JP6148943B2 - Lead-free glass for sealing stainless steel vacuum double containers - Google Patents

Lead-free glass for sealing stainless steel vacuum double containers Download PDF

Info

Publication number
JP6148943B2
JP6148943B2 JP2013182412A JP2013182412A JP6148943B2 JP 6148943 B2 JP6148943 B2 JP 6148943B2 JP 2013182412 A JP2013182412 A JP 2013182412A JP 2013182412 A JP2013182412 A JP 2013182412A JP 6148943 B2 JP6148943 B2 JP 6148943B2
Authority
JP
Japan
Prior art keywords
glass
stainless steel
sealing
lead
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013182412A
Other languages
Japanese (ja)
Other versions
JP2015048287A (en
Inventor
拓也 堀内
拓也 堀内
浅野 芳弘
芳弘 浅野
卓也 高山
卓也 高山
禎隆 真弓
禎隆 真弓
達雄 日高
達雄 日高
利雄 江口
利雄 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Tiger Corp
Original Assignee
Nihon Yamamura Glass Co Ltd
Tiger Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd, Tiger Corp filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2013182412A priority Critical patent/JP6148943B2/en
Publication of JP2015048287A publication Critical patent/JP2015048287A/en
Application granted granted Critical
Publication of JP6148943B2 publication Critical patent/JP6148943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Compositions (AREA)

Description

本発明は、ステンレス鋼製真空二重容器の封着用無鉛ガラスに関し、更に詳しくは、魔法瓶、携帯用保温ボトル、ランチジャー等のステンレス鋼製真空二重容器を低温で真空封着し、真空を良好に保持できる封着用無鉛ガラスに関するものである。   The present invention relates to lead-free glass for sealing stainless steel vacuum double containers, and more specifically, stainless steel vacuum double containers such as thermos, portable heat retaining bottles, launchers, etc. are vacuum-sealed at low temperatures, and vacuum is applied. The present invention relates to a lead-free glass for sealing that can be held well.

ステンレス鋼製真空二重容器の作製は、ステンレス鋼製の二重容器を真空炉にて加熱しながら、排気孔より内外容器間のガスを真空排気する、いわゆる脱ガス処理を実施した後、更に高温処理して排気孔に設置したガラスをフローさせ、排気孔を塞ぐ、いわゆる封着処理を実施することによりなされている。
真空での封着処理には真空炉を使用する必要があるが、真空炉における伝熱は輻射のみであり、一般的に温度の炉内バラツキが大きくなる傾向にある。また封着処理の前に脱ガス処理として300〜320℃の温度にて約90分間保持しているが、この際ガラス中に結晶の核が発生し、封着処理の際に、この核を中心として結晶析出が促進される傾向にあり、結晶析出が促進されるとフロー性が悪化する。この傾向は、脱ガス温度が高く、脱ガス時間が長いほど顕著となるので、脱ガス中の温度の炉内でのバラツキにより、結晶析出の度合い、ひいてはフロー性にバラツキが生じる。
また封着処理中の温度、時間も結晶析出の度合い、フロー性に影響するので、封着処理中の温度バラツキも、封着性能に大きく影響を及ぼす。よって封着性能のバラツキを抑制するには、ガラスを結晶析出し難くすると共に、低融化させることなどが必要となる。
従来から、例えばSUS304を使用したステンレス鋼製真空二重容器の真空封着には、ステンレス鋼の鋭敏化を防ぐため、低温にて封着可能な鉛ガラスが用いられている。
しかしながら、このような鉛ガラスは鉛成分を主成分とするため、人体、環境、その他の点において悪影響を持つので、鉛成分を含まないガラスが望まれている。
The production of the stainless steel vacuum double container is carried out by carrying out a so-called degassing treatment, in which the gas between the inner and outer containers is evacuated from the exhaust hole while the stainless steel double container is heated in a vacuum furnace. This is done by performing a so-called sealing process in which the glass placed in the exhaust hole is flowed by high-temperature treatment to close the exhaust hole.
Although it is necessary to use a vacuum furnace for the sealing treatment in vacuum, heat transfer in the vacuum furnace is only radiation, and generally there is a tendency for variations in temperature in the furnace to increase. Further, as a degassing process before the sealing process, the glass is held at a temperature of 300 to 320 ° C. for about 90 minutes. At this time, crystal nuclei are generated in the glass. There is a tendency for crystal precipitation to be promoted as the center, and when the crystal precipitation is promoted, the flowability deteriorates. This tendency becomes more prominent as the degassing temperature is higher and the degassing time is longer. Therefore, the degree of crystal precipitation and, consequently, the flow characteristics vary due to variations in the temperature during degassing in the furnace.
Further, since the temperature and time during the sealing process also affect the degree of crystal precipitation and the flowability, temperature variations during the sealing process also greatly affect the sealing performance. Therefore, in order to suppress the variation in sealing performance, it is necessary to make the glass difficult to crystallize and to lower the melting point.
Conventionally, lead glass that can be sealed at a low temperature has been used for vacuum sealing of a stainless steel vacuum double container using, for example, SUS304 in order to prevent sensitization of stainless steel.
However, since such a lead glass has a lead component as a main component, it has an adverse effect on the human body, the environment, and other points. Therefore, a glass containing no lead component is desired.

このような経緯から、近年、鉛ガラスの代替として、ビスマス系ガラスを適用させようとする試みがなされている。
特許文献1には、封着用途として500℃以下の温度で焼成可能なビスマス系ガラス組成物が開示されている。
また特許文献2には、500℃まで結晶化ピークが発生しないビスマス系無鉛ガラス組成物が開示されている。
また特許文献3には、MgO、Al、SiOを所定量含有させることにより、耐火性フィラー、特にコーディエライトからガラスへの物質拡散速度が小さくなり、熱的安定性を向上させることができるビスマス系ガラス組成物が開示されている。
また特許文献4には、金属製真空二重容器の真空封着用に適したビスマス系の封着用無鉛ガラス組成物が開示されている。
Due to such circumstances, attempts have recently been made to apply bismuth-based glass as an alternative to lead glass.
Patent Document 1 discloses a bismuth-based glass composition that can be fired at a temperature of 500 ° C. or lower for sealing applications.
Patent Document 2 discloses a bismuth-based lead-free glass composition that does not generate a crystallization peak up to 500 ° C.
Patent Document 3 discloses that by containing MgO, Al 2 O 3 , and SiO 2 in predetermined amounts, the material diffusion rate from the refractory filler, particularly cordierite, to the glass is reduced, and the thermal stability is improved. Bismuth-based glass compositions that can be used are disclosed.
Patent Document 4 discloses a bismuth-based sealing lead-free glass composition suitable for vacuum sealing of a metal vacuum double container.

特開2000−128574号公報JP 2000-128574 A 特開2006−321665号公報JP 2006-321665 A 特開2008−127240号公報JP 2008-127240 A 特開2008−24558号公報JP 2008-24558 A

しかしながら、特許文献1に開示されているガラス組成物は、選択した組成によって非結晶性のガラスであったり、結晶性のガラスとなったりするため、安定性に欠け、ガラスのフロー性に問題があり、よって封着性能に問題があった。
また特許文献2、3は、遷移金属酸化物、特にCoOの量が少ないため、ステンレス鋼に対する接着性能の点で改善すべき問題があった。
また特許文献4に開示されているガラス組成物は、BaOを多く含んでおり、耐水性に問題があった。魔法瓶等のステンレス鋼製真空二重容器は、自動食器洗浄器などで洗浄され得ることを考慮すると、ガラスの耐水性がよいことが望まれる。
However, since the glass composition disclosed in Patent Document 1 is non-crystalline glass or crystalline glass depending on the selected composition, it lacks stability, and there is a problem in the flowability of the glass. Therefore, there was a problem in sealing performance.
Patent Documents 2 and 3 have a problem to be improved in terms of adhesion performance to stainless steel because the amount of transition metal oxide, particularly CoO, is small.
Further, the glass composition disclosed in Patent Document 4 contains a large amount of BaO, and has a problem in water resistance. Considering that a stainless steel vacuum double container such as a thermos can be cleaned with an automatic dishwasher or the like, it is desirable that the glass has good water resistance.

従って本発明は、上記従来技術の問題点を解消し、脱ガス及び真空封着等の焼成時において結晶析出が少なく、ステンレス鋼製真空二重容器の真空封着を550℃以下の低温で良好に且つ歩留まりよく行うことができ、またステンレス鋼に対する接着性、密着性に優れ、更に耐水性にも優れた、ステンレス鋼製真空二重容器の封着用無鉛ガラスの提供を課題とする。   Accordingly, the present invention eliminates the above-mentioned problems of the prior art, causes less crystal precipitation during firing such as degassing and vacuum sealing, and good vacuum sealing of a stainless steel vacuum double container at a low temperature of 550 ° C. or lower. Furthermore, it is an object of the present invention to provide a lead-free glass for sealing a stainless steel vacuum double container, which can be carried out with good yield, has excellent adhesion and adhesion to stainless steel, and has excellent water resistance.

本発明者は種々検討、実験を重ねた結果、ビスマス系ガラスにおいて、550℃以下の低温の封着処理温度においても、結晶を析出し難く、安定性に優れてフロー性がよく、よって確実に封着することができ、またステンレス鋼との接着性、密着性がよく、更に耐水性に優れた組成範囲を見出し、本発明を完成させるに至った。   As a result of repeated examinations and experiments, the present inventor has made it difficult to precipitate crystals even in a low sealing treatment temperature of 550 ° C. or lower in bismuth-based glass, and has excellent stability and flowability. A composition range that can be sealed, has good adhesion and adhesion to stainless steel, and is excellent in water resistance, has led to the completion of the present invention.

即ち、本発明のステンレス鋼製真空二重容器の封着用無鉛ガラスは、
PbOを含有せず、
酸化物換算のモル百分率で、
Bi :38.0〜43.0%
:21.0〜26.0%
ZnO :20.0〜26.0%
MgO+CaO :0.1〜10.0%
SrO+BaO :0.1〜1.0%(ただし、1.0%を含まず)
CuO :0.5〜6.0%
CoO :0.1〜6.0%
Al :0〜1.0%(ただし、0を含まず)
を含有することを第1の特徴としている。
また本発明のステンレス鋼製真空二重容器の封着用無鉛ガラスは、上記第1の特徴に加えて、
PbOを含有せず、
酸化物換算のモル百分率で、
Bi :40.0〜42.0%
:22.0〜24.0%
ZnO :22.0〜24.0%
MgO+CaO :2.0〜5.1%
SrO+BaO :0.1〜0.80%
CuO :2.0〜5.8%
CoO :1.0〜4.0%
Al :0.1〜0.7%
を含有することを第2の特徴としている。
また本発明のステンレス鋼製真空二重容器の封着用無鉛ガラスは、上記第1又は第2の特徴に加えて、
モル比で、
Bi/(MgO+CaO):5.0〜40.0
であることを第3の特徴としている。
また本発明のステンレス鋼製真空二重容器の封着用無鉛ガラスは、上記第1〜第3の何れかの特徴に加えて、SiOを含有しないことを第4の特徴としている
That is, the lead-free glass for sealing the stainless steel vacuum double container of the present invention is:
Does not contain PbO,
Mole percentage in terms of oxide,
Bi 2 O 3 : 38.0 to 43.0%
B 2 O 3: 21.0~26.0%
ZnO: 20.0-26.0%
MgO + CaO: 0.1 to 10.0%
SrO + BaO: 0.1 to 1.0% (excluding 1.0%)
CuO: 0.5-6.0%
CoO: 0.1-6.0%
Al 2 O 3 : 0 to 1.0% (excluding 0)
It is the 1st characteristic to contain.
Moreover, the lead-free glass for sealing a stainless steel vacuum double container of the present invention, in addition to the first feature,
Does not contain PbO,
Mole percentage in terms of oxide,
Bi 2 O 3: 40.0~42.0%
B 2 O 3: 22.0~24.0%
ZnO: 22.0 to 24.0%
MgO + CaO: 2.0-5.1%
SrO + BaO: 0.1-0.80%
CuO: 2.0 to 5.8%
CoO: 1.0-4.0%
Al 2 O 3 : 0.1 to 0.7%
It is the 2nd characteristic to contain.
Moreover, in addition to the said 1st or 2nd characteristic, the lead-free glass for sealing of the vacuum double container made of stainless steel of the present invention,
In molar ratio
Bi 2 O 3 /(MgO+CaO):5.0~40.0
This is the third feature.
Moreover, the lead-free glass for sealing a stainless steel vacuum double container of the present invention has a fourth feature that it does not contain SiO 2 in addition to any of the first to third features .

請求項1に係るステンレス鋼製真空二重容器の封着用無鉛ガラスは、ステンレス鋼製の内外容器間を真空排気するために用いられる排気孔に対して、この排気孔を封着するのに用いることができる。
そして請求項1に記載のステンレス鋼製真空二重容器の封着用無鉛ガラスによれば、そこに記載の成分組成とすることで、封着時におけるガラスの焼成時に結晶析出し難く、フロー性に優れ、550℃以下での低温においても確実、良好に封着することができる。
また請求項1に記載のステンレス鋼製真空二重容器の封着用無鉛ガラスによれば、封着において、ステンレス鋼との良好な接着性、密着性を発揮することができる。
更に耐水性に優れたステンレス鋼製真空二重容器の封着用無鉛ガラスを提供することができ、長期に亘って良好な保温性を保持することができる。
The lead-free glass for sealing a stainless steel vacuum double container according to claim 1 is used to seal the exhaust hole with respect to the exhaust hole used for evacuating the stainless steel inner and outer containers. be able to.
And according to the lead-free glass for sealing a stainless steel vacuum double container according to claim 1, it is difficult to crystallize during the firing of the glass at the time of sealing, and the flowability by using the component composition described therein. It is excellent and can be surely and satisfactorily sealed even at a low temperature of 550 ° C. or lower.
Moreover, according to the lead-free glass for sealing a stainless steel vacuum double container according to claim 1, it is possible to exhibit good adhesion and adhesion to stainless steel in sealing.
Furthermore, a lead-free glass for sealing a stainless steel vacuum double container excellent in water resistance can be provided, and good heat retention can be maintained over a long period of time.

請求項2に記載のステンレス鋼製真空二重容器の封着用無鉛ガラスによれば、上記請求項1に記載の構成による作用効果に加えて、封着時において、より確実に結晶の析出を抑えて良好な封着を確保することができる。また接着性、密着性、及び耐水性にもより優れたステンレス鋼製真空二重容器の封着用の無鉛ガラスを提供することができる。   According to the lead-free glass for sealing a stainless steel vacuum double container according to claim 2, in addition to the function and effect of the configuration according to claim 1, the precipitation of crystals is more reliably suppressed during sealing. And good sealing can be secured. Further, it is possible to provide a lead-free glass for sealing a stainless steel vacuum double container that is more excellent in adhesion, adhesion, and water resistance.

請求項3に記載のステンレス鋼製真空二重容器の封着用無鉛ガラスによれば、上記請求項1又は2に記載の構成による作用効果に加えて、モル比で、Bi/(MgO+CaO):5.0〜40.0となるように構成することにより、ガラス焼成時において、軟化点が低く、しかも結晶析出が生じ難く、且つ良好なフロー性を誇って、より確実な封着が確保できるガラスを提供することができる。 According to the lead-free glass for sealing a stainless steel vacuum double container according to claim 3 , Bi 2 O 3 / (MgO + CaO) in terms of molar ratio in addition to the operational effects of the configuration according to claim 1 or 2. ): By constituting so as to be 5.0 to 40.0, a softening point is low at the time of baking the glass, and crystal precipitation is hardly generated, and a good flow property is obtained, so that more reliable sealing is achieved. Glass which can be secured can be provided.

請求項4に記載のステンレス鋼製真空二重容器の封着用無鉛ガラスによれば、上記請求項1〜3の何れかに記載の構成による作用効果に加えて、ガラス焼成時において、結晶析出が生じ難く、より確実な封着が確保できるガラスを提供することができる。   According to the lead-free glass for sealing a stainless steel vacuum double container according to claim 4, in addition to the operational effects of the configuration according to any of claims 1 to 3, during glass firing, crystal precipitation occurs. It is difficult to occur, and a glass that can ensure a more reliable sealing can be provided.

以上、本発明の封着用無鉛ガラスによれば、ステンレス鋼製真空二重容器の良好な封着ができる。As mentioned above, according to the lead-free glass for sealing of this invention, the favorable sealing of a stainless steel vacuum double container can be performed.

本発明のステンレス鋼製真空二重容器の封着用無鉛ガラスは、既述したように、ステンレス鋼製真空二重容器、特にSUS304等のオーステナイト系ステンレス鋼製真空二重容器を低温焼成で真空封着するのに良好に用いることができる。
本発明に係るステンレス鋼製真空二重容器の封着用無鉛ガラスの構成成分及び含有範囲について、以下に説明する。
As described above, the lead-free glass for sealing a stainless steel vacuum double container of the present invention is a vacuum sealing of a stainless steel vacuum double container, particularly an austenitic stainless steel vacuum double container such as SUS304 by low-temperature firing. Can be used well to wear.
The component and content range of the lead-free glass for sealing the stainless steel vacuum double container according to the present invention will be described below.

Biはガラスの網目形成酸化物であり、且つガラスの軟化点の低融化に必須の成分である。
Biの含有範囲は、38.0〜43.0モル%とする。Biが38.0モル%未満では、ガラスの軟化点が高くなり、フロー性が悪化する。またBiが43.0モル%を超えると、ガラスが不安定となり、焼成時に結晶が析出し易くなり、フロー性が悪化し、封着不良が発生する。
Biの含有範囲は、ガラスの軟化点、ガラスの安定性、フロー性を考慮して、より好ましくは39.0〜42.0モル%がよく、更に好ましくは40.0〜42.0モル%がよい。
Bi 2 O 3 is a network-forming oxide of glass and is an essential component for lowering the softening point of glass.
Content range of Bi 2 O 3 is a 38.0 to 43.0 mol%. If Bi 2 O 3 is less than 38.0 mol%, the softening point of the glass becomes high and the flowability deteriorates. On the other hand, if Bi 2 O 3 exceeds 43.0 mol%, the glass becomes unstable, crystals tend to precipitate during firing, flow properties deteriorate, and poor sealing occurs.
The content range of Bi 2 O 3 is more preferably from 39.0 to 42.0 mol%, and even more preferably from 40.0 to 42.%, in view of the softening point of the glass, the stability of the glass, and the flowability. 0 mol% is good.

はガラスを安定させるために必須の網目形成酸化物である。
の含有範囲は、21.0〜26.0モル%とする。Bが21.0モル%未満では、ガラスが不安定になり、焼成時に結晶が析出し易くなり、フロー性が悪化する。またBが26.0モル%を超えると、ガラスの軟化点が高くなり、焼成時のフロー性が悪化する。
の含有範囲は、ガラスの軟化点、ガラスの安定性、フロー性を考慮して、より好ましくは21.0〜25.0モル%がよく、更に好ましくは22.0〜24.0モル%がよい。
B 2 O 3 is an essential network-forming oxide for stabilizing the glass.
Content range of B 2 O 3 and 21.0 to 26.0 mol%. If B 2 O 3 is less than 21.0 mol%, the glass becomes unstable, crystals tend to precipitate during firing, and the flowability deteriorates. Further, when B 2 O 3 exceeds 26.0 mol%, the higher the softening point of the glass, the flow resistance at the time of firing is deteriorated.
The content range of B 2 O 3 is preferably 21.0 to 25.0 mol%, more preferably 22.0 to 24.24% in consideration of the softening point of the glass, the stability of the glass, and the flowability. 0 mol% is good.

ZnOはガラスを低融化し、ガラスを安定させる効果がある。
ZnOの含有範囲は、20.0〜26.0モル%とする。ZnOが20.0モル%未満では、軟化点が上昇すると共に、結晶析出が激しくなり、フロー性が著しく悪化する。またZnOが26.0モル%を超えると、逆にガラスが不安定となり、結晶が析出し易くなる。
ZnOの含有範囲は、ガラスの軟化点、ガラスの安定性、フロー性を考慮して、好ましくは21.0〜25.0モル%がよく、更に好ましくは22.0〜24.0モル%がよい。
ZnO has the effect of stabilizing the glass by lowering the glass.
The content range of ZnO shall be 20.0-26.0 mol%. If ZnO is less than 20.0 mol%, the softening point increases, crystal precipitation becomes violent, and the flowability is significantly deteriorated. On the other hand, when ZnO exceeds 26.0 mol%, the glass becomes unstable and crystals are likely to precipitate.
The content range of ZnO is preferably 21.0 to 25.0 mol%, more preferably 22.0 to 24.0 mol% in consideration of the softening point of glass, the stability of glass, and the flowability. Good.

MgO、CaOは、少なくともその何れか一方、又は両方が含有されていることが必須である。具体的にはCaOを単独で含有させる場合、CaOにMgOを追加して含有させる場合が多い。MgO、CaOはガラスを低融化させると共に安定させ、焼成時の結晶析出を抑制させる効果がある。また耐水性の向上に有効である。
MgOとCaOは、その合計(MgO+CaO)の含有範囲を、0.1〜10.0モル%とする。合計含有量が0.1モル%未満では、ガラスの軟化点が高くなると共に、焼成時に結晶が析出し易くなる。一方、10.0モル%を超えると、逆にガラスが不安定となり、焼成時に結晶が析出し易くなり、フロー性が悪化する。
MgOとCaOとの合計含有量は、ガラスの軟化点、安定性、フロー性を考慮して、好ましくは1.0〜8.0モル%がよく、更に好ましくは2.0〜5.1モル%がよい。
またガラスの安定性、フロー性の点から、MgOの含有量は0〜3.0モル%であることが好ましく、0〜2.0モル%であることがより好ましく、0〜1.0モル%であることが更に好ましい。CaOの含有量は、0.1〜8.0モル%が好ましく、0.5〜7.0モル%がより好ましく、1.0〜5.1モル%が更に好ましい。
It is essential that at least one or both of MgO and CaO is contained. Specifically, when CaO is contained alone, MgO is often added to CaO. MgO and CaO have the effect of lowering and stabilizing the glass and suppressing crystal precipitation during firing. It is also effective for improving water resistance.
MgO and CaO make the total content range (MgO + CaO) 0.1 to 10.0 mol%. When the total content is less than 0.1 mol%, the softening point of the glass is increased and crystals are likely to precipitate during firing. On the other hand, if it exceeds 10.0 mol%, the glass becomes unstable, and crystals are likely to precipitate during firing, resulting in poor flow properties.
The total content of MgO and CaO is preferably 1.0 to 8.0 mol%, more preferably 2.0 to 5.1 mol in consideration of the softening point, stability and flowability of the glass. % Is good.
Further, from the viewpoint of glass stability and flowability, the content of MgO is preferably 0 to 3.0 mol%, more preferably 0 to 2.0 mol%, and 0 to 1.0 mol%. % Is more preferable. The content of CaO is preferably 0.1 to 8.0 mol%, more preferably 0.5 to 7.0 mol%, and still more preferably 1.0 to 5.1 mol%.

SrO、BaOは、少なくともその何れか一方、又は両方が含有されていることが必須である。具体的にはBaOを単独で含有させる場合、BaOにSrOを追加して含有させる場合が多い。SrO、BaOはガラスを低融化させると共に安定させ、焼成時の結晶析出を抑制させる効果がある。
SrOとBaOは、その合計(SrO+BaO)の含有範囲を、0.1〜1.0モル%未満とする。合計含有量が0.1モル%未満では、ガラスの低融化の効果がほとんどない。一方、1.0モル%以上になると、逆にガラスが不安定となり、焼成時に結晶が析出し易くなり、フロー性が悪化する。
SrOとBaOとの合計含有量は、ガラスの低融化、安定化、フロー性を考慮して、好ましくは0.1〜0.9モル%がよく、更に好ましくは0.1〜0.8モル%がよい。
It is essential that at least one or both of SrO and BaO is contained. Specifically, when BaO is contained alone, SrO is often added to BaO. SrO and BaO have the effect of lowering and stabilizing the glass and suppressing crystal precipitation during firing.
SrO and BaO make the total (SrO + BaO) content range less than 0.1 to 1.0 mol%. When the total content is less than 0.1 mol%, there is almost no effect of reducing the melting of the glass. On the other hand, if it is 1.0 mol% or more, the glass becomes unstable, and crystals are likely to precipitate during firing, resulting in poor flow properties.
The total content of SrO and BaO is preferably 0.1 to 0.9 mol%, more preferably 0.1 to 0.8 mol in consideration of low melting, stabilization and flowability of the glass. % Is good.

Biと(MgO+CaO)とのモル量の割合(モル比)は、安定なガラスを得る上で重要である。
本実施形態においては、Bi/(MgO+CaO)のモル比を5.0〜40.0する。Biと(MgO+CaO)とのモル量の割合(モル比)が5.0未満ではガラスが不安定となり、焼成時に結晶が析出し易くなり、フロー性が悪化する。また40.0を超えると、軟化点が高くなると共に、焼成時に結晶が析出し易くなる。
Bi/(MgO+CaO)のモル比は、ガラスの安定性、フロー性、軟化点を考慮して、好ましくは6.0〜30.0がよく、更に好ましくは6.0〜20.0がよい。
The ratio (molar ratio) of the molar amount of Bi 2 O 3 and (MgO + CaO) is important for obtaining a stable glass.
In the present embodiment, the molar ratio of Bi 2 O 3 / (MgO + CaO) is set to 5.0 to 40.0. If the molar ratio (molar ratio) between Bi 2 O 3 and (MgO + CaO) is less than 5.0, the glass becomes unstable, crystals tend to precipitate during firing, and the flow properties deteriorate. On the other hand, if it exceeds 40.0, the softening point becomes high and crystals are likely to precipitate during firing.
The molar ratio of Bi 2 O 3 / (MgO + CaO) is preferably 6.0 to 30.0, more preferably 6.0 to 20.0 in consideration of the stability, flowability, and softening point of the glass. Is good.

CuOは必須の成分であり、ガラスを低融化すると共に安定させ、焼成時の結晶析出を抑制し、フロー性を良好にする。またステンレス鋼との接着性、密着性を向上させる効果がある。
CuOの含有範囲は、0.5〜6.0モル%とする。0.5モル%未満では、CuO添加による効果が不十分となり、焼成時に結晶が析出し易くなる。またCuOが6.0モル%を超えると、逆に結晶が析出し易くなり、フロー性が悪化する。
CuOの含有範囲は、ガラスのステンレス鋼との接着性、密着性、ガラスの安定性、フロー性を考慮して、好ましくは1.0〜6.0モル%がよく、更に好ましく2.0〜5.8モル%がよい。
CuO is an essential component, lowers the glass and stabilizes it, suppresses crystal precipitation during firing, and improves flowability. Moreover, there exists an effect which improves the adhesiveness and adhesiveness with stainless steel.
The content range of CuO shall be 0.5-6.0 mol%. If it is less than 0.5 mol%, the effect of CuO addition becomes insufficient, and crystals are likely to precipitate during firing. On the other hand, if CuO exceeds 6.0 mol%, the crystal is liable to precipitate and the flowability is deteriorated.
The content range of CuO is preferably 1.0 to 6.0 mol%, and more preferably 2.0 to 6.0% in consideration of adhesion of glass to stainless steel, adhesion, glass stability, and flowability. 5.8 mol% is good.

CoOは必須の成分であり、ガラスを安定させ、ステンレス鋼との濡れ性を良好にし、焼成時の結晶析出を抑制する。
CoOの含有範囲は、0.1〜6.0モル%とする。0.1モル%未満では、CoO添加による効果が不十分となり、焼成時に結晶が析出し易くなる。またCoOが6.0モル%を超えると、軟化点が上昇し、焼成時のフロー性が悪化する。
CuOの含有範囲は、ガラスの安定性、スロー性、ステンレス鋼との濡れ性、軟化点を考慮して、好ましくは0.5〜5.0モル%がよく、更に好ましく1.0〜4.0モル%がよい。
CoO is an essential component, stabilizes the glass, improves wettability with stainless steel, and suppresses crystal precipitation during firing.
The content range of CoO shall be 0.1-6.0 mol%. If it is less than 0.1 mol%, the effect of adding CoO is insufficient, and crystals are likely to precipitate during firing. On the other hand, if CoO exceeds 6.0 mol%, the softening point increases and the flowability during firing deteriorates.
The content range of CuO is preferably 0.5 to 5.0 mol%, more preferably 1.0 to 4.4 in consideration of glass stability, slowness, wettability with stainless steel, and softening point. 0 mol% is good.

Alは必須の成分であり、ガラスを安定させ、耐水性の向上に効果がある。
Alの含有範囲は、0〜1.0モル%(ただし、0を含まず)とする。Alを含有しない場合、耐水性に問題が生じ得る。一方、Alが1.0モル%を超えると、軟化点が上昇し、フロー性が悪化すると共に、ガラス溶融時に未溶解物が残り、焼成時に結晶化し易くなることがある。
Alの含有の範囲は、ガラスの耐水性、軟化点、安定性を考慮して、好ましくは0.05〜0.8モル%がよく、更に好ましくは0.1〜0.7モル%がよい。
Al 2 O 3 is an essential component, stabilizes the glass, and is effective in improving water resistance.
Content range of Al 2 O 3 is a 0 to 1.0 mol% (excluding 0). If Al 2 O 3 is not contained, there may be a problem with water resistance. On the other hand, when Al 2 O 3 exceeds 1.0 mol%, the softening point is increased, the flowability is deteriorated, and undissolved matter remains at the time of glass melting, and it may be easily crystallized at the time of firing.
The range of Al 2 O 3 content is preferably 0.05 to 0.8 mol%, more preferably 0.1 to 0.7 mol, in consideration of the water resistance, softening point, and stability of the glass. % Is good.

SiOはガラスの網目形成成分であり、一般的に溶融時のガラスの安定化に寄与するが、Bi系ガラスにおいては焼成時に結晶の析出を促進し、また軟化点が上昇してフロー性が悪化するので、含まないことが好ましい。 SiO 2 is a glass network-forming component, and generally contributes to stabilization of the glass at the time of melting. However, in Bi 2 O 3 glass, the precipitation of crystals is promoted during firing, and the softening point is increased. Since flow property deteriorates, it is preferable not to contain.

はガラスの粘性を下げ、表面張力を下げる効果があるが、焼成時には結晶の析出を促進し、フロー性が悪化するので、含まないことが好ましい。 V 2 O 5 has the effect of lowering the viscosity of the glass and lowering the surface tension, but it is preferable not to contain V 2 O 5 because it promotes crystal precipitation during firing and deteriorates the flowability.

またLiO、NaO、KOなどのアルカリ金属酸化物は、ガラスの網目修飾成分であり、これらが含まれるとガラスは低融化するが、不安定になり、焼成時に結晶が析出し易くなる。また耐久性も劣化する。特に魔法瓶等のステンレス鋼製真空二重容器は、自動食器洗浄器などで洗浄され得ることを考慮すると、ガラスには耐水性、耐温水性が必要となるので、LiO、NaO、KOなどのアルカリ金属酸化物は含まないことが好ましい。 In addition, alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O are components for modifying the network of glass. If these are included, the glass melts low, but becomes unstable, and crystals precipitate during firing. It becomes easy to do. Also, durability is deteriorated. In particular, considering that stainless steel vacuum double containers such as thermos can be cleaned with an automatic dishwasher or the like, the glass needs water resistance and warm water resistance, so Li 2 O, Na 2 O, It is preferable not to contain an alkali metal oxide such as K 2 O.

なお、本発明で言う「含まない」とは、PbO、SiO等を必須成分としても任意成分としても含有させないという意味である。ただし、不純物として混入する場合については、これを排除するものではない。 In the present invention, “does not contain” means that PbO, SiO 2 or the like is not contained as an essential component or an optional component. However, the case where it is mixed as an impurity is not excluded.

以上の組成を有するガラスは、360℃以下のガラス転移点(Tg)、室温から250℃の範囲において100〜110×10−7/℃の平均熱膨張係数(α)を有するガラスとすることができ、またガラス安定性、フロー性、耐水性、ステンレス鋼との接着性等が良好なガラスとすることができ、ステンレス鋼製真空二重容器の真空封着用ガラスとして好適である。   The glass having the above composition may be a glass having a glass transition point (Tg) of 360 ° C. or less and an average coefficient of thermal expansion (α) of 100 to 110 × 10 −7 / ° C. in the range of room temperature to 250 ° C. In addition, the glass can have good glass stability, flow properties, water resistance, adhesion to stainless steel, and the like, and is suitable as a glass for vacuum sealing of a stainless steel vacuum double container.

本発明のステンレス鋼製真空二重容器の封着用無鉛ガラスは、上記した成分組成の原料を用いて、これを溶融させてなるガラスとして得ることができる。そして好ましくは、一旦溶融して得たガラスフレークを再溶融し、液滴成形したガラスとして得ることができる。
本発明のガラスは、その形状として、例えば球状、半球状、おはじき状、或いは前記に類似した形状とし、使用することができる。
The lead-free glass for sealing a stainless steel vacuum double container of the present invention can be obtained as a glass obtained by melting the raw material having the above-described component composition. And preferably, the glass flakes obtained by once melting can be obtained by remelting and forming droplet-formed glass.
The glass of the present invention can be used, for example, in a spherical shape, a hemispherical shape, a hajiki shape, or a shape similar to the above.

また本発明のステンレス鋼製真空二重容器の封着用無鉛ガラスは、原料として酸化ビスマス、ホウ酸、酸化亜鉛、水酸化カルシウム、水酸化アルミニウム、水酸化マグネシウム、炭酸バリウム、硝酸バリウム、酸化銅、酸化コバルト、酸化鉄(Fe)等を用い、これを目標組成になるように各原料を調合した後、調合原料を溶融し、一旦ガラスフレークを作製し、このガラスフレークを再溶融した後、液滴成形させてなるガラスとして得るのが好ましい。
このように再溶融を行う理由は、調合原料の溶融により得られた一次融液には、未溶解物、結晶が含まれると共に組成のムラがあり、攪拌を導入してもこれらの解消は困難で、このような一次融液から得たガラス(ガラスフレーク)は、これを用いてステンレス鋼製真空二重容器の封着に供する場合、その焼成時に、未溶解物または結晶を核にして結晶化が促進される傾向となり、またガラス間の組成の均一性にバラツキが発生するためである。一旦ガラスフレークを得た後、これを再溶融させたガラスとして提供することで、これらの不具合がなく、焼成時の結晶析出が抑制され、ガラス間の組成のバラツキのない、歩留まりのよいガラスを提供することができる。
また原料溶解過程で発生するガラス中の泡は、真空封着時で再発泡する可能性があり、再溶融されたガラスとすることで、ガラス中の微小泡の低減されたガラスを提供することができる。
なお、溶融の温度が900℃以下の場合には、未溶解物、結晶が溶けず、1050℃以上の場合は、Biなどの揮発し易い成分が揮発して組成ずれを引き起こし易く、またBiが還元されるため、再溶融の温度は900℃〜1050℃未満に設定するのが好ましい。
The lead-free glass for sealing the stainless steel vacuum double container of the present invention is bismuth oxide, boric acid, zinc oxide, calcium hydroxide, aluminum hydroxide, magnesium hydroxide, barium carbonate, barium nitrate, copper oxide, Cobalt oxide, iron oxide (Fe 2 O 3 ), etc. were used, and after preparing each raw material so that it became a target composition, the prepared raw material was melted, glass flakes were once produced, and the glass flakes were remelted Thereafter, it is preferably obtained as glass formed by droplet forming.
The reason for remelting in this way is that the primary melt obtained by melting the raw material for preparation contains undissolved substances and crystals, and there is uneven composition, and it is difficult to eliminate these even if stirring is introduced. Thus, when glass (glass flakes) obtained from such a primary melt is used for sealing a stainless steel vacuum double container, it is crystallized with undissolved material or crystals as nuclei during firing. This is because the glass composition tends to be promoted, and the uniformity of the composition between the glasses varies. Once glass flakes are obtained, they are provided as a remelted glass, which eliminates these problems, suppresses crystal precipitation at the time of firing, and does not cause variation in the composition between the glasses. Can be provided.
In addition, bubbles in the glass generated during the raw material melting process may be re-foamed at the time of vacuum sealing, and providing a glass with reduced microbubbles in the glass by re-melting the glass. Can do.
In the case where the melting temperature is 900 ° C. or lower, undissolved materials and crystals do not melt, and in the case of 1050 ° C. or higher, easily volatile components such as Bi 2 O 3 are volatilized and easily cause a composition shift. Further, since Bi 2 O 3 is reduced, the remelting temperature is preferably set to 900 ° C. to less than 1050 ° C.

以下に、実施例をあげて本発明を更に詳細に説明する。しかし、本発明の技術的範囲はこれらの実施例によって限定されるものではない。
実施例1〜6及び比較例1〜3について、目標組成になるように、原料を調合・混合し、1000℃〜1050℃の温度にて溶融・攪拌し、急冷ロールを用いてガラスフレークを得た。このガラスフレークを900℃〜1050℃未満の温度にて再溶融し、適当な粘度となるまで融液温度を下げて液滴成形を実施し、直径約4mm、厚み約2mm、重量約180mgの半球状のガラスを得た。
このようにして得られた半球状のガラスを、SUS304製の板上に配置し、脱ガス条件として温度320℃、保持時間90分、封着条件として温度520℃、時間20分と設定した焼成パターンにて焼成した。焼成後のガラス状態を観察して結晶の有無を調べた。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the technical scope of the present invention is not limited by these examples.
About Examples 1-6 and Comparative Examples 1-3, a raw material is prepared and mixed so that it may become a target composition, it melts and stirs at the temperature of 1000 to 1050 degreeC, A glass flake is obtained using a quenching roll. It was. This glass flake is remelted at a temperature of 900 ° C. to less than 1050 ° C., and the melt temperature is lowered until an appropriate viscosity is obtained, and droplet forming is performed. Glass was obtained.
The thus obtained hemispherical glass was placed on a plate made of SUS304 and calcined at a temperature of 320 ° C. and a holding time of 90 minutes as degassing conditions and at a temperature of 520 ° C. and 20 minutes as sealing conditions. Baked with a pattern. The presence or absence of crystals was examined by observing the glass state after firing.

表1、表2に実施例1〜6、比較例1〜3に用いたガラス組成、焼成後のガラス状態を観察した結果示す。
ガラス転移点(Tg)はガラスを粉末にしたものを、DTA装置を用いて測定した。熱膨張係数(α)については、ガラスのバルク体を約5mm×5mm×18mmに切り出したものを、TMA装置を用いて測定した。
フロー性については、焼成後のガラスの高さ(厚み)をd、焼成前のガラスの高さ(厚み)をhとして、d/hの値を算出して評価した。
結晶化については、焼成後のガラス表面を裸眼で確認した。表面に裸眼で確認できる析出した結晶がない場合は「なし」、結晶の個数が、φ10mmの範囲で5個未満の場合は「結晶僅か」とし、結晶の発生が観察される場合は「結晶化」とした。なお、結晶の発生が表面のみに僅かに析出した場合は、真空封着には問題ない。
耐水性については、水道水を用いた煮沸試験を3時間実施し、煮沸前後の重量減少率で評価した。
Tables 1 and 2 show the results of observing the glass compositions used in Examples 1 to 6 and Comparative Examples 1 to 3, and the glass state after firing.
The glass transition point (Tg) was measured using a DTA apparatus for glass powder. About the thermal expansion coefficient ((alpha)), what cut out the bulk body of glass into about 5 mm x 5 mm x 18 mm was measured using the TMA apparatus.
The flow property was evaluated by calculating the value of d / h, where d is the height (thickness) of the glass after firing, and h is the height (thickness) of the glass before firing.
About crystallization, the glass surface after baking was confirmed with the naked eye. “None” when there is no precipitated crystal that can be confirmed with the naked eye on the surface, “Slight crystal” when the number of crystals is less than 5 within the range of φ10 mm, and “Crystallization” is observed when crystal generation is observed. " In addition, when generation | occurrence | production of the crystal | crystallization slightly deposits only on the surface, there is no problem in vacuum sealing.
About water resistance, the boiling test using a tap water was implemented for 3 hours, and the weight reduction rate before and behind boiling was evaluated.

Figure 0006148943
Figure 0006148943

Figure 0006148943
Figure 0006148943

表から明らかなように、本発明の実施例1〜6の各試料は、焼成の際に結晶析出が抑制されており、d/hの値も0.3以下であり、フロー性も良好である。また耐水性も煮沸試験の重量減少率が0.03%以下であり、良好である。従って本発明の実施例1〜6は、何れも少なくともSUS304の真空封着に好適であり、良好な保温性を得られることが判った。
比較例1は煮沸試験後の重量減少率が0.03%を超えるため、耐水性が好適でない。また比較例2、3は、結晶析出が生じてフロー性が悪化するため、真空封着には適さない。
As is clear from the table, in each of the samples of Examples 1 to 6 of the present invention, crystal precipitation was suppressed during firing, the d / h value was 0.3 or less, and the flowability was also good. is there. Also, the water resistance is good with a weight reduction rate of 0.03% or less in the boiling test. Accordingly, it was found that Examples 1 to 6 of the present invention are suitable for at least SUS304 vacuum sealing, and good heat retention can be obtained.
In Comparative Example 1, the weight reduction rate after the boiling test exceeds 0.03%, so that the water resistance is not suitable. Further, Comparative Examples 2 and 3 are not suitable for vacuum sealing because crystal precipitation occurs and the flowability deteriorates.

Claims (4)

PbOを含有せず、
酸化物換算のモル百分率で、
Bi :38.0〜43.0%
:21.0〜26.0%
ZnO :20.0〜26.0%
MgO+CaO :0.1〜10.0%
SrO+BaO :0.1〜1.0%(ただし、1.0%を含まず)
CuO :0.5〜6.0%
CoO :0.1〜6.0%
Al :0〜1.0%(ただし、0を含まず)
を含有することを特徴とするステンレス鋼製真空二重容器の封着用無鉛ガラス。
Does not contain PbO,
Mole percentage in terms of oxide,
Bi 2 O 3 : 38.0 to 43.0%
B 2 O 3: 21.0~26.0%
ZnO: 20.0-26.0%
MgO + CaO: 0.1 to 10.0%
SrO + BaO: 0.1 to 1.0% (excluding 1.0%)
CuO: 0.5-6.0%
CoO: 0.1-6.0%
Al 2 O 3 : 0 to 1.0% (excluding 0)
A lead-free glass for sealing a stainless steel vacuum double container.
PbOを含有せず、
酸化物換算のモル百分率で、
Bi :40.0〜42.0%
:22.0〜24.0%
ZnO :22.0〜24.0%
MgO+CaO :2.0〜5.1%
SrO+BaO :0.1〜0.80%
CuO :2.0〜5.8%
CoO :1.0〜4.0%
Al :0.1〜0.7%
を含有することを特徴とする請求項1に記載のステンレス鋼製真空二重容器の封着用無鉛ガラス。
Does not contain PbO,
Mole percentage in terms of oxide,
Bi 2 O 3: 40.0~42.0%
B 2 O 3: 22.0~24.0%
ZnO: 22.0 to 24.0%
MgO + CaO: 2.0-5.1%
SrO + BaO: 0.1-0.80%
CuO: 2.0 to 5.8%
CoO: 1.0-4.0%
Al 2 O 3 : 0.1 to 0.7%
The lead-free glass for sealing a stainless steel vacuum double container according to claim 1.
モル比で、
Bi/(MgO+CaO):5.0〜40.0
であることを特徴とする請求項1又は2に記載のステンレス鋼製真空二重容器の封着用無鉛ガラス。
In molar ratio
Bi 2 O 3 /(MgO+CaO):5.0~40.0
The lead-free glass for sealing a stainless steel vacuum double container according to claim 1 or 2.
SiOを含有しないことを特徴とする請求項1〜3の何れかに記載のステンレス鋼製真空二重容器の封着用無鉛ガラス。 Stainless steel vacuum double container sealing lead-free glass according to any one of claims 1-3, characterized in that do not contain SiO 2.
JP2013182412A 2013-09-03 2013-09-03 Lead-free glass for sealing stainless steel vacuum double containers Active JP6148943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182412A JP6148943B2 (en) 2013-09-03 2013-09-03 Lead-free glass for sealing stainless steel vacuum double containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182412A JP6148943B2 (en) 2013-09-03 2013-09-03 Lead-free glass for sealing stainless steel vacuum double containers

Publications (2)

Publication Number Publication Date
JP2015048287A JP2015048287A (en) 2015-03-16
JP6148943B2 true JP6148943B2 (en) 2017-06-14

Family

ID=52698587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182412A Active JP6148943B2 (en) 2013-09-03 2013-09-03 Lead-free glass for sealing stainless steel vacuum double containers

Country Status (1)

Country Link
JP (1) JP6148943B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743229B (en) * 2016-10-13 2021-10-21 日商日本電氣硝子股份有限公司 Bismuth-based glass, manufacturing method of bismuth-based glass and sealing material
JP6876537B2 (en) * 2017-06-19 2021-05-26 日本山村硝子株式会社 Stainless steel vacuum double container sealed lead-free glass composition
CN108483920A (en) * 2018-05-31 2018-09-04 北京天力创玻璃科技开发有限公司 The process units and method of seal glass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150058B2 (en) * 2006-03-17 2013-02-20 日本山村硝子株式会社 Lead-free glass composition for sealing stainless steel vacuum double containers
JP2008024558A (en) * 2006-07-24 2008-02-07 Nihon Yamamura Glass Co Ltd Lead-free glass composition for sealing metal-made vacuum double container
US20110126976A1 (en) * 2008-08-06 2011-06-02 Nippon Electric Glass Co., Ltd. Sealing glass

Also Published As

Publication number Publication date
JP2015048287A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
TWI677479B (en) Glass substrate for display
JP5767253B2 (en) Lithium aluminosilicate glass having high elastic modulus and method for producing the same
JP2017061404A (en) Chemically resistant glass and its use
JP6400168B2 (en) Aluminum-free borosilicate glass
JP6148943B2 (en) Lead-free glass for sealing stainless steel vacuum double containers
JP2008024558A (en) Lead-free glass composition for sealing metal-made vacuum double container
KR20170038799A (en) High-transparency glass
JP2011173748A (en) Method for producing las-based crystalline glass
JP2008254974A (en) Bismuth-based low melting point glass composition
CN102050577B (en) Special environment-friendly seal glass
JP2002193636A (en) Nonalkali glass and method of manufacturing it, and flat display panel obtained by using it
CN110885187A (en) Alkali-free glass
JP5150058B2 (en) Lead-free glass composition for sealing stainless steel vacuum double containers
JP6938203B2 (en) Chemical-resistant pharmaceutical packaging material
CN109734305B (en) Colorless aluminum niobate glass and preparation method and application thereof
WO2014069177A1 (en) Medicinal glass and medicinal glass tube
JP6876537B2 (en) Stainless steel vacuum double container sealed lead-free glass composition
US9994478B2 (en) Alkali selenogermanate glasses
JP7118587B2 (en) borosilicate glass for pharmaceutical containers
JP7132735B2 (en) Metal Vacuum Double Container Sealing Glass Composition and Metal Vacuum Double Container
CN103209936A (en) Semiconductor encapsulating non-lead glass and semiconductor encapsulating coating tube
CN102633435A (en) Lead-free low-temperature glass for manufacturing diode glass shell
JP2017165641A (en) Near-infrared absorption filter glass
JP2014084236A (en) Glass plate for thin film solar cell
JP2021091571A (en) Manufacturing method of alkaline earth aluminoborosilicate glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6148943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250