of the glass block were measured by the following methods, and the flowability of the glass was determined. .
The results are shown in Tables 1-5.

Figure 0007132735000001
Figure 0007132735000001

Figure 0007132735000002
Figure 0007132735000002

Figure 0007132735000003
Figure 0007132735000003

Figure 0007132735000004
Figure 0007132735000004

Figure 0007132735000005
Figure 0007132735000005

(1)ガラス転移点Tg、軟化点Ts、結晶化温度Tp
ガラスフレークを乳鉢で粉砕し、ガラス粉末を得た。そのガラス粉末約60~80mgを白金セルに充填し、DTA測定装置(リガク社製Thermo Plus TG8120)を用いて、室温から20℃/分で昇温させて、ガラス転移点(℃)、軟化点(℃)を測定した。またDTA測定装置で結晶化温度(℃)が検出されるかを判定した。
(1) Glass transition point Tg, softening point Ts, crystallization temperature Tp
The glass flakes were pulverized in a mortar to obtain glass powder. About 60 to 80 mg of the glass powder is filled in a platinum cell, and a DTA measuring device (Thermo Plus TG8120 manufactured by Rigaku Corporation) is used to raise the temperature from room temperature at a rate of 20 ° C./min to measure the glass transition point (° C.) and softening point. (°C) was measured. Also, it was determined whether the crystallization temperature (°C) was detected by the DTA measuring device.

(2)熱膨張係数α
得られたガラスブロックを約5×5×15mmに切り出し、研磨して測定用のサンプルとした。TMA測定装置を用いて、室温から10℃/分で昇温したときに得られる熱膨張曲線から、50℃と300℃の2点に基づく熱膨張係数(×10-7/℃)を求めた。
(2) Thermal expansion coefficient α
The obtained glass block was cut into a size of about 5×5×15 mm and polished to obtain a sample for measurement. A thermal expansion coefficient (×10 −7 /° C.) based on two points at 50° C. and 300° C. was obtained from a thermal expansion curve obtained when the temperature was raised from room temperature at a rate of 10° C./min using a TMA measurement device. .

(3)ガラスのフロー径
得られた半球状の成形体を粉砕し、10gを内径20mmの金型に入れ、3MPaで10秒プレス成型して圧粉体とした。この圧粉体をSUS製板の上に置き、焼成温度500℃、保持時間15分で焼成し、そのフローした直径を測定した。
(3) Flow Diameter of Glass The obtained hemispherical compact was pulverized, 10 g of the compact was put into a mold with an inner diameter of 20 mm, and press-molded at 3 MPa for 10 seconds to obtain a powder compact. This green compact was placed on a SUS plate and fired at a firing temperature of 500° C. for a holding time of 15 minutes, and the flowed diameter was measured.

(4)フロー後の結晶性
フロー後の成形体をX線回折分析(XRD)により「非晶質」、「微結晶含有」、「結晶」の何れであるかを判定した。
ここで、「非晶質」とはXRDでハローしか見られず、結晶が析出していない状態、「微結晶含有」とはハローの中に微量すぎて同定ができないぐらいの結晶ピークが見られる状態、「結晶」とは同定できる結晶ピークが見られる状態、を示す。
(4) Crystallinity after flow The compact after flow was evaluated by X-ray diffraction analysis (XRD) to determine whether it was "amorphous", "containing microcrystals", or "crystalline".
Here, "amorphous" means a state in which only a halo can be seen by XRD and no crystals are precipitated, and "microcrystalline content" means a crystal peak in the halo that is too small to be identified. The state "crystalline" indicates a state in which an identifiable crystalline peak is observed.

(実施例1)
原料としては、酸化ビスマス、ホウ酸、酸化ケイ素、酸化亜鉛、炭酸バリウム、炭酸ナトリウム、水酸化アルミニウム、酸化銅を用い、所定の割合になるよう調合、混合し、該混合物を白金るつぼに入れ、950℃の温度で1時間溶融した後、双ロール法で急冷してガラスフレークを得ると共に、予め加熱しておいたカーボン板に流し出してブロックを作製した。その後、ブロックは予想されるガラス転移点より約50℃高い温度に設定した電気炉に入れ、徐冷を行った。
できたガラスフレークを乳鉢で粉砕し、ガラス粉末を得、約80mgを白金セルに充填し、DTA測定装置を用いて、室温から20℃/分で昇温させて、ガラス転移点、軟化点を測定したところ、それぞれ369℃、438℃であった。なお、結晶化温度は検出されなかった。
またガラスブロックから切り出したサンプルの50℃と300℃の2点に基づく熱膨張係数αを求めたところ、105×10-7/℃であった。
作製したガラスフレークを1000℃で再溶融し、適当な粘度となるまで温度を下げて滴下し、半球状の成形体を作製した。得られた成形体を粉砕した圧粉体を作製した後、500℃で15分焼成した。焼成後のフロー径を測定したところ、25.5mmであった。またXRDにて結晶化の状態を判定したところ、非晶質であった。
(Example 1)
As raw materials, bismuth oxide, boric acid, silicon oxide, zinc oxide, barium carbonate, sodium carbonate, aluminum hydroxide, and copper oxide are used. After melting at a temperature of 950° C. for 1 hour, the mixture was quenched by a twin roll method to obtain glass flakes, and poured onto a preheated carbon plate to prepare a block. After that, the block was placed in an electric furnace set to a temperature about 50° C. higher than the expected glass transition point, and slowly cooled.
The resulting glass flakes were pulverized in a mortar to obtain glass powder, about 80 mg was filled in a platinum cell, and the temperature was raised from room temperature at a rate of 20 ° C./min using a DTA measurement device to measure the glass transition point and softening point. When measured, they were 369°C and 438°C, respectively. No crystallization temperature was detected.
Further, when the thermal expansion coefficient α of the sample cut out from the glass block was obtained based on two points of 50°C and 300°C, it was 105 × 10 -7 /°C.
The produced glass flakes were re-melted at 1000° C., the temperature was lowered until an appropriate viscosity was achieved, and the glass flakes were added dropwise to produce a hemispherical molded body. After producing a green compact by pulverizing the obtained compact, it was fired at 500° C. for 15 minutes. When the flow diameter after firing was measured, it was 25.5 mm. Further, when the state of crystallization was determined by XRD, it was found to be amorphous.

(実施例2~27、比較例1~3)
実施例2~27、比較例1~3も実施例1と同様に作製し、測定、評価した。
実施例1~27の組成物は、何れも結晶化温度が検出されず、フロー後のXRDでも非晶質か微結晶含有であり、フロー性も良好であった。
これに対して比較例1、2は、結晶化温度が検出され、フロー後のXRDで結晶が確認された。またNaOを含有せず、LiOを含有する比較例3では、軟化点よりも200~300℃高い温度では結晶化が著しいために、半球状の成形体を作製することができなかった。
(Examples 2 to 27, Comparative Examples 1 to 3)
Examples 2 to 27 and Comparative Examples 1 to 3 were prepared in the same manner as in Example 1, and were measured and evaluated.
No crystallization temperature was detected in any of the compositions of Examples 1 to 27, and the XRD after flow showed that the composition was either amorphous or contained microcrystals, and had good flow properties.
On the other hand, in Comparative Examples 1 and 2, the crystallization temperature was detected, and crystals were confirmed by XRD after the flow. In addition, in Comparative Example 3 containing Li 2 O but not containing Na 2 O, crystallization was remarkable at a temperature 200 to 300° C. higher than the softening point, so that a hemispherical compact could not be produced. rice field.

本発明の金属製真空二重容器封着用ガラス組成物及び金属製真空二重容器は、ステンレス鋼やその他の金属製真空二重容器製造の産業において大いに利用できる。 The glass composition for sealing a metal vacuum double container and the metal vacuum double container of the present invention can be widely used in the industry for manufacturing stainless steel and other metal vacuum double containers.

Claims (3)

実質的にPbOを含まず、質量%表示で、
Bi :72~76%、ただし72%と76%を除く、
:2~17%、
SiO :0.1~9%、
ZnO :5~20%、
NaO :0.9~2%、
MgO、CaO、SrO、BaOの内の少なくとも1種以上を合計で0.1~5%、を含有し、更に、
CuO、CoOの合計含有量を、0%を含まず、4%以下の範囲とし、
Li O、K Oの合計含有量を、0%を含み、1%を超えない範囲とした、
ことを特徴とする金属製真空二重容器封着用ガラス組成物。
substantially free of PbO, expressed in mass %,
Bi 2 O 3 : 72-76%, except 72% and 76%;
B2O3 : 2-17 %,
SiO 2 : 0.1 to 9%,
ZnO: 5-20%,
Na 2 O: 0.9-2%,
At least one or more of MgO, CaO, SrO, and BaO in total of 0.1 to 5%, and
The total content of CuO and CoO is in the range of 4% or less, not including 0%,
The total content of Li 2 O and K 2 O is set to a range including 0% and not exceeding 1%,
A glass composition for sealing a metal vacuum double container, characterized by:
質量%表示で、Alを2%以下含有することを特徴とする請求項1に記載の金属製真空二重容器封着用ガラス組成物。 2. The glass composition for sealing a double vacuum metal container according to claim 1, containing 2 % or less of Al2O3 in terms of % by mass. 請求項1又は2に記載の金属製真空二重容器封着用ガラス組成物で真空封着した金属製真空二重容器 A metal vacuum double container vacuum-sealed with the glass composition for sealing a metal vacuum double container according to claim 1 or 2 .
JP2018067491A 2018-03-30 2018-03-30 Metal Vacuum Double Container Sealing Glass Composition and Metal Vacuum Double Container Active JP7132735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018067491A JP7132735B2 (en) 2018-03-30 2018-03-30 Metal Vacuum Double Container Sealing Glass Composition and Metal Vacuum Double Container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018067491A JP7132735B2 (en) 2018-03-30 2018-03-30 Metal Vacuum Double Container Sealing Glass Composition and Metal Vacuum Double Container

Publications (2)

Publication Number Publication Date
JP2019178022A JP2019178022A (en) 2019-10-17
JP7132735B2 true JP7132735B2 (en) 2022-09-07

Family

ID=68277713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018067491A Active JP7132735B2 (en) 2018-03-30 2018-03-30 Metal Vacuum Double Container Sealing Glass Composition and Metal Vacuum Double Container

Country Status (1)

Country Link
JP (1) JP7132735B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001085631A1 (en) 2000-05-11 2001-11-15 Matsushita Electric Industrial Co., Ltd. Glass composition, sealing glass for magnetic head and magnetic head
JP2002348152A (en) 2001-05-29 2002-12-04 Tiger Vacuum Bottle Co Ltd Metallic vacuum double container and method for making the same, sealing composition
JP2004238273A (en) 2002-03-29 2004-08-26 Matsushita Electric Ind Co Ltd Bismuth-based glass composition, and magnetic head and plasma display panel using it as sealing member
JP2005052208A (en) 2003-08-05 2005-03-03 Nippon Electric Glass Co Ltd Glass lined for sealing metal vacuum double container
JP2009007198A (en) 2007-06-28 2009-01-15 Nippon Electric Glass Co Ltd Glass melting apparatus, method of melting glass, and glass
JP2010280554A (en) 2009-06-08 2010-12-16 Nippon Electric Glass Co Ltd Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001085631A1 (en) 2000-05-11 2001-11-15 Matsushita Electric Industrial Co., Ltd. Glass composition, sealing glass for magnetic head and magnetic head
JP2002348152A (en) 2001-05-29 2002-12-04 Tiger Vacuum Bottle Co Ltd Metallic vacuum double container and method for making the same, sealing composition
JP2004238273A (en) 2002-03-29 2004-08-26 Matsushita Electric Ind Co Ltd Bismuth-based glass composition, and magnetic head and plasma display panel using it as sealing member
JP2005052208A (en) 2003-08-05 2005-03-03 Nippon Electric Glass Co Ltd Glass lined for sealing metal vacuum double container
JP2009007198A (en) 2007-06-28 2009-01-15 Nippon Electric Glass Co Ltd Glass melting apparatus, method of melting glass, and glass
JP2010280554A (en) 2009-06-08 2010-12-16 Nippon Electric Glass Co Ltd Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2019178022A (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP5413562B2 (en) Sealing material
CN108064219A (en) Ceramics and glass ceramics with low thermal expansion or negative expansion
JP2008254974A (en) Bismuth-based low melting point glass composition
JPH04288389A (en) Sealing material and mil additive for use therefor
JP2008024558A (en) Lead-free glass composition for sealing metal-made vacuum double container
JP5150058B2 (en) Lead-free glass composition for sealing stainless steel vacuum double containers
JP4596358B2 (en) Glass for sealing
JP5545589B2 (en) Manufacturing method of sealing material
JP7132735B2 (en) Metal Vacuum Double Container Sealing Glass Composition and Metal Vacuum Double Container
JP2663577B2 (en) Sealing composition
TWI232852B (en) Composite solder glass with reduced melting temperature, filling material for same and methods of using same
JP6148943B2 (en) Lead-free glass for sealing stainless steel vacuum double containers
JP6934352B2 (en) Sealing material
JP6876537B2 (en) Stainless steel vacuum double container sealed lead-free glass composition
JP5683778B2 (en) Lead free bismuth glass composition
CN103209936A (en) Semiconductor encapsulating non-lead glass and semiconductor encapsulating coating tube
US4246034A (en) Devitrifying solder sealing glasses
JP5026121B2 (en) Antimony phosphate glass composition
JP7506566B2 (en) Sealing and coating materials
JP2021178740A (en) Crystalline composite powder, and crystalline tablet made of the same
CN102173582A (en) Media glass used for infrared heating coating and preparation method thereof
JPH07291657A (en) Amorphous frit
CN105330161A (en) TiO2-doped infrared-transmitting aluminate glass ceramic and preparation method thereof
JP2000239042A (en) Frit for crt
JPS5945620B2 (en) Low melting point sealing composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220606

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220826

R150 Certificate of patent or registration of utility model

Ref document number: 7132735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150