JPH06169850A - Metallic vacuum double container and its manufacture - Google Patents

Metallic vacuum double container and its manufacture

Info

Publication number
JPH06169850A
JPH06169850A JP4327048A JP32704892A JPH06169850A JP H06169850 A JPH06169850 A JP H06169850A JP 4327048 A JP4327048 A JP 4327048A JP 32704892 A JP32704892 A JP 32704892A JP H06169850 A JPH06169850 A JP H06169850A
Authority
JP
Japan
Prior art keywords
container
temperature
vacuum
exhaust port
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4327048A
Other languages
Japanese (ja)
Other versions
JP2774748B2 (en
Inventor
Hiroshi Ishii
石井  博
Yasuhiko Satomi
泰彦 里見
Seiichi Ito
精一 伊藤
Eiji Otsuka
栄二 大塚
Jun Yamaki
純 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18194729&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06169850(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP4327048A priority Critical patent/JP2774748B2/en
Priority to DE69318107T priority patent/DE69318107T2/en
Priority to EP93402745A priority patent/EP0597773B1/en
Priority to DE69332035T priority patent/DE69332035T2/en
Priority to EP96202986A priority patent/EP0755646B1/en
Priority to SG1996003695A priority patent/SG47681A1/en
Priority to MYPI93002353A priority patent/MY109618A/en
Priority to KR1019930023911A priority patent/KR100250778B1/en
Priority to CN93112907A priority patent/CN1053804C/en
Publication of JPH06169850A publication Critical patent/JPH06169850A/en
Publication of JP2774748B2 publication Critical patent/JP2774748B2/en
Application granted granted Critical
Priority to HK98110809A priority patent/HK1009926A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermally Insulated Containers For Foods (AREA)

Abstract

PURPOSE:To facilitate vacuum sealing processing and to execute the same at a low cost by disposing a sealing material formed by low temperature fused glass having a specified softening temperature in an exhaust port of an inner container or an outer container, evacuating a gap between the inner and outer containers at a temperature lower than the softening temperature of the sealing material, and sealing the exhaust port at a temperature higher than the softening temperature. CONSTITUTION:A gap 5 between an inner container 1 and an outer container 4 is taken as a vacuum heat insulating layer, and an exhaust port 11 is bored in a recess part 10 of the base member 3 of the outer container. A sealing material 12 formed by low temperature fused glass having a softening point of 200-600 deg.C is fitted at a space from the exhaust port 11. The double container A is heated in a vacuum heating furnace at such a temperature not to soften the sealing material 12 to discharge air. The sealing material is softened at a temperature above the softening point to seal the exhaust port 11. Accordingly, the working temperature of the vacuum heating furnace is lowered, the equipment cost is reduced, a process of removing an oxide on the surface of the container is omitted, and a large amount of products can be stably processed in the sealing process. The metallic material of the container can be increased in hardness by low temperature anneal so as to reduce its thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、携帯用魔法瓶、ポッ
ト、ジャー等の金属製真空二重容器に関し、内容器と外
容器のいずれかに形成した排気口を低温溶融ガラスから
なる封止材で封止したものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal vacuum double container such as a portable thermos, a pot, a jar, etc., in which an exhaust port formed in either an inner container or an outer container is made of a low temperature melting glass. With regard to those sealed with.

【0002】[0002]

【従来の技術】金属製真空二重容器を製造する方法とし
ては、例えば、外容器に取り付けたチップ管より内外容
器間の排気を行った後、チップ管を圧接し封止する方法
(特開昭59−37914号公報、特開昭59−103
633号公報)、あるいは外容器に排気口を設け、この
排気口の周囲に金属ろう材を盛り、この上に封止部材を
排気口との間に間隙を有するように載置し、これを真空
加熱炉中で加熱排気した後、金属ろう材の溶融温度まで
昇温して封止部材をろう付けし、真空封止する方法(特
開昭58−192516号公報)、あるいは、外容器に
小孔または切り抜きを穿設し、この近傍に金属ろう材を
配置した後、真空加熱炉中で加熱排気し、その後にろう
材の溶融温度まで昇温してろう材を前記の小孔または切
り抜きに流し込み、真空封止する方法(特願平1−10
6925号)等がある。
2. Description of the Related Art As a method of manufacturing a metal vacuum double container, for example, a method of evacuating a chip tube attached to an outer container between an inner container and an outer container and then pressure-contacting and sealing the chip tube (Japanese Patent Laid-Open Publication No. 2000-242242) JP-A-59-37914 and JP-A-59-103.
No. 633) or an outer container is provided with an exhaust port, a metal brazing material is placed around the exhaust port, and a sealing member is placed on the metal brazing material so as to have a gap between the exhaust port and After heating and evacuating in a vacuum heating furnace, the temperature is raised to the melting temperature of the metal brazing material, the sealing member is brazed, and vacuum sealed (JP-A-58-192516), or an outer container. After making a small hole or cutout and arranging a metal brazing material in the vicinity of this, heat and exhaust in a vacuum heating furnace, and then raise the temperature to the melting temperature of the brazing material to cut the brazing material And vacuum sealing (Japanese Patent Application No. 1-10
6925) etc.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
従来の真空封止方法には次のような問題があった。上述
したチップ管による方法では、チップ管が外容器底部よ
り下方に突出するので、これの保護のために底カバーを
取り付ける必要があり、その長さの分だけ製品の高さが
高くなるという問題がある。さらに大量生産の際には、
製品1個毎にチップ管の封止、切断をする必要があるた
め、作業が繁雑になる問題がある。しかも、この封じ切
り技術は高精度が不可決であり熟練技術を要するばかり
でなく、しばしば封じ切り密封が不十分となり、時間の
経過とともに真空度が劣化し断熱性能が悪化する問題も
ある。さらに、チップ管による封止方法では、内外容器
間の排気の際、容器全体を加熱して金属表面に吸着した
ガスの脱離を促す時に、容器の外面は大気に晒されてお
り、大気中の酸素と反応して激しく酸化してしまう。酸
化した面は製品の美観や耐食性を損なうため、これを取
り除くための工程が必要であり、コストが増大する問題
がある。
However, these conventional vacuum sealing methods have the following problems. In the method using the tip tube described above, since the tip tube projects downward from the bottom of the outer container, it is necessary to attach a bottom cover to protect the tip tube, and the height of the product increases by the length. There is. In mass production,
Since it is necessary to seal and cut the chip tube for each product, there is a problem that the work becomes complicated. In addition, this sealing technique has a problem that not only high precision is indispensable and skillful technique is required, but also sealing sealing is often insufficient, and the degree of vacuum is deteriorated with the lapse of time and the heat insulating performance is deteriorated. Furthermore, in the sealing method using the tip tube, when exhausting gas between the inner and outer containers, the outer surface of the container is exposed to the atmosphere when heating the entire container to promote desorption of the gas adsorbed on the metal surface. It reacts with the oxygen in and is oxidized violently. Since the oxidized surface impairs the aesthetics and corrosion resistance of the product, a process for removing it is required, which causes a problem of increased cost.

【0004】他方、ろう材による封止方法では、ろう材
の外容器材に対する濡れ性を良くするために排気口周囲
の材料表面酸化物を除去する必要があり、その方法とし
ては、例えば金属製魔法瓶に好適に用いられるステンレ
ス鋼では、1×10-3torr以下の圧力下で950℃
以上の加熱を行うようなものであり、950℃以上の高
温で使用可能なような特別の真空加熱炉が必要であり、
その設備費が高価になる問題がある。
On the other hand, in the sealing method using a brazing material, it is necessary to remove the material surface oxide around the exhaust port in order to improve the wettability of the brazing material with respect to the outer container material. Stainless steel suitable for use in thermos has a temperature of 950 ° C. under a pressure of 1 × 10 −3 torr or less.
The above heating is performed, and a special vacuum heating furnace that can be used at a high temperature of 950 ° C or higher is required,
There is a problem that the equipment cost becomes expensive.

【0005】本発明は上記事情に鑑みてなされたもの
で、金属製真空二重容器の製造における真空封止処理を
容易にしかも低コストで実施でき、製造コストの減少が
可能な金属製真空二重容器の提供を目的としている。
The present invention has been made in view of the above-mentioned circumstances, and the vacuum sealing process in the production of a metal vacuum double container can be easily performed at low cost, and the production cost can be reduced. The purpose is to provide heavy containers.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に記載した発明は、 金属製の内容器と外
容器とからなり、これら内外容器間の空隙部を真空断熱
層とした金属製真空二重容器の製造方法において、上記
内容器と外容器のいずれか一方に排気口を有する内外容
器を接合して二重容器を形成し、次いで該排気口の近傍
に、軟化温度が200〜600℃である低温溶融ガラス
からなる封止材を配置し、次いで該二重容器を真空加熱
炉内に配し該封止材の軟化温度よりも低い温度で内外容
器間の空隙を真空排気し、次いで該二重容器を封止材の
軟化温度より高い温度に昇温して封止材を軟化せしめて
該排気口を封止することを特徴とする金属製真空二重容
器の製造方法である。
In order to solve the above-mentioned problems, the invention described in claim 1 comprises an inner container and an outer container made of metal, and a space between these inner and outer containers is a vacuum heat insulating layer. In the method for producing a metal vacuum double container, a double container is formed by joining an inner container and an outer container having an exhaust port to one of the inner container and the outer container, and then forming a double container near the exhaust port. Of the low-temperature molten glass having a temperature of 200 to 600 ° C. is disposed, and then the double container is placed in a vacuum heating furnace to form a gap between the inner and outer containers at a temperature lower than the softening temperature of the sealing material. Vacuum evacuation, then raising the temperature of the double container to a temperature higher than the softening temperature of the sealing material to soften the sealing material and seal the exhaust port. It is a manufacturing method.

【0007】また請求項2に記載した発明は、金属製の
内容器と外容器とからなり、これら内外容器間の空隙部
を真空断熱層とした金属製真空二重容器において、上記
内容器と外容器のいずれか一方に形成された排気口を軟
化温度が200〜600℃である低温溶融ガラスからな
る封止材で真空封止してなることを特徴とする金属製真
空二重容器である。
According to a second aspect of the present invention, there is provided a metal vacuum double container comprising a metal inner container and an outer container, wherein a space between the inner and outer containers is a vacuum heat insulating layer. A metal vacuum double container characterized in that an exhaust port formed in either one of the outer containers is vacuum-sealed with a sealing material made of low-temperature molten glass having a softening temperature of 200 to 600 ° C. .

【0008】[0008]

【作用】本発明による金属製真空二重容器は、内容器と
外容器のいずれか一方に形成された排気口を軟化温度が
200〜600℃である低温溶融ガラスからなる封止材
で真空封止することにより、比較的低い温度で真空封止
することができる。また低温溶融ガラスからなる封止材
を用いるので、排気口の周囲に酸化物が存在していても
封止材の濡れ性が良く、金属ろう材を用いる従来の封止
方法のように排気口の周囲を950℃以上の高温に加熱
して酸化物を除去する予備加熱処理を不要とすることが
できる。
In the metal vacuum double container according to the present invention, the exhaust port formed in either the inner container or the outer container is vacuum-sealed with a sealing material made of low-temperature molten glass having a softening temperature of 200 to 600 ° C. By stopping, vacuum sealing can be performed at a relatively low temperature. Moreover, since the sealing material made of low-temperature molten glass is used, the wettability of the sealing material is good even if an oxide is present around the exhaust port, so that the exhaust port does not need to be exhausted like the conventional sealing method using a metal brazing material. A preliminary heat treatment for removing oxides by heating the surroundings to a high temperature of 950 ° C. or higher can be eliminated.

【0009】[0009]

【実施例】図1ないし図3は本発明に係る金属製真空二
重容器の製造方法の第1の例を説明するためのものであ
る。ここで製造する金属製真空二重容器は、ステンレス
鋼製の内容器1と、同じくステンレス鋼製の外容器4と
を接合してなり、これら内容器1と外容器4の間の空隙
5を真空断熱層とした携帯用の魔法瓶である。この外容
器4は、略筒状の外容器本体2の下端に外容器底部材3
を気密に接合してなっている。この外容器底部材3の略
中央部には半球状に凹んだ凹部10が設けられ、さらに
凹部10の中央には小孔状の排気口11が穿設されてい
る。この排気口11の口径は0.1〜2.0mm程度とす
るのが望ましい。
1 to 3 are for explaining a first example of a method for manufacturing a metal vacuum double container according to the present invention. The metal vacuum double container manufactured here is formed by joining an inner container 1 made of stainless steel and an outer container 4 also made of stainless steel, and forming a space 5 between these inner container 1 and outer container 4. A portable thermos with a vacuum insulation layer. The outer container 4 has an outer container bottom member 3 at the lower end of a substantially cylindrical outer container body 2.
Are joined airtightly. The outer container bottom member 3 is provided with a hemispherical recess 10 at a substantially central portion thereof, and a small hole-shaped exhaust port 11 is provided at the center of the recess 10. It is desirable that the diameter of the exhaust port 11 is about 0.1 to 2.0 mm.

【0010】この魔法瓶を製造するには、内容器1と外
容器本体2とを口元部で気密に接合するとともに外容器
本体2に外容器底部材3を気密に接合して封止前の二重
容器A(以下、二重容器という)を形成し、ついで図1
及び図2に示すように、二重容器Aの口部を下向きにし
て外容器底部材3の凹部10内に排気口11と隙間をも
って棒状の封止材12を取り付ける。この封止材12に
は、軟化点が200〜600℃の低温溶融ガラスが用い
られる。このような低温溶融ガラスとしては、B23-
PbO系、B23-ZnO系、PbO-B23-ZnO-S
iO2系、PbO-B23-Al23-SiO2系、PbO-
23-SiO2系、PbO-B23-BaO-SiO2系な
どのいわゆるソルダーガラスが使用され、特に熱膨張率
が二重容器の材料であるステンレス鋼に近似したものが
好ましい。凹部10内に棒状の封止材12を取り付ける
には、封止材12を凹部10内に押し込むだけでもよい
が、封止材12の位置ずれを防ぐために封止材12の両
端に接着剤を塗布して凹部10内に固定しても良い。ま
た封止材12の形状は棒状に限らず固形状であれば良
い。
In order to manufacture this thermos, the inner container 1 and the outer container body 2 are airtightly joined to each other at the mouth portion, and the outer container bottom member 3 is airtightly joined to the outer container body 2 to be sealed before the sealing. A heavy container A (hereinafter referred to as a double container) is formed, and then FIG.
Further, as shown in FIG. 2, the rod-shaped sealing material 12 is attached in the recess 10 of the outer container bottom member 3 with the gap facing the exhaust port 11 with the mouth of the double container A facing downward. As the sealing material 12, low temperature molten glass having a softening point of 200 to 600 ° C. is used. As such a low temperature molten glass, B 2 O 3-
PbO type, B 2 O 3 -ZnO type, PbO-B 2 O 3 -ZnO-S
iO 2 system, PbO-B 2 O 3 -Al 2 O 3 -SiO 2 system, PbO-
So-called solder glass such as B 2 O 3 —SiO 2 system and PbO—B 2 O 3 —BaO—SiO 2 system is used, and one having a coefficient of thermal expansion similar to that of stainless steel which is a material of the double container is preferable. .. To mount the rod-shaped sealing material 12 in the recess 10, it is sufficient to push the sealing material 12 into the recess 10. However, in order to prevent displacement of the sealing material 12, an adhesive agent is applied to both ends of the sealing material 12. It may be applied and fixed in the recess 10. Further, the shape of the sealing material 12 is not limited to the rod shape and may be a solid shape.

【0011】次に、封止材12を取り付けた二重容器A
を下向きのまま、真空加熱炉内に移送して設置し、炉内
を真空排気するとともに加熱して加熱排気を行う。この
加熱排気は200〜600℃の温度範囲でかつ封止材1
2が軟化しない温度とする。内容器1と外容器4の空隙
内のガスは排気口11を通って排出される。1×10-2
torr以下の圧力まで排気した後、炉内を200〜6
00℃の温度範囲でかつ封止材12の軟化点以上の温度
に昇温し、封止材12を軟化させてその自重により排気
口11及びその周囲に直接落下させて排気口11を封止
する。この真空封止の後、容器を炉内から取り出すこと
により、図3に示すように、排気口11が低温溶融ガラ
スからなる封止材12によって封止され、内容器1と外
容器4の間に真空断熱層6が形成されたステンレス製魔
法瓶(金属製真空二重容器)が得られる。この真空封止
処理を通して二重容器は200〜600℃の温度で加熱
され、二重容器の材料であるステンレス鋼は低温焼鈍に
より硬度が増加する。従って、魔法瓶を使用する上で必
要な耐衝撃性を得るために必要なステンレス鋼板の厚さ
を減らし、容器の薄肉化が可能となる。
Next, the double container A with the sealing material 12 attached.
Is placed in a vacuum heating furnace while facing downward, and the inside of the furnace is evacuated and heated to be heated and evacuated. This heating exhaust gas is in the temperature range of 200 to 600 ° C. and the sealing material 1
The temperature is set so that 2 does not soften. The gas in the gap between the inner container 1 and the outer container 4 is discharged through the exhaust port 11. 1 x 10 -2
After evacuating to a pressure of torr or less, the inside of the furnace is 200 to 6
In the temperature range of 00 ° C. and at a temperature higher than the softening point of the sealing material 12, the sealing material 12 is softened and directly dropped by its own weight to the exhaust port 11 and its surroundings to seal the exhaust port 11. To do. After this vacuum sealing, the container is taken out of the furnace, and as shown in FIG. 3, the exhaust port 11 is sealed by the sealing material 12 made of low-temperature molten glass, and the space between the inner container 1 and the outer container 4 is closed. A stainless steel thermos (metal vacuum double container) having the vacuum heat insulating layer 6 formed thereon can be obtained. Through this vacuum sealing treatment, the double container is heated at a temperature of 200 to 600 ° C., and the hardness of the stainless steel which is the material of the double container is increased by low temperature annealing. Therefore, it is possible to reduce the thickness of the stainless steel plate required to obtain the impact resistance necessary for using the thermos and to make the container thin.

【0012】本例による製造方法では、金属製二重容器
の排気口を軟化温度200〜600℃の低温溶融ガラス
からなる封止材を用いて封止することにより、従来のろ
う付けによる製法に比べ真空封止の温度を低くすること
ができるので、真空加熱炉の使用温度を低く設計でき、
設備費が安価になり製品の製造コストを低減することが
できる。この低温溶融ガラスは二重容器の表面に酸化物
が存在していても濡れ性を損なうことがなく、良好な封
止を行なえる利点を持つ。従って二重容器の表面を高温
に加熱して酸化物を除去する工程を省略することがで
き、真空二重容器の製造コストを低減することができ
る。また従来のチップ管による製法と比較すると、チッ
プ管残部の突出がなくコンパクトな製品が製造できる。
また封止の工程については、真空加熱炉中で同時に大量
の製品を人手を介することなく安定的に処理することが
できるため、大量生産が容易となり製造コストが低減で
きる。さらに、内外容器間の真空排気の工程について
は、容器全体を真空中で加熱するため容器の外面が著し
く酸化されることがなく、後処理による除去工程を省略
することができ、コストを低減できる。さらに、真空排
気及び封止の全ての操作を200〜600℃程度の比較
的低温で行うことができ、容器を構成するステンレス鋼
などの金属材料は低温焼鈍により硬度を増加させること
ができるので、高硬度のステンレス鋼を用いて容器を薄
肉化することができ、真空二重容器の軽量化を図ること
ができる。
In the manufacturing method according to this embodiment, the exhaust port of the metal double container is sealed with a sealing material made of low-temperature molten glass having a softening temperature of 200 to 600 ° C. Compared with this, the vacuum sealing temperature can be lowered, so the operating temperature of the vacuum heating furnace can be designed to be low,
The equipment cost can be reduced and the manufacturing cost of the product can be reduced. This low temperature molten glass has an advantage that good wettability can be achieved without impairing the wettability even if an oxide is present on the surface of the double container. Therefore, the step of heating the surface of the double container to a high temperature to remove the oxide can be omitted, and the manufacturing cost of the vacuum double container can be reduced. Further, as compared with the conventional manufacturing method using a tip tube, a compact product can be manufactured without the projection of the remaining tip tube.
In the sealing step, a large amount of products can be stably processed at the same time in a vacuum heating furnace without human intervention, which facilitates mass production and reduces manufacturing costs. Further, in the process of vacuum evacuation between the inner and outer containers, since the entire container is heated in vacuum, the outer surface of the container is not significantly oxidized, and the removal process by the post-treatment can be omitted, and the cost can be reduced. . Further, all the operations of vacuum exhaustion and sealing can be performed at a relatively low temperature of about 200 to 600 ° C., and the metal material such as stainless steel forming the container can increase the hardness by low temperature annealing. The container can be made thin by using high hardness stainless steel, and the weight of the vacuum double container can be reduced.

【0013】図4及び図5は本発明に係る金属製真空二
重容器の製造方法の第2の例を説明するためのものであ
る。これらの図に示す二重容器Bは、図1及び図2に示
すものとほぼ同様の構成要素を備えており、同一の構成
要素には同じ符号を付してある。図4及び図5に示す二
重容器Bは、外容器底部材3の底面側中央部に、長溝1
3を形成するとともに、この長溝13の底にスリット状
長孔14(排気口)を形成した構成になっている。そし
てこの二重容器Bの長溝13内に、図5に示すように低
温溶融ガラスからなり、スリット状長孔14の長さより
も短い長さの棒状の封止材12を配し、その後、先の例
と同じく二重容器Bを真空加熱炉内に入れ、200〜6
00℃の温度範囲でかつ封止材12が軟化しない温度に
加熱しつつ排気を行い、1×10-2torr以下の圧力
まで排気した後、炉内を200〜600℃の温度範囲で
かつ封止材12の軟化点以上の温度に昇温し、封止材1
2を軟化流動させてスリット状長孔14を封止し、ステ
ンレス製の魔法瓶(真空二重容器)を得る。
FIGS. 4 and 5 are for explaining a second example of the method for manufacturing a metal vacuum double container according to the present invention. The double container B shown in these figures has substantially the same components as those shown in FIGS. 1 and 2, and the same components are designated by the same reference numerals. The double container B shown in FIGS. 4 and 5 has a long groove 1 at the center of the bottom surface side of the outer container bottom member 3.
3 is formed, and a slit-shaped elongated hole 14 (exhaust port) is formed in the bottom of the elongated groove 13. Then, as shown in FIG. 5, a rod-shaped sealing material 12 made of low-temperature molten glass and having a length shorter than the length of the slit-shaped long hole 14 is arranged in the long groove 13 of the double container B, and then, As in the above example, the double container B is put in a vacuum heating furnace, and 200 to 6
After exhausting while heating to a temperature range of 00 ° C. and at a temperature at which the sealing material 12 does not soften, and exhausting to a pressure of 1 × 10 −2 torr or less, the inside of the furnace is sealed in a temperature range of 200 to 600 ° C. and sealed. The sealing material 1 is heated to a temperature equal to or higher than the softening point of the stopper 12
The slit-shaped long hole 14 is sealed by softening and flowing 2 to obtain a stainless steel thermos (vacuum double container).

【0014】図6は本発明に係る金属製真空二重容器の
製造方法の第3の例を説明するためのものである。この
図に示す二重容器Cは、図1及び図2に示すものとほぼ
同様の構成要素を備えており同一の構成要素には同じ符
号を付してある。図6に示す二重容器Cは外容器本体2
の肩部にポケット状の凹部10を設け、この凹部10内
に小孔状の排気口11を形成して構成されている。この
二重容器Cを封止するには、二重容器Cの開口を上向き
にしたまま、凹部10内に低温溶融ガラスからなる棒状
の封止材12を取り付け、これを真空加熱炉に設置し、
先の例と同じく200〜600℃の温度範囲でかつ封止
材12が軟化しない温度に加熱しつつ排気を行い、1×
10-2torr以下の圧力まで排気した後、炉内を20
0〜600℃の温度範囲でかつ封止材12の軟化点以上
の温度に昇温し、封止材12を軟化させてその自重によ
り排気口11及びその周囲に直接落下させて排気口11
を封止する。この真空封止の後、容器を炉内から取り出
してステンレス製の魔法瓶(真空二重容器)を得る。
FIG. 6 is for explaining a third example of the method for manufacturing a metal vacuum double container according to the present invention. The double container C shown in this figure includes substantially the same components as those shown in FIGS. 1 and 2, and the same components are designated by the same reference numerals. The double container C shown in FIG. 6 is an outer container body 2
A pocket-shaped recess 10 is provided in the shoulder portion of the device, and a small-hole-shaped exhaust port 11 is formed in the recess 10. To seal the double container C, a rod-shaped sealing material 12 made of low-temperature molten glass is attached in the recess 10 with the opening of the double container C facing upward, and this is placed in a vacuum heating furnace. ,
As in the previous example, exhaust is performed while heating in the temperature range of 200 to 600 ° C. and at a temperature at which the sealing material 12 does not soften, and 1 ×
After exhausting to a pressure of 10 -2 torr or less,
In the temperature range of 0 to 600 ° C. and at a temperature higher than the softening point of the encapsulating material 12, the encapsulating material 12 is softened and directly dropped to the exhaust port 11 and its surroundings by its own weight to exhaust port 11.
Is sealed. After this vacuum sealing, the container is taken out of the furnace to obtain a stainless steel thermos (vacuum double container).

【0015】本例による製造方法では、先の例と同様の
効果が得られる他、凹部10と排気口11とを二重容器
Cの肩部に形成したことにより、この二重容器Cの真空
封止を行う場合には二重容器Cを通常に立てた状態で真
空加熱炉内に設置することができ、二重容器を支える支
持部材などが不要となり、二重容器の設置や取り出しが
極めて容易となる。
In the manufacturing method according to the present embodiment, the same effect as that of the previous embodiment can be obtained, and since the recess 10 and the exhaust port 11 are formed in the shoulder portion of the double container C, the vacuum of the double container C is reduced. When sealing is performed, the double container C can be installed in a vacuum heating furnace in a normally standing state, and a supporting member for supporting the double container is not required, so that the double container can be installed and taken out extremely. It will be easy.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
金属製二重容器のいずれかに穿設された排気口を軟化温
度200〜600℃の低温溶融ガラスからなる封止材を
用いて封止することにより、従来のろう付けによる製法
に比べ真空封止の温度を低くすることができるので、真
空加熱炉の使用温度を低く設計でき、設備費が安価にな
り、製品の製造コストを低減することができる。本発明
で使用する低温溶融ガラスは金属製二重容器の表面に酸
化物が存在しても、濡れ性を損なうことがなく、良好な
封止を行なえる利点を持つ。従って、金属製二重容器の
表面を高温に加熱して酸化物を除去する工程を省略する
ことができ、真空二重容器の製造コストを低減できる。
また従来のチップ管による製法と比較すると、チップ管
残部の突出がなくコンパクトな製品が製造できる。また
封止の工程については、真空加熱炉中で同時に大量の製
品を人手を介することなく安定的に処理することができ
るため、大量生産が容易となり製造コストが低減でき
る。さらに、内外容器間の真空排気の工程については、
容器全体を真空中で加熱するため容器の外面が著しく酸
化されることがなく、後処理による除去工程を省略する
ことができ、コストを低減できる。さらに、真空排気及
び封止の全ての操作を200〜600℃程度の比較的低
温で行うことができ、容器を構成するステンレス鋼など
の金属材料は低温焼鈍により硬度を増加させることがで
きるので、高硬度の金属材料を用いて容器を薄肉化する
ことができ、真空二重容器の軽量化を図ることができ
る。
As described above, according to the present invention,
By sealing the exhaust port formed in one of the metal double containers with a sealing material made of low-temperature molten glass having a softening temperature of 200 to 600 ° C., a vacuum seal is obtained as compared with the conventional brazing method. Since the stop temperature can be lowered, the operating temperature of the vacuum heating furnace can be designed to be low, the facility cost can be reduced, and the manufacturing cost of the product can be reduced. The low-temperature molten glass used in the present invention has an advantage that good wettability can be achieved without impairing the wettability even if an oxide is present on the surface of the metallic double container. Therefore, the step of heating the surface of the metal double container to a high temperature to remove the oxide can be omitted, and the manufacturing cost of the vacuum double container can be reduced.
Further, as compared with the conventional manufacturing method using a tip tube, a compact product can be manufactured without the projection of the remaining tip tube. In the sealing step, a large amount of products can be stably processed at the same time in a vacuum heating furnace without human intervention, which facilitates mass production and reduces manufacturing costs. Furthermore, regarding the process of vacuum evacuation between the inner and outer containers,
Since the entire container is heated in vacuum, the outer surface of the container is not significantly oxidized, the removal process by post-treatment can be omitted, and the cost can be reduced. Further, all the operations of vacuum exhaustion and sealing can be performed at a relatively low temperature of about 200 to 600 ° C., and the metal material such as stainless steel forming the container can increase the hardness by low temperature annealing. The container can be made thin by using a metal material having high hardness, and the weight of the vacuum double container can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る金属製真空二重容器の製造方法の
第1の例を説明するものであり、封止材を取り付けた二
重容器の断面図である。
FIG. 1 is a cross-sectional view of a double container to which a sealing material is attached, for explaining a first example of a method for manufacturing a metal vacuum double container according to the present invention.

【図2】同じ二重容器の底面図である。FIG. 2 is a bottom view of the same double container.

【図3】同じ二重容器に真空封止処理を行って得られた
真空二重容器の要部拡大断面図である。
FIG. 3 is an enlarged cross-sectional view of a main part of a vacuum double container obtained by performing vacuum sealing processing on the same double container.

【図4】本発明に係る金属製真空二重容器の製造方法の
第2の例を説明するものであり、封止材を取り付けた二
重容器の断面図である。
FIG. 4 is a cross-sectional view of a double container with a sealant attached, for explaining a second example of the method for manufacturing a metal vacuum double container according to the present invention.

【図5】同じ二重容器の要部を拡大した底面図である。FIG. 5 is an enlarged bottom view of the main part of the same double container.

【図6】本発明に係る金属製真空二重容器の製造方法の
第3の例を説明するものであり、封止材を取り付けた二
重容器の断面図である。
FIG. 6 is a cross-sectional view of a double container to which a sealing material is attached, for explaining a third example of the method for manufacturing a metal vacuum double container according to the present invention.

【符号の説明】[Explanation of symbols]

1……内容器、2……外容器本体、3……外容器底部
材、4……外容器、5……空隙、6……真空断熱層、1
0……凹部、11……排気口、12……封止材、13…
…長溝、14……スリット状長孔、A,B,C……封止前
の二重容器。
1 ... inner container, 2 ... outer container body, 3 ... outer container bottom member, 4 ... outer container, 5 ... void, 6 ... vacuum heat insulating layer, 1
0 ... recess, 11 ... exhaust port, 12 ... sealing material, 13 ...
… Long groove, 14 …… Slit-like long hole, A, B, C …… Double container before sealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大塚 栄二 東京都港区西新橋1丁目16番7号 日本酸 素株式会社内 (72)発明者 山木 純 東京都港区西新橋1丁目16番7号 日本酸 素株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Eiji Otsuka, 1-16-7 Nishishinbashi, Minato-ku, Tokyo Within Nihon Oxygen Co., Ltd. (72) Inventor Jun Yamaki 1-16-7 Nishishinbashi, Minato-ku, Tokyo No. Japan Oxide Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属製の内容器と外容器とからなり、こ
れら内外容器間の空隙部を真空断熱層とした金属製真空
二重容器の製造方法において、 上記内容器と外容器のいずれか一方に排気口を有する内
外容器を接合して二重容器を形成し、次いで該排気口の
近傍に、軟化温度が200〜600℃である低温溶融ガ
ラスからなる封止材を配置し、次いでこの二重容器を真
空加熱炉内に配し上記封止材の軟化温度よりも低い温度
で内外容器間の空隙を真空排気し、次いで二重容器を封
止材の軟化温度より高い温度に昇温し、封止材を軟化流
動せしめて排気口を封止することを特徴とする金属製真
空二重容器の製造方法。
1. A method for producing a metal vacuum double container comprising a metal inner container and an outer container, wherein a space between the inner and outer containers is a vacuum heat insulating layer, wherein either the inner container or the outer container is used. An inner and outer container having an exhaust port is joined to one side to form a double container, and a sealing material made of low-temperature molten glass having a softening temperature of 200 to 600 ° C. is arranged in the vicinity of the exhaust port, The double container is placed in a vacuum heating furnace, the space between the inner and outer containers is evacuated at a temperature lower than the softening temperature of the sealing material, and then the double container is heated to a temperature higher than the softening temperature of the sealing material. Then, the method for producing a metal vacuum double container is characterized in that the sealing material is softened and fluidized to seal the exhaust port.
【請求項2】 金属製の内容器と外容器とからなり、こ
れら内外容器間の空隙部を真空断熱層とした金属製真空
二重容器において、上記内容器と外容器のいずれか一方
に形成された排気口を軟化温度が200〜600℃であ
る低温溶融ガラスからなる封止材で真空封止してなるこ
とを特徴とする金属製真空二重容器。
2. A metal vacuum double container comprising a metal inner container and an outer container, wherein a space between the inner and outer containers is a vacuum heat insulating layer, wherein the metal container is formed in one of the inner container and the outer container. A metal vacuum double container, characterized in that the formed exhaust port is vacuum-sealed with a sealing material made of low-temperature molten glass having a softening temperature of 200 to 600 ° C.
JP4327048A 1992-11-12 1992-12-07 Metal vacuum double container and method of manufacturing the same Expired - Lifetime JP2774748B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP4327048A JP2774748B2 (en) 1992-12-07 1992-12-07 Metal vacuum double container and method of manufacturing the same
DE69318107T DE69318107T2 (en) 1992-11-12 1993-11-09 Process for producing a metal container with an evacuated double wall
EP93402745A EP0597773B1 (en) 1992-11-12 1993-11-09 Method for producing a metallic evacuated double-walled vessel
DE69332035T DE69332035T2 (en) 1992-11-12 1993-11-09 Metal container with evacuated double wall and its manufacturing process
EP96202986A EP0755646B1 (en) 1992-11-12 1993-11-09 Metallic evacuated double-walled vessel and production method therefor
SG1996003695A SG47681A1 (en) 1992-11-12 1993-11-09 Metallic evacuated double-walled vessel and production method therefor
MYPI93002353A MY109618A (en) 1992-11-12 1993-11-10 Metallic evacuated double-walled vessel and production method therefor
KR1019930023911A KR100250778B1 (en) 1992-11-12 1993-11-11 Metallic evacuated double-walled vessel and production method therefor
CN93112907A CN1053804C (en) 1992-11-12 1993-11-12 Metallic evacuated double-walled vessel and production method therefor
HK98110809A HK1009926A1 (en) 1992-11-12 1998-09-22 Metallic evacuated double-walled vessel and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4327048A JP2774748B2 (en) 1992-12-07 1992-12-07 Metal vacuum double container and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06169850A true JPH06169850A (en) 1994-06-21
JP2774748B2 JP2774748B2 (en) 1998-07-09

Family

ID=18194729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4327048A Expired - Lifetime JP2774748B2 (en) 1992-11-12 1992-12-07 Metal vacuum double container and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2774748B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040011223A (en) * 2002-07-29 2004-02-05 원제돈 vacuum thermos and manufacturing method thereof
JP2005319150A (en) * 2004-05-11 2005-11-17 Nippon Electric Glass Co Ltd Sealing glass
WO2013021639A1 (en) 2011-08-09 2013-02-14 パナソニック株式会社 Airtight container, method for producing same and vacuum insulation body
WO2018062072A1 (en) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 Method for manufacturing glass panel unit, method for manufacturing glass window, and glass panel unit
WO2018062071A1 (en) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 Method for producing glass panel unit, and method for producing glass window

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124974A (en) * 1979-03-20 1980-09-26 Matsushita Electric Ind Co Ltd Tubular heater
JPS6426056U (en) * 1987-08-06 1989-02-14
JPH02149446A (en) * 1988-11-29 1990-06-08 Matsushita Electric Ind Co Ltd Sealing composition and crystal resonator
JPH047026U (en) * 1990-05-10 1992-01-22

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124974A (en) * 1979-03-20 1980-09-26 Matsushita Electric Ind Co Ltd Tubular heater
JPS6426056U (en) * 1987-08-06 1989-02-14
JPH02149446A (en) * 1988-11-29 1990-06-08 Matsushita Electric Ind Co Ltd Sealing composition and crystal resonator
JPH047026U (en) * 1990-05-10 1992-01-22

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040011223A (en) * 2002-07-29 2004-02-05 원제돈 vacuum thermos and manufacturing method thereof
JP2005319150A (en) * 2004-05-11 2005-11-17 Nippon Electric Glass Co Ltd Sealing glass
JP4596358B2 (en) * 2004-05-11 2010-12-08 日本電気硝子株式会社 Glass for sealing
WO2013021639A1 (en) 2011-08-09 2013-02-14 パナソニック株式会社 Airtight container, method for producing same and vacuum insulation body
WO2018062072A1 (en) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 Method for manufacturing glass panel unit, method for manufacturing glass window, and glass panel unit
WO2018062071A1 (en) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 Method for producing glass panel unit, and method for producing glass window
JPWO2018062072A1 (en) * 2016-09-30 2019-06-24 パナソニックIpマネジメント株式会社 Method of manufacturing glass panel unit, method of manufacturing glass window, and glass panel unit
JPWO2018062071A1 (en) * 2016-09-30 2019-07-18 パナソニックIpマネジメント株式会社 METHOD FOR MANUFACTURING GLASS PANEL UNIT, AND METHOD FOR MANUFACTURING GLASS WINDOW
US11193322B2 (en) 2016-09-30 2021-12-07 Panasonic Intellectual Property Management Co., Ltd. Manufacturing method of glass panel unit and manufacturing method of glass window
US11465938B2 (en) 2016-09-30 2022-10-11 Panasonic Intellectual Property Management Co., Ltd. Manufacturing method of glass panel unit, manufacturing method of glass window, and glass panel unit

Also Published As

Publication number Publication date
JP2774748B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
JPH05182708A (en) Penetrating connecting section of hole of insulating part having high heat resistance and vacuum resistance and method of forming said penetrating connecting section
KR100250778B1 (en) Metallic evacuated double-walled vessel and production method therefor
US11913277B2 (en) Method for manufacturing glass panel unit
US4004173A (en) Niobium alumina sealing and product produced thereby
JPH06169850A (en) Metallic vacuum double container and its manufacture
KR100799092B1 (en) A method for sealing display devices
US5769678A (en) Method of sealing vacuum ports in low pressure gas discharge lamps
JPH09509501A (en) Vacuum tight sealing method for beryllium window to metal substrate
US5095246A (en) Niobium-ceramic feedthrough assembly
JP2002255593A (en) Method for manufacturing low pressure double glazing
JP2776710B2 (en) Metal vacuum double container
JPH078395A (en) Metal made vacuum double layer container and the manufacture thereof
JP2781388B2 (en) Manufacturing method of flat display tube
JPH0592136A (en) Adsorbent packing bag and production thereof
JPS62259329A (en) Fluorescent character display tube
JPH0749152B2 (en) Method for manufacturing envelope of rectifying element
JPS63284742A (en) Fluorescent character display tube
JP2738299B2 (en) Vacuum sealed structure of metal vacuum container
JPH0443649B2 (en)
JPH02215416A (en) Manufacture of metallic thermos bottle
JPS632224A (en) Manufacture of fluorescent character display tube
Hillier et al. Aluminosilicates and the high-temperature processing of microwave vacuum tubes
JP2745983B2 (en) Glass molding for sealing
JPH0753137B2 (en) Method for manufacturing metallic vacuum double structure
JPS5940456B2 (en) Manufacturing method of metal vacuum insulation container

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980324