JP2002348152A - Metallic vacuum double container and method for making the same, sealing composition - Google Patents

Metallic vacuum double container and method for making the same, sealing composition

Info

Publication number
JP2002348152A
JP2002348152A JP2001161169A JP2001161169A JP2002348152A JP 2002348152 A JP2002348152 A JP 2002348152A JP 2001161169 A JP2001161169 A JP 2001161169A JP 2001161169 A JP2001161169 A JP 2001161169A JP 2002348152 A JP2002348152 A JP 2002348152A
Authority
JP
Japan
Prior art keywords
double container
sealing material
vacuum
metal
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001161169A
Other languages
Japanese (ja)
Inventor
Chieko Kato
千恵子 加藤
Yoshihiro Asano
芳弘 浅野
Yoshinori Tanigami
嘉規 谷上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Tiger Vacuum Bottle Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Tiger Vacuum Bottle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd, Tiger Vacuum Bottle Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2001161169A priority Critical patent/JP2002348152A/en
Priority to CN 02122048 priority patent/CN1247143C/en
Priority to KR1020020029774A priority patent/KR20020090921A/en
Publication of JP2002348152A publication Critical patent/JP2002348152A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions

Abstract

PROBLEM TO BE SOLVED: To provide a metallic vacuum double container having no problem against human and environment, having no problem in recycling stainless steel, or having excellent yield in sealing and which is coated with a fluororesin. SOLUTION: The purpose is attained by carrying out the sealing using a low melting point glass sealing material 43 having a softening temperature higher than fluorocarbon coating sintering temperature and degassing temperature at the time of evacuation, and not impeding reusing of inner and outer containers 1, 2 even in simultaneous melting together with the inner and outer containers 1, 2, for example, which does not contain lead or others contained in conventional low melting point glass sealing materials, and which does not contain ingredients having food hygienical problem.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は金属製真空二重容器
とその製造方法、これらに用い得る封着用組成物に関
し、例えば、電気ポット、携帯用保温ボトル、ランチジ
ャー、保温調理鍋、マグカップなど飲食関係に用いられ
るのに好適な金属製真空二重容器とその製造方法、封着
用組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal vacuum double container, a method for producing the same, and a sealing composition which can be used for these containers, for example, an electric pot, a portable heat-insulating bottle, a lunch jar, a heat-insulating cooking pot, a mug, etc. The present invention relates to a metal vacuum double container suitable for use in eating and drinking, a production method thereof, and a sealing composition.

【0002】[0002]

【従来の技術】金属製真空二重容器は内外容器間を真空
断熱空間にした保温性の高いもので、低熱伝導性、耐食
性、強度面などからステンレス鋼製のものが主流になっ
ている。内外容器間を真空断熱空間とするには、まず、
排気孔を通じた真空排気が行われ、次いで、真空排気状
態を保った状態で排気孔を封着材によって封口処理し、
真空断熱空間を密閉するようにしている。
2. Description of the Related Art A vacuum double metal container has a high heat insulation property in which a vacuum insulation space is provided between an inner and an outer container, and a stainless steel container is mainly used because of its low thermal conductivity, corrosion resistance and strength. To make a vacuum insulation space between the inner and outer containers, first,
Vacuum exhaust is performed through the exhaust hole, and then the exhaust hole is sealed with a sealing material while maintaining the vacuum exhaust state,
The vacuum insulation space is sealed.

【0003】真空排気は排気効率を高めるために加熱炉
内の加熱雰囲気中にて行い、封口処理は真空排気状態に
て封着材を軟化ないしは溶融させて排気孔を塞いだ後、
封着材を硬化させることにより行う。
[0003] Vacuum evacuation is performed in a heating atmosphere in a heating furnace in order to increase the evacuation efficiency, and sealing processing is performed by softening or melting a sealing material in an evacuation state and closing the evacuation holes.
This is performed by curing the sealing material.

【0004】ここで、真空排気を行うときの温度は高い
ほうが排気効率はよいが、封着材を軟化ないし溶融させ
てしまう温度であると、封着材を真空排気操作に供する
段階から内外容器に対して配置しておけない。さりとて
真空排気状態を保ったまま封着材を後で載置するのは困
難である。そこで従来、真空排気温度は封着材の軟化点
未満に設定して行い、その後の封口処理は、真空排気状
態を保ったまま温度を封着材が軟化ないしは溶融する温
度にまで上げて封口処理するようにされる。
[0004] Here, the higher the temperature at the time of vacuum evacuation, the better the evacuation efficiency, but if the temperature is such that the sealing material is softened or melted, the inner and outer containers are subjected from the stage of subjecting the sealing material to the evacuation operation. Cannot be placed against It is difficult to place the sealing material later while maintaining the evacuated state. Therefore, conventionally, the evacuation temperature is set to be lower than the softening point of the sealing material, and then the encapsulation process is performed by raising the temperature to a temperature at which the sealing material softens or melts while maintaining the evacuation state. To be.

【0005】特開平06−169850号公報は、特
に、軟化温度が200℃〜600℃の低温溶融ガラスを
封着材として用い、真空排気温度が元来950℃程度の
高温排気になっていたのに対し、排気温度を200℃〜
600℃に抑えられる技術を開示している。
Japanese Patent Application Laid-Open No. 06-169850 discloses that a low-temperature molten glass having a softening temperature of 200 ° C. to 600 ° C. is used as a sealing material, and a vacuum exhaust temperature is originally a high-temperature exhaust of about 950 ° C. On the other hand, the exhaust temperature
A technique that can be suppressed to 600 ° C. is disclosed.

【0006】このものは、低温溶融ガラスとしてB2
3 −PbO系、B23 −ZnO系、PbO−B2 3
ZnO−SiO2 系、PbO−B23−Al2 3−S
iO 2 系、PbO−B23 −SiO2 系、PbO−B2
3−BaO−SiO2系などのソルダーガラスを用い
ている。
This is a low-temperature molten glass of BTwoO
Three-PbO system, BTwoOThree-ZnO-based, PbO-BTwoOThree
ZnO-SiOTwoSystem, PbO-BTwoOThree-AlTwoOThree-S
iO TwoSystem, PbO-BTwoOThree-SiOTwoSystem, PbO-BTwo
OThree-Using solder glass such as BaO-SiO2
ing.

【0007】これによって、低温排気、低温封口がで
き、真空加熱炉が特別なものにならずコストが低減す
る。また、金属製の二重容器が酸化せず酸化物除去作業
が不要になる。封着材の二重容器との濡れ性がよくなり
歩留まりが向上する。二重容器が低温焼鈍となるので、
高温焼鈍となる場合よりも硬度が高まる。といった利点
があるとしている。
As a result, low-temperature exhaustion and low-temperature sealing can be performed, so that the vacuum heating furnace is not special and the cost is reduced. In addition, the metal double container does not oxidize, and the work for removing oxides becomes unnecessary. The wettability of the sealing material with the double container is improved, and the yield is improved. Since the double vessel will be low-temperature annealed,
Hardness is higher than in the case of high temperature annealing. It has such advantages.

【0008】一方、内外容器の少なくとも一方の表面に
フッ素塗装が施された金属製真空二重容器では、図4に
例示するようにフッ素塗料焼成温度が380℃程度と高
く、400℃程度にもなることがある。これに対応する
のに従来、フッ素塗装を施す金属製真空二重容器ではN
iろうなどの金属封着材を用いて封口処理し、後のフッ
素塗料焼成時の高温によって封口が破壊されないように
している。
On the other hand, in a metal vacuum double container in which at least one surface of the inner and outer containers is coated with fluorine, the fluorine paint firing temperature is as high as about 380 ° C. as shown in FIG. May be. To cope with this, conventionally, a metal vacuum double container coated with fluorine has a N
Sealing treatment is performed using a metal sealing material such as i-wax to prevent the sealing from being broken by high temperatures during the subsequent firing of the fluorine paint.

【0009】[0009]

【発明が解決しようとする課題】しかし、金属封着材を
用いると封口処理温度が1010℃程度と高くなってし
まうので、低融点ガラス封着材を用いる場合の上記のよ
うな低温排気、低温封口によるメリットが得られない。
However, when a metal sealing material is used, the sealing treatment temperature becomes as high as about 1010.degree. No benefit from sealing.

【0010】また、上記従来のガラス封着材の高温軟化
点域のものを採用するにしても鉛を主成分とするもので
あるため、人体、環境、装置に影響する。まして、飲食
関係の保温容器に用いると食品衛生上問題である。従
来、封口処理部はシールを貼って覆い隠し水などが浸入
しないようにし、鉛が浸入水によって溶出するようなこ
とを防止しているが、作業に手間が掛かる。また、真空
でしかも加熱を行う真空加熱炉の中では特に軟化ないし
は溶融する封着材中の金属酸化物成分も蒸発して飛翔し
やすく、真空排気する排気中に含まれるが、作業環境上
これを作業者から完全に切り離すのは困難である。この
ため、作業者側で防護マスクや防護服による防護策を採
る必要があるし、それにより身動きに制限を受けるので
作業しにくく作業効率が低下する。また、環境を汚染し
ないように排気中の鉛成分などを除去し切る必要があ
る。いずれにしても、多くの費用が掛かり製品コスト上
昇の原因になる。また、真空加熱炉内で発散する鉛は炉
の内面にも当然に付着し堆積していく。堆積する鉛はい
わゆる蒸着鍍金の状態にあって除去するのは困難である
うえ、これがまた二次的な鉛発散源になるので装置が比
較的早期に寿命に達し、装置のメンテナンスや交換とい
ったことでランニングコストがかさみ製品コストに影響
する。
Further, even if the above-mentioned conventional glass sealing material having a high-temperature softening point region is employed, since it is mainly composed of lead, it affects human bodies, environment, and equipment. Furthermore, if it is used for a heat-insulating container for food and drink, it is a problem in food hygiene. Conventionally, a sealing treatment section is provided with a seal to prevent concealed water or the like from entering, and to prevent lead from being eluted by the entered water, but it takes time and effort. Also, in a vacuum heating furnace that heats in a vacuum and in particular, the metal oxide component in the sealing material, which is particularly softened or melted, evaporates and easily flies, and is included in the exhaust air that is evacuated. Is difficult to completely separate from the operator. For this reason, it is necessary for the worker to take a protective measure using a protective mask or protective clothing, which limits the movement of the worker, which makes the work difficult and reduces the work efficiency. In addition, it is necessary to completely remove lead components and the like in the exhaust gas so as not to pollute the environment. In any case, a large amount of cost is required, which causes an increase in product cost. In addition, lead radiated in the vacuum heating furnace naturally adheres and accumulates on the inner surface of the furnace. The deposited lead is in the state of so-called vapor-deposited plating and is difficult to remove, and it also becomes a secondary source of lead emission, so that the equipment reaches its service life relatively early and requires maintenance and replacement of the equipment. The running cost increases and the product cost is affected.

【0011】また、鉛を含む封着材にて封口処理したス
テンレス鋼製の内外容器を溶解して再利用しようとして
も、溶解したステンレス鋼に鉛が多く残ると問題であり
再利用ができないことがある。
[0011] Further, even if the stainless steel inner and outer containers sealed with a sealing material containing lead are melted and reused, there is a problem if a large amount of lead remains in the melted stainless steel, which cannot be reused. There is.

【0012】さらに、従来の低融点ガラス封着材では、
ステンレス鋼との熱膨張係数にまだ開きがあり、密着
性、封止性の面でさらなる歩留まり向上の妨げとなって
いる。
Further, in the conventional low melting point glass sealing material,
The coefficient of thermal expansion with stainless steel still has a gap, which hinders further improvement in yield in terms of adhesion and sealing properties.

【0013】本発明の主たる目的は、人またはおよび環
境に問題がない、ステンレス鋼のリサイクルに問題がな
い、封口処理の歩留まりに優れる、といった少なくとも
1つを満足する低融点ガラス封着材により封口し、かつ
フッ素塗装した金属製真空二重容器を提供することにあ
り、さらには、人体、環境、装置に影響する、内外容器
の溶解再利用の妨げになる、ステンレス鋼への密着性や
封止性が低く製品の歩留まりが向上しないといった従来
の問題の少なくとも1つを解消することができるより優
れた金属製真空二重容器とその製造方法、これらに用い
得る封着用ガラス組成物を提供することにある。
The main object of the present invention is to provide a low-melting glass sealing material that satisfies at least one of the following: no problem with humans and the environment; no problem with recycling stainless steel; and excellent sealing process yield. And provide a fluorine-coated metal vacuum double container, and furthermore, it has an adverse effect on the human body, environment, and equipment, hinders the reusing of inner and outer containers, prevents adhesion and sealing to stainless steel, Provided are a metal vacuum double container which can solve at least one of the conventional problems such as low retentivity and low product yield, a method of manufacturing the same, and a sealing glass composition usable for these. It is in.

【0014】[0014]

【課題を解決するための手段】上記のような目的を達成
するために、本発明の金属製真空二重容器は、ステンレ
ス鋼製の内外容器間が排気孔を通じた真空排気処理にて
真空断熱空間とされ、内外容器の少なくとも一方の表面
にフッ素塗装が施されたものにおいて、 排気孔が、フ
ッ素塗料焼成温度および真空排気時の脱ガス温度よりも
高い軟化点を有した低融点ガラス封着材により、封口さ
れていることを基本構成とし、前記低融点ガラス封着材
が、内外容器との同時溶解による内外容器の再利用の妨
げにならないものであることを1つの特徴としている。
In order to achieve the above-mentioned object, a metal vacuum double container of the present invention is provided with a vacuum insulation process between a stainless steel inner and outer container by a vacuum exhaust process through an exhaust hole. A low-melting glass seal having a space and a fluorine coating on at least one surface of the inner and outer containers, wherein an exhaust hole has a softening point higher than a fluorine paint firing temperature and a degassing temperature during vacuum exhaust. One feature is that the low-melting-point glass sealing material does not hinder reuse of the inner and outer containers due to simultaneous melting with the inner and outer containers.

【0015】これにより、低融点ガラス封着材に見合う
金属封着材よりも低温域で真空排気および封口処理さ
れ、焼鈍されないことによる加工硬化分の肉厚低減を図
れるものとしながら、低融点ガラス封着材の軟化点が脱
ガス温度よりも高いことにより脱ガス操作時に軟化、溶
融して変形、流失などせず封口処理が確実に達成され、
フッ素塗料焼成温度よりも高いことにより封口が破壊さ
れることなくフッ素塗装された金属製真空二重容器を提
供することができ、フッ素塗装のために金属封着材を用
いた従来のものに比し軽量化するとともに製品コストが
低減する。
[0015] Accordingly, the low-melting point glass can be reduced in thickness by the amount of work hardening due to being evacuated and sealed in a lower temperature range than the metal sealing material corresponding to the low-melting point glass sealing material and not being annealed. Since the softening point of the sealing material is higher than the degassing temperature, softening, melting and deformation during the degassing operation, the sealing process is reliably achieved without flowing, etc.,
It is possible to provide a fluorine-coated metal vacuum double container without breaking the sealing by being higher than the fluorine coating firing temperature, compared to the conventional one that uses a metal sealing material for fluorine coating. Weight and product cost.

【0016】さらに、金属製真空二重容器が変形や傷つ
き、汚損、変色、機能不全、流行遅れなどといった理由
で廃棄されるとき再利用することが考えられる。それに
は廃棄された金属製真空二重容器のステンレス鋼の材料
を一旦溶解するが、従来の鉛を含むガラス封着材を用い
たものであると、これが溶解したステンレス鋼成分中に
多く残れば食品衛生や環境、装置に対する影響などで問
題となり再利用できなくなる。
Further, it is conceivable to reuse the metal vacuum double container when it is discarded for reasons such as deformation, damage, fouling, discoloration, malfunction, and outdated fashion. For this purpose, the stainless steel material of the discarded metal vacuum double container is once melted, but if a conventional glass sealing material containing lead is used, if this remains in the dissolved stainless steel component, It becomes a problem due to the effects on food hygiene, the environment, and equipment, and cannot be reused.

【0017】しかし、実質的に鉛を含まない低融点ガラ
ス封着材を用いたステンレス鋼製の真空二重容器とする
ことによってその内外容器のステンレス鋼材料を溶解し
再利用することを妨げることはなく省資源、製品コスト
の低減に貢献する。ここで、実質的に鉛を含まないと
は、PbO等の鉛を主成分とする原料を一切用いないの
意であり、ガラスを構成する各成分の原料中の不純物に
由来する微量の鉛が混入したガラスを排除するものでは
ない。
However, by forming a stainless steel vacuum double container using a low-melting-point glass sealing material containing substantially no lead, it is difficult to dissolve and reuse the stainless steel material of the inner and outer containers. Contributes to resource saving and product cost reduction. Here, the phrase "substantially free of lead" means that a raw material containing lead as a main component such as PbO is not used at all, and a trace amount of lead derived from impurities in the raw material of each component constituting glass is reduced. It does not exclude mixed glass.

【0018】また、鉛は他の重金属などとともに食品衛
生上問題となるが、本発明の排気孔を封口している低融
点ガラス封着材が食品衛生上問題のある成分を含まない
ものでもあることも特徴としている。これによって、金
属製真空二重容器が電気ポット、携帯用保温ボトル、ラ
ンチジャー、保温調理鍋、マグカップなど飲食関係に用
いられるのに、問題のないものとなる。従って、食品衛
生上問題のある従来の低融点ガラス封着材では封口位置
が外容器の一部に限られ封口位置選択の自由度が半減す
るし、外容器における封口位置でも水や湯に触れて鉛成
分が溶出したり、人が触ったりして害を及ぼすのをシー
ルを施して防止するといった手間が掛かる問題があった
が、実質的に鉛を含まない低融点ガラス封着材では、こ
れらの問題が解消され、使用の安全とコスト低減を図る
ことができる。同時に、真空加熱炉内での封口処理にお
いて、人、環境、装置に有害な鉛などがまわりに発散す
ることがなくなり、鉛が発散する場合のような対策が不
要で、かつ、装置寿命も長大化するので、容易かつ安価
に金属製真空二重容器を製造することができる。
Further, lead causes a problem in food hygiene together with other heavy metals and the like, but the low-melting glass sealing material sealing the exhaust hole of the present invention does not contain any component having a problem in food hygiene. It is also characterized. Thus, there is no problem when the metal vacuum double container is used for eating and drinking, such as an electric pot, a portable heat-insulating bottle, a lunch jar, a heat-insulating cooking pot, and a mug. Therefore, in the conventional low melting point glass sealing material having a problem in food hygiene, the sealing position is limited to a part of the outer container, and the degree of freedom in selecting the sealing position is reduced by half, and even the sealing position in the outer container is exposed to water or hot water. The lead component is eluted, or there is a problem that it takes time and effort to seal and prevent harm by touching people, but with low melting glass sealing materials that do not substantially contain lead, These problems are solved, and safety of use and cost reduction can be achieved. At the same time, in the sealing process in a vacuum heating furnace, lead harmful to humans, the environment, and equipment will not emanate around, eliminating the need for countermeasures such as when lead emanate, and extending equipment life. Therefore, a metal vacuum double container can be easily and inexpensively manufactured.

【0019】上記のようなフッ素塗装や食品衛生、ステ
ンレス鋼の溶解再利用に対応できる低融点ガラス封着材
が、ステンレス鋼の熱膨張係数よりも小さく、熱膨張係
数差が25×10-7 /K以下となる熱膨張係数を有し
たものであることも特徴としている。これによって、低
融点ガラス封着材は、その熱膨張係数がステンレス鋼の
熱膨張係数よりも小さいことによる冷却時の収縮差で内
外容器の排気孔部において圧縮を受けて相互の密着性を
高めながら、さらに両者の熱膨張係数差が小さいことに
より、前記圧縮によっても剥離等の問題が生じることが
ないので、封止性が向上し、封口処理での製品の歩留ま
りが向上する。
The low-melting-point glass sealing material capable of coping with the above-mentioned fluorine coating, food hygiene, and dissolution and reuse of stainless steel has a smaller coefficient of thermal expansion than that of stainless steel and a difference in coefficient of thermal expansion of 25 × 10 −7. It is also characterized by having a coefficient of thermal expansion of / K or less. As a result, the low-melting-point glass sealing material is compressed at the exhaust holes of the inner and outer containers by the difference in shrinkage during cooling due to the thermal expansion coefficient being smaller than the thermal expansion coefficient of stainless steel, thereby enhancing mutual adhesion. However, since the difference in thermal expansion coefficient between the two is small, the compression does not cause a problem such as peeling, so that the sealing property is improved and the yield of the product in the sealing treatment is improved.

【0020】ステンレス鋼がマルテンサイト系ステンレ
ス鋼であると、フッ素塗料焼成温度以上での低温排気お
よび低温封口に対しても鋭敏化しない利点がある。
If the stainless steel is a martensitic stainless steel, there is an advantage that the stainless steel is not sensitized to low-temperature exhaust and low-temperature sealing at a temperature higher than the fluorine paint firing temperature.

【0021】低融点ガラス封着材が実質的に無鉛となる
ビスマス系ガラスにて上記のどの特性も満足するのに、
Bi2 3 を70〜90wt%、ZnOを0〜2wt
%、B 2 3 を5〜29wt%、SiO2 を1〜15w
t%、Al2 3 を0〜10wt%、CuOを0〜10
wt%含むものであるのが好適であり、この場合、ステ
ンレス鋼以外のAlなどの金属やセラミックといった他
の材料に対する封着材ないしは封着用ガラス組成物とし
ても有効である。
The low-melting glass sealing material becomes substantially lead-free.
Bismuth-based glass satisfies all of the above characteristics,
BiTwoOThree70 to 90 wt%, ZnO 0 to 2 wt%
%, B TwoOThreeFrom 5 to 29 wt%, SiOTwo1 to 15w
t%, AlTwoOThree0 to 10 wt%, and CuO from 0 to 10 wt%.
% by weight. In this case, the
Metal such as Al other than stainless steel and ceramics
Sealing material or glass composition for sealing
Is also effective.

【0022】また、以上のようにCuOを必須としなく
てもよいが、Bi2 3 を70〜90wt%、ZnOを
0〜2wt%、B2 3 を5〜28wt%、SiO2
1〜15wt%、Al2 3 を0〜10wt%、CuO
を0.5〜6wt%含むものとし、B2 3 を5〜28
wt%とやや抑えるなどしてCuOを必須にすると、特
に金属との密着性を高めることができる。
As described above, CuO may not be essential, but 70 to 90 wt% of Bi 2 O 3 , 0 to 2 wt% of ZnO, 5 to 28 wt% of B 2 O 3 and 1 to 2 wt% of SiO 2 . 15 wt%, 0-10 wt% of Al 2 O 3, CuO
It was intended to include 0.5~6wt%, a B 2 O 3 5 to 28
If CuO is made essential, for example, by being slightly suppressed to wt%, the adhesion to metal can be particularly improved.

【0023】以上のような特性を発揮して金属製真空二
重容器を製造するには、上記各場合の材料を用いて、ス
テンレス鋼製の内外容器間を排気孔を通じ低融点ガラス
封着材の軟化点よりも低い温度で真空排気して脱ガスを
行った後、この真空排気状態にて、低融点ガラス封着材
を軟化点以上の温度で軟化ないしは溶融させて排気孔を
封口処理すればよい。
In order to produce a metal vacuum double container exhibiting the above-mentioned characteristics, a low-melting-point glass sealing material is passed through an exhaust hole between the inner and outer containers made of stainless steel using the above-mentioned materials. After evacuating and degassing at a temperature lower than the softening point, the low-melting glass sealing material is softened or melted at a temperature equal to or higher than the softening point in this evacuated state to seal the exhaust holes. I just need.

【0024】[0024]

【実施例】以下に本発明の実施例につき図を参照しなが
ら詳細に説明し、本発明の理解に供する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings to facilitate understanding of the present invention.

【0025】本実施例は図2に示すような電気ポットB
を構成する金属製真空二重容器Aをステンレス鋼板によ
り形成し製造する場合の一例である。しかし、内外容器
1、2を組み合わせ、双方間を真空断熱空間3とするど
のような形態、用途のものでもよい。また、金属製真空
二重容器自体は内外容器1、2をどのような単位で継
ぎ、あるいは一体に形成されたものでもよい。
In this embodiment, an electric pot B as shown in FIG.
This is an example of a case in which the metal vacuum double container A constituting the above is formed from a stainless steel plate and manufactured. However, any form and application may be used in which the inner and outer containers 1 and 2 are combined and the vacuum heat insulating space 3 is provided between them. Further, the metal vacuum double container itself may be formed by joining the inner and outer containers 1 and 2 in any unit or integrally formed.

【0026】本実施例の電気ポットBは、金属製真空二
重容器Aを合成樹脂製の外装ケース21に収容して器体
23を構成し、外装ケース21と金属製真空二重容器A
との上端間に設けた合成樹脂製の肩部材22によって器
体23の金属製真空二重容器Aの口部24に通じた器体
開口25を形成するとともに、器体23の蓋26を後部
にヒンジピン27にて支持し開閉できるようにしてい
る。金属製真空二重容器Aの一重底部28の部分にヒー
タ29を当てがい内容液を加熱するようにしてある。金
属製真空二重容器Aの一重底部28には電動ポンプ31
を介して内容液を外部に吐出する吐出路32が接続され
ている。蓋26内には内容液を加圧して吐出路32を通
じて押し出し吐出させる手動ポンプ33が設けられてい
る。蓋26には金属製真空二重容器Aの口部24を閉じ
る金属製の内蓋34および蒸気を外部に逃がす蒸気通路
35が設けられている。肩部材22の前部に突出した突
出部22aの上面には操作パネル36が設けられ、突出
部22aの下面には吐出路32の吐出口32aが臨み下
向きに開口している。
In the electric pot B of this embodiment, a metal vacuum double container A is housed in a synthetic resin outer case 21 to form a vessel 23, and the outer case 21 and the metal vacuum double container A
The synthetic resin shoulder member 22 provided between the upper end of the container and the container 23 forms a container opening 25 communicating with the mouth portion 24 of the metal vacuum double container A of the container 23, and the cover 26 of the container 23 is attached to the rear part. At the hinge pin 27 so that it can be opened and closed. A heater 29 is applied to the single bottom portion 28 of the metal vacuum double container A to heat the content liquid. The electric pump 31 is provided on the single bottom portion 28 of the metal vacuum double container A.
A discharge path 32 for discharging the content liquid to the outside is connected through the connection. A manual pump 33 is provided in the lid 26 to pressurize and extrude and discharge the content liquid through the discharge path 32. The lid 26 is provided with a metal inner lid 34 for closing the opening 24 of the metal vacuum double container A, and a vapor passage 35 for releasing vapor to the outside. An operation panel 36 is provided on the upper surface of the protruding portion 22a protruding from the front portion of the shoulder member 22, and the discharge port 32a of the discharge path 32 faces the lower surface of the protruding portion 22a and opens downward.

【0027】金属製真空二重容器Aは加熱しながら内外
容器1、2間を図1に示す排気孔41から真空排気する
脱ガス操作を行って後、この真空排気状態にて排気孔4
1が封口処理されている。封口処理後、金属製真空二重
容器Aの内容器1の表面、つまり内周面に図1、図2に
示すようなフッ素塗装層37が設けられている。金属製
真空二重容器Aはそれ自体が露出するようにした電気ポ
ットや保温ボトルを構成してもよく、この場合、外容器
2の表面、つまり外周面にもフッ素塗装が行われる場合
もある。排気孔41は一例として、外容器2におけるド
ーム状の窪み40の最奥部に形成されて、内外容器1、
2は窪み40が上向きとなるようにして前記真空排気が
行われるとき封着材が窪み40内に安定して位置し、真
空排気後に軟化ないしは溶融されたとき封着材が排気孔
41に自然に流れ込み、冷却固化されると排気孔41の
封口が終了するようにされている。このようにして形成
された真空断熱空間3内には、脱ガス剤としてのゲッタ
ー42が設けられ、真空断熱空間3内でその後経時的に
発生するガスを吸収し、所定の真空度を維持する。
The metal vacuum double container A is subjected to a degassing operation in which the space between the inner and outer containers 1 and 2 is evacuated through the exhaust hole 41 shown in FIG.
1 has been sealed. After the sealing process, a fluorine coating layer 37 as shown in FIGS. 1 and 2 is provided on the surface of the inner container 1 of the metal vacuum double container A, that is, on the inner peripheral surface. The metal vacuum double container A may constitute an electric pot or a heat retaining bottle in which the metal double container A is exposed. In this case, the surface of the outer container 2, that is, the outer peripheral surface may be coated with fluorine. . As an example, the exhaust hole 41 is formed at the innermost part of the dome-shaped recess 40 in the outer container 2, and the inner and outer containers 1,
2 is such that the sealing material is stably positioned in the dent 40 when the vacuum evacuation is performed with the dent 40 facing upward, and the sealing material naturally flows into the exhaust hole 41 when softened or melted after the evacuation. When the air is cooled and solidified, the closing of the exhaust hole 41 is completed. A getter 42 as a degassing agent is provided in the vacuum heat insulating space 3 thus formed, and absorbs a gas generated with time in the vacuum heat insulating space 3 to maintain a predetermined degree of vacuum. .

【0028】フッ素塗装は塗膜形成後385℃程度に設
定した炉内をコンベア搬送して焼き付け処理をして行わ
れ、既述した図4に示すような温度変化をたどり一定時
間の間380℃程度の高温に保持される。
Fluorine coating is performed by carrying a baking process by conveying the inside of a furnace set at about 385 ° C. after the coating film is formed, and following the temperature change as shown in FIG. It is kept at a high temperature.

【0029】前記封口処理を行うのに本実施例の金属製
真空二重容器Aは、前記フッ素塗料焼成温度によっても
封口が破壊されず、しかも、従来の金属封着材よりも十
分に低い温度で軟化ないしは溶融して低温排気、低温封
口ができる低融点ガラス封着材43を用いている。つま
り、ステンレス鋼製の内外容器1、2間を排気孔41を
通じた真空排気処理にて真空断熱空間3とされ、内外容
器1、2の少なくとも一方の表面にフッ素塗装層37が
施されたものにおいて、排気孔41が、フッ素塗料焼成
温度および真空排気時の脱ガス温度よりも高い軟化点を
有した低融点ガラス封着材43により、封口されている
ことを基本構成としてる。低融点ガラス封着材43は内
外容器1、2の鋭敏化が起きない温度範囲、加工硬化が
残って内外容器1、2の板厚を小さく抑えられる温度範
囲で軟化ないしは溶融して封口処理できることを目指し
ており、脱ガス温度はそれより低く設定する。ステンレ
ス鋼としてJISのSUS436などのマルテンサイト
系ステンレス鋼を用いると600℃でも鋭敏化しない
し、一般ステンレス鋼同様に加工硬化を残せる。
In order to perform the sealing process, the metal vacuum double container A of the present embodiment has a temperature lower than that of the conventional metal sealing material because the sealing is not broken even by the fluorinated paint firing temperature. A low-melting-point glass sealing material 43 that can be softened or melted to perform low-temperature exhaust and low-temperature sealing is used. In other words, the vacuum insulation space 3 is formed between the inner and outer containers 1 and 2 made of stainless steel by vacuum evacuation through the exhaust hole 41, and the fluorine coating layer 37 is applied to at least one surface of the inner and outer containers 1 and 2. , The basic configuration is that the exhaust hole 41 is sealed by a low-melting-point glass sealing material 43 having a softening point higher than the fluorine paint baking temperature and the degassing temperature during evacuation. The low-melting-point glass sealing material 43 can be softened or melted or sealed in a temperature range where sensitization of the inner and outer containers 1 and 2 does not occur and a temperature range where work hardening remains and the thickness of the inner and outer containers 1 and 2 can be suppressed to a small value. The degassing temperature is set lower than that. When a martensitic stainless steel such as SUS436 of JIS is used as the stainless steel, it does not become sensitized even at 600 ° C., and the work hardening can be left as in the case of general stainless steel.

【0030】ここに、低融点ガラス封着材43の軟化点
は、フッ素塗料焼成温度の影響を受けないように380
℃以上〜600℃程度であることが必要である。真空排
気による脱ガス効率の上から、脱ガス温度は低融点ガラ
ス封着材43の軟化点の上限である600℃に対し45
0℃程度以上600℃未満に設定するのが好適である。
従って、低融点ガラス封着材43の実用できる軟化点範
囲は450℃〜600℃程度までとなり、低融点ガラス
封着材43はフッ素塗料焼成温度よりも高く、脱ガス温
度よりも高い温度条件を満足する。
Here, the softening point of the low-melting-point glass sealing material 43 is set to 380 so as not to be affected by the firing temperature of the fluorine paint.
It is necessary to be higher than or equal to about 600C. From the viewpoint of the degassing efficiency by vacuum evacuation, the degassing temperature is 45 degrees below 600 ° C., which is the upper limit of the softening point of the low-melting glass sealing material 43.
It is preferable to set the temperature to about 0 ° C. or more and less than 600 ° C.
Therefore, the practical softening point range of the low melting point glass sealing material 43 is up to about 450 ° C. to 600 ° C., and the low melting point glass sealing material 43 is set at a temperature higher than the fluorine paint firing temperature and higher than the degassing temperature. To be satisfied.

【0031】これにより、本実施例の金属製真空二重容
器Aは、低融点ガラス封着材43に見合う金属封着材よ
りも低温域で真空排気および封口処理され、焼鈍されな
いことによる加工硬化分の肉厚低減を図れるものとしな
がら、低融点ガラス封着材43の軟化点が脱ガス温度よ
りも高いことにより脱ガス操作時に軟化、溶融して変
形、流失などせず封口処理が確実に達成され、フッ素塗
料焼成温度よりも高いことにより封口が破壊されること
なくフッ素塗装された金属製真空二重容器を提供するこ
とができ、フッ素塗装のために金属封着材を用いた従来
のものに比し軽量化するとともに製品コストが低減す
る。
As a result, the metal vacuum double container A of the present embodiment is subjected to vacuum evacuation and sealing at a temperature lower than that of the metal sealing material corresponding to the low melting point glass sealing material 43, and the work hardening by not being annealed. Since the softening point of the low-melting glass sealing material 43 is higher than the degassing temperature while softening, melting and deforming during the degassing operation, the sealing treatment is reliably performed without any loss, etc. Achieved, it is possible to provide a fluorine-coated metal vacuum double container without breaking the seal by being higher than the fluorine paint firing temperature, the conventional using a metal sealing material for fluorine coating Lighter weight and product cost are reduced as compared to those of products.

【0032】ところで、金属製真空二重容器が変形や傷
つき、汚損、変色、機能不全、流行遅れなどといった理
由で廃棄されるとき再利用することが考えられる。それ
には廃棄された金属製真空二重容器のステンレス鋼の材
料を一旦溶解するが、従来の鉛を含むガラス封着材を用
いたものであると、これが溶解したステンレス鋼成分中
に多く残れば食品衛生や環境、装置に対する影響などで
問題となり再利用できなくなる。
By the way, it is conceivable to reuse a metal vacuum double container when it is discarded due to deformation, scratching, fouling, discoloration, malfunction, delay of fashion, or the like. For this purpose, the stainless steel material of the discarded metal vacuum double container is once melted, but if a conventional glass sealing material containing lead is used, if this remains in the dissolved stainless steel component, It becomes a problem due to the effects on food hygiene, the environment, and equipment, and cannot be reused.

【0033】しかし、本実施例では実質的に鉛を含まな
い低融点ガラス封着材43を用いたことによってその内
外容器のステンレス鋼材料を溶解し再利用することを妨
げることはなく省資源、製品コストの低減に貢献する。
However, in this embodiment, the use of the low-melting-point glass sealing material 43 containing substantially no lead does not prevent the stainless steel material of the inner and outer containers from being melted and reused, thereby saving resources. Contribute to reducing product costs.

【0034】また、鉛は他の重金属などとともに食品衛
生上問題となるが、本実施例の排気孔41を封口してい
る低融点ガラス封着材43は鉛などの食品衛生上問題の
ある成分を含まないものでもある。これによって、金属
製真空二重容器Aが電気ポット、携帯用保温ボトル、ラ
ンチジャー、保温調理鍋、マグカップなど飲食関係に用
いられるのに、問題のないものとなる。従って、食品衛
生上問題のある従来の低融点ガラス封着材では封口位置
が外容器2の一部に限られ封口位置選択の自由度が半減
するし、外容器2における封口位置でも水や湯に触れて
鉛成分が溶出したり、人が触ったりして害を及ぼすのを
シールを施して防止するといった手間が掛かる問題があ
ったが、本実施例の実質的に鉛を含まない低融点ガラス
封着材43ではこれらの問題が解消され、使用の安全と
コスト低減を図ることができる。同時に、真空加熱炉内
での封口処理において、人、環境、装置に有害な鉛など
がまわりに発散することがなくなり、鉛が発散する場合
のような対策が不要で、かつ、装置寿命も長大化するの
で、容易かつ安価に金属製真空二重容器Aを製造するこ
とができる。
Although lead causes a problem in food hygiene together with other heavy metals, the low-melting-point glass sealing material 43 sealing the exhaust hole 41 of this embodiment is composed of lead and other components having a problem in food hygiene. Is not included. Thus, there is no problem when the metal vacuum double container A is used for eating and drinking, such as an electric pot, a portable heat retaining bottle, a lunch jar, a heat retaining cooking pot, and a mug. Therefore, in the conventional low-melting glass sealing material having a problem in food hygiene, the sealing position is limited to a part of the outer container 2 and the degree of freedom in selecting the sealing position is halved. The lead component is eluted by touching, and there is a problem that it takes time and effort to seal and prevent harm caused by touching by a person, but the low melting point substantially free of lead in the present example These problems are solved by the glass sealing material 43, and safety in use and cost reduction can be achieved. At the same time, in the sealing process in a vacuum heating furnace, lead harmful to humans, the environment, and equipment will not emanate around, eliminating the need for countermeasures such as when lead emanate, and extending equipment life. Therefore, the metal vacuum double container A can be manufactured easily and inexpensively.

【0035】上記のようなフッ素塗装や食品衛生、ステ
ンレス鋼の溶解再利用に対応できる本実施例の低融点ガ
ラス封着材43は、ステンレス鋼の熱膨張係数よりも小
さく、熱膨張係数差が25×10-7 /K以下となる熱
膨張係数を有したものである。これによって、低融点ガ
ラス封着材43は、その熱膨張係数がステンレス鋼の熱
膨張係数よりも小さいことによる冷却時の収縮差で内外
容器の排気孔部において圧縮を受けて相互の密着性を高
めながら、さらに両者の熱膨張係数差が小さいことによ
り、前記圧縮によっても剥離等の問題が生じるようなこ
とがなくなるので、封止性が向上し、封口処理での製品
の歩留まりが向上する。
The low-melting-point glass sealing material 43 of the present embodiment capable of coping with the above-mentioned fluorine coating, food hygiene, and melting and reusing stainless steel has a smaller coefficient of thermal expansion than that of stainless steel and has a difference in coefficient of thermal expansion. It has a thermal expansion coefficient of 25 × 10 −7 / K or less. As a result, the low-melting glass sealing material 43 receives compression at the exhaust holes of the inner and outer containers due to a difference in shrinkage during cooling due to a thermal expansion coefficient thereof being smaller than a thermal expansion coefficient of stainless steel, thereby improving mutual adhesion. While increasing, the difference in thermal expansion coefficient between the two is small, so that the compression does not cause problems such as peeling, so that the sealing property is improved and the yield of products in the sealing process is improved.

【0036】ステンレス鋼がSUS436で代表される
マルテンサイト系ステンレス鋼であると、フッ素塗料焼
成温度以上での低温排気および低温封口に対しても鋭敏
化しない利点がある。
When the stainless steel is a martensitic stainless steel represented by SUS436, there is an advantage that the stainless steel is not sensitized to low-temperature exhaustion and low-temperature sealing at a temperature higher than the calcination temperature of the fluorine paint.

【0037】上記の特性を満足する低融点ガラス封着材
43としては、ビスマス系ガラスが挙げられ、Bi2
3 、ZnO、B2 3 、SiO2 、Al2 3 、CuO
を含む組成のものがより好適である。
Examples of the low melting point glass sealing material 43 which satisfies the above characteristics, include bismuth glass, Bi 2 O
3, ZnO, B 2 O 3 , SiO 2, Al 2 O 3, CuO
Those having a composition containing

【0038】ここに、Bi2 3 は、ガラスのネットワ
ークフォーマーであり、70〜90wt%の範囲で含有
させることが好ましい。70wt%未満ではガラスの軟
化点が高くなりすぎ、600℃程度の温度以下での熱処
理で封着できなくなるおそれがある。また、90wt%
を超えるとガラスが失透(結晶化)しやすくなると共
に、ガラス転移点が低下しすぎるおそれがある。ガラス
の軟化点、溶融性等を考慮すると、Bi2 3 の含有量
は75〜86wt%であることがより好ましい。
Here, Bi 2 O 3 is a glass network former, and is preferably contained in the range of 70 to 90 wt%. If it is less than 70 wt%, the softening point of the glass becomes too high, and there is a possibility that sealing cannot be performed by heat treatment at a temperature of about 600 ° C. or less. In addition, 90wt%
If it exceeds, the glass tends to be devitrified (crystallized) and the glass transition point may be too low. In consideration of the softening point, melting property, and the like of the glass, the content of Bi 2 O 3 is more preferably 75 to 86 wt%.

【0039】ZnOはガラスを低融化するには効果の高
い成分であるが、蒸気圧が高く揮発しやすい成分であ
る。それ故、特に真空での熱処理時に蒸散があるので、
組成の変動、熱処理炉の汚染などを防止するために2w
t%以下とするのが好ましい。ガラスの低融化等を考慮
すると、ZnOは0.5wt%以上含有させることが望
ましい。
ZnO is a component that is highly effective in reducing the melting of glass, but is a component that has a high vapor pressure and is easily volatilized. Therefore, there is transpiration, especially during heat treatment in a vacuum,
2w to prevent fluctuation of composition and contamination of heat treatment furnace
It is preferably set to t% or less. Considering low melting of the glass, it is desirable that ZnO be contained at 0.5 wt% or more.

【0040】B2 3 もガラスのネットワークフォーマ
ーであり、ガラスの低融化に必須の成分である。B2
3 は5〜29wt%の範囲で含有させることが好まし
い。B 2 3 が5wt%未満では低融化の効果が小さ
く、逆に29wt%を超えると耐水性が悪化するおそれ
がある。ガラスの低融化、耐水性等を考慮すると、B2
3 の含有量は6〜21wt%とすることがより好まし
い。
BTwoOThreeEven glass network former
And is an essential component for reducing the melting of glass. BTwoO
ThreeIs preferably contained in the range of 5 to 29 wt%.
No. B TwoOThreeIs less than 5 wt%, the effect of low melting is small.
Conversely, if it exceeds 29 wt%, the water resistance may deteriorate.
There is. Considering the low melting and water resistance of glass,Two
O ThreeIs more preferably 6 to 21 wt%.
No.

【0041】SiO2 もガラスのネットワークフォーマ
ーであり、ガラスを安定化するための必須の成分であ
る。SiO2 は1〜15wt%の範囲で含有させること
が好ましい。SiO2 が1wt%未満ではガラスを安定
化する効果が不十分となるおそれがある。逆に15wt
%を超えると軟化点が上がりすぎ、所定の温度の熱処理
で封着、封口できなくなるおそれがある。また、基材が
ステンレス鋼等の金属である場合には、熱膨張係数が基
材のそれより小さくなりすぎ、応力が発生し密着力が低
下するおそれがある。ガラスの安定化、軟化点、熱膨張
係数等を考慮すると、SiO2 の含有量は2〜10wt
%とすることがより好ましい。
SiO 2 is also a glass network former, and is an essential component for stabilizing glass. Preferably, SiO 2 is contained in the range of 1 to 15 wt%. If the content of SiO 2 is less than 1% by weight, the effect of stabilizing the glass may be insufficient. Conversely 15wt
%, The softening point is too high, and there is a possibility that the heat treatment at a predetermined temperature makes it impossible to seal and seal. Further, when the base material is a metal such as stainless steel, the coefficient of thermal expansion becomes too small as compared with that of the base material, stress may be generated, and the adhesion may be reduced. Considering glass stabilization, softening point, thermal expansion coefficient, etc., the content of SiO 2 is 2 to 10 wt.
% Is more preferable.

【0042】Al2 3 はガラスの失透を防止し、ガラ
スを安定させる成分であるが、10wt%を超えて含有
させると軟化点が上昇しすぎ、所定の温度の熱処理で封
着、封口するのが困難になる。ガラスの安定化、軟化点
等を考慮すると、Al2 3の含有量は1〜6wt%で
あることがより好ましい。
Al 2 O 3 is a component for preventing the devitrification of the glass and stabilizing the glass. However, if the content exceeds 10 wt%, the softening point is too high, and sealing and sealing are performed by heat treatment at a predetermined temperature. It becomes difficult to do. In consideration of glass stabilization, softening point, and the like, the content of Al 2 O 3 is more preferably 1 to 6 wt%.

【0043】CuOは基材が金属、特にステンレス鋼で
ある場合に、ガラスのステンレス鋼基材への密着性を上
げる目的で10wt%以下含有させることができる。C
uOが10wt%を超えると、軟化点が低くなりすぎる
おそれがある。基材への密着性、軟化点等を考慮する
と、CuOの含有量は0.5〜6wt%であることが好
ましい。
When the substrate is a metal, particularly stainless steel, CuO can be contained in an amount of 10 wt% or less for the purpose of increasing the adhesion of the glass to the stainless steel substrate. C
If uO exceeds 10% by weight, the softening point may be too low. In consideration of the adhesion to the substrate, the softening point, and the like, the content of CuO is preferably 0.5 to 6 wt%.

【0044】以上から、ビスマス系の低融点ガラス封着
材43が上記のどの特性も満足するには、Bi2 3
70〜90wt%、ZnOを0〜2wt%、B2 3
5〜29wt%、SiO2 を1〜15wt%、Al2
3 を0〜10wt%、CuOを0〜10wt%含むもの
であるのが好適であり、この場合、ステンレス鋼以外の
Alなどの金属やセラミックといった他の材料に対する
封着材となるガラス組成物としても有効である。
From the above, in order for the bismuth-based low-melting-point glass sealing material 43 to satisfy any of the above characteristics, 70 to 90 wt% of Bi 2 O 3 , 0 to 2 wt% of ZnO, and 5 to 5 wt% of B 2 O 3 ~29wt%, the SiO 2 1~15wt%, Al 2 O
It is preferable that the composition contains 0 to 10 wt% of 3 and 0 to 10 wt% of CuO. In this case, it is also effective as a glass composition to be used as a sealing material for other materials such as metals other than stainless steel such as Al and ceramics. It is.

【0045】また、以上のようにCuOを必須成分とし
なくてもよいが、Bi2 3 を70〜90wt%、Zn
Oを0〜2wt%、B2 3 を5〜28wt%、SiO
2 を1〜15wt%、Al2 3 を0〜10wt%、C
uOを0.5〜6wt%含むものとし、B2 3 を5〜
28wt%とやや抑えるなどしてCuOを必須にする
と、特に金属との密着性を高めることができる。
[0045] Further, although may not be a CuO as essential components as described above, 70~90Wt% of Bi 2 O 3, Zn
0 to 2 wt% of O, 5 to 28 wt% of B 2 O 3 , SiO
2 to 1 wt%, Al 2 O 3 to 0 to 10 wt%, C
The uO is intended to include 0.5~6wt%, 5~ the B 2 O 3
If CuO is made indispensable, for example, by being slightly suppressed to 28 wt%, the adhesion to metal can be particularly enhanced.

【0046】また、Bi2 3 を70〜90wt%、Z
nOを0〜2wt%、B2 3 を5〜23wt%、Si
2 を1〜10wt%、Al2 3 を0〜6wt%、C
uOを0.5〜6wt%含むものとすると、ステンレス
鋼に対する封着、封口により適したものとなる。
Also, Bi 2 O 3 is contained in an amount of 70 to 90 wt%,
nO of 0 to 2 wt%, B 2 O 3 of 5 to 23 wt%, Si
O 2 1 to 10 wt%, Al 2 O 3 0 to 6 wt%, C
If uO is contained in an amount of 0.5 to 6 wt%, it is more suitable for sealing and sealing with stainless steel.

【0047】また、Bi2 3 を70〜86wt%、Z
nOを0〜2wt%、B2 3 を5〜21wt%、Si
2 を2〜10wt%、Al2 3 を0〜6wt%、C
uOを0.5〜6wt%含むものとすると、ステンレス
鋼、特にマルテンサイト系のステンレス鋼に好適であ
る。
Further, Bi 2 O 3 is contained in an amount of 70 to 86 wt%,
nO of 0 to 2 wt%, B 2 O 3 of 5 to 21 wt%, Si
2 to 10 wt% of O 2 , 0 to 6 wt% of Al 2 O 3 , C
If uO is contained in an amount of 0.5 to 6 wt%, it is suitable for stainless steel, particularly martensitic stainless steel.

【0048】本実施例における低融点ガラス封着材43
を各種材料よりなる基材の封着、封口に適用するのに、
熱膨張係数が互いに近くなるようにすることが必要であ
るが、一方では基材に必須となる処理温度によって封
着、封口が破壊されず、また低融点ガラス封着材43
は、封着、封口温度によって基材側の材料やそれに搭載
されている半導体等の各種素子の機能を損なわない軟化
点を満足する必要もある。一般に軟化点を上げると熱膨
張係数が大きくなる。
The low-melting-point glass sealing material 43 in this embodiment.
Is applied to the sealing and sealing of substrates made of various materials,
It is necessary that the thermal expansion coefficients be close to each other, but on the other hand, the sealing and sealing are not broken by the processing temperature required for the base material, and the low melting point glass sealing material 43 is used.
It is also necessary to satisfy a softening point that does not impair the functions of various materials such as a material on the base material side and a semiconductor mounted on the material depending on the sealing and sealing temperatures. In general, increasing the softening point increases the coefficient of thermal expansion.

【0049】マルテンサイト系ステンレス鋼や同等の熱
膨張係数を有する材料を基材とする場合、ビスマス系低
融点ガラスの熱膨張係数は82〜105×10-7/Kで
あることが好ましく、軟化点は450〜550℃が好ま
しい。また、ガラス転移点は370〜450℃であるこ
とが好ましい。
When a base material is a martensitic stainless steel or a material having an equivalent thermal expansion coefficient, the bismuth-based low-melting glass preferably has a thermal expansion coefficient of 82 to 105 × 10 −7 / K. The point is preferably 450 to 550 ° C. Further, the glass transition point is preferably from 370 to 450 ° C.

【0050】以上の組成につき実施例1〜6と1つの比
較例を示すと下記の表1に示す通りである。
Table 1 below shows Examples 1 to 6 and one comparative example for the above composition.

【0051】[0051]

【表1】 なお、ガラス転移点、ガラス軟化点、熱膨張係数の測定
および密着性、外観、封止性の評価は以下の通り行っ
た。
[Table 1] The measurement of the glass transition point, the glass softening point, the coefficient of thermal expansion, and the evaluation of adhesion, appearance, and sealing property were performed as follows.

【0052】ガラス転移点および軟化点は、粒径約45
〜75μmの各粉末試料約80mgを示差熱分析装置
(DTA)の白金製ミクロセルに入れ、室温より20K
/minの昇温速度で800℃まで温度を上昇させて測
定した。最初に現れる吸熱開始部の肩の温度をガラス転
移点とし、極小点を経て吸熱が終了する温度を軟化点と
した。
The glass transition point and softening point were determined to be about 45
Approximately 80 mg of each powder sample of ~ 75 µm is placed in a platinum microcell of a differential thermal analyzer (DTA),
The measurement was carried out by increasing the temperature to 800 ° C. at a heating rate of / min. The temperature of the shoulder at the end of the endothermic start which appeared first was taken as the glass transition point, and the temperature at which the endothermic end through the minimum point was taken as the softening point.

【0053】熱膨張係数は、熱機械分析装置(TMA)
を用いて、試料は直径約5mm、長さ15〜20mmの
ガラスロッドに加工したものとし、石英ガラスを標準試
料とし、室温から10K/minの昇温速度で温度を上
昇させ、得られたTMA曲線より30〜350℃の平均
値として求めた。
The coefficient of thermal expansion was measured using a thermomechanical analyzer (TMA).
The sample was processed into a glass rod having a diameter of about 5 mm and a length of 15 to 20 mm using, quartz glass was used as a standard sample, and the temperature was increased from room temperature at a rate of 10 K / min to obtain a TMA. The average value at 30 to 350 ° C. was obtained from the curve.

【0054】密着性および外観は、直径約2mm、長さ
約6.5mmに成形したガラスロッドをステンレス鋼製
の二重容器の排気口の上に寝かせて置き、600℃で1
5分間1.33Pa以下の圧力で熱処理して封口状態と
し評価した。密着性はガラスが流れて排気口上に密着し
ているかどうかで評価し、外観は目視にて評価した。外
観は主として失透や泡の有無と度合いで判定する。封止
性は400℃のフッ素塗料焼成後におけるガラス封着材
の剥離やずれて排気口に吸い込まれること等による真空
漏れの有無や程度によって評価した。いずれの評価も良
を○、やや不良を△、不良を×とした。
The adhesion and the appearance were as follows. A glass rod formed into a diameter of about 2 mm and a length of about 6.5 mm was laid on the exhaust port of a stainless steel double container and placed at 600 ° C. for 1 hour.
Heat treatment was performed at a pressure of 1.33 Pa or less for 5 minutes to obtain a sealed state and evaluated. The adhesion was evaluated based on whether the glass flowed and adhered to the exhaust port, and the appearance was visually evaluated. The appearance is mainly determined by the presence and degree of devitrification and bubbles. The sealing property was evaluated based on the presence or absence and degree of vacuum leakage due to peeling of the glass sealing material after firing of the fluorine paint at 400 ° C. and slipping into the exhaust port. In each of the evaluations, good was evaluated as ○, slightly poor as Δ, and poor as ×.

【0055】ここで、従来の鉛ガラスである低融点ガラ
ス封着材についてのガラス転移点、ガラス軟化点、熱膨
張係数について示すと、下記表2に示すとおりである。
Here, the glass transition point, the glass softening point, and the thermal expansion coefficient of the conventional low melting glass sealing material, which is lead glass, are shown in Table 2 below.

【0056】[0056]

【表2】 また、従来のステンレス鋼製のボトルに用いていたJI
S規格SUS304と本実施例で用いたSUS436と
の熱膨張係数を比較すると、下記表3のとおりである。
[Table 2] In addition, JI used for conventional stainless steel bottles
Table 3 below shows a comparison between the thermal expansion coefficients of the S standard SUS304 and the SUS436 used in the present example.

【0057】[0057]

【表3】 以上のような特性を発揮する金属製真空二重容器Aを製
造するには、上記各場合の材料を用いて、図3に示すよ
うにステンレス鋼製の内外容器1、2間を排気孔41を
通じ低融点ガラス封着材43の軟化点よりも低い温度例
えば450℃で真空排気して脱ガスを行った後、この真
空排気状態にて、低融点ガラス封着材43を軟化点以上
の温度例えば600℃で軟化ないしは溶融させて排気孔
41を封口処理し、その後380℃程度にてフッ素塗料
を焼成することによりフッ素塗装層37を形成して問題
がない。
[Table 3] In order to manufacture the metal vacuum double container A exhibiting the above-described characteristics, the material in each of the above cases is used, and as shown in FIG. After evacuation and degassing at a temperature lower than the softening point of the low-melting glass sealing material 43, for example, 450 ° C., the low-melting glass sealing material 43 is heated to a temperature higher than the softening point in this evacuated state. For example, the exhaust holes 41 are softened or melted at 600 ° C. to close the exhaust holes 41, and then the fluorine paint is baked at about 380 ° C. to form the fluorine coating layer 37, and there is no problem.

【0058】具体的には、図1に示すように内外容器
1、2の窪み40に低融点ガラス封着材43を載置して
準備室、第1脱ガス室〜第3脱ガス室を順次に30分ず
つ掛けて定速で通過させていき、次のろう付け室では約
15分、さらに続くヒータのない徐冷室では約1時間程
度掛けて定速で通過させ、最後のN2 ガスによる冷却室
では40分程度掛けて同じく定速で通過させていく。こ
のとき、準備室では室温から430℃まで昇温させてそ
の温度に保つ。次の第1脱ガス室では450℃まで早期
昇温させた後その温度に保つ。第2脱ガス室、第3脱ガ
ス室では前記450℃を保つ。この間第1〜第3脱ガス
室は所定の真空度例えば1.33Pa以下の圧力に設定
して内外容器1、2間を1.33Pa以下の圧力に真空
引きする。ろう付け室では前室と同じ圧力状態を保った
真空排気状態のまま600℃程度の封口温度にて低融点
ガラス封着材43を軟化ないしは溶融させ排気孔41を
封口処理し真空断熱空間3を形成する。封口処理後はヒ
ータなしの徐冷室にて自然冷却による真空排気時の温度
程度まで下げた後、N2 ガス室にて常温程度にまで強制
冷却する。なお、図3における( )内の温度は従来の
低融点ガラス封着材による場合の一連の処理温度を示
す。このようにして封口処理された金属製真空二重容器
Aはフッ素塗装され図4に示すように385℃程度に保
った加熱炉内をコンベアにより定速にて搬送しながら焼
き付け処理し、フッ素塗装層37を形成する。焼き付け
時間は30分程度であり、金属製真空二重容器Aは後半
17分程度380℃程度に保たれる。
More specifically, as shown in FIG. 1, a low-melting glass sealing material 43 is placed in a recess 40 of the inner and outer containers 1 and 2 to prepare a preparation chamber, a first degassing chamber to a third degassing chamber. Passing sequentially at a constant speed for 30 minutes, successively at a constant speed for about 15 minutes in the next brazing chamber and about 1 hour in the subsequent cooling chamber without heater, the final N 2 In the gas cooling chamber, the gas is passed at a constant speed in about 40 minutes. At this time, in the preparation room, the temperature is raised from room temperature to 430 ° C. and kept at that temperature. In the next first degassing chamber, the temperature is raised to 450 ° C. at an early stage and then maintained at that temperature. The above 450 ° C. is maintained in the second degassing chamber and the third degassing chamber. During this time, the first to third degassing chambers are set to a predetermined degree of vacuum, for example, a pressure of 1.33 Pa or less, and the space between the inner and outer vessels 1 and 2 is evacuated to a pressure of 1.33 Pa or less. In the brazing chamber, the low-melting glass sealing material 43 is softened or melted at a sealing temperature of about 600 ° C. while maintaining the same pressure state as the previous chamber at a sealing temperature of about 600 ° C., and the exhaust hole 41 is sealed to form a vacuum insulating space 3. Form. After the sealing process, the temperature is reduced to about the temperature at the time of evacuation by natural cooling in a slow cooling chamber without a heater, and then forcedly cooled to about normal temperature in a N 2 gas chamber. The temperatures in parentheses in FIG. 3 indicate a series of processing temperatures when a conventional low-melting glass sealing material is used. The metal vacuum double container A sealed in this way is coated with fluorine and baked while being conveyed at a constant speed by a conveyor in a heating furnace maintained at about 385 ° C. as shown in FIG. The layer 37 is formed. The baking time is about 30 minutes, and the metal vacuum double container A is kept at about 380 ° C. for about 17 minutes in the latter half.

【0059】[0059]

【発明の効果】本発明によれば、低融点ガラス封着材に
見合う金属封着材よりも低温域で真空排気および封口処
理され、焼鈍されないことによる加工硬化分の肉厚低減
を図れるものとしながら、低融点ガラス封着材の軟化点
が脱ガス温度よりも高いことにより脱ガス操作時に軟
化、溶融して変形、流失などせず封口処理が確実に達成
され、フッ素塗料焼成温度よりも高いことにより封口が
破壊されることなくフッ素塗装された金属製真空二重容
器を提供することができ、フッ素塗装のために金属封着
材を用いた従来のものに比し軽量化するとともに製品コ
ストが低減する。
According to the present invention, the thickness of the work hardened portion can be reduced by performing vacuum evacuation and sealing at a lower temperature range than a metal sealing material corresponding to a low melting point glass sealing material and not annealing. However, since the softening point of the low-melting glass sealing material is higher than the degassing temperature, the sealing process is reliably achieved without softening, melting and deformation during the degassing operation, etc., and is higher than the fluorine paint firing temperature. As a result, it is possible to provide a fluorine-coated metal vacuum double container without destroying the seal, and to reduce the weight and product cost compared to the conventional one using a metal sealing material for fluorine coating. Is reduced.

【0060】さらに、金属製真空二重容器が変形や傷つ
き、汚損、変色、機能不全、流行遅れなどといった理由
で廃棄されるとき再利用することが考えられる。それに
は廃棄された金属製真空二重容器のステンレス鋼の材料
を一旦溶解するが、従来の鉛を含むガラス封着材を用い
たものであると、これが溶解したステンレス鋼成分中に
多く残れば食品衛生や環境、装置に対する影響などで問
題となり再利用できなくなる。
Further, it is conceivable to reuse the metal vacuum double container when it is discarded due to deformation, scratching, fouling, discoloration, malfunction, delay of fashion, or the like. For this purpose, the stainless steel material of the discarded metal vacuum double container is once melted, but if a conventional glass sealing material containing lead is used, if this remains in the dissolved stainless steel component, It becomes a problem due to the effects on food hygiene, the environment, and equipment, and cannot be reused.

【0061】しかし、実質的に鉛を含まない低融点ガラ
ス封着材を用いたステンレス鋼製の真空二重容器とする
ことによってその内外容器のステンレス鋼材料を溶解し
再利用することを妨げることはなく省資源、製品コスト
の低減に貢献する。
However, the use of a stainless steel vacuum double container using a low-melting glass sealing material substantially free of lead prevents melting and reuse of the stainless steel material of the inner and outer containers. Contributes to resource saving and product cost reduction.

【0062】また、鉛は他の重金属などとともに食品衛
生上問題となるが、本発明の排気孔を封口している低融
点ガラス封着材が食品衛生上問題のある成分を含まない
ものでもあることも特徴としている。これによって、金
属製真空二重容器が電気ポット、携帯用保温ボトル、ラ
ンチジャー、保温調理鍋、マグカップなど飲食関係に用
いられるのに、問題のないものとなる。従って、食品衛
生上問題のある従来の低融点ガラス封着材では封口位置
が外容器の一部に限られ封口位置選択の自由度が半減す
るし、外容器における封口位置でも水や湯に触れて鉛成
分が溶出したり、人が触ったりして害を及ぼすのをシー
ルを施して防止するといった手間が掛かる問題があった
が、実質的に鉛を含まない本発明の低融点ガラス封着材
ではこれらの問題が解消され、使用の安全とコスト低減
を図ることができる。同時に、真空加熱炉内での封口処
理において、人、環境、装置に有害な鉛などがまわりに
発散することがなくなり、鉛が発散する場合のような対
策が不要で、かつ、装置寿命も長大化するので、容易か
つ安価に金属製真空二重容器を製造することができる。
Further, lead causes a problem in food hygiene together with other heavy metals and the like, but the low-melting-point glass sealing material sealing the exhaust hole of the present invention does not contain any component having a problem in food hygiene. It is also characterized. Thus, there is no problem when the metal vacuum double container is used for eating and drinking, such as an electric pot, a portable heat-insulating bottle, a lunch jar, a heat-insulating cooking pot, and a mug. Therefore, in the conventional low melting point glass sealing material having a problem in food hygiene, the sealing position is limited to a part of the outer container, and the degree of freedom in selecting the sealing position is reduced by half, and even the sealing position in the outer container is exposed to water or hot water. The lead component is eluted, or there is a problem that it takes time and effort to prevent harm by touching with a person, but the low melting point glass sealing of the present invention substantially containing no lead. The material solves these problems, and can be used safely and reduce costs. At the same time, in the sealing process in a vacuum heating furnace, lead harmful to humans, the environment, and equipment will not emanate around, eliminating the need for countermeasures such as when lead emanate, and extending equipment life. Therefore, a metal vacuum double container can be easily and inexpensively manufactured.

【0063】上記のようなフッ素塗装や食品衛生、ステ
ンレス鋼の溶解再利用に対応できる低融点ガラス封着材
が、ステンレス鋼の熱膨張係数よりも小さく、熱膨張係
数差が25×10-7 /K以下となる熱膨張係数を有し
たものであることも特徴としている。これによって、低
融点ガラス封着材は、その熱膨張係数がステンレス鋼の
熱膨張係数よりも小さいことによる冷却時の収縮差で内
外容器の排気孔部において圧縮を受けて相互の密着性を
高めながら、さらに両者の熱膨張係数差が小さいことに
より、前記圧縮によっても剥離等の問題が生じるような
ことがなくなるので、封止性が向上し、封口処理での製
品の歩留まりが共に向上する。
The low-melting-point glass sealing material capable of coping with the above-mentioned fluorine coating, food hygiene, and dissolution and reuse of stainless steel has a thermal expansion coefficient smaller than that of stainless steel and a difference in thermal expansion coefficient of 25 × 10 −7. It is also characterized by having a coefficient of thermal expansion of / K or less. As a result, the low-melting-point glass sealing material is compressed at the exhaust holes of the inner and outer containers by the difference in shrinkage during cooling due to the thermal expansion coefficient being smaller than the thermal expansion coefficient of stainless steel, thereby enhancing mutual adhesion. However, since the difference in thermal expansion coefficient between the two is small, the compression does not cause a problem such as peeling, so that the sealing property is improved, and the yield of the product in the sealing process is also improved.

【0064】ステンレス鋼がマルテンサイト系ステンレ
ス鋼であると、フッ素塗料焼成温度以上での低温排気お
よび低温封口に対しても鋭敏化しない利点がある。
When the stainless steel is a martensitic stainless steel, there is an advantage that the stainless steel is not sensitized to low-temperature exhaustion and low-temperature sealing at a temperature higher than the fluorine paint firing temperature.

【0065】低融点ガラス封着材が実質的に無鉛となる
ビスマス系ガラスにて上記のどの特性も満足するのに、
Bi2 3 を70〜90wt%、ZnOを0〜2wt
%、B 2 3 を5〜29wt%、SiO2 を1〜15w
t%、Al2 3 を0〜10wt%、CuOを0〜10
wt%含むものであるのが好適であり、この場合、ステ
ンレス鋼以外のAlなどの金属やセラミックといった他
の材料に対する封着材としても有効な封着用ガラス組成
物が得られる。
The low-melting glass sealing material becomes substantially lead-free.
Bismuth-based glass satisfies all of the above characteristics,
BiTwoOThree70 to 90 wt%, ZnO 0 to 2 wt%
%, B TwoOThreeFrom 5 to 29 wt%, SiOTwo1 to 15w
t%, AlTwoOThree0 to 10 wt%, and CuO from 0 to 10 wt%.
% by weight. In this case, the
Metal such as Al other than stainless steel and ceramics
Glass composition which is also effective as a sealing material for various materials
Things are obtained.

【0066】また、以上のようにCuOを必須としなく
てもよいが、Bi2 3 を70〜90wt%、ZnOを
0〜2wt%、B2 3 を5〜28wt%、SiO2
1〜15wt%、Al2 3 を0〜10wt%、CuO
を0.5〜6wt%含むものとし、B2 3 を5〜28
wt%とやや抑えるなどしてCuOを必須にすると、特
に金属との密着性を高めることができる。
As described above, CuO may not be essential, but 70 to 90 wt% of Bi 2 O 3 , 0 to 2 wt% of ZnO, 5 to 28 wt% of B 2 O 3 and 1 to 2 wt% of SiO 2 . 15 wt%, 0-10 wt% of Al 2 O 3, CuO
It was intended to include 0.5~6wt%, a B 2 O 3 5 to 28
If CuO is made essential, for example, by being slightly suppressed to wt%, the adhesion to metal can be particularly improved.

【0067】以上のような特性を発揮する金属製真空二
重容器を製造するには、上記各場合の材料を用いて、ス
テンレス鋼製の内外容器間を排気孔を通じ低融点ガラス
封着材の軟化温度よりも低い温度で真空排気して脱ガス
を行った後、この真空排気状態にて、低融点ガラス封着
材を軟化点以上の温度で軟化ないしは溶融させて排気孔
を封口処理すればよい。
In order to manufacture a metal vacuum double container exhibiting the above-mentioned characteristics, a low-melting-point glass sealing material is formed between the inner and outer containers made of stainless steel through the exhaust holes using the materials in the above cases. After evacuating and degassing at a temperature lower than the softening temperature and performing degassing, in this evacuated state, the low melting glass sealing material is softened or melted at a temperature equal to or higher than the softening point and the exhaust hole is sealed. Good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で得られる金属製真空二重容器
を電気ポットの例で示す底部の断面図である。
FIG. 1 is a cross-sectional view of a bottom portion showing an example of an electric pot of a metal vacuum double container obtained in an embodiment of the present invention.

【図2】図1の電気ポットの全体断面図である。FIG. 2 is an overall sectional view of the electric pot of FIG.

【図3】図1の金属製真空二重容器を真空排気および封
口処理して製造する場合の温度、処理時間の関係を従来
の場合と比較して示すグラフである。
FIG. 3 is a graph showing the relationship between the temperature and the processing time when the metal vacuum double container of FIG. 1 is manufactured by evacuating and closing the container in comparison with the conventional case.

【図4】封口処理した金属製真空二重容器にフッ素塗料
を塗布して焼き付け処理する場合の温度変化を示すグラ
フである。
FIG. 4 is a graph showing a temperature change in a case where a fluorine paint is applied to a metal vacuum double container that has been subjected to a sealing treatment and baking treatment is performed.

【符号の説明】[Explanation of symbols]

1 内容器 2 外容器 3 真空断熱空間 41 排気孔 43 低融点ガラス封着材 DESCRIPTION OF SYMBOLS 1 Inner container 2 Outer container 3 Vacuum insulation space 41 Exhaust hole 43 Low melting glass sealing material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C03C 8/02 C03C 8/02 8/04 8/04 (72)発明者 浅野 芳弘 兵庫県西宮市浜松原町2番21号 日本山村 硝子株式会社内 (72)発明者 谷上 嘉規 兵庫県西宮市浜松原町2番21号 日本山村 硝子株式会社内 Fターム(参考) 3E067 AB01 BA01 BB11 EE49 EE60 FC01 GA13 4B002 AA01 BA22 CA32 4G061 AA02 BA00 CA03 CC03 CD16 DA26 4G062 AA08 AA09 BB07 DA03 DA04 DB01 DB02 DB03 DC03 DC04 DD01 DE01 DE02 DE03 DF01 EA01 EB01 EC01 ED01 EE01 EF00 EG00 FA00 FA10 FB00 FC00 FD00 FE00 FF00 FG00 FH00 FJ00 FK00 FL00 GA07 GB00 GC00 GD00 GE00 HH01 HH03 HH04 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM08 MM09 NN40 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) C03C 8/02 C03C 8/02 8/04 8/04 (72) Inventor Yoshihiro Asano Hamamatsubara-cho, Nishinomiya-shi, Hyogo Prefecture No. 21 in Nihon Yamamura Glass Co., Ltd. (72) Inventor Yoshinori Tanigami No. 21 in Hamamatsubara-cho, Nishinomiya-shi, Hyogo F-term in Nihon Yamamura Glass Co., Ltd. 3E067 AB01 BA01 BB11 EE49 EE60 FC01 GA13 4B002 AA01 BA22 CA32 4G061 AA02 BA00 CA03 CC03 CD16 DA26 4G062 AA08 AA09 BB07 DA03 DA04 DB01 DB02 DB03 DC03 DC04 DD01 DE01 DE02 DE03 DF01 EA01 EB01 EC01 ED01 EE01 EF00 EG00 FA00 FA10 FB00 FC00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 HH03 HH04 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM08 MM09 NN40

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス鋼製の内外容器間が排気孔を
通じた真空排気処理にて真空断熱空間とされ、内外容器
の少なくとも一方の表面にフッ素塗装が施された金属製
真空二重容器において、 フッ素塗料焼成温度および真空排気時の脱ガス温度より
も高い軟化点を有し、内外容器との同時溶解による内外
容器の再利用の妨げにならない低融点ガラス封着材によ
り、排気孔が封口されていることを特徴とする金属製真
空二重容器。
A metal vacuum double container in which a space between stainless steel inner and outer containers is made into a vacuum insulated space by vacuum evacuation processing through an exhaust hole, and at least one surface of the inner and outer containers is coated with fluorine. Exhaust holes are sealed with a low-melting glass sealing material that has a softening point higher than the fluorine paint baking temperature and degassing temperature during vacuum evacuation and does not hinder reuse of the inner and outer containers by simultaneous melting with the inner and outer containers. A vacuum double container made of metal.
【請求項2】 ステンレス鋼製の内外容器間が排気孔を
通じた真空排気処理にて真空断熱空間とされ、内外容器
の少なくとも一方の表面にフッ素塗装が施された金属製
真空二重容器において、 フッ素塗料焼成温度および真空排気時の脱ガス温度より
も高い軟化点を有し、食品衛生上問題のある成分を含ま
ない低融点ガラス封着材により、排気孔が封口されてい
ることを特徴とする金属製真空二重容器。
2. A metal vacuum double container in which a space between stainless steel inner and outer containers is made into a vacuum insulated space by vacuum exhaust processing through an exhaust hole and at least one surface of the inner and outer containers is coated with fluorine. It has a softening point higher than the fluorine paint baking temperature and the degassing temperature during evacuation, and the exhaust holes are sealed with a low-melting glass sealing material that does not contain ingredients that are problematic for food hygiene. Metal vacuum double container.
【請求項3】 ステンレス鋼製の内外容器間が排気孔を
通じた真空排気処理にて真空断熱空間とされ、内外容器
の少なくとも一方の表面にフッ素塗装が施された金属製
真空二重容器において、 フッ素塗料焼成温度および真空排気時の脱ガス温度より
も高い軟化点を有し、実質的に鉛を含まない低融点ガラ
ス封着材により、排気孔が封口されていることを特徴と
する金属製真空二重容器。
3. A metal vacuum double container in which a space between stainless steel inner and outer containers is made into a vacuum insulated space by vacuum evacuation through an exhaust hole, and at least one surface of the inner and outer containers is coated with fluorine. A metal having a softening point higher than a fluorine paint firing temperature and a degassing temperature during vacuum evacuation, and an exhaust hole is sealed by a low-melting glass sealing material containing substantially no lead. Vacuum double container.
【請求項4】 ステンレス鋼製の内外容器間が排気孔を
通じた真空排気処理にて真空断熱空間とされ、内外容器
の少なくとも一方の表面にフッ素塗装が施された金属製
真空二重容器において、 フッ素塗料焼成温度および真空排気時の脱ガス温度より
も高い軟化点を有し、ステンレス鋼の熱膨張係数よりも
小さく、熱膨張係数差が25×10-7 /K以下となる
熱膨張係数を有した低融点ガラス封着材により、排気孔
が封口されていることを特徴とする金属製真空二重容
器。
4. A metal vacuum double container in which a space between stainless steel inner and outer containers is made into a vacuum insulated space by vacuum evacuation through an exhaust hole, and at least one surface of the inner and outer containers is coated with fluorine. It has a softening point higher than the fluorine paint firing temperature and the degassing temperature during evacuation, is smaller than the thermal expansion coefficient of stainless steel, and has a thermal expansion coefficient difference of 25 × 10 −7 / K or less. A vacuum double container made of metal, wherein an exhaust hole is sealed by the low-melting glass sealing material.
【請求項5】 低融点ガラス封着材が、ビスマス系ガラ
スである請求項1〜4のいずれか1項に記載の金属製真
空二重容器。
5. The metal vacuum double container according to claim 1, wherein the low-melting glass sealing material is a bismuth-based glass.
【請求項6】 ステンレス鋼が、マルテンサイト系ステ
ンレスである請求項1〜5のいずれか1項に記載の金属
製真空二重容器。
6. The metal vacuum double container according to claim 1, wherein the stainless steel is martensitic stainless steel.
【請求項7】 Bi2 3 を70〜90wt%、ZnO
を0〜2wt%、B 2 3 を5〜29wt%、SiO2
を1〜15wt%、Al2 3 を0〜10wt%、Cu
Oを0〜10wt%含む封着用ガラス組成物。
7. BiTwoOThree70-90 wt%, ZnO
0 to 2 wt%, B TwoOThreeFrom 5 to 29 wt%, SiOTwo
From 1 to 15 wt%, AlTwoOThreeFrom 0 to 10 wt%, Cu
A sealing glass composition containing 0 to 10% by weight of O.
【請求項8】 Bi2 3 を70〜90wt%、ZnO
を0〜2wt%、B 2 3 を5〜28wt%、SiO2
を1〜15wt%、Al2 3 を0〜10wt%、Cu
Oを0.5〜6wt%含む封着用ガラス組成物。
8. BiTwoOThree70-90 wt%, ZnO
0 to 2 wt%, B TwoOThree5 to 28 wt%, SiOTwo
From 1 to 15 wt%, AlTwoOThreeFrom 0 to 10 wt%, Cu
A sealing glass composition containing 0.5 to 6% by weight of O.
【請求項9】 請求項1〜6に記載の金属製真空二重容
器において、ステンレス鋼製の内外容器間を排気孔を通
じ低融点ガラス封着材の軟化点よりも低い温度で真空排
気して脱ガスを行った後、この真空排気状態にて、低融
点ガラス封着材を軟化点以上の温度で軟化ないしは溶融
させて排気孔を封口処理することを特徴とする金属製真
空二重容器の製造方法。
9. The vacuum double container made of metal according to claim 1, wherein a vacuum is evacuated between the inner and outer containers made of stainless steel at a temperature lower than the softening point of the low-melting glass sealing material through an exhaust hole. After degassing, in this evacuated state, the metal vacuum double container is characterized in that the low-melting glass sealing material is softened or melted at a temperature equal to or higher than the softening point and the exhaust hole is sealed. Production method.
【請求項10】 請求項7、8のいずれかに記載の封着
用ガラス組成物を低融点ガラス封着材として用いる請求
項9に記載の金属製真空二重容器の製造方法。
10. The method for producing a metal vacuum double container according to claim 9, wherein the glass composition for sealing according to any one of claims 7 and 8 is used as a low-melting glass sealing material.
JP2001161169A 2001-05-29 2001-05-29 Metallic vacuum double container and method for making the same, sealing composition Pending JP2002348152A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001161169A JP2002348152A (en) 2001-05-29 2001-05-29 Metallic vacuum double container and method for making the same, sealing composition
CN 02122048 CN1247143C (en) 2001-05-29 2002-05-29 Metal vacuum double-layer container and its producing method, composition for sealing
KR1020020029774A KR20020090921A (en) 2001-05-29 2002-05-29 Metal-made vacuum double container and method of manufacturing the same, composition for sealing up

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001161169A JP2002348152A (en) 2001-05-29 2001-05-29 Metallic vacuum double container and method for making the same, sealing composition

Publications (1)

Publication Number Publication Date
JP2002348152A true JP2002348152A (en) 2002-12-04

Family

ID=19004488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161169A Pending JP2002348152A (en) 2001-05-29 2001-05-29 Metallic vacuum double container and method for making the same, sealing composition

Country Status (3)

Country Link
JP (1) JP2002348152A (en)
KR (1) KR20020090921A (en)
CN (1) CN1247143C (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296083A (en) * 2004-04-06 2005-10-27 Tiger Vacuum Bottle Co Ltd Heating container of vacuum double structure
JP2007246355A (en) * 2006-03-17 2007-09-27 Nihon Yamamura Glass Co Ltd Lead-free sealing glass composition of stainless steel vacuum double container
WO2008013028A1 (en) * 2006-07-24 2008-01-31 Nihon Yamamura Glass Co., Ltd. Lead-free glass composition for sealing metallic vacuum double container
JP2009155200A (en) * 2007-12-06 2009-07-16 Nippon Electric Glass Co Ltd Sealing material
WO2010016318A1 (en) * 2008-08-06 2010-02-11 日本電気硝子株式会社 Sealing glass
JP2010059012A (en) * 2008-09-03 2010-03-18 Fujinon Corp Optical glass
WO2017054222A1 (en) * 2015-10-01 2017-04-06 史利利 Vacuum electrically heated container
JP2019178022A (en) * 2018-03-30 2019-10-17 日本山村硝子株式会社 Glass composition for metallic vacuum double container sealing and metallic vacuum double container
CN112216313A (en) * 2020-09-16 2021-01-12 上海三利数字技术有限公司 Data disaster recovery storage device and carrier

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161393B (en) * 2011-01-25 2014-03-12 胡广 Method for manufacturing metal vacuum double-layer container for spraying coating
US9555948B2 (en) * 2013-12-09 2017-01-31 Rubbermaid Incorporated Double-walled, vacuum-insulated container having inner coating cured at high temperature
CN105266654A (en) * 2015-09-10 2016-01-27 膳魔师(中国)家庭制品有限公司 Vacuum heat preservation container bottom sealing structure and sealing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626173B2 (en) * 2004-04-06 2011-02-02 タイガー魔法瓶株式会社 Vacuum double structure heating vessel
JP2005296083A (en) * 2004-04-06 2005-10-27 Tiger Vacuum Bottle Co Ltd Heating container of vacuum double structure
JP2007246355A (en) * 2006-03-17 2007-09-27 Nihon Yamamura Glass Co Ltd Lead-free sealing glass composition of stainless steel vacuum double container
WO2008013028A1 (en) * 2006-07-24 2008-01-31 Nihon Yamamura Glass Co., Ltd. Lead-free glass composition for sealing metallic vacuum double container
JP2009155200A (en) * 2007-12-06 2009-07-16 Nippon Electric Glass Co Ltd Sealing material
WO2010016318A1 (en) * 2008-08-06 2010-02-11 日本電気硝子株式会社 Sealing glass
JP2010057893A (en) * 2008-08-06 2010-03-18 Nippon Electric Glass Co Ltd Sealing glass
JP2010059012A (en) * 2008-09-03 2010-03-18 Fujinon Corp Optical glass
EP2161245A3 (en) * 2008-09-03 2010-04-21 Fujinon Corporation Bismuth borate optical glass
WO2017054222A1 (en) * 2015-10-01 2017-04-06 史利利 Vacuum electrically heated container
JP2019178022A (en) * 2018-03-30 2019-10-17 日本山村硝子株式会社 Glass composition for metallic vacuum double container sealing and metallic vacuum double container
JP7132735B2 (en) 2018-03-30 2022-09-07 日本山村硝子株式会社 Metal Vacuum Double Container Sealing Glass Composition and Metal Vacuum Double Container
CN112216313A (en) * 2020-09-16 2021-01-12 上海三利数字技术有限公司 Data disaster recovery storage device and carrier

Also Published As

Publication number Publication date
KR20020090921A (en) 2002-12-05
CN1387815A (en) 2003-01-01
CN1247143C (en) 2006-03-29

Similar Documents

Publication Publication Date Title
JP2002348152A (en) Metallic vacuum double container and method for making the same, sealing composition
EP3102548B1 (en) Vacuum insulating glass (vig) unit with lead-free dual-frit edge seals and methods of making the same
JP5384203B2 (en) Sealing glass
US5298332A (en) Glass-ceramic coatings for titanium-based metal surfaces
US10421684B2 (en) Frits for use in vacuum insulating glass (VIG) units, and/or associated methods
CZ288264B6 (en) Method for connecting aluminium elements
US5294241A (en) Method for making glass to metal seals
CN108461380A (en) A kind of control structure and control method of large scale integrated circuit chip sintering voidage
US20160068294A1 (en) Vacuum flask with tin phosphorus oxide sealing glass
WO2006100770A1 (en) Heat insulated container
JP5150058B2 (en) Lead-free glass composition for sealing stainless steel vacuum double containers
JPS63270330A (en) Method for improving thermal resistance of soda-lime glass vessel
JP2008024558A (en) Lead-free glass composition for sealing metal-made vacuum double container
US20180238103A1 (en) Vacuum insulated glazing unit
US3220870A (en) Composite articles and method of making the same
CN110604455A (en) Composite pot and preparation method thereof
CN113598579A (en) Method for manufacturing enamel vacuum cup
CN112194382B (en) Tempered coated glass and tempering treatment method thereof
JP2002272624A (en) Metallic evacuated double-walled container and its method of manufacture
JP2002179439A (en) Method for manufacturing low pressure double layered glass
JP6972969B2 (en) Encapsulation material and double glazing panel using it
US20200040645A1 (en) Vacuum Insulated Glazing Unit
CN107285649B (en) Low-melting-point glass sealing method
JPH06169850A (en) Metallic vacuum double container and its manufacture
JPH02215416A (en) Manufacture of metallic thermos bottle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070912

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20071023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603