WO2013021639A1 - Airtight container, method for producing same and vacuum insulation body - Google Patents
Airtight container, method for producing same and vacuum insulation body Download PDFInfo
- Publication number
- WO2013021639A1 WO2013021639A1 PCT/JP2012/005044 JP2012005044W WO2013021639A1 WO 2013021639 A1 WO2013021639 A1 WO 2013021639A1 JP 2012005044 W JP2012005044 W JP 2012005044W WO 2013021639 A1 WO2013021639 A1 WO 2013021639A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sealing member
- container
- metal container
- opening
- gas
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D25/00—Details of other kinds or types of rigid or semi-rigid containers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/06—Arrangements using an air layer or vacuum
- F16L59/065—Arrangements using an air layer or vacuum using vacuum
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/131—Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
- Y10T428/1317—Multilayer [continuous layer]
Definitions
- the present invention relates to a hermetic container, a method for manufacturing the same, and a vacuum heat insulator, and in particular, a hermetic container in which an opening of a metal container in which a solid is housed in a reduced internal space is sealed with a sealing member;
- the present invention relates to a method for manufacturing the hermetic container, and a vacuum heat insulating body including the hermetic container in a decompressed internal space of a hollow jacket member.
- the vacuum heat insulator is formed, for example, by storing a core member such as glass wool in the laminated bag interior space, decompressing the bag interior space, and sealing the bag.
- the core member has a high gas phase volume ratio, and many fine voids are formed in the internal space of the bag.
- the void diameter of the core member is smaller than the mean free path of gas molecules under reduced pressure, the size of the gas molecules (gas heat conduction component) that conducts heat is reduced.
- the gap diameter of the core member is very fine, for example, about 1 mm, the heat conduction by the convective gas molecules becomes so small that it can be ignored.
- the ratio of the radiant heat from the radiant material contributing to the thermal conductivity is very small.
- the heat conduction in the vacuum heat insulating body is dominated by the solid heat conduction component of the core member and the slightly remaining gas heat conduction component. For this reason, it is supposed that the heat conductivity of a vacuum heat insulating body is very small compared with other heat insulating materials.
- a double container is formed by joining an inner and outer container having an exhaust port to one of a metal inner container and an outer container.
- a sealing material made of low-temperature molten glass having a softening temperature of 200 to 600 ° C. is disposed in the vicinity of the exhaust port. Then, the double container is arranged in a vacuum heating furnace and evacuated so that the gap between the inner and outer containers of the double container is in a vacuum state at a temperature lower than the softening temperature of the sealing material.
- the sealing material softens and seals the exhaust port.
- any of the metal double containers described in Patent Documents 1 to 3 is used as a thermos bottle.
- the force that the sealing glass is joined to the exhaust port is greater than when a solid material is installed in the vacuum space. It may be small.
- gas and moisture contained in the solid substance are desorbed in the vacuum sealing process. These desorbed substances increase the pressure in the vacuum space, and the gas in the vacuum space passes through the periphery of the sealing glass and is discharged. Thereby, the force which the sealing glass seals in vacuum decreases, and the degree of vacuum in the vacuum space decreases.
- the present invention has been made in order to solve such problems, and a sealed container in which a decrease in the degree of vacuum in an internal space containing solids is suppressed, a method for manufacturing the same, and a vacuum insulation using the sealed container
- the purpose is to provide a body.
- An airtight container has an opening, a metal container whose first internal space is decompressed, a solid material housed in the first internal space of the metal container, an alkali A sealing member made of glass containing at least one of an earth metal oxide and an alkali metal oxide, and the sealing member is heated and melted to be cooled and solidified, whereby the opening of the metal container And the opening is sealed.
- FIG. 1 It is a perspective view which shows the airtight container which concerns on Embodiment 1 of this invention. It is a perspective view which shows the state in which the solid substance was accommodated in the metal container used for the airtight container of FIG. It is a perspective view which shows the state which crushed the metal container of FIG. 2 substantially flat. It is a perspective view which shows the state which inserted the sealing member in the opening part of the metal container of FIG. It is a perspective view which shows the airtight container which concerns on the modification 1 of Embodiment 1 of this invention. It is a perspective view which shows the airtight container which concerns on the modification 2 of Embodiment 1 of this invention. It is sectional drawing which shows the vacuum heat insulating body which concerns on Embodiment 2 of this invention.
- a sealed container has an opening, a metal container whose first inner space is decompressed, a solid material accommodated in the first inner space of the metal container, and alkaline earth
- the alkaline earth metal oxide or alkali metal oxide contained in the glass of the sealing member is chemically bonded to the metal oxide formed on the surface of the opening of the metal container by the heat treatment.
- the sealing member and the opening are firmly joined, so that the airtightness of the airtight container is kept high even if the solid matter is stored inside the metal container.
- the alkaline earth metal oxide of the sealing member may be either BaO or SrO.
- the metal container according to a third invention is the first or second invention, wherein the sealing member is located inside the opening and joined to the opening, and the metal container is You may have a thermal expansion coefficient larger than the thermal expansion coefficient of the said sealing member.
- the metal container expanded by the cooling process after the heat treatment contracts more than the sealing member.
- the opening part of a metal container clamp tightens the sealing member located in the inside of an opening part, and these are joined firmly mechanically.
- the airtight container can maintain the outstanding airtightness.
- the metal container may be made of aluminum.
- the metal container made of aluminum is larger than the thermal expansion coefficient of the sealing member, and the sealing member is firmly mechanically joined to the opening of the metal container.
- the airtight container can maintain the outstanding airtightness.
- the sealed container according to a fifth aspect of the present invention is the sealed container according to any one of the first to fourth aspects, wherein a constriction is provided in the opening of the metal container, and the sealing member is joined to the constriction.
- the part may be sealed.
- the sealed container according to a sixth invention may include a gas adsorbing material in which the solid matter does not deteriorate by heat treatment in any one of the first to fifth inventions, and may function as a gas adsorbing device.
- the solid material even if the heat treatment for sealing the opening of the metal container with the sealing member is performed on the solid material, the solid material does not deteriorate. For this reason, the solid substance can exhibit its function as a gas adsorbent in the sealed container.
- a vacuum heat insulating body accommodates a gas adsorbing device including the sealed container of the sixth aspect, a core member, the gas adsorbing device and the core member in the second internal space. And a hollow outer cover member in which the second inner space is decompressed and sealed.
- the gas adsorption device since the gas adsorption device is hermetically sealed, the gas adsorption performance is maintained high.
- the gas heat conduction component remaining or entering the second internal space is adsorbed by the gas adsorbing device, and the degree of vacuum of the second internal space is maintained high. .
- a vacuum heat insulating body can exhibit the outstanding heat insulation.
- the through hole that opens the gas adsorbing device is formed when the sealing member is destroyed in the second internal space of the jacket member. It may be.
- the opening of the metal container is formed in a cylindrical shape having a substantially flat cross section, and the short axis direction of the substantially flat cross section in the opening.
- the through hole may be formed by applying an external force to the sealing member and destroying the sealing member.
- the gas adsorbing device is housed in the core member, and the core member is interposed between the jacket member and the gas adsorbing device. It may be interposed.
- the vacuum heat insulator according to an eleventh aspect of the invention according to the tenth aspect may further comprise a notch formed in the core member that communicates with a space in which the gas adsorbing device is accommodated inside the core member.
- the gas adsorption device can be easily accommodated in the internal space of the core member by inserting the gas adsorption device into the internal space of the core member from the cut of the core member.
- a vacuum heat insulator according to a twelfth aspect of the present invention is the vacuum heat insulator according to any of the seventh to eleventh aspects, further comprising a mark attached to a portion of the outer cover member corresponding to a position where the gas adsorption device is disposed. May be.
- the vacuum heat insulator further includes a movement suppressing portion that is provided in the second internal space of the jacket member and suppresses movement of the gas adsorption device. May be.
- the movement of the gas adsorption device is suppressed by the movement suppressing portion provided in the second internal space of the jacket member. For this reason, the position of the gas adsorbing device can be specified from the outside of the jacket member, and a decrease in productivity is prevented.
- the movement suppressing part may be constituted by an inner bag that encloses part or all of the gas adsorption device.
- the displacement of the gas adsorbing device is suppressed by the friction between the gas adsorbing device and the inner bag in the range covered by the inner bag, and the productivity is prevented from being lowered.
- the inner bag may be made of an elastic material.
- the gas adsorption device is covered with the inner bag of the elastic material, it is possible to prevent the inner bag from forming scratches or dents on the gas adsorption device.
- the elastic material may include a nonwoven fabric made of resin.
- the nonwoven fabric formed of resin has little moisture absorption and is not easily torn. For this reason, the fall of the vacuum degree in 2nd internal space is prevented, and the movement of a gas adsorption device is controlled.
- the resin forming the nonwoven fabric may contain at least one of PP and PET.
- PP and PET have high tensile strength, tear strength, and heat resistance, and are low in cost. For this reason, the movement restriction function is maintained, and a decrease in productivity is prevented.
- the movement suppressing portion is configured by an inner surface of a space in which the gas adsorbing device is accommodated inside the core member. Also good.
- the movement of the gas adsorption device is regulated by the friction between the core member, which is the body surface of the space, and the gas adsorption device. Is prevented.
- a sealed container manufacturing method comprising: storing solid matter in a first internal space of a metal container; and reducing the first internal space of the metal container while performing alkaline earth metal oxidation.
- the sealing member made of glass containing at least one of a metal and an alkali metal oxide is heated and melted and cooled and solidified to join the sealing member to the opening of the metal container, thereby the sealing member And sealing the opening.
- the alkaline earth metal oxide or alkali metal oxide contained in the glass of the sealing member is chemically bonded to the metal oxide formed on the surface of the opening of the metal container by the heat treatment.
- the sealing member and the opening are firmly joined, so that the airtightness of the airtight container is kept high even if the solid matter is stored inside the metal container.
- FIG. 1 shows a cross-sectional view of a sealed container 1 according to Embodiment 1 of the present invention.
- the sealed container 1 includes a metal container 3, a solid material 4, and a glass sealing member 2 including at least one of an alkaline earth metal oxide and an alkali metal oxide.
- the metal container 3 is a member that forms a decompressed internal space (hereinafter referred to as a first internal space).
- the metal container 3 is made of a metal that does not transmit water or gas, has high heat resistance, and has a larger thermal expansion coefficient than the sealing member 2.
- a metal for example, aluminum, iron, copper, and stainless steel are used from the viewpoint of cost and availability.
- a metal is not limited to this, It selects suitably according to the intended purpose of the airtight container 1, and the melting temperature of the sealing member 2.
- the metal container 3 is formed in a cylindrical shape including one end that opens (hereinafter referred to as “open end”) and the other end that is closed.
- the metal container 3 includes an opening 5, and the opening 5 is configured by the opening of the metal container 3 and the vicinity thereof.
- the diameter of the opening 5 is set to a length that allows the sealing member 2 to be inserted.
- the narrowed portion 7 is provided in the opening 5.
- the narrowed portion 7 is provided between the opening end of the metal container 3 and the solid material 4 and is a portion narrower than the opening (opening end) of the metal container 3.
- the diameter of the narrowed portion 7 is smaller than the diameter of the opening and is set to a size that can hold the molten sealing member 2.
- the shape of the narrowed portion 7 is not particularly limited.
- the interval between the upper end of the narrowed portion 7 and the open end of the metal container 3 may or may not be present.
- the sealing member 2 is placed on the open end of the metal container 3 before the heat treatment.
- the sealing member 2 is inserted into the opening 5 between the opening end of the metal container 3 and the upper end of the narrowed portion 7 before the heat treatment.
- the solid material 4 is accommodated in the first internal space of the metal container 3.
- Examples of the solid material 4 include a support material necessary for holding the decompressed first internal space, or a functional material that needs to be stored in the decompressed first internal space.
- the support material includes a core member including many fine spaces.
- the core member may be made of a material such as glass wool that has a low heat transfer coefficient and generates less gas by heat treatment under reduced pressure.
- the heat transfer coefficient becomes smaller. For this reason, airtight container 1 itself can be utilized as a vacuum heat insulating body.
- Functional materials include gas adsorbents that adsorb gas.
- the gas adsorbent supports the metal and secures the first internal space when the gas adsorbent is stored in the decompressed first internal space until the sealing member 2 is opened.
- the gas adsorbent is made of a material that does not lose its activity due to heat treatment.
- a substance that is activated by heat treatment under reduced pressure is used as the gas adsorbent.
- the gas adsorbent include Ba-based, Ti-based, Zr-based, and Fe-based alloy getters, and copper ion exchanged ZSM-5 type zeolite.
- copper ion exchange ZSM-5 activated by heat treatment under reduced pressure is preferable as the gas adsorbent.
- the adsorption active site of the copper ion exchange ZSM-5 type zeolite is copper ion.
- the hue of the copper ion exchanged ZSM-5 type zeolite changes depending on the state in which the copper ions are introduced into the copper ion exchanged ZSM-5 type zeolite. By utilizing this, it is possible to manage the gas adsorption performance of the copper ion exchanged ZSM-5 type zeolite under reduced pressure by the colorimetric value.
- the colorimetric value is measured with a commercially available spectral color difference meter.
- a measurement cell is filled with copper ion exchanged ZSM-5 type zeolite, and the reflectance, absorption rate, transmittance, and the like of light with respect to wavelengths in the range of 380 nm to 760 nm are measured. Based on the measured values, the color coordinates of the copper ion exchanged ZSM-5 type zeolite are obtained.
- the range of colorimetric values (color coordinates, reflectance) of copper ion exchanged ZSM-5 type zeolite that exhibits adsorption performance when measured with a colorimetric color difference meter SE6000 (manufactured by Nippon Denshoku Industries Co., Ltd.) is as follows. Indicated. In this case, a C light source was used, and color coordinates were measured at a viewing angle of 2 °. Since the activity of the copper ion exchanged ZSM-5 type zeolite was different before and after the heat treatment, the colorimetric values before and after the heat treatment were obtained.
- the copper ion exchanged ZSM-5 type zeolite was disposed in the heat insulating body in a state of being accommodated in the metal container 3 and then heat-treated. For this reason, the metal container 3 is taken out from the heat-treated heat insulator, the metal container 3 is destroyed, and the copper ion exchange ZSM-5 type zeolite is taken out from the first internal space, whereby the copper ion exchange after the heat treatment is performed. A ZSM-5 type zeolite was obtained. The copper ion exchanged ZSM-5 type zeolite after the heat treatment was measured with a color difference meter in the same manner as the copper ion exchanged ZSM-5 type zeolite before the heat treatment.
- the L *, a *, b * color coordinates of the copper ion exchanged ZSM-5 type zeolite before the heat treatment are, for example, 70 ⁇ L * ⁇ 96, 0 ⁇ a * ⁇ ⁇ 6, ⁇ 1 ⁇ b ⁇ ⁇ 15 If so, the adsorption performance is good. More desirably, if the color coordinates are, for example, 75 ⁇ L * ⁇ 96, ⁇ 2.5 ⁇ a * ⁇ ⁇ 6, and ⁇ 1 ⁇ b ⁇ ⁇ 10, the adsorption performance is further improved.
- the reflectance with respect to light having a wavelength of 380 nm to 580 nm is, for example, 55% or more and 95% or less, good adsorption performance is exhibited. More desirably, if the reflectance with respect to light having a wavelength of 400 nm to 500 nm is 60% or more and 95% or less, even higher adsorption performance is exhibited.
- the state of copper ions is changed by the heat treatment, and the color components of the copper ion exchanged ZSM-5 type zeolite after the heat treatment are changed by the air component adsorbed on the copper ion exchanged ZSM-5 type zeolite.
- the L *, a *, b * color coordinates of the copper ion exchanged ZSM-5 type zeolite after the heat treatment are, for example, 88 ⁇ L * ⁇ 81, 4 ⁇ a * ⁇ ⁇ 4, 12 ⁇ b ⁇ ⁇ If it is 4, it is considered that the adsorption performance is good.
- the adsorption performance is further improved.
- the reflectance with respect to light having a wavelength of 380 nm to 580 nm is, for example, 50% or more and 70% or less
- good adsorption performance can be obtained.
- the reflectance with respect to light having a wavelength of 400 nm to 500 nm is, for example, 50% or more and 70% or less, higher adsorption performance is exhibited.
- the colorimetric value of the copper ion exchanged ZSM-5 type zeolite is in the above range, the copper ion exchanged ZSM-5 type zeolite exhibits excellent gas adsorption performance. Therefore, the gas adsorption performance of the copper ion exchanged ZSM-5 type zeolite is easily determined from the colorimetric values.
- the sealing member 2 is made of glass containing at least one of an alkaline earth metal oxide and an alkali metal oxide.
- the alkali metal oxide include Na 2 O, K 2 O, Rb 2 O, and Cs 2 O.
- Examples of the alkaline earth metal oxide include MgO, CaO, BaO, and SrO.
- alkaline earth metal oxides are desirable because they are chemically bonded to the metal container 3 more strongly than alkali metal oxides.
- BaO and SrO are desirable because chemical bonds with the metal container 3 are stronger.
- the ionization energy of Ba and Sr is smaller than that of other alkaline earth metal oxides such as Be, Mg, and Ca. For this reason, it is considered that oxygen atoms bonded to Ba and Sr are easily chemically bonded to the metal oxide on the surface of the metal container 3.
- alkaline earth metal oxide etc. The molar ratio of at least one of alkaline earth metal oxide and alkali metal oxide (hereinafter referred to as “alkaline earth metal oxide etc.”) is, for example, 1 to 65%, and 15 to 60%. It is preferable that When there are too many molar ratios, such as an alkaline-earth metal oxide, the sealing member 2 cannot maintain the performance as glass. Moreover, when there are too few molar ratios, such as alkaline-earth metal oxide, joining of the sealing member 2 and the metal containers 3 will become weak.
- the molar ratio is obtained, for example, as follows.
- the sealing member 2 is dissolved with an acid or the like to prepare a sample.
- the weight of each element contained in this sample is measured by ICP emission spectral analysis or the like. Divide the weight of the element by the atomic weight of the element to find the mole of the element. Since elements exist as oxides in glass, the moles of elements are converted to moles of element oxides.
- the molar ratio of the alkaline earth metal oxide or the like is determined by the ratio of the mole of the alkaline earth metal oxide or the like to the total amount of the oxides of all the elements.
- the joining portion 6 is a layer formed on the surface of the sealing member 2 and is a portion that joins the opening 5 of the metal container 3 in the sealing member 2.
- the joint 6 is formed by heating and melting the sealing member 2 in the opening 5 of the metal container 3 and solidifying by cooling.
- the joint portion 6 is a portion where the alkaline earth metal oxide or the like of the sealing member 2 and the metal oxide formed on the surface of the metal container 3 are chemically bonded via oxygen.
- the joint 6 is peeled off from the sealing member 2 by being immersed in water and contacting a large amount of water.
- this water was analyzed by ICP emission spectroscopic analysis or the like, alkaline earth metal was detected.
- alkaline earth metal was not detected even when the sealing member 2 alone was immersed in water and this water was analyzed by ICP emission spectroscopic analysis or the like.
- the bonding portion 6 is formed by chemical bonding unlike the sealing member 2 and has a property of being easily dissolved in water. This chemical bond is considered to be a chemical bond via oxygen caused by the metal oxide and alkaline earth metal oxide formed on the surface of the metal container 3.
- FIG. 2 is a perspective view showing the metal container 3 containing the solid material 4 in the first internal space.
- FIG. 3 shows a state in which the metal container 3 shown in FIG. 2 is crushed.
- FIG. 4 shows a state in which the sealing member 2 is inserted into the opening 5 of the metal container 3 shown in FIG.
- the solid material 4 is arranged in the first internal space of the cylindrical metal container 3.
- the metal container 3 is crushed over the entire axial length of the metal container 3 so that the thickness of the metal container 3 is reduced.
- the cross section of the metal container 3 becomes a flat shape of a substantially elliptical shape or a rectangular shape with rounded corners.
- the opening 5 of the metal container 3 is further crushed so as to form a narrowed portion 7.
- the sealing member 2 is inserted into the opening 5, the sealing member 2 is held on the narrowed portion 7.
- Such a metal container 3 is heated while being decompressed in a vacuum heating furnace.
- the heating temperature is appropriately determined, and is set to a temperature at which a part or all of the sealing member 2 is melted, for example.
- the first internal space is depressurized to be in a vacuum state, and the sealing member 2 is melted.
- the melted sealing member 2 flows into the narrowed portion 7 and remains in the narrowed portion 7 due to surface tension or the like.
- the temperature is lowered while the vacuum heating furnace is decompressed, the metal container 3 is cooled. Thereby, the molten sealing member 2 is solidified. Further, the thermally expanded metal container 3 contracts.
- the alkaline earth metal oxide or the like contained in the glass sealing member 2 and the metal oxide formed on the surface of the metal container 3 are chemically bonded to each other, thereby opening the opening 5 of the metal container 3.
- the sealing member 2 are chemically bonded.
- the opening 5 of the metal container 3 sandwiches the periphery of the sealing member 2, so that the opening 5 of the metal container 3 and the sealing member 2 are sandwiched. Mechanically joins between the two. By such chemical bonding and mechanical bonding, there is no gap between the opening 5 of the metal container 3 and the sealing member 2, and the opening of the metal container 3 is closed by the sealing member 2.
- the metal container 3 is sealed. Thereby, the sealed container 1 is formed.
- the conditions for the heat treatment and the cooling treatment are not particularly specified, and are appropriately selected depending on the combination of the sealing member 2 and the metal container 3.
- the heat treatment is performed under reduced pressure, if the heating temperature is too high, a deoxygenation reaction occurs between the glass composition of the sealing member 2 and the metal oxide of the metal container 3. Thereby, the metal contained in the glass composition and the metal of the metal oxide form an alloy, and the alloy may peel off. Therefore, the heating temperature is desirably 700 ° C. or less, for example.
- the thermal expansion coefficient of the aluminum metal container 3 is larger than the thermal expansion coefficient of the glass sealing member 2. For this reason, in the cooling process after the heat treatment, the aluminum metal container 3 contracts more than the glass sealing member 2 inserted into the opening 5 of the metal container 3. Thereby, the opening part 5 of the metal container 3 fastens the sealing member 2 by the stress generated by the difference between these thermal expansion coefficients. Thereby, the metal container 3 is firmly joined by the sealing member 2, and the airtight container 1 is excellent in airtightness.
- the spreadability of the aluminum metal container 3 is greater than the spreadability of the glass sealing member 2. For this reason, when the metal container 3 contracts due to the cooling process, the metal container 3 can be flexible along the shape of the sealing member 2 without destroying the sealing member 2 and without breaking. Deform. As a result, the opening 5 is in close contact with the sealing member 2 in the metal container 3, and a gap is hardly generated between the opening 5 of the metal container 3 and the sealing member 2. Thereby, the metal container 3 is firmly joined by the sealing member 2, and the sealed container 1 is excellent in airtightness.
- the aluminum metal container 3 has spreadability, when an external force is applied to the sealing member 2 from above the metal container 3, the metal container 3 is easily deformed. Thereby, external force is transmitted to the sealing member 2, the sealing member 2 is easily destroyed, and the airtight container 1 is easy to open.
- the gas adsorbent can be activated in a state where the first internal space is reduced in pressure. Thereby, the activated gas adsorbent does not adsorb unnecessary gas or moisture, and deterioration of the gas adsorbent is suppressed.
- the molten sealing member 2 is fixed to the narrowed portion 7, and the opening 5 of the metal container 3 and the sealing member 2 are in surface contact. Thereby, since these joining areas are large and these joining forces become strong, the metal container 3 can be reliably sealed.
- the narrowed portion 7 is formed by deforming the opening 5 of the metal container 3. For this reason, the melted sealing member 2 can be supported with a simple structure without providing a support portion for the sealing member 2 provided separately from the metal container 3.
- the sealing member 2 when the sealing member 2 is inserted into the opening 5 of the metal container 3 before the heat treatment, the sealing member 2 is supported by the upper end of the narrowed portion 7. Thereby, the sealing member 2 can be arrange
- the result of evaluating the bonding strength between the sealing member 2 and the metal container 3 in the sealed container 1 will be described.
- the sealed containers 1 of Examples 1 to 5 and the sealed container 1 of Comparative Example 1 were used.
- the bonding strength was evaluated by two methods of appearance evaluation and measurement evaluation. In the appearance evaluation, the sealed container 1 was dropped from a height of 1 m, and whether the sealing member 2 was peeled off from the metal container 3 was visually observed. When the sealing member 2 was peeled off, it was judged that the bonding strength was weak, and when the sealing member 2 was not peeled off, the bonding strength was strong. Moreover, measurement evaluation was performed according to the T-type peel strength test using the Shimadzu autograph.
- the opposing position of the opening 5 of the metal container 3 is fixed to the measurement jig, and the measurement jig is pulled and moved in the direction of widening the opening. Thereby, the opening part 5 deform
- FIG. The tensile strength was determined from the moving distance of the jig and the tensile force at this time.
- Example 1 In the sealed container 1 of Example 1, the sealing member 2 contains ZnO ⁇ P 2 O 5 ⁇ K 2 O, the thermal expansion coefficient is 120 ⁇ 10 ⁇ 7 / ° C., and the softening temperature is 420 ° C. Was used.
- the metal container 3 was a cylinder made of SUS301. This SUS301 has a thermal expansion coefficient of 16.9 ⁇ 10 ⁇ 6 / ° C. and a hardness of 165 Hv. An alloy-based powder that expresses gas adsorption activity by heat treatment under reduced pressure was used as the solid material 4.
- the metal container 3 After installing the solid material 4 in the metal container 3, the metal container 3 is crushed almost flat as a whole.
- the narrow portion 7 is formed by applying an external force so as to narrow the width of the opening 5 of the metal container 3, and the sealing member 2 is disposed on the narrow portion 7.
- the gas adsorbent is appropriately activated at about 500 ° C., and then at 550 ° C.
- the sealing member 2 was melted. After this heat treatment, the vacuum heating furnace was allowed to cool to room temperature in a vacuum state, and the sealed container 1 was created.
- Example 2 The airtight container 1 of Example 2 is the same as the airtight container 1 of Example 1, but the sealing member 2 and the solid material 4, but the metal container 3 is different.
- the metal container 3 a cylinder made of copper having a thermal expansion coefficient of 17.0 ⁇ 10 ⁇ 6 / ° C. and a hardness of 46 Hv was used.
- the method for producing the sealed container 1 of the second embodiment is the same as that of the sealed container 1 of the first embodiment.
- peeling strength was 1.0 N / mm ⁇ 2 >. This peel strength is greater than the peel strength of Example 1. This is presumably because copper is easier to form a metal oxide layer on the surface than SUS301, and is thus strongly chemically bonded to K 2 O of the sealing member 2.
- the hardness of copper is lower than that of SUS301. For this reason, when an external force is applied to the metallic container 3 made of copper, the force is transmitted to the sealing member 2 and the sealing member 2 is easily broken. For this reason, the airtight container 1 is easily opened.
- Example 3 The airtight container 1 of Example 3 is the same as the airtight container 1 of Example 1, but the sealing member 2 and the solid material 4, but the metal container 3 is different.
- the metal container 3 a cylinder made of aluminum having a thermal expansion coefficient of 23.9 ⁇ 10 ⁇ 6 / ° C. and a hardness of 25 Hv was used.
- the method for producing the sealed container 1 of the third embodiment is the same as that of the sealed container 1 of the first embodiment.
- peeling strength was 1.1 N / mm ⁇ 2 >. This peel strength is greater than those of Examples 1 and 2. This is presumably because aluminum is more likely to form a metal oxide layer on the surface than SUS301 and copper, and thus is strongly chemically bonded to K 2 O of the sealing member 2.
- Example 4 The sealed container 1 of Example 4 is the same as the sealed container 1 of Example 3, but the solid material 4 and the metal container 3, but the sealing member 2 is different.
- a glass containing ZnO.P 2 O 5 .CaO, a thermal expansion coefficient of 80 ⁇ 10 ⁇ 7 / ° C., and a softening temperature of 500 ° C. was used for the sealing member 2.
- the production method of the airtight container 1 of Example 4 is the same as that of the airtight container 1 of Example 1 except heat processing.
- Example 4 In the heat treatment of Example 4, after desorbing gas and moisture contained in the gas adsorbent at about 100 ° C., the gas adsorbent is appropriately activated at about 580 ° C., and then at 620 ° C. The sealing member 2 was melted.
- peeling strength was 1.4 N / mm ⁇ 2 >. This peel strength is greater than the peel strength of Example 3. This is presumably because the alkaline earth metal CaO of the sealing member 2 is more strongly chemically bonded to the metal oxide on the surface of the metal container 3 than the alkali metal K 2 O.
- Example 5 The airtight container 1 of Example 5 is the same as the airtight container 1 of Example 3, but the solid material 4 and the metal container 3, but the sealing member 2 is different.
- a glass containing Bi 2 O 2 .B 2 O 3 .SrO.BaO.ZnO, a thermal expansion coefficient of 110 ⁇ 10 ⁇ 7 / ° C., and a softening temperature of 420 ° C. was used as the sealing member 2.
- the preparation method of the airtight container 1 of Example 5 is the same as that of the airtight container 1 of Example 1 except heat processing.
- Example 5 In the heat treatment of Example 5, after desorbing gas and moisture contained in the gas adsorbent at about 100 ° C., the gas adsorbent is appropriately activated at about 500 ° C., and then at 600 ° C. The sealing member 2 was melted.
- peeling strength was 2.0 N / mm ⁇ 2 >. This peel strength is greater than the peel strength of Example 4. This is considered to be because SrO and BaO of the sealing member 2 are strongly chemically bonded to the metal oxide on the surface of the metal container 3 from CaO.
- the airtight container of the comparative example is the same as the airtight container 1 of Example 5, but the metal container, the sealing member, and the solid are the same, but the method for producing the airtight container is different. That is, in the sealed container 1 of Example 5, the metal container 3 that was crushed substantially flat and in which the narrowed portion 7 was formed in the opening 5 was used. The sealing member 2 entered the narrow portion 7 in the metal container 3, where the sealing member 2 was chemically bonded to the metal container 3 to form a joint 6 that spreads in a planar shape. On the other hand, in the sealed container of the comparative example, a cylindrical metal container was used. The sealing member did not enter the metallic container, and the opening end of the metallic container and the sealing member were joined to form a linear joint 6.
- the constriction 7 is provided in the opening 5 of the metal container 3 shown in FIG. 1, the constriction 7 may not be provided in the opening 5 as shown in FIG. In this case, what supports the molten sealing member 2 is provided between the opening and the solid material 4.
- an inorganic fiber aggregate, a filter, or a protrusion having air permeability and heat resistance is used for the support portion.
- the support portion supports the molten sealing member 2.
- the sealing member 2 is hold
- the protrusion protrudes inward from the opening 5 in the direction in which the diameter of the opening 5 of the metal container 3 decreases.
- the height of the protrusion is determined by the viscosity of the molten sealing member 2 and the like.
- the protrusion may be formed integrally with the metal container 3 or may be formed by attaching a member formed separately from the metal container 3 to the inside of the metal container 3.
- Modification 2 Although the metal container 3 shown in FIG. 1 is crushed into a substantially flat shape, a cylindrical metal container 3 may be used as shown in FIG. Although the narrowed portion 7 is provided in the opening 5, a member for supporting the molten sealing member 2 may not be provided. In this case, the size of the opening 5 may be set smaller than the size of the sealing member 2 before the heat treatment. In this case, the sealing member 2 can be disposed on the open end of the metal container 3 before the heat treatment.
- FIG. 1 is a cross-sectional view schematically showing a vacuum heat insulating body 8 according to Embodiment 2 of the present invention.
- the vacuum heat insulator 8 accommodates the sealed container 1 as the gas adsorption device 1, the core member 9, the gas adsorption device 1 and the core member 9 in the second internal space, and the second internal space is decompressed and sealed.
- the jacket member 10 is hollow and has a so-called vacuum internal space (hereinafter referred to as a second internal space).
- so-called vacuum is a state where the pressure is lower than the atmospheric pressure.
- the degree of vacuum in the second internal space is 1 to 200 Pa.
- the jacket member 10 is made of a gas barrier film that blocks water or gas from entering the second internal space.
- This gas barrier property is, for example, a gas permeability of 104 [cm 3 / m 2 ⁇ day ⁇ atm] or less, desirably 103 [cm 3 / m 2 ⁇ day ⁇ atm] or less, and more desirably 102. [Cm 3 / m 2 ⁇ day ⁇ atm] or less.
- a laminate film in which a resin film and an aluminum foil are laminated is used for the jacket member 10.
- a laminate film is a sheet obtained by laminating a laminate.
- the laminate is a sheet in which an innermost layer heat-welded film, an intermediate layer gas barrier film, and a surface protective film as an outermost layer are laminated.
- the innermost layer heat welding film is not particularly specified, but for example, a thermoplastic resin or a mixture thereof is used.
- the thermoplastic resin include a low density polyethylene film, a linear low density polyethylene film, a high density polyethylene film, a polypropylene film, and a polyacrylonitrile film.
- the gas barrier film of the intermediate layer is not particularly specified, but for example, a metal foil or a metal vapor deposition film is used.
- the metal foil include aluminum foil and copper foil.
- a metal vapor deposition film is formed by vapor-depositing metals and metal oxides, such as aluminum and copper, on a resin film, for example.
- the resin of the resin film include a polyethylene terephthalate film and an ethylene-vinyl alcohol copolymer.
- the outermost surface protective film is not particularly specified, and for example, a resin film such as a nylon film, a polyethylene terephthalate film, or a polypropylene film is used.
- the core member 9 is a skeleton member of the vacuum heat insulator 8 that is accommodated in the second internal space of the jacket member 10 and maintains the vacuum second internal space. In the vacuum second internal space of the jacket member 10, the core member 9 has a large number of minute spaces inside and supports the jacket member 10 to hold the inner space of the jacket member 10.
- the core member 9 is a porous substance, and can be made of open cells of polymer materials such as polystyrene and polyurethane, open cells of inorganic materials, inorganic and organic powders, inorganic and organic fiber materials, and the like.
- a fiber having low thermal conductivity, high heat resistance, and less gas generation in a vacuum state or a high temperature state is used.
- the fibers include inorganic fibers such as glass wool, rock wool, alumina fibers, and metal fibers, and resin fibers such as polyethylene terephthalate.
- glass wool is preferable because it has high elasticity, low thermal conductivity, and is industrially inexpensive.
- the diameter of the fiber is selected in consideration of the cost and the heat traditional rate. For example, a relatively inexpensive aggregate of glass wool having an average fiber diameter of about 3 ⁇ m to 6 ⁇ m that is generally used as a fiber for the vacuum heat insulator 8 is desirable.
- the core member 9 has a three-dimensional shape, for example, a substantially rectangular parallelepiped shape with a small thickness.
- the core member 9 is composed of one fiber sheet or a plurality of laminated thin fiber sheets.
- a cut 11 extending in the lamination direction is provided in the core member 9 in which a plurality of fiber sheets are laminated.
- the notch 11 is an insertion port for inserting the gas adsorption device 1 into the core member 9 and communicates with the space in which the gas adsorption device 1 is stored.
- the cut 11 is a cut provided perpendicular to the surface of the core member 9 and has, for example, a rectangular shape.
- the width of the cut 11 parallel to the surface of the core member 9 is larger than the width of the gas adsorption device 1.
- the notch 11 extends inward from the surface of the core member 9, and since the depth perpendicular to the surface of the core member 9 is greater than the thickness of the one or more fiber sheets, one or more fiber sheets are cut.
- the storage space 12 of the gas adsorption device 1 is provided inside the core member 9.
- the storage space 12 of the gas adsorption device 1 may be formed by cutting the core member 9 or may be formed in advance inside the core member 9.
- the fiber sheet cut by the notch 11 is peeled off, and the tear 12 formed thereby is used as the storage space 12.
- the tear 12 is parallel to the surface of the core member 9 and is formed between the laminated fiber sheets.
- the tears 12 and the notches 11 are connected in an L shape in a direction perpendicular to the surface of the core member 9. For this reason, the gas adsorption device 1 is inserted into the slit 12 from the cut 11.
- the gas adsorption device 1 is a member for adsorbing a gas heat conduction component that remains or enters the second internal space of the jacket member 10.
- the gas adsorbent is stored in the first internal space of the metal container 3, the first internal space is decompressed, and the opening 5 of the metal container 3 is sealed with the sealing member 2.
- a chemical adsorption material such as calcium oxide or magnesium oxide, a physical adsorption material such as zeolite, or a mixture thereof can be used. Further, ZSM-5 type zeolite exchanged with copper ions having chemical adsorption properties and physical adsorption properties can also be used.
- the metal container 3 is made of aluminum, copper metal, resin, or the like.
- the sealing member 2 is made of a material that can seal the metallic container and is more fragile than the metallic container 3, and for example, glass containing an alkali metal oxide or an alkaline earth metal oxide is used.
- the gas adsorption device 1 is housed in a tear 12 formed inside the core member 9.
- the shape of the gas adsorption device 1 is not specifically limited, For example, you may match
- FIG. the shape of the gas adsorption device 1 having a substantially flat cross-sectional shape with a width larger than the thickness is used for the vacuum insulation body 8 with a small thickness and a substantially flat shape.
- the short axis (thickness) of the substantially flat cross section is in the thickness direction of the vacuum heat insulating body 8, and the long axis (width) of the substantially flat cross section is parallel to the surface of the vacuum heat insulating body 8.
- the gas adsorption device 1 is disposed so that the minor axis (thickness) of the substantially flat cross section is in the thickness direction of the vacuum heat insulating body 8.
- a mark 13 is provided on a portion of the surface of the vacuum heat insulating agent corresponding to the arrangement position of the gas adsorption device 1.
- the mark 13 is a mark indicating the position of the gas adsorption device 1 disposed inside the outer cover member 10, particularly the position of the opening 5 of the gas adsorption device 1.
- the mark 13 is attached to a portion of the jacket member 10 that is opposite to (corresponding to) the portion where the gas adsorption device 1 is disposed.
- the type and shape of the mark 13 are not particularly limited as long as the position of the gas adsorption device 1 can be seen from the outside of the jacket member 10.
- the mark 13 may be a mark written on the outer surface of the jacket member 10 or a seal attached to the outer surface of the jacket member 10.
- the mark 13 may be printed on the jacket member 10 when the jacket member 10 is manufactured or when the lot number is marked 13 on the vacuum heat insulating body 8. Further, after manufacturing the vacuum heat insulating body 8, a person may mark the mark 13 using ink or the like.
- the mark 13 at the installation position of the gas adsorbing device 1, particularly the position where the sealing portion 9 is located, is printed on the jacket member 106, and is the position to apply external force when the gas adsorbing device 1 is opened.
- the manufacturing method of the vacuum heat insulating body 8 is not specifically limited.
- the core member 9 is cut upward from the surface of the core member 9 with the surface of the core member 9 facing upward, and a cut is formed in the core member 9.
- the fiber sheet cut by the notch 11 is peeled off
- the fiber sheet is peeled off and a tear 12 is formed inside the core member 9.
- the gas adsorbing device 1 is inserted into the slit 12 from the cut 11, the gas adsorbing device 1 is accommodated in the slit 12.
- the gas adsorption device 1 is inserted into the notch 11 from the front end portion of the gas adsorption device 1 where the sealing member 2 is arranged, so that the rear end portion of the gas adsorption device 1 is arranged in the vicinity of the notch 11.
- the gas adsorption device 1 is arranged in the core member 9 so that the minor axis (thickness) of the substantially flat cross section is in the thickness direction of the core member 9. This cut 11 restricts movement in a direction parallel to the surface of the core member 9 of the gas adsorption device 1.
- the jacket member 10 was formed by making one laminated film close three ways.
- the jacket member 10 is similarly formed by closing the two laminated films on all sides.
- FIG. 8 is a perspective view showing the gas adsorption device 1 accommodated in the vacuum heat insulating body 8.
- FIG. 9 is a perspective view showing the deformed gas adsorption device 1.
- the gas adsorbent in the first internal space adsorbs the gas heat conduction component remaining in the second internal space and the gas heat transfer component entering the second internal space.
- the second internal space is maintained in a vacuum state, for example, 1 Pa or less, and the vacuum heat insulating body 8 can maintain excellent heat insulating performance.
- the gas adsorption device 1 is accommodated in the second internal space of the jacket member 10, whereby the second internal space is maintained in a vacuum state. For this reason, the fall of the heat insulation performance of the vacuum heat insulating body 8 is prevented.
- the mark 13 is provided at a position corresponding to the arrangement position of the gas adsorption device 1, when an external force is applied to the mark 13 as a mark, the sealing member 2 is surely broken. For this reason, the function of the gas adsorption device 1 is demonstrated in the vacuum heat insulating body 8, and the vacuum degree of the vacuum heat insulating body 8, and by extension, heat insulation is maintained.
- the gas adsorption device 1 is opened by an external force, it is not necessary to provide an instrument for opening the gas adsorption device 1, and the adsorption device can be opened easily and reliably. Further, the opening member raises the surface of the vacuum heat insulating body 8, and the outer member 106 is rubbed and broken.
- the sealing member 2 is broken inside the jacket member 10 and the through hole 14 is formed, so that the performance of the gas adsorption device 1 is exhibited. For this reason, for example, in order to investigate the cause of the vacuum heat insulating body 8 such as poor performance, the gas adsorption device 1 is taken out from the vacuum heat insulating body 8, and the formation state of the through hole 14 in the sealing member 2 is determined. By looking, it can be confirmed whether the adsorption device is functioning.
- the core member 9 serves as a buffer material, and the gas adsorbing device 1 is prevented from being unsealed.
- the opening 5 of the metal container 3 of the gas adsorption device 1 is formed in a cylindrical shape including a substantially flat cross section, and the gas adsorption device 1 has a substantially flat short axis perpendicular to the surface of the vacuum heat insulator 8. Is arranged. For this reason, when an external force is applied in a direction parallel to the substantially flat cross section, a force that the external force bends the sealing member 2 against the opening 5 acts in the direction of the substantially flat short axis. The strength of the opening 5 and the sealing member 2 with respect to the external force in the substantially flat short axis direction is smaller than that of the substantially flat long axis direction. Thereby, the sealing member 2 is easily broken on each axis, and the through hole 14 is formed.
- the notch 11 formed in the core member 9 leads to the tear 12 inside the core member 9.
- the gas adsorbent is inserted into the slit 12 from the cut 11, and the gas adsorption device 1 is accommodated in the space of the slit 12.
- This cut 11 restricts movement in a direction parallel to the surface of the core member 9 of the gas adsorption device 1.
- the mark 13 is a mark or seal attached to the outer surface of the jacket member 10.
- the mark 13 may be a concave portion, a convex portion, a notch, or the like that appears on the jacket member 10.
- the notch 11 of the core member 9 can also be the mark 13 of the installation position of the gas adsorption device 1.
- FIG. 10 by accommodating the gas adsorption device 1 inside the core member 9, the surface of the core member 9 swells outside in a range corresponding to the gas adsorption device 1. Since this bulge appears on the jacket member 10, this bulge is also used for the mark 13 indicating the position of the gas adsorption device 1.
- FIG. 11 when the hollow is formed in the core member 9 and the gas adsorbing device 1 is accommodated in the hollow, the hollow appears in the outer cover member 10. Used as a mark 13 indicating the position.
- the gas adsorption device 1 is accommodated inside the core member 9.
- the gas adsorption device 1 may be disposed on the surface of the core member 9. In this case, the notch 11 and the accommodating space 12 for the gas adsorption device are not provided.
- the gas adsorption device 1 is provided in the vacuum heat insulating body 8.
- the gas adsorption device 1 is accommodated in the inner bag 15, and the moisture adsorbent 16 is further provided in the vacuum heat insulator 8.
- FIG. 12 is a cross-sectional view showing the vacuum heat insulating body 8 according to the third embodiment.
- the inner bag 15 is a movement suppression unit that is provided in the second internal space of the jacket member 10 and suppresses the positional deviation of the gas adsorption device 1.
- the inner bag 15 is made of a material having a high frictional force, for example, a nonwoven fabric made of a resin such as Japanese paper or PE.
- the inner bag 15 is made of an elastic material, and examples of the elastic material include a nonwoven fabric made of a resin such as PP and PET. Since this elastic material is soft and difficult to deform, the inner bag 15 prevents the gas adsorbing device 1 from causing abnormal appearance such as scratches and dents.
- the nonwoven fabric comprised with resin is preferable from the point that it is hard to contain a water
- a nonwoven fabric composed of PP and PET is preferable because it has high tensile strength, tear strength, and heat resistance, and is low in cost, and can be manufactured by inexpensive and simple production processing.
- the inner bag 15 contains part or all of the gas adsorption device 1.
- the inner bag 15 has a three-way closed shape or a four-way closed shape. When the inner bag 15 is closed on all sides, a material having air permeability is used for the inner bag 15. The inner bag 15 that is closed on all sides is preferable because the gas adsorption device 1 is unlikely to come off.
- the moisture adsorbent 16 is a material that adsorbs water vapor that remains or enters the second internal space of the vacuum heat insulator 8.
- a chemical adsorbent such as calcium oxide or magnesium oxide
- a physical adsorbent such as zeolite, or a mixture thereof is used.
- the gas adsorption device 1 is wrapped in the inner bag 15. Accordingly, when the gas adsorbing device 1 is installed in the core member 9, or when the core member 9 is wrapped with the outer cover member 10, the position of the gas adsorbing device 1 is caused by friction between the inner bag 15 and the core member 9. Is prevented from shifting. Thereby, the position of the sealing member 2 of the gas adsorption device 1 can be easily specified, and the decrease in productivity is suppressed. Moreover, an external force is reliably applied to the gas adsorption device 1, and the gas adsorption device 1 is opened.
- the inner bag 15 serves as a buffer material for the gas adsorption device 1, erroneous opening of the gas adsorption device 1 is reduced.
- the gas adsorption device 1 and the moisture adsorbent 16 are used in combination. Thereby, the water
- FIG. Thereafter, when the gas adsorption device 1 is opened, a gas other than moisture is adsorbed in the second internal space by the gas adsorption device 1. For this reason, the usage-amount of an expensive gas adsorption material reduces, and cost is reduced.
- the mark 13 according to the second embodiment may be attached to the jacket member 10 of the vacuum heat insulating body 8 according to the third embodiment.
- the position of the sealing member 2 of the gas adsorption device 1 can be easily recognized from the outside.
- the core member 9 of the vacuum heat insulating body 8 according to the third embodiment may be provided with a notch and a space for accommodating the gas adsorption device 1 according to the second embodiment.
- the gas adsorption device 1 wrapped in the inner bag 15 is accommodated in the accommodation space 12 inside the core member 9.
- the movement of the gas adsorption device 1 is regulated by the friction between the inner bag 15 and the inner surface of the storage space 12.
- the inner surface of the space in which the gas adsorbing device 1 is stored functions as a movement suppressing unit.
- the sealing member 2 of the gas adsorption device 1 is broken and opened by an external force.
- the opening member of the gas adsorption device 1 may be provided in the vacuum heat insulating body 8.
- the elastic core member 9 existing between the sealing member 2 and the outer cover member 10 softens the impact of the external force. For this reason, although the sealing member 2 is destroyed by external force, scattering of the fragment of the sealing member 2 is prevented. Therefore, the fragments of the sealing member 2 do not enter the core member 9 except between the sealing member 2 and the jacket member 10. As a result, when the vacuum insulator 8 is discarded, the respective members can be easily separated, and the recyclability is improved. Depending on how the sealing member 2 is destroyed, the core member 9 between the sealing member 2 and the outer cover member 10 may include fragments of the sealing member 2.
- the vacuum heat insulator 8 can be separated by removing the core member 9 between the sealing member 2 and the jacket member 10 from the other core members 9. Moreover, the core member 9 between the sealing member 2 and the jacket member 10 and the other core member 9 may be separated in advance. In this case, the vacuum insulator 8 can be more easily separated.
- the gas adsorption device 1 is accommodated inside the core member 9.
- the gas adsorption device 1 may be disposed on the surface of the core member 9.
- the sealed container, the manufacturing method thereof, and the vacuum heat insulating body of the present invention can be applied to a sealed container, a manufacturing method thereof, a vacuum heat insulating body, and the like in which a decrease in the degree of vacuum in the internal space containing the solid matter is suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Insulation (AREA)
- Packages (AREA)
- Separation Of Gases By Adsorption (AREA)
- Thermally Insulated Containers For Foods (AREA)
Abstract
An airtight container (1) has an opening (5) and is provided with a metal container (3) having a depressurized first interior space, a solid matter (4) contained in the first interior space of the metal container and a sealing member (2) composed of glass containing at least one of an alkali earth metal oxide and an alkali metal oxide. The sealing member is heated and melted after which it is cooled and solidified, thus being joined to the opening of the metal container to seal the opening.
Description
本発明は、密閉容器およびその製造方法、ならびに真空断熱体に関し、特に、減圧された内部空間に固形物が収容された金属製容器の開口部が封止部材で封止された密閉容器と、この密閉容器の製造方法と、この密閉容器を中空の外被部材の減圧された内部空間に含む真空断熱体とに関する。
The present invention relates to a hermetic container, a method for manufacturing the same, and a vacuum heat insulator, and in particular, a hermetic container in which an opening of a metal container in which a solid is housed in a reduced internal space is sealed with a sealing member; The present invention relates to a method for manufacturing the hermetic container, and a vacuum heat insulating body including the hermetic container in a decompressed internal space of a hollow jacket member.
近年、地球環境問題である温暖化の対策として、省エネルギーを推進する動きが活発化している。このため、温冷熱利用機器に関しても、熱を有効活用するという観点から、優れた断熱性能を有する真空断熱体が求められている。
In recent years, there has been an active movement to promote energy conservation as a countermeasure against global warming, which is a global environmental problem. For this reason, vacuum heat insulators having excellent heat insulation performance are also demanded from the viewpoint of effective use of heat with regard to equipment for heating and cooling heat.
真空断熱体は、たとえば、ラミネート加工された袋の内部空間にグラスウールなどの芯部材を収納し、袋の内部空間を減圧し、袋を密封することにより形成される。芯部材は、気相容積比率が高く、袋の内部空間に多数の微細な空隙が形成される。この芯部材の空隙径が、減圧下における気体分子の平均自由行程より小さいと、熱伝導する気体分子(気体熱伝導成分)のサイズが小さくなる。特に、芯部材の空隙径が、たとえば、1mm程度と非常に微細である場合、対流する気体分子による熱伝導が無視できるほど小さくなる。さらに、室温付近では、輻射物質による放射熱が熱伝導率に寄与する割合は、非常に小さい。したがって、真空断熱体における熱伝導は、芯部材の固体熱伝導成分と、僅かに残る気体熱伝導成分とが支配的になる。このため、真空断熱体の熱伝導率は、他の断熱材と比較して非常に小さいとされている。
The vacuum heat insulator is formed, for example, by storing a core member such as glass wool in the laminated bag interior space, decompressing the bag interior space, and sealing the bag. The core member has a high gas phase volume ratio, and many fine voids are formed in the internal space of the bag. When the void diameter of the core member is smaller than the mean free path of gas molecules under reduced pressure, the size of the gas molecules (gas heat conduction component) that conducts heat is reduced. In particular, when the gap diameter of the core member is very fine, for example, about 1 mm, the heat conduction by the convective gas molecules becomes so small that it can be ignored. Furthermore, near room temperature, the ratio of the radiant heat from the radiant material contributing to the thermal conductivity is very small. Therefore, the heat conduction in the vacuum heat insulating body is dominated by the solid heat conduction component of the core member and the slightly remaining gas heat conduction component. For this reason, it is supposed that the heat conductivity of a vacuum heat insulating body is very small compared with other heat insulating materials.
このような高性能な真空断熱体にとっては、ラミネート加工された袋を介して内部空間へ進入するわずかな空気も断熱性を劣化させる重要な要因となる。そこで、袋の内部空間に芯部材と共に気体吸着デバイスをさらに収納することが提案されている。これにより、気体吸着デバイスが、内部空間に侵入した微量の気体熱伝導成分を吸着するため、真空断熱体の断熱性能が維持される。このため、気体吸着デバイスには、非常に高い気体吸着性能が要求される。特に、真空断熱体の内部空間において気体吸着デバイスの封止部材が開放されることにより、気体吸着デバイスの性能を維持する方法が提案されている。
For such a high-performance vacuum insulator, even a slight amount of air entering the internal space through the laminated bag is an important factor that degrades the heat insulation. Therefore, it has been proposed to further store the gas adsorption device together with the core member in the internal space of the bag. Thereby, since a gas adsorption | suction device adsorb | sucks the trace amount gas heat conductive component which penetrate | invaded internal space, the heat insulation performance of a vacuum heat insulating body is maintained. For this reason, the gas adsorption device is required to have very high gas adsorption performance. In particular, a method for maintaining the performance of the gas adsorption device by opening the sealing member of the gas adsorption device in the internal space of the vacuum heat insulator has been proposed.
また、このような気体吸着デバイスと同様に、容器を真空状態に封止するための封止ガラスの技術が提案されている。
Also, as with such a gas adsorption device, a sealing glass technique for sealing a container in a vacuum state has been proposed.
特許文献1に示す金属製真空二重容器では、金属製の内容器と外容器のいずれか一方に排気口を有する内外容器が接合されることにより、二重容器が形成される。この排気口の近傍に軟化温度が200~600℃である低温溶融ガラスからなる封止材が配設される。そして、二重容器が真空加熱炉に配され、封止材の軟化温度より低い温度で二重容器の内外容器間の空隙が真空状態になるように排気される。次いで、封止材の軟化温度より高い温度に二重容器が加熱されると、封止材が軟化し排気口を封止する。
In the metal vacuum double container shown in Patent Document 1, a double container is formed by joining an inner and outer container having an exhaust port to one of a metal inner container and an outer container. A sealing material made of low-temperature molten glass having a softening temperature of 200 to 600 ° C. is disposed in the vicinity of the exhaust port. Then, the double container is arranged in a vacuum heating furnace and evacuated so that the gap between the inner and outer containers of the double container is in a vacuum state at a temperature lower than the softening temperature of the sealing material. Next, when the double container is heated to a temperature higher than the softening temperature of the sealing material, the sealing material softens and seals the exhaust port.
また、特許文献2に示す金属製二重容器では、真空状態の二重容器の排気口を封止するための封止用ガラスの組成が提案されている。
Also, in the metal double container shown in Patent Document 2, a composition of sealing glass for sealing the exhaust port of the vacuum double container has been proposed.
さらに、特許文献3に示す金属製二重容器では、真空状態の二重容器の排気口を封止するための封止ガラスとして、封止の際に封止ガラスから発生するガス量の低いものが提案されている。
Furthermore, in the metal double container shown in Patent Document 3, as the sealing glass for sealing the exhaust port of the vacuum double container, the amount of gas generated from the sealing glass during sealing is low. Has been proposed.
しかしながら、上記特許文献1~3のいずれの金属製二重容器も魔法瓶などとして用いられるものである。このため、二重容器間の真空空間に固形物が設置されることも想定されていないため、真空空間に固形物が設置された場合に比べて封止ガラスが排気口に接合される力が小さくてもよい。このため、仮に真空空間に固形物が設置されると、真空封止過程において固形物に含まれるガスや水分が脱離する。これらの脱離した物質によって真空空間内の圧力が高くなり、真空空間内のガスが封止ガラスの周縁を通過して排出される。これにより、封止ガラスが真空封止する力が低下し、真空空間の真空度が低下してしまう。
However, any of the metal double containers described in Patent Documents 1 to 3 is used as a thermos bottle. For this reason, since it is not envisaged that a solid material is installed in the vacuum space between the double containers, the force that the sealing glass is joined to the exhaust port is greater than when a solid material is installed in the vacuum space. It may be small. For this reason, if a solid substance is installed in the vacuum space, gas and moisture contained in the solid substance are desorbed in the vacuum sealing process. These desorbed substances increase the pressure in the vacuum space, and the gas in the vacuum space passes through the periphery of the sealing glass and is discharged. Thereby, the force which the sealing glass seals in vacuum decreases, and the degree of vacuum in the vacuum space decreases.
本発明はこのような課題を解決するためになされたものであり、固形物を収納した内部空間の真空度の低下が抑制される密閉容器およびその製造方法、ならびにこの密閉容器を用いた真空断熱体を提供することを目的としている。
The present invention has been made in order to solve such problems, and a sealed container in which a decrease in the degree of vacuum in an internal space containing solids is suppressed, a method for manufacturing the same, and a vacuum insulation using the sealed container The purpose is to provide a body.
本発明のある態様に係る密閉容器は、開口部を有し、その第1内部空間が減圧された金属製容器と、前記金属製容器の第1内部空間内に収容された固形物と、アルカリ土類金属酸化物およびアルカリ金属酸化物の少なくともいずれか一方を含むガラスから成る封止部材と、を備え、前記封止部材は加熱溶融されて冷却固化されることにより前記金属製容器の開口部に接合されて前記開口部を封止している。
An airtight container according to an aspect of the present invention has an opening, a metal container whose first internal space is decompressed, a solid material housed in the first internal space of the metal container, an alkali A sealing member made of glass containing at least one of an earth metal oxide and an alkali metal oxide, and the sealing member is heated and melted to be cooled and solidified, whereby the opening of the metal container And the opening is sealed.
本発明によれば、固形物を収納した内部空間の真空度の低下が抑制される密閉容器およびその製造方法、ならびにこの密閉容器を用いた真空断熱体を提供することができることができるという効果を奏する。
Advantageous Effects of Invention According to the present invention, there is provided an effect that it is possible to provide a sealed container in which a decrease in the degree of vacuum in an internal space containing solids is suppressed, a method for manufacturing the same, and a vacuum insulator using the sealed container. Play.
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
第1の発明に係る密閉容器は、開口部を有し、その第1内部空間が減圧された金属製容器と、前記金属製容器の第1内部空間内に収容された固形物と、アルカリ土類金属酸化物およびアルカリ金属酸化物の少なくともいずれか一方を含むガラスから成る封止部材と、を備え、前記封止部材は加熱溶融されて冷却固化されることにより前記金属製容器の開口部に接合されて前記開口部を封止している。
A sealed container according to a first aspect of the present invention has an opening, a metal container whose first inner space is decompressed, a solid material accommodated in the first inner space of the metal container, and alkaline earth A sealing member made of glass containing at least one of a metal oxide and an alkali metal oxide, and the sealing member is heated and melted and cooled and solidified to form an opening in the metal container. It joins and the said opening part is sealed.
この構成によれば、加熱処理によって封止部材のガラスに含まれるアルカリ土類金属酸化物またはアルカリ金属酸化物が、金属製容器の開口部の表面に形成される金属酸化物と化学結合する。これによって、封止部材と開口部とが強固に接合されため、固形物が金属製容器の内部に収納されても、密閉容器の密閉性が高く維持される。
According to this configuration, the alkaline earth metal oxide or alkali metal oxide contained in the glass of the sealing member is chemically bonded to the metal oxide formed on the surface of the opening of the metal container by the heat treatment. As a result, the sealing member and the opening are firmly joined, so that the airtightness of the airtight container is kept high even if the solid matter is stored inside the metal container.
第2の発明に係る密閉容器は、第1の発明において、前記封止部材のアルカリ土類金属酸化物が、BaOおよびSrOのいずれかであってもよい。
In the sealed container according to the second invention, in the first invention, the alkaline earth metal oxide of the sealing member may be either BaO or SrO.
この構成によれば、アルカリ土類金属の中でもBaOおよびSrOは金属酸化物と強く強固に化学結合することにより、封止部材が金属製容器の開口部と強固に接合される。これにより、密閉容器は優れた密閉性を維持することができる。
According to this configuration, BaO and SrO among the alkaline earth metals are strongly and strongly chemically bonded to the metal oxide, so that the sealing member is firmly joined to the opening of the metal container. Thereby, the airtight container can maintain the outstanding airtightness.
第3の発明に係る前記金属製容器は、第1または第2の発明において、前記封止部材は前記開口部の内部に位置して当該開口部に接合されており、前記金属製容器は、前記封止部材の熱膨張係数より大きな熱膨張係数を有してもよい。
The metal container according to a third invention is the first or second invention, wherein the sealing member is located inside the opening and joined to the opening, and the metal container is You may have a thermal expansion coefficient larger than the thermal expansion coefficient of the said sealing member.
この構成によれば、加熱処理後の冷却処理により拡張した金属製容器が封止部材より大きく収縮する。このため、金属製容器の開口部が開口部の内部に位置する封止部材を締め付け、これらが強固に機械的に接合される。これにより、密閉容器は優れた密閉性を維持することができる。
According to this configuration, the metal container expanded by the cooling process after the heat treatment contracts more than the sealing member. For this reason, the opening part of a metal container clamp | tightens the sealing member located in the inside of an opening part, and these are joined firmly mechanically. Thereby, the airtight container can maintain the outstanding airtightness.
第4の発明に係る密閉容器は、第1~3のいずれかの発明において、前記金属製容器が、アルミニウムで構成されていてもよい。
According to a fourth aspect of the present invention, in any one of the first to third aspects, the metal container may be made of aluminum.
この構成によれば、アルミニウムで構成される金属製容器は封止部材の熱膨張係数より大きく、封止部材は金属製容器の開口部により強固に機械的に接合される。これにより、密閉容器は優れた密閉性を維持することができる。
According to this configuration, the metal container made of aluminum is larger than the thermal expansion coefficient of the sealing member, and the sealing member is firmly mechanically joined to the opening of the metal container. Thereby, the airtight container can maintain the outstanding airtightness.
第5の発明に係る密閉容器は、第1~4のいずれかの発明において、前記金属製容器の開口部に狭窄部が設けられ、前記封止部材は、前記狭窄部に接合されて該狭窄部を封止していてもよい。
The sealed container according to a fifth aspect of the present invention is the sealed container according to any one of the first to fourth aspects, wherein a constriction is provided in the opening of the metal container, and the sealing member is joined to the constriction. The part may be sealed.
この構成によれば、その開口部の内部に封止部材が位置した金属製容器が加熱処理されると、溶融した封止部材がその表面張力によって狭窄部に保持される。このため、溶解した封止部材を支持する機構が不要であって、簡単な構造で封止部材が狭窄部を封止することができる。
According to this configuration, when the metal container in which the sealing member is located inside the opening is heat-treated, the molten sealing member is held in the narrowed portion by the surface tension. For this reason, the mechanism which supports the melt | dissolved sealing member is unnecessary, and the sealing member can seal a constriction part by simple structure.
第6の発明に係る密閉容器は、第1~5のいずれかの発明において、前記固形物が加熱処理により劣化しない気体吸着材を含み、気体吸着デバイスとして機能してもよい。
The sealed container according to a sixth invention may include a gas adsorbing material in which the solid matter does not deteriorate by heat treatment in any one of the first to fifth inventions, and may function as a gas adsorbing device.
この構成によれば、封止部材により金属製容器の開口部を封止するための加熱処理が固形物に施されても、固形物は劣化しない。このため、密閉容器内において固形物は気体吸着材としてその機能を発揮することができる。
According to this configuration, even if the heat treatment for sealing the opening of the metal container with the sealing member is performed on the solid material, the solid material does not deteriorate. For this reason, the solid substance can exhibit its function as a gas adsorbent in the sealed container.
第7の発明に係る真空断熱体は、第6の発明の密閉容器で構成される気体吸着デバイスと、芯部材と、前記気体吸着デバイスと前記芯部材とをその第2内部空間内に収容し、前記第2内部空間が減圧されて密封されている中空の外被部材と、を備えていてもよい。
A vacuum heat insulating body according to a seventh aspect of the present invention accommodates a gas adsorbing device including the sealed container of the sixth aspect, a core member, the gas adsorbing device and the core member in the second internal space. And a hollow outer cover member in which the second inner space is decompressed and sealed.
この構成によれば、気体吸着デバイスが密閉されているため、気体吸着性能は高く維持されている。この気体吸着デバイスが外被部材の内部において開封されると、第2内部空間に残存または侵入する気体熱伝導成分が気体吸着デバイスに吸着されて、第2内部空間の真空度は高く維持される。これにより、真空断熱体は優れた断熱性を発揮することができる。
According to this configuration, since the gas adsorption device is hermetically sealed, the gas adsorption performance is maintained high. When the gas adsorbing device is opened inside the jacket member, the gas heat conduction component remaining or entering the second internal space is adsorbed by the gas adsorbing device, and the degree of vacuum of the second internal space is maintained high. . Thereby, a vacuum heat insulating body can exhibit the outstanding heat insulation.
第8の発明に係る真空断熱体は、第7の発明において、前記外被部材の第2内部空間において前記封止部材が破壊されることにより、前記気体吸着デバイスを開放する貫通口が形成されていてもよい。
According to an eighth aspect of the present invention, in the seventh aspect, the through hole that opens the gas adsorbing device is formed when the sealing member is destroyed in the second internal space of the jacket member. It may be.
この構成によれば、封止部材に貫通口するための機構を別途設ける必要がなく、気体吸着デバイスが簡単な構造で確実に開放される。
According to this configuration, it is not necessary to separately provide a mechanism for penetrating the sealing member, and the gas adsorbing device is reliably opened with a simple structure.
第9の発明に係る真空断熱体では、第8の発明において、前記金属製容器の開口部が、略扁平な断面を有する筒状に形成され、前記開口部に略扁平な断面の短軸方向の外力が前記封止部材に加わり、前記封止部材が破壊されることにより、前記貫通口が形成されていてもよい。
In a vacuum heat insulator according to a ninth invention, in the eighth invention, the opening of the metal container is formed in a cylindrical shape having a substantially flat cross section, and the short axis direction of the substantially flat cross section in the opening. The through hole may be formed by applying an external force to the sealing member and destroying the sealing member.
この構成によれば、略扁平の断面を含む筒状で形成された開口部に対して、略扁平の断面の短軸方向に外力が加えられる。これにより、開口部が変形しやすいため、封止部材が簡単に破壊される。この結果、気体吸着デバイスが簡単な構造で確実に開放される。
According to this configuration, an external force is applied in the short axis direction of the substantially flat cross section to the opening formed in the cylindrical shape including the substantially flat cross section. Thereby, since an opening part is easy to deform | transform, a sealing member is destroyed easily. As a result, the gas adsorption device is reliably opened with a simple structure.
第10の発明に係る真空断熱体では、第7~9の発明において、前記気体吸着デバイスが前記芯部材の内部に収納され、前記外被部材と前記気体吸着デバイスとの間に前記芯部材が介在してもよい。
In a vacuum heat insulator according to a tenth invention, in the seventh to ninth inventions, the gas adsorbing device is housed in the core member, and the core member is interposed between the jacket member and the gas adsorbing device. It may be interposed.
この構成によれば、外力によって封止部材が破壊されて、気体吸着デバイスが開放される際、外被部材と気体吸着デバイスとの間の芯部材により外力が緩和される。これにより、破壊された封止部材の破片が芯部材に散乱しない。このため、真空断熱体の解体の際に、各部材を簡単に分別することができ、真空断熱体をリサイクルし易い。
According to this configuration, when the sealing member is broken by an external force and the gas adsorption device is opened, the external force is relieved by the core member between the jacket member and the gas adsorption device. Accordingly, the broken pieces of the sealing member are not scattered on the core member. For this reason, when disassembling the vacuum heat insulator, each member can be easily separated and the vacuum heat insulator can be easily recycled.
第11の発明に係る真空断熱体は、第10の発明において、前記芯部材の内部において前記気体吸着デバイスが収納される空間に通ずる、前記芯部材に形成された切れ込みをさらに備えてもよい。
The vacuum heat insulator according to an eleventh aspect of the invention according to the tenth aspect may further comprise a notch formed in the core member that communicates with a space in which the gas adsorbing device is accommodated inside the core member.
この構成によれば、芯部材の切れ込みから芯部材の内部空間へ気体吸着デバイスを挿入することにより、気体吸着デバイスを芯部材の内部空間に簡単に収納することができる。
According to this configuration, the gas adsorption device can be easily accommodated in the internal space of the core member by inserting the gas adsorption device into the internal space of the core member from the cut of the core member.
第12の発明に係る真空断熱体は、第7~11のいずれかの発明において、前記気体吸着デバイスが配設された箇所に対応する前記外被部材の部位に付けられた印をさらに備えていてもよい。
A vacuum heat insulator according to a twelfth aspect of the present invention is the vacuum heat insulator according to any of the seventh to eleventh aspects, further comprising a mark attached to a portion of the outer cover member corresponding to a position where the gas adsorption device is disposed. May be.
この構成によれば、印に基づいて気体吸着デバイスの位置に外力を加えると、外力は気体吸着デバイスに作用する。このため、気体吸着デバイスの封止部材が破壊されて、気体吸着デバイスが確実に開放(開封)される。
According to this configuration, when an external force is applied to the position of the gas adsorption device based on the mark, the external force acts on the gas adsorption device. For this reason, the sealing member of the gas adsorption device is broken, and the gas adsorption device is reliably opened (opened).
第13の発明に係る真空断熱体は、第7~12のいずれの発明において、前記外被部材の第2内部空間に設けられ、前記気体吸着デバイスの移動を抑制する移動抑制部をさらに備えていてもよい。
According to a thirteenth aspect of the present invention, in any of the seventh to twelfth aspects of the present invention, the vacuum heat insulator further includes a movement suppressing portion that is provided in the second internal space of the jacket member and suppresses movement of the gas adsorption device. May be.
この構成によれば、外被部材の第2内部空間に設けられた移動抑制部により、気体吸着デバイスの移動が抑制される。このため、気体吸着デバイスの位置を外被部材の外から特定することができ、生産性の低下が防止される。
According to this configuration, the movement of the gas adsorption device is suppressed by the movement suppressing portion provided in the second internal space of the jacket member. For this reason, the position of the gas adsorbing device can be specified from the outside of the jacket member, and a decrease in productivity is prevented.
第14の発明に係る真空断熱体では、第13の発明において、前記移動抑制部は、前記気体吸着デバイスの一部または全部を内包する内袋で構成されてもよい。
In the vacuum heat insulating body according to the fourteenth aspect of the invention, in the thirteenth aspect of the invention, the movement suppressing part may be constituted by an inner bag that encloses part or all of the gas adsorption device.
この構成によれば、内袋により覆われた範囲において気体吸着デバイスと内袋との摩擦により、気体吸着デバイスの位置ずれが抑制され、生産性の低下が防止される。
According to this configuration, the displacement of the gas adsorbing device is suppressed by the friction between the gas adsorbing device and the inner bag in the range covered by the inner bag, and the productivity is prevented from being lowered.
第15の発明に係る真空断熱体では、第14の発明において、前記内袋は弾性材料で構成されてもよい。
In the vacuum heat insulator according to the fifteenth aspect, in the fourteenth aspect, the inner bag may be made of an elastic material.
この構成によれば、弾性材料の内袋により気体吸着デバイスが覆われることにより、内袋により傷や窪みなどが気体吸着デバイスに形成されることが防止される。
According to this configuration, since the gas adsorption device is covered with the inner bag of the elastic material, it is possible to prevent the inner bag from forming scratches or dents on the gas adsorption device.
第16の発明に係る真空断熱体では、第15の発明において、前記弾性材料は樹脂で構成される不織布を含んでもよい。
In the vacuum heat insulator according to the sixteenth invention, in the fifteenth invention, the elastic material may include a nonwoven fabric made of resin.
この構成によれば、樹脂で形成される不織布は、水分の吸収が少なく、また、破れにくい。このため、第2内部空間における真空度の低下が防がれると共に、気体吸着デバイスの移動が規制される。
According to this configuration, the nonwoven fabric formed of resin has little moisture absorption and is not easily torn. For this reason, the fall of the vacuum degree in 2nd internal space is prevented, and the movement of a gas adsorption device is controlled.
第17の発明に係る真空断熱体では、第16の発明において、前記不織布を形成する樹脂は、PPおよびPETの少なくともいずれか1つを含んでもよい。
In the vacuum heat insulator according to the seventeenth invention, in the sixteenth invention, the resin forming the nonwoven fabric may contain at least one of PP and PET.
この構成によれば、PPおよびPETは、引っ張り強度、引き裂き強度および耐熱性が高く、低コストである。このため、移動規制機能が維持され、生産性の低下が防止される。
According to this configuration, PP and PET have high tensile strength, tear strength, and heat resistance, and are low in cost. For this reason, the movement restriction function is maintained, and a decrease in productivity is prevented.
第18の発明に係る真空断熱体では、第13~17のいずれか1つの発明において、前記移動抑制部は、前記芯部材の内部において前記気体吸着デバイスが収納された空間の内面で構成されてもよい。
In a vacuum heat insulator according to an eighteenth aspect of the invention, in any one of the thirteenth to seventeenth aspects of the invention, the movement suppressing portion is configured by an inner surface of a space in which the gas adsorbing device is accommodated inside the core member. Also good.
この構成によれば、芯部材の内部における気体吸着デバイスの収納空間では、空間の体面である芯部材と気体吸着デバイスとの摩擦によって、気体吸着デバイスの移動が規制されるため、生産性の低下が防止される。
According to this configuration, in the storage space for the gas adsorption device inside the core member, the movement of the gas adsorption device is regulated by the friction between the core member, which is the body surface of the space, and the gas adsorption device. Is prevented.
第19の発明に係る密閉容器の製造方法は、金属製容器の第1内部空間内に固形物を収容することと、前記金属製容器の第1内部空間を減圧しながら、アルカリ土類金属酸化物およびアルカリ金属酸化物の少なくともいずれか一方を含むガラスから成る封止部材を加熱溶融し冷却固化することにより当該封止部材を前記金属製容器の開口部に接合し、それにより前記封止部材で前記開口部を封止することとを含む。
According to a nineteenth aspect of the present invention, there is provided a sealed container manufacturing method comprising: storing solid matter in a first internal space of a metal container; and reducing the first internal space of the metal container while performing alkaline earth metal oxidation. The sealing member made of glass containing at least one of a metal and an alkali metal oxide is heated and melted and cooled and solidified to join the sealing member to the opening of the metal container, thereby the sealing member And sealing the opening.
この構成によれば、加熱処理によって封止部材のガラスに含まれるアルカリ土類金属酸化物またはアルカリ金属酸化物が、金属製容器の開口部の表面に形成される金属酸化物と化学結合する。これによって、封止部材と開口部とが強固に接合されため、固形物が金属製容器の内部に収納されても、密閉容器の密閉性が高く維持される。
According to this configuration, the alkaline earth metal oxide or alkali metal oxide contained in the glass of the sealing member is chemically bonded to the metal oxide formed on the surface of the opening of the metal container by the heat treatment. As a result, the sealing member and the opening are firmly joined, so that the airtightness of the airtight container is kept high even if the solid matter is stored inside the metal container.
以下、本発明の実施の形態を、図面を参照しながら具体的に説明する。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
なお、以下では全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
In the following, the same or corresponding elements are denoted by the same reference symbols throughout all the drawings, and redundant description thereof is omitted.
(実施の形態1)
図1は、本発明の実施の形態1における密閉容器1の断面図を示す。密閉容器1は、金属製容器3と、固形物4と、アルカリ土類金属酸化物およびアルカリ金属酸化物の少なくともいずれか一方を含むガラスの封止部材2と、を備える。 (Embodiment 1)
FIG. 1 shows a cross-sectional view of a sealedcontainer 1 according to Embodiment 1 of the present invention. The sealed container 1 includes a metal container 3, a solid material 4, and a glass sealing member 2 including at least one of an alkaline earth metal oxide and an alkali metal oxide.
図1は、本発明の実施の形態1における密閉容器1の断面図を示す。密閉容器1は、金属製容器3と、固形物4と、アルカリ土類金属酸化物およびアルカリ金属酸化物の少なくともいずれか一方を含むガラスの封止部材2と、を備える。 (Embodiment 1)
FIG. 1 shows a cross-sectional view of a sealed
金属製容器3は、減圧された内部空間(以下、第1内部空間という)を形成する部材である。金属製容器3は、水や気体などが透過せず、耐熱性が高く、封止部材2よりも熱膨張係数が大きい金属により構成される。この金属には、コストおよび入手し易さの観点から、たとえば、アルミニウム、鉄、銅およびステンレスなどが用いられる。ただし、金属は、これに限定されず、密閉容器1の使用目的や、封止部材2の溶融温度に応じて適宜選択される。特に、アルミニウムは、金属の中でも熱膨張係数が大きく、他の金属と比較して展延性が高いため、金属製容器3の材質として好ましい。
The metal container 3 is a member that forms a decompressed internal space (hereinafter referred to as a first internal space). The metal container 3 is made of a metal that does not transmit water or gas, has high heat resistance, and has a larger thermal expansion coefficient than the sealing member 2. For this metal, for example, aluminum, iron, copper, and stainless steel are used from the viewpoint of cost and availability. However, a metal is not limited to this, It selects suitably according to the intended purpose of the airtight container 1, and the melting temperature of the sealing member 2. FIG. In particular, aluminum is preferable as a material of the metal container 3 because it has a large coefficient of thermal expansion among metals and has a high spreadability compared to other metals.
金属製容器3は、開口する一方端(以下、「開口端」と言う。)と、閉じられた他方端とを含む筒状に形成される。金属製容器3は開口部5を含み、開口部5は金属製容器3の開口及びその近傍で構成される。開口部5の径は、封止部材2が挿入可能な長さに設定される。ここでは、開口部5に狭窄部7が設けられる。
The metal container 3 is formed in a cylindrical shape including one end that opens (hereinafter referred to as “open end”) and the other end that is closed. The metal container 3 includes an opening 5, and the opening 5 is configured by the opening of the metal container 3 and the vicinity thereof. The diameter of the opening 5 is set to a length that allows the sealing member 2 to be inserted. Here, the narrowed portion 7 is provided in the opening 5.
狭窄部7は、金属製容器3の開口端と固形物4との間に設けられ、金属製容器3の開口(開口端)より細い部分である。狭窄部7の径は、開口の径より小さく、溶融した封止部材2を保持することができるサイズに設定される。狭窄部7の形状は、特に限定されない。狭窄部7の上端と金属製容器3の開口端との間隔があいていてもよいし、なくてもよい。この間隔がない場合、加熱処理前に封止部材2は金属製容器3の開口端の上に載せられる。一方、間隔がある場合、加熱処理前に金属製容器3の開口端と狭窄部7の上端との間において封止部材2が開口部5の中に挿入される。
The narrowed portion 7 is provided between the opening end of the metal container 3 and the solid material 4 and is a portion narrower than the opening (opening end) of the metal container 3. The diameter of the narrowed portion 7 is smaller than the diameter of the opening and is set to a size that can hold the molten sealing member 2. The shape of the narrowed portion 7 is not particularly limited. The interval between the upper end of the narrowed portion 7 and the open end of the metal container 3 may or may not be present. When there is no space, the sealing member 2 is placed on the open end of the metal container 3 before the heat treatment. On the other hand, when there is an interval, the sealing member 2 is inserted into the opening 5 between the opening end of the metal container 3 and the upper end of the narrowed portion 7 before the heat treatment.
固形物4は、金属製容器3の第1内部空間に収容される。固形物4としては、減圧された第1内部空間を保持するために必要な支持材料、または減圧された第1内部空間内に保存する必要がある機能性材料などが挙げられる。
The solid material 4 is accommodated in the first internal space of the metal container 3. Examples of the solid material 4 include a support material necessary for holding the decompressed first internal space, or a functional material that needs to be stored in the decompressed first internal space.
支持材料には、多数の微細空間を含む芯部材などがある。芯部材が第1内部空間に配されることにより、第1内部空間が減圧されても、金属製容器3がつぶれずに、減圧された第1内部空間が維持される。たとえば、芯部材には、熱伝達率が小さく、かつ減圧下で加熱処理によりガスの発生が少ない、グラスウールなどの材料が用いられ得る。このような芯部材が固形物4として用いられると、金属製容器3の第1内部空間が減圧状態に維持され、かつ金属製容器3の第1内部空間内に芯部材を収容した密閉容器1の熱伝達率が小さくなる。このため、密閉容器1自体が真空断熱体として利用され得る。
The support material includes a core member including many fine spaces. By arranging the core member in the first internal space, even if the first internal space is decompressed, the decompressed first internal space is maintained without collapsing the metal container 3. For example, the core member may be made of a material such as glass wool that has a low heat transfer coefficient and generates less gas by heat treatment under reduced pressure. When such a core member is used as the solid material 4, the sealed container 1 in which the first internal space of the metal container 3 is maintained in a reduced pressure state and the core member is accommodated in the first internal space of the metal container 3. The heat transfer coefficient becomes smaller. For this reason, airtight container 1 itself can be utilized as a vacuum heat insulating body.
機能性材料には、気体を吸着する気体吸着材などがある。気体吸着材は、封止部材2が開放されるまでは減圧された第1内部空間内に保存される際、金属を支持し、第1内部空間を確保する。
Functional materials include gas adsorbents that adsorb gas. The gas adsorbent supports the metal and secures the first internal space when the gas adsorbent is stored in the decompressed first internal space until the sealing member 2 is opened.
気体吸着材には、加熱処理により活性を失わず劣化しない材料が用いられる。気体吸着材として、減圧下において加熱処理によって活性化される物質が用いられる。気体吸着材には、たとえば、Ba系、Ti系、Zr系、Fe系などの合金ゲッターや、銅イオン交換ZSM-5型ゼオライトなどが挙げられる。特に、エネルギー効率および気体吸着性能の管理の点から、減圧下において加熱処理によって活性化される銅イオン交換ZSM-5が気体吸着材として好ましい。
The gas adsorbent is made of a material that does not lose its activity due to heat treatment. A substance that is activated by heat treatment under reduced pressure is used as the gas adsorbent. Examples of the gas adsorbent include Ba-based, Ti-based, Zr-based, and Fe-based alloy getters, and copper ion exchanged ZSM-5 type zeolite. In particular, from the viewpoint of management of energy efficiency and gas adsorption performance, copper ion exchange ZSM-5 activated by heat treatment under reduced pressure is preferable as the gas adsorbent.
気体吸着性能の管理の点について、銅イオン交換ZSM-5型ゼオライトの吸着活性点は銅イオンである。この銅イオンが銅イオン交換ZSM-5型ゼオライト内に導入されている状態に応じて、銅イオン交換ZSM-5型ゼオライトの色相が変化する。このことを利用して、測色値により減圧下において銅イオン交換ZSM-5型ゼオライトの気体吸着性能を管理することが可能である。
Regarding the management of gas adsorption performance, the adsorption active site of the copper ion exchange ZSM-5 type zeolite is copper ion. The hue of the copper ion exchanged ZSM-5 type zeolite changes depending on the state in which the copper ions are introduced into the copper ion exchanged ZSM-5 type zeolite. By utilizing this, it is possible to manage the gas adsorption performance of the copper ion exchanged ZSM-5 type zeolite under reduced pressure by the colorimetric value.
測色値は、市販の分光色差計にて計測される。分光色差計では、測定用セルに銅イオン交換ZSM-5型ゼオライトが充填され、380nm~760nmの範囲の波長に対する光の反射率、吸収率および透過率などが計測される。計測された数値を基に、銅イオン交換ZSM-5型ゼオライトの色座標が求められる。
The colorimetric value is measured with a commercially available spectral color difference meter. In the spectrocolorimeter, a measurement cell is filled with copper ion exchanged ZSM-5 type zeolite, and the reflectance, absorption rate, transmittance, and the like of light with respect to wavelengths in the range of 380 nm to 760 nm are measured. Based on the measured values, the color coordinates of the copper ion exchanged ZSM-5 type zeolite are obtained.
測色色差計SE6000(日本電色工業株式会社製)により計測された場合の、吸着性能を発揮する銅イオン交換ZSM-5型ゼオライトの測色値(色座標、反射率)の範囲が以下に示される。この場合、C光源が用いられ、視野角2°で色座標が測定された。なお、銅イオン交換ZSM-5型ゼオライトは加熱処理前後で活性が異なるため、加熱処理前および加熱処理後における測色値が求められた。また、銅イオン交換ZSM-5型ゼオライトは、金属製容器3に収容された状態で断熱体内に配されてから加熱処理された。このため、加熱処理された断熱体から金属製容器3を取り出し、金属製容器3を破壊し、第1内部空間から銅イオン交換ZSM-5型ゼオライトを取り出すことにより、加熱処理後の銅イオン交換ZSM-5型ゼオライトを得た。そして、この加熱処理後の銅イオン交換ZSM-5型ゼオライトは、加熱処理前の銅イオン交換ZSM-5型ゼオライトと同様に、色差計により測定された。
The range of colorimetric values (color coordinates, reflectance) of copper ion exchanged ZSM-5 type zeolite that exhibits adsorption performance when measured with a colorimetric color difference meter SE6000 (manufactured by Nippon Denshoku Industries Co., Ltd.) is as follows. Indicated. In this case, a C light source was used, and color coordinates were measured at a viewing angle of 2 °. Since the activity of the copper ion exchanged ZSM-5 type zeolite was different before and after the heat treatment, the colorimetric values before and after the heat treatment were obtained. Further, the copper ion exchanged ZSM-5 type zeolite was disposed in the heat insulating body in a state of being accommodated in the metal container 3 and then heat-treated. For this reason, the metal container 3 is taken out from the heat-treated heat insulator, the metal container 3 is destroyed, and the copper ion exchange ZSM-5 type zeolite is taken out from the first internal space, whereby the copper ion exchange after the heat treatment is performed. A ZSM-5 type zeolite was obtained. The copper ion exchanged ZSM-5 type zeolite after the heat treatment was measured with a color difference meter in the same manner as the copper ion exchanged ZSM-5 type zeolite before the heat treatment.
加熱処理前の銅イオン交換ZSM-5型ゼオライトのL*、a*、b*色座標が、たとえば、70≧L*≧96、0≧a*≧-6、-1≧b≧-15であれば、吸着性能が良好である。より望ましくは、色座標が、たとえば、75≧L*≧96、-2.5≧a*≧-6、-1≧b≧-10であれば、吸着性能がさらに優れる。また、380nm~580nmの波長の光に対する反射率が、たとえば、55%以上で95%以下であれば、良好な吸着性能が発揮される。より望ましくは、400nm~500nmの波長の光に対する反射率が、たとえば、60%以上で95%以下であれば、さらに高い吸着性能が発揮される。
The L *, a *, b * color coordinates of the copper ion exchanged ZSM-5 type zeolite before the heat treatment are, for example, 70 ≧ L * ≧ 96, 0 ≧ a * ≧ −6, −1 ≧ b ≧ −15 If so, the adsorption performance is good. More desirably, if the color coordinates are, for example, 75 ≧ L * ≧ 96, −2.5 ≧ a * ≧ −6, and −1 ≧ b ≧ −10, the adsorption performance is further improved. Further, when the reflectance with respect to light having a wavelength of 380 nm to 580 nm is, for example, 55% or more and 95% or less, good adsorption performance is exhibited. More desirably, if the reflectance with respect to light having a wavelength of 400 nm to 500 nm is 60% or more and 95% or less, even higher adsorption performance is exhibited.
加熱処理により銅イオンの状態が変化すると共に、空気成分が銅イオン交換ZSM-5型ゼオライトに吸着することによって、加熱処理後の銅イオン交換ZSM-5型ゼオライトの測色値が変化する。このため、加熱処理後の銅イオン交換ZSM-5型ゼオライトのL*、a*、b*色座標が、たとえば、88≧L*≧81、4≧a*≧-4、12≧b≧-4であれば、吸着性能が良好であると考えられる。より望ましくは、色座標が、たとえば、86≧L*≧83、2≧a*≧-2、10≧b≧-2であれば、吸着性能がさらに優れる。また、380nm~580nmの波長の光に対する反射率が、たとえば、50%以上で70%以下であれば、良好な吸着性能を得ることができる。より望ましくは、400nm~500nmの波長の光に対する反射率が、たとえば、50%以上で70%以下であれば、さらに高い吸着性能が発揮される。
The state of copper ions is changed by the heat treatment, and the color components of the copper ion exchanged ZSM-5 type zeolite after the heat treatment are changed by the air component adsorbed on the copper ion exchanged ZSM-5 type zeolite. For this reason, the L *, a *, b * color coordinates of the copper ion exchanged ZSM-5 type zeolite after the heat treatment are, for example, 88 ≧ L * ≧ 81, 4 ≧ a * ≧ −4, 12 ≧ b ≧ − If it is 4, it is considered that the adsorption performance is good. More desirably, if the color coordinates are 86 ≧ L * ≧ 83, 2 ≧ a * ≧ −2, 10 ≧ b ≧ −2, for example, the adsorption performance is further improved. In addition, when the reflectance with respect to light having a wavelength of 380 nm to 580 nm is, for example, 50% or more and 70% or less, good adsorption performance can be obtained. More desirably, if the reflectance with respect to light having a wavelength of 400 nm to 500 nm is, for example, 50% or more and 70% or less, higher adsorption performance is exhibited.
銅イオン交換ZSM-5型ゼオライトの測色値が上記の範囲であれば、銅イオン交換ZSM-5型ゼオライトは優れた気体吸着性能を発揮することがわかる。このため、測色値により、銅イオン交換ZSM-5型ゼオライトの気体吸着性能が容易に判定される。
It can be seen that when the colorimetric value of the copper ion exchanged ZSM-5 type zeolite is in the above range, the copper ion exchanged ZSM-5 type zeolite exhibits excellent gas adsorption performance. Therefore, the gas adsorption performance of the copper ion exchanged ZSM-5 type zeolite is easily determined from the colorimetric values.
封止部材2は、アルカリ土類金属酸化物およびアルカリ金属酸化物の少なくともいずれか一方を含むガラスで構成される。アルカリ金属酸化物としては、たとえば、Na2O、K2O、Rb2O、Cs2Oが挙げられる。また、アルカリ土類金属酸化物としては、たとえば、MgO、CaO、BaOおよびSrOが挙げられる。特に、アルカリ土類金属酸化物はアルカリ金属酸化物より金属製容器3と強く化学結合するため、望ましい。このアルカリ土類金属酸化物の中でも、BaOおよびSrOは、金属製容器3との化学結合がさらに強固であるため、望ましい。このBaおよびSrのイオン化エネルギーが、Be、Mg、Caなど他のアルカリ土類金属酸化物よりも小さい。このため、BaおよびSrと結合している酸素原子が、金属製容器3の表面の金属酸化物と化学結合し易いためと考えられる。
The sealing member 2 is made of glass containing at least one of an alkaline earth metal oxide and an alkali metal oxide. Examples of the alkali metal oxide include Na 2 O, K 2 O, Rb 2 O, and Cs 2 O. Examples of the alkaline earth metal oxide include MgO, CaO, BaO, and SrO. In particular, alkaline earth metal oxides are desirable because they are chemically bonded to the metal container 3 more strongly than alkali metal oxides. Among the alkaline earth metal oxides, BaO and SrO are desirable because chemical bonds with the metal container 3 are stronger. The ionization energy of Ba and Sr is smaller than that of other alkaline earth metal oxides such as Be, Mg, and Ca. For this reason, it is considered that oxygen atoms bonded to Ba and Sr are easily chemically bonded to the metal oxide on the surface of the metal container 3.
アルカリ土類金属酸化物およびアルカリ金属酸化物の少なくともいずれか一方(以下、「アルカリ土類金属酸化物など」と言う。)のモル比は、たとえば、1~65%であり、15~60%であることが好ましい。アルカリ土類金属酸化物などのモル比が多すぎると、封止部材2がガラスとしての性能を保持することができなくなる。また、アルカリ土類金属酸化物などのモル比が少なすぎると、封止部材2と金属製容器3との接合が弱くなってしまう。
The molar ratio of at least one of alkaline earth metal oxide and alkali metal oxide (hereinafter referred to as “alkaline earth metal oxide etc.”) is, for example, 1 to 65%, and 15 to 60%. It is preferable that When there are too many molar ratios, such as an alkaline-earth metal oxide, the sealing member 2 cannot maintain the performance as glass. Moreover, when there are too few molar ratios, such as alkaline-earth metal oxide, joining of the sealing member 2 and the metal containers 3 will become weak.
なお、モル比は、たとえば、以下のようにして求められる。封止部材2を酸などで溶解し、試料を作成する。この試料に含まれる各元素の重量を、ICP発光分光分析などによって測定する。元素の重量を元素の原子量で割って、元素のモルを求める。元素はガラス中では酸化物として存在するため、元素のモルを元素の酸化物にモルに変換する。そして、全元素の酸化物のモルの合計量に対するアルカリ土類金属酸化物などのモルの比により、アルカリ土類金属酸化物などのモル比が求められる。
Note that the molar ratio is obtained, for example, as follows. The sealing member 2 is dissolved with an acid or the like to prepare a sample. The weight of each element contained in this sample is measured by ICP emission spectral analysis or the like. Divide the weight of the element by the atomic weight of the element to find the mole of the element. Since elements exist as oxides in glass, the moles of elements are converted to moles of element oxides. Then, the molar ratio of the alkaline earth metal oxide or the like is determined by the ratio of the mole of the alkaline earth metal oxide or the like to the total amount of the oxides of all the elements.
接合部6は、封止部材2の表面に形成された層であって、封止部材2において金属製容器3の開口部5と接合する部分である。接合部6は、金属製容器3の開口部5の内部において封止部材2が加熱溶融され冷却固化されることにより形成される。接合部6は、封止部材2のアルカリ土類金属酸化物などと、金属製容器3の表面に形成された金属酸化物とが酸素を介して化学結合する部分である。
The joining portion 6 is a layer formed on the surface of the sealing member 2 and is a portion that joins the opening 5 of the metal container 3 in the sealing member 2. The joint 6 is formed by heating and melting the sealing member 2 in the opening 5 of the metal container 3 and solidifying by cooling. The joint portion 6 is a portion where the alkaline earth metal oxide or the like of the sealing member 2 and the metal oxide formed on the surface of the metal container 3 are chemically bonded via oxygen.
ここで、「化学結合する」ことの根拠を説明する。この接合部6は、水に浸漬されて多量の水に接触することにより、封止部材2から剥離する。この水をICP発光分光分析などで分析したところ、アルカリ土類金属が検出された。これに対して、封止部材2の単体を水に浸漬して、この水をICP発光分光分析などで分析しても、アルカリ土類金属は検出されなかった。この結果、接合部6は封止部材2とは異なり化学結合により形成され、水に溶解しやすい性質を有することが判明した。この化学結合は、金属製容器3の表面に形成された金属酸化物とアルカリ土類金属酸化物とに起因する、酸素を介した化学結合であると考えられる。
Here, the grounds for “chemically bonding” will be explained. The joint 6 is peeled off from the sealing member 2 by being immersed in water and contacting a large amount of water. When this water was analyzed by ICP emission spectroscopic analysis or the like, alkaline earth metal was detected. On the other hand, alkaline earth metal was not detected even when the sealing member 2 alone was immersed in water and this water was analyzed by ICP emission spectroscopic analysis or the like. As a result, it has been found that the bonding portion 6 is formed by chemical bonding unlike the sealing member 2 and has a property of being easily dissolved in water. This chemical bond is considered to be a chemical bond via oxygen caused by the metal oxide and alkaline earth metal oxide formed on the surface of the metal container 3.
[密閉容器の製造方法]
図2は、第1内部空間に固形物4を収容した金属製容器3を示す斜視図である。図3は、図2に示す金属製容器3を潰した状態を示す。図4は、図3に示す金属製容器3の開口部5に封止部材2を挿入した状態を示す。 [Method of manufacturing sealed container]
FIG. 2 is a perspective view showing themetal container 3 containing the solid material 4 in the first internal space. FIG. 3 shows a state in which the metal container 3 shown in FIG. 2 is crushed. FIG. 4 shows a state in which the sealing member 2 is inserted into the opening 5 of the metal container 3 shown in FIG.
図2は、第1内部空間に固形物4を収容した金属製容器3を示す斜視図である。図3は、図2に示す金属製容器3を潰した状態を示す。図4は、図3に示す金属製容器3の開口部5に封止部材2を挿入した状態を示す。 [Method of manufacturing sealed container]
FIG. 2 is a perspective view showing the
図2に示すように、円筒形状の金属製容器3の第1内部空間内に固形物4を配置する。この金属製容器3の厚みが小さくなるように、図3に示すように、金属製容器3の軸方向の全長に亘って金属製容器3を潰す。これにより、金属製容器3の断面が、略楕円形または角が丸い矩形状の扁平な形状になる。そして、図4に示すように、金属製容器3の開口部5をさらに挟んで潰し、狭窄部7を形成する。そして、開口部5に封止部材2を挿入すると、封止部材2は狭窄部7の上に保持される。
As shown in FIG. 2, the solid material 4 is arranged in the first internal space of the cylindrical metal container 3. As shown in FIG. 3, the metal container 3 is crushed over the entire axial length of the metal container 3 so that the thickness of the metal container 3 is reduced. Thereby, the cross section of the metal container 3 becomes a flat shape of a substantially elliptical shape or a rectangular shape with rounded corners. Then, as shown in FIG. 4, the opening 5 of the metal container 3 is further crushed so as to form a narrowed portion 7. When the sealing member 2 is inserted into the opening 5, the sealing member 2 is held on the narrowed portion 7.
このような金属製容器3が真空加熱炉内で減圧されながら加熱される。この加熱温度は、適宜決定されるが、たとえば、封止部材2の一部または全部が溶融される温度に設定される。これにより、第1内部空間が減圧され真空状態になると共に、封止部材2が溶融する。溶融した封止部材2は、狭窄部7の中に流れ込み、表面張力などにより狭窄部7に留まる。続いて、真空加熱炉は減圧されたまま、温度が下げられると、金属製容器3は冷却される。これにより、溶融した封止部材2が固化する。また、熱膨張した金属製容器3が収縮する。
Such a metal container 3 is heated while being decompressed in a vacuum heating furnace. The heating temperature is appropriately determined, and is set to a temperature at which a part or all of the sealing member 2 is melted, for example. Thereby, the first internal space is depressurized to be in a vacuum state, and the sealing member 2 is melted. The melted sealing member 2 flows into the narrowed portion 7 and remains in the narrowed portion 7 due to surface tension or the like. Subsequently, when the temperature is lowered while the vacuum heating furnace is decompressed, the metal container 3 is cooled. Thereby, the molten sealing member 2 is solidified. Further, the thermally expanded metal container 3 contracts.
このとき、ガラスの封止部材2に含まれるアルカリ土類金属酸化物などと、金属製容器3の表面に形成された金属酸化物とが化学結合することにより、金属製容器3の開口部5と封止部材2との間が化学的に接合する。また、金属製容器3が封止部材2より大きく収縮するため、金属製容器3の開口部5が封止部材2の周囲を挟み込むことにより、金属製容器3の開口部5と封止部材2との間が機械的に接合する。このような化学的な接合および機械的な接合によって、金属製容器3の開口部5と封止部材2との間が隙間なく、金属製容器3の開口が封止部材2により塞がれて、金属製容器3が密閉される。これにより、密閉容器1が形成される。
At this time, the alkaline earth metal oxide or the like contained in the glass sealing member 2 and the metal oxide formed on the surface of the metal container 3 are chemically bonded to each other, thereby opening the opening 5 of the metal container 3. And the sealing member 2 are chemically bonded. Further, since the metal container 3 contracts more than the sealing member 2, the opening 5 of the metal container 3 sandwiches the periphery of the sealing member 2, so that the opening 5 of the metal container 3 and the sealing member 2 are sandwiched. Mechanically joins between the two. By such chemical bonding and mechanical bonding, there is no gap between the opening 5 of the metal container 3 and the sealing member 2, and the opening of the metal container 3 is closed by the sealing member 2. The metal container 3 is sealed. Thereby, the sealed container 1 is formed.
なお、加熱処理および冷却処理の条件は、特に指定するものではなく、封止部材2および金属製容器3の組み合わせにより適切に選択される。ただし、加熱処理が減圧下で行われるため、加熱温度が高すぎると、封止部材2のガラス組成物と、金属製容器3の金属酸化物とにおいて脱酸素反応が生じる。これにより、ガラス組成物に含まれる金属と金属酸化物の金属とが合金を形成し、合金が剥離することがある。よって、加熱温度は、たとえば、700℃以下であることが望ましい。
The conditions for the heat treatment and the cooling treatment are not particularly specified, and are appropriately selected depending on the combination of the sealing member 2 and the metal container 3. However, since the heat treatment is performed under reduced pressure, if the heating temperature is too high, a deoxygenation reaction occurs between the glass composition of the sealing member 2 and the metal oxide of the metal container 3. Thereby, the metal contained in the glass composition and the metal of the metal oxide form an alloy, and the alloy may peel off. Therefore, the heating temperature is desirably 700 ° C. or less, for example.
[作用、効果]
第1の実施の形態に係る密閉容器1によれば、ガラスの封止部材2が加熱処理により溶融すると、ガラス組成物内において元素の拡散および移動が生じる。これにより、アルカリ土類金属酸化物などが金属製容器3の表面の金属酸化物と親和性が高いため、金属製容器3と接触している接合部6にアルカリ土類金属酸化物などが増える。そして、この封止部材2のアルカリ土類金属酸化物などと金属製容器3の金属酸化物とが酸素を介して強固な化学結合を形成すると考えられる。この結果、金属製容器3の開口部5と封止部材2との間は、気密性が高い上、強固に接合される。 [Action, effect]
According to the sealedcontainer 1 according to the first embodiment, when the glass sealing member 2 is melted by heat treatment, diffusion and movement of elements occur in the glass composition. Thereby, since alkaline earth metal oxide etc. have high affinity with the metal oxide of the surface of the metal container 3, alkaline earth metal oxide etc. increase in the junction part 6 which is contacting with the metal container 3. . And it is thought that the alkaline earth metal oxide etc. of this sealing member 2 and the metal oxide of the metal container 3 form a strong chemical bond via oxygen. As a result, the opening 5 of the metal container 3 and the sealing member 2 are highly airtight and firmly bonded.
第1の実施の形態に係る密閉容器1によれば、ガラスの封止部材2が加熱処理により溶融すると、ガラス組成物内において元素の拡散および移動が生じる。これにより、アルカリ土類金属酸化物などが金属製容器3の表面の金属酸化物と親和性が高いため、金属製容器3と接触している接合部6にアルカリ土類金属酸化物などが増える。そして、この封止部材2のアルカリ土類金属酸化物などと金属製容器3の金属酸化物とが酸素を介して強固な化学結合を形成すると考えられる。この結果、金属製容器3の開口部5と封止部材2との間は、気密性が高い上、強固に接合される。 [Action, effect]
According to the sealed
また、アルミニウムの金属製容器3の熱膨張係数は、ガラスの封止部材2の熱膨張係数より大きい。このため、加熱処理後の冷却処理において、アルミニウムの金属製容器3は、金属製容器3の開口部5に挿入されたガラスの封止部材2より大きく収縮する。これにより、これらの熱膨張係数の差によって生じる応力によって、金属製容器3の開口部5は封止部材2を締め付ける。これにより、金属製容器3は封止部材2により強固に接合され、密閉容器1は気密性に優れる。
Further, the thermal expansion coefficient of the aluminum metal container 3 is larger than the thermal expansion coefficient of the glass sealing member 2. For this reason, in the cooling process after the heat treatment, the aluminum metal container 3 contracts more than the glass sealing member 2 inserted into the opening 5 of the metal container 3. Thereby, the opening part 5 of the metal container 3 fastens the sealing member 2 by the stress generated by the difference between these thermal expansion coefficients. Thereby, the metal container 3 is firmly joined by the sealing member 2, and the airtight container 1 is excellent in airtightness.
さらに、アルミニウムの金属製容器3の展延性は、ガラスの封止部材2の展延性より大きい。このため、冷却処理により金属製容器3が収縮する際に、金属製容器3は、封止部材2を破壊することなく、また、破断することなく、封止部材2の形状に沿って柔軟に変形する。これにより、金属製容器3に開口部5は封止部材2に密着して、金属製容器3の開口部5と封止部材2との間に隙間が生じにくい。これにより、封止部材2により金属製容器3は強固に接合され、密閉容器1は気密性に優れる。
Furthermore, the spreadability of the aluminum metal container 3 is greater than the spreadability of the glass sealing member 2. For this reason, when the metal container 3 contracts due to the cooling process, the metal container 3 can be flexible along the shape of the sealing member 2 without destroying the sealing member 2 and without breaking. Deform. As a result, the opening 5 is in close contact with the sealing member 2 in the metal container 3, and a gap is hardly generated between the opening 5 of the metal container 3 and the sealing member 2. Thereby, the metal container 3 is firmly joined by the sealing member 2, and the sealed container 1 is excellent in airtightness.
さらに、アルミニウムの金属製容器3が展延性を有するため、金属製容器3の上から封止部材2に外力が加えられると、金属製容器3が容易に変形する。これにより、外力が封止部材2に伝わり、封止部材2が容易に破壊され、密閉容器1が開封され易い。
Furthermore, since the aluminum metal container 3 has spreadability, when an external force is applied to the sealing member 2 from above the metal container 3, the metal container 3 is easily deformed. Thereby, external force is transmitted to the sealing member 2, the sealing member 2 is easily destroyed, and the airtight container 1 is easy to open.
また、加熱処理によって活性化する気体吸着材が固形物4として用いられれば、気体吸着材の活性化と、封止部材2の溶融とが一度の加熱処理によって行われる。このため、加熱処理のエネルギーの消費が抑えられ、エネルギー効率が良好となる。
Further, if a gas adsorbent activated by heat treatment is used as the solid material 4, activation of the gas adsorbent and melting of the sealing member 2 are performed by a single heat treatment. For this reason, consumption of the energy of heat processing is suppressed and energy efficiency becomes favorable.
さらに、減圧状態で活性化され得る気体吸着材が固形物4として用いられれば、第1内部空間が減圧にされた状態で、気体吸着材が活性化され得る。これにより、活性化された気体吸着材が不要な気体や水分を吸着することがなく、気体吸着材の劣化が抑制される。
Furthermore, if a gas adsorbent that can be activated in a reduced pressure state is used as the solid material 4, the gas adsorbent can be activated in a state where the first internal space is reduced in pressure. Thereby, the activated gas adsorbent does not adsorb unnecessary gas or moisture, and deterioration of the gas adsorbent is suppressed.
上記構成の密閉容器1によれば、溶融した封止部材2が狭窄部7に固定され、金属製容器3の開口部5と封止部材2とは面接触する。これにより、これらの接合面積が広く、これらの接合力が強くなるため、金属製容器3を確実に密閉することができる。
According to the sealed container 1 having the above-described configuration, the molten sealing member 2 is fixed to the narrowed portion 7, and the opening 5 of the metal container 3 and the sealing member 2 are in surface contact. Thereby, since these joining areas are large and these joining forces become strong, the metal container 3 can be reliably sealed.
また、金属製容器3の開口部5を変形させることにより、狭窄部7が形成される。このため、金属製容器3とは別に設けられた封止部材2の支持部などを設けることなく、溶融した封止部材2を簡単な構造で支持することができる。
Further, the narrowed portion 7 is formed by deforming the opening 5 of the metal container 3. For this reason, the melted sealing member 2 can be supported with a simple structure without providing a support portion for the sealing member 2 provided separately from the metal container 3.
さらに、加熱処理前に封止部材2が金属製容器3の開口部5に挿入される際、封止部材2は狭窄部7の上端に支えられる。これにより、封止部材2を簡単かつ確実に開口部5内に配置することができる。
Furthermore, when the sealing member 2 is inserted into the opening 5 of the metal container 3 before the heat treatment, the sealing member 2 is supported by the upper end of the narrowed portion 7. Thereby, the sealing member 2 can be arrange | positioned in the opening part 5 easily and reliably.
以下に、密閉容器1における封止部材2と金属製容器3との接合強度を評価した結果を説明する。この評価には、実施例1~5の密閉容器1と、比較例1の密閉容器1とを用いた。接合強度を、外観評価および計測評価の2つの方法で評価した。外観評価では、1mの高さから密閉容器1を落下させ、封止部材2が金属製容器3から剥離しているか否かを目視により観察した。封止部材2が剥離している場合には接合強度が弱いと、封止部材2が剥離していない場合には接合強度が強いと判断した。また、計測評価は、島津社製オートグラフを用いて、T型剥離強度試験に準じて行なわれた。具体的には、金属製容器3の開口部5の対向する位置を計測治具に固定し、開口を広げる方向に計測治具を引っ張って移動させる。これにより、開口部5が変形し、封止部材2が開口部5から剥離する。このときの治具の移動距離と引っ張り力とから、引っ張り強度を求めた。
Hereinafter, the result of evaluating the bonding strength between the sealing member 2 and the metal container 3 in the sealed container 1 will be described. For this evaluation, the sealed containers 1 of Examples 1 to 5 and the sealed container 1 of Comparative Example 1 were used. The bonding strength was evaluated by two methods of appearance evaluation and measurement evaluation. In the appearance evaluation, the sealed container 1 was dropped from a height of 1 m, and whether the sealing member 2 was peeled off from the metal container 3 was visually observed. When the sealing member 2 was peeled off, it was judged that the bonding strength was weak, and when the sealing member 2 was not peeled off, the bonding strength was strong. Moreover, measurement evaluation was performed according to the T-type peel strength test using the Shimadzu autograph. Specifically, the opposing position of the opening 5 of the metal container 3 is fixed to the measurement jig, and the measurement jig is pulled and moved in the direction of widening the opening. Thereby, the opening part 5 deform | transforms and the sealing member 2 peels from the opening part 5. FIG. The tensile strength was determined from the moving distance of the jig and the tensile force at this time.
(実施例1)
実施例1の密閉容器1では、封止部材2に、ZnO・P2O5・K2Oを含み、熱膨張係数が120×10-7/℃であり、軟化温度が420℃であるガラスを用いた。金属製容器3に、SUS301で構成された円筒を用いた。このSUS301は、その熱膨張係数が16.9×10-6/℃であって、硬さが165Hvである。固形物4に、減圧下で加熱処理により気体吸着活性を発現する合金系粉末を用いた。 (Example 1)
In the sealedcontainer 1 of Example 1, the sealing member 2 contains ZnO · P 2 O 5 · K 2 O, the thermal expansion coefficient is 120 × 10 −7 / ° C., and the softening temperature is 420 ° C. Was used. The metal container 3 was a cylinder made of SUS301. This SUS301 has a thermal expansion coefficient of 16.9 × 10 −6 / ° C. and a hardness of 165 Hv. An alloy-based powder that expresses gas adsorption activity by heat treatment under reduced pressure was used as the solid material 4.
実施例1の密閉容器1では、封止部材2に、ZnO・P2O5・K2Oを含み、熱膨張係数が120×10-7/℃であり、軟化温度が420℃であるガラスを用いた。金属製容器3に、SUS301で構成された円筒を用いた。このSUS301は、その熱膨張係数が16.9×10-6/℃であって、硬さが165Hvである。固形物4に、減圧下で加熱処理により気体吸着活性を発現する合金系粉末を用いた。 (Example 1)
In the sealed
金属製容器3内に固形物4を設置した後、金属製容器3を全体的に略扁平に押しつぶす。この金属製容器3の開口部5の幅を狭めるように外力を与えて狭窄部7を形成し、狭窄部7の上に封止部材2を配設する。そして、真空加熱炉内において、約100℃にて気体吸着材に含まれるガスや水分を脱離させた後、約500℃にて気体吸着材を適切に活性化させてから、550℃にて封止部材2を溶融させた。この加熱処理の後、真空加熱炉を真空状態において常温まで放冷し、密閉容器1を作成した。
After installing the solid material 4 in the metal container 3, the metal container 3 is crushed almost flat as a whole. The narrow portion 7 is formed by applying an external force so as to narrow the width of the opening 5 of the metal container 3, and the sealing member 2 is disposed on the narrow portion 7. And after desorbing the gas and moisture contained in the gas adsorbent at about 100 ° C. in a vacuum heating furnace, the gas adsorbent is appropriately activated at about 500 ° C., and then at 550 ° C. The sealing member 2 was melted. After this heat treatment, the vacuum heating furnace was allowed to cool to room temperature in a vacuum state, and the sealed container 1 was created.
このように作成された密閉容器1では、封止部材2が金属製容器3に接合し、封止部材2と金属製容器3との間に隙間がなかった。この密閉容器1を落下させた後の外観評価では、封止部材2と金属製容器3との隙間がなく、接道強度が高いと評価した。この高い接合強度は、接合部6における化学結合による化学的接合と金属製容器3の締め付けによる機械的接合とによるものと考えられる。また、密閉容器1の計測評価では、剥離強度が、0.80N/mm2であった。
In the sealed container 1 created in this way, the sealing member 2 was joined to the metal container 3, and there was no gap between the sealing member 2 and the metal container 3. In the appearance evaluation after dropping the sealed container 1, it was evaluated that there was no gap between the sealing member 2 and the metal container 3 and the tangential strength was high. This high bonding strength is considered to be due to chemical bonding by chemical bonding in the bonding portion 6 and mechanical bonding by tightening the metal container 3. Moreover, in measurement evaluation of the airtight container 1, peeling strength was 0.80 N / mm < 2 >.
(実施例2)
実施例2の密閉容器1は、実施例1の密閉容器1と、封止部材2および固形物4が同じであるが、金属製容器3が異なる。金属製容器3に、熱膨張係数が17.0×10-6/℃であって、硬さが46Hvである銅で構成された円筒を用いた。また、実施例2の密閉容器1の作成方法も、実施例1の密閉容器1と同様である。 (Example 2)
Theairtight container 1 of Example 2 is the same as the airtight container 1 of Example 1, but the sealing member 2 and the solid material 4, but the metal container 3 is different. For the metal container 3, a cylinder made of copper having a thermal expansion coefficient of 17.0 × 10 −6 / ° C. and a hardness of 46 Hv was used. The method for producing the sealed container 1 of the second embodiment is the same as that of the sealed container 1 of the first embodiment.
実施例2の密閉容器1は、実施例1の密閉容器1と、封止部材2および固形物4が同じであるが、金属製容器3が異なる。金属製容器3に、熱膨張係数が17.0×10-6/℃であって、硬さが46Hvである銅で構成された円筒を用いた。また、実施例2の密閉容器1の作成方法も、実施例1の密閉容器1と同様である。 (Example 2)
The
作成された密閉容器1では、封止部材2と金属製容器3との間に隙間がなかった。この密閉容器1を落下させた後の外観評価では、封止部材2と金属製容器3との隙間がなく、接道強度が高いと評価した。この高い接合強度は、接合部6における化学結合による化学的接合と金属製容器3の締め付けによる機械的接合とによるものと考えられる。
In the sealed container 1 that was created, there was no gap between the sealing member 2 and the metal container 3. In the appearance evaluation after dropping the sealed container 1, it was evaluated that there was no gap between the sealing member 2 and the metal container 3 and the tangential strength was high. This high bonding strength is considered to be due to chemical bonding by chemical bonding in the bonding portion 6 and mechanical bonding by tightening the metal container 3.
また、密閉容器1の計測評価では、剥離強度が、1.0N/mm2であった。この剥離強度が実施例1の剥離強度より大きい。これは、SUS301よりも銅の方が表面に金属酸化物の層を形成しやすいため、封止部材2のK2Oと強固に化学結合するからであると考えられる。
Moreover, in measurement evaluation of the airtight container 1, peeling strength was 1.0 N / mm < 2 >. This peel strength is greater than the peel strength of Example 1. This is presumably because copper is easier to form a metal oxide layer on the surface than SUS301, and is thus strongly chemically bonded to K 2 O of the sealing member 2.
なお、銅の硬度はSUS301の硬度より低く。このため、銅で構成された金属製容器3に外力が加えられると、その力が封止部材2に伝えられ、封止部材2が破壊され易い。このため、密閉容器1が容易に開放される。
Note that the hardness of copper is lower than that of SUS301. For this reason, when an external force is applied to the metallic container 3 made of copper, the force is transmitted to the sealing member 2 and the sealing member 2 is easily broken. For this reason, the airtight container 1 is easily opened.
(実施例3)
実施例3の密閉容器1は、実施例1の密閉容器1と、封止部材2および固形物4が同じであるが、金属製容器3が異なる。金属製容器3に、熱膨張係数が23.9×10-6/℃であって、硬さが25Hvであるアルミニウムで構成された円筒を用いた。また、実施例3の密閉容器1の作成方法も、実施例1の密閉容器1と同様である。 (Example 3)
Theairtight container 1 of Example 3 is the same as the airtight container 1 of Example 1, but the sealing member 2 and the solid material 4, but the metal container 3 is different. As the metal container 3, a cylinder made of aluminum having a thermal expansion coefficient of 23.9 × 10 −6 / ° C. and a hardness of 25 Hv was used. The method for producing the sealed container 1 of the third embodiment is the same as that of the sealed container 1 of the first embodiment.
実施例3の密閉容器1は、実施例1の密閉容器1と、封止部材2および固形物4が同じであるが、金属製容器3が異なる。金属製容器3に、熱膨張係数が23.9×10-6/℃であって、硬さが25Hvであるアルミニウムで構成された円筒を用いた。また、実施例3の密閉容器1の作成方法も、実施例1の密閉容器1と同様である。 (Example 3)
The
作成された密閉容器1では、封止部材2と金属製容器3との間に隙間がなかった。この密閉容器1を落下させた後の外観評価では、封止部材2と金属製容器3との隙間がなく、接道強度が高いと評価した。この高い接合強度は、接合部6における化学結合による化学的接合と金属製容器3の締め付けによる機械的接合とによるものと考えられる。
In the sealed container 1 that was created, there was no gap between the sealing member 2 and the metal container 3. In the appearance evaluation after dropping the sealed container 1, it was evaluated that there was no gap between the sealing member 2 and the metal container 3 and the tangential strength was high. This high bonding strength is considered to be due to chemical bonding by chemical bonding in the bonding portion 6 and mechanical bonding by tightening the metal container 3.
また、密閉容器1の計測評価では、剥離強度が、1.1N/mm2であった。この剥離強度が実施例1および2の剥離強度より大きい。これは、SUS301および銅よりもアルミニウムの方が表面に金属酸化物の層を形成しやすいため、封止部材2のK2Oと強固に化学結合するからであると考えられる。
Moreover, in measurement evaluation of the airtight container 1, peeling strength was 1.1 N / mm < 2 >. This peel strength is greater than those of Examples 1 and 2. This is presumably because aluminum is more likely to form a metal oxide layer on the surface than SUS301 and copper, and thus is strongly chemically bonded to K 2 O of the sealing member 2.
(実施例4)
実施例4の密閉容器1は、実施例3の密閉容器1と、固形物4および金属製容器3が同じであるが、封止部材2が異なる。封止部材2にZnO・P2O5・CaOを含み、熱膨張係数が80×10-7/℃であり、軟化温度が500℃であるガラスを用いた。また、実施例4の密閉容器1の作成方法は、加熱処理以外は、実施例1の密閉容器1と同様である。実施例4の加熱処理では、約100℃にて気体吸着材に含まれるガスや水分を脱離させた後、約580℃にて気体吸着材を適切に活性化させてから、620℃にて封止部材2を溶融させた。 (Example 4)
The sealedcontainer 1 of Example 4 is the same as the sealed container 1 of Example 3, but the solid material 4 and the metal container 3, but the sealing member 2 is different. A glass containing ZnO.P 2 O 5 .CaO, a thermal expansion coefficient of 80 × 10 −7 / ° C., and a softening temperature of 500 ° C. was used for the sealing member 2. Moreover, the production method of the airtight container 1 of Example 4 is the same as that of the airtight container 1 of Example 1 except heat processing. In the heat treatment of Example 4, after desorbing gas and moisture contained in the gas adsorbent at about 100 ° C., the gas adsorbent is appropriately activated at about 580 ° C., and then at 620 ° C. The sealing member 2 was melted.
実施例4の密閉容器1は、実施例3の密閉容器1と、固形物4および金属製容器3が同じであるが、封止部材2が異なる。封止部材2にZnO・P2O5・CaOを含み、熱膨張係数が80×10-7/℃であり、軟化温度が500℃であるガラスを用いた。また、実施例4の密閉容器1の作成方法は、加熱処理以外は、実施例1の密閉容器1と同様である。実施例4の加熱処理では、約100℃にて気体吸着材に含まれるガスや水分を脱離させた後、約580℃にて気体吸着材を適切に活性化させてから、620℃にて封止部材2を溶融させた。 (Example 4)
The sealed
作成された密閉容器1では、封止部材2と金属製容器3との間に隙間がなかった。この密閉容器1を落下させた後の外観評価では、封止部材2と金属製容器3との隙間がなく、接道強度が高いと評価した。この高い接合強度は、接合部6における化学結合による化学的接合と金属製容器3の締め付けによる機械的接合とによるものと考えられる。
In the sealed container 1 that was created, there was no gap between the sealing member 2 and the metal container 3. In the appearance evaluation after dropping the sealed container 1, it was evaluated that there was no gap between the sealing member 2 and the metal container 3 and the tangential strength was high. This high bonding strength is considered to be due to chemical bonding by chemical bonding in the bonding portion 6 and mechanical bonding by tightening the metal container 3.
また、密閉容器1の計測評価では、剥離強度が、1.4N/mm2であった。この剥離強度が実施例3の剥離強度より大きい。これは、封止部材2のアルカリ土類金属のCaOがアルカリ金属のK2Oより金属製容器3の表面の金属酸化物と強く化学結合するからであると考えられる。
Moreover, in measurement evaluation of the airtight container 1, peeling strength was 1.4 N / mm < 2 >. This peel strength is greater than the peel strength of Example 3. This is presumably because the alkaline earth metal CaO of the sealing member 2 is more strongly chemically bonded to the metal oxide on the surface of the metal container 3 than the alkali metal K 2 O.
(実施例5)
実施例5の密閉容器1は、実施例3の密閉容器1と、固形物4および金属製容器3が同じであるが、封止部材2が異なる。封止部材2にBi2O2・B2O3・SrO・BaO・ZnOを含み、熱膨張係数が110×10-7/℃であり、軟化温度が420℃であるガラスを用いた。また、実施例5の密閉容器1の作成方法は、加熱処理以外は、実施例1の密閉容器1と同様である。実施例5の加熱処理では、約100℃にて気体吸着材に含まれるガスや水分を脱離させた後、約500℃にて気体吸着材を適切に活性化させてから、600℃にて封止部材2を溶融させた。 (Example 5)
Theairtight container 1 of Example 5 is the same as the airtight container 1 of Example 3, but the solid material 4 and the metal container 3, but the sealing member 2 is different. A glass containing Bi 2 O 2 .B 2 O 3 .SrO.BaO.ZnO, a thermal expansion coefficient of 110 × 10 −7 / ° C., and a softening temperature of 420 ° C. was used as the sealing member 2. Moreover, the preparation method of the airtight container 1 of Example 5 is the same as that of the airtight container 1 of Example 1 except heat processing. In the heat treatment of Example 5, after desorbing gas and moisture contained in the gas adsorbent at about 100 ° C., the gas adsorbent is appropriately activated at about 500 ° C., and then at 600 ° C. The sealing member 2 was melted.
実施例5の密閉容器1は、実施例3の密閉容器1と、固形物4および金属製容器3が同じであるが、封止部材2が異なる。封止部材2にBi2O2・B2O3・SrO・BaO・ZnOを含み、熱膨張係数が110×10-7/℃であり、軟化温度が420℃であるガラスを用いた。また、実施例5の密閉容器1の作成方法は、加熱処理以外は、実施例1の密閉容器1と同様である。実施例5の加熱処理では、約100℃にて気体吸着材に含まれるガスや水分を脱離させた後、約500℃にて気体吸着材を適切に活性化させてから、600℃にて封止部材2を溶融させた。 (Example 5)
The
作成された密閉容器1では、封止部材2と金属製容器3との間に隙間がなかった。この密閉容器1を落下させた後の外観評価では、封止部材2と金属製容器3との隙間がなく、接道強度が高いと評価した。この高い接合強度は、接合部6における化学結合による化学的接合と金属製容器3の締め付けによる機械的接合とによるものと考えられる。
In the sealed container 1 that was created, there was no gap between the sealing member 2 and the metal container 3. In the appearance evaluation after dropping the sealed container 1, it was evaluated that there was no gap between the sealing member 2 and the metal container 3 and the tangential strength was high. This high bonding strength is considered to be due to chemical bonding by chemical bonding in the bonding portion 6 and mechanical bonding by tightening the metal container 3.
また、密閉容器1の計測評価では、剥離強度が、2.0N/mm2であった。この剥離強度が実施例4の剥離強度より大きい。これは、封止部材2のSrOおよびBaOがCaOより金属製容器3の表面の金属酸化物と強く化学結合するからであると考えられる。
Moreover, in measurement evaluation of the airtight container 1, peeling strength was 2.0 N / mm < 2 >. This peel strength is greater than the peel strength of Example 4. This is considered to be because SrO and BaO of the sealing member 2 are strongly chemically bonded to the metal oxide on the surface of the metal container 3 from CaO.
(比較例)
比較例の密閉容器は、実施例5の密閉容器1と、金属製容器、封止部材および固形物が同じであるが、密閉容器の作成用法が異なる。つまり、実施例5の密閉容器1では、略扁平に潰されて、開口部5に狭窄部7が形成された金属製容器3が用いられた。この金属製容器3内の狭窄部7に封止部材2が侵入し、ここで封止部材2が金属製容器3と化学結合し、面状に広がる接合部6が形成された。これに対し、比較例の密閉容器では、円筒形状の金属製容器が用いられた。この金属製容器内に封止部材が侵入せずに、金属製容器の開口端と封止部材とが接合し、線状の接合部6が形成された。 (Comparative example)
The airtight container of the comparative example is the same as theairtight container 1 of Example 5, but the metal container, the sealing member, and the solid are the same, but the method for producing the airtight container is different. That is, in the sealed container 1 of Example 5, the metal container 3 that was crushed substantially flat and in which the narrowed portion 7 was formed in the opening 5 was used. The sealing member 2 entered the narrow portion 7 in the metal container 3, where the sealing member 2 was chemically bonded to the metal container 3 to form a joint 6 that spreads in a planar shape. On the other hand, in the sealed container of the comparative example, a cylindrical metal container was used. The sealing member did not enter the metallic container, and the opening end of the metallic container and the sealing member were joined to form a linear joint 6.
比較例の密閉容器は、実施例5の密閉容器1と、金属製容器、封止部材および固形物が同じであるが、密閉容器の作成用法が異なる。つまり、実施例5の密閉容器1では、略扁平に潰されて、開口部5に狭窄部7が形成された金属製容器3が用いられた。この金属製容器3内の狭窄部7に封止部材2が侵入し、ここで封止部材2が金属製容器3と化学結合し、面状に広がる接合部6が形成された。これに対し、比較例の密閉容器では、円筒形状の金属製容器が用いられた。この金属製容器内に封止部材が侵入せずに、金属製容器の開口端と封止部材とが接合し、線状の接合部6が形成された。 (Comparative example)
The airtight container of the comparative example is the same as the
作成された密閉容器では、封止部材と金属製容器との間に隙間がなかった。しかし、この密閉容器を落下させた後の外観評価では、封止部材が金属製容器から剥離し、接道強度が低いと評価した。この低い接合強度は、化学結合の面積が小さい上、金属製容器の締め付けによる機械的接合がなかったことによるものと考えられる。
In the created sealed container, there was no gap between the sealing member and the metal container. However, in the appearance evaluation after dropping the sealed container, it was evaluated that the sealing member peeled from the metal container and the tangential strength was low. This low bonding strength is considered to be due to the fact that the area of the chemical bond is small and there is no mechanical bonding by tightening the metal container.
[変形例1]
図1に示す金属製容器3の開口部5に狭窄部7が設けられたが、図5に示すように開口部5に狭窄部7が設けられなくてもよい。この場合、溶融した封止部材2を支持するものが開口と固形物4との間に設けられる。この支持部には、たとえば、通気性および耐熱性を有する無機繊維集合体やフィルター、または突起などが用いられる。この支持部が設けられた金属製容器3が加熱処理されると、支持部は、溶融した封止部材2を支持する。これにより、封止部材2が、金属製容器3の開口部5に保持され、金属製容器3の開口を確実に密閉することができる。なお、突起は、金属製容器3の開口部5の径が小さくなる方向に、開口部5から内側に向かって突出する。突起の高さは、溶融した封止部材2の粘度などにより決定される。突起は、金属製容器3と一体的に形成されてもよいし、金属製容器3と別に形成された部材が金属製容器3の内部に取り付けられて形成されてもよい。 [Modification 1]
Although theconstriction 7 is provided in the opening 5 of the metal container 3 shown in FIG. 1, the constriction 7 may not be provided in the opening 5 as shown in FIG. In this case, what supports the molten sealing member 2 is provided between the opening and the solid material 4. For example, an inorganic fiber aggregate, a filter, or a protrusion having air permeability and heat resistance is used for the support portion. When the metal container 3 provided with the support portion is subjected to heat treatment, the support portion supports the molten sealing member 2. Thereby, the sealing member 2 is hold | maintained at the opening part 5 of the metal container 3, and the opening of the metal container 3 can be sealed reliably. The protrusion protrudes inward from the opening 5 in the direction in which the diameter of the opening 5 of the metal container 3 decreases. The height of the protrusion is determined by the viscosity of the molten sealing member 2 and the like. The protrusion may be formed integrally with the metal container 3 or may be formed by attaching a member formed separately from the metal container 3 to the inside of the metal container 3.
図1に示す金属製容器3の開口部5に狭窄部7が設けられたが、図5に示すように開口部5に狭窄部7が設けられなくてもよい。この場合、溶融した封止部材2を支持するものが開口と固形物4との間に設けられる。この支持部には、たとえば、通気性および耐熱性を有する無機繊維集合体やフィルター、または突起などが用いられる。この支持部が設けられた金属製容器3が加熱処理されると、支持部は、溶融した封止部材2を支持する。これにより、封止部材2が、金属製容器3の開口部5に保持され、金属製容器3の開口を確実に密閉することができる。なお、突起は、金属製容器3の開口部5の径が小さくなる方向に、開口部5から内側に向かって突出する。突起の高さは、溶融した封止部材2の粘度などにより決定される。突起は、金属製容器3と一体的に形成されてもよいし、金属製容器3と別に形成された部材が金属製容器3の内部に取り付けられて形成されてもよい。 [Modification 1]
Although the
[変形例2]
図1に示す金属製容器3は略扁平状に潰されていたが、図6に示すように円筒形状の金属製容器3が用いられてもよい。の開口部5に狭窄部7が設けられたが、溶融した封止部材2を支持するものが設けられなくてもよい。この場合、開口部5の大きさは、加熱処理前の封止部材2の大きさより小さく設定されてもよい。この場合、加熱処理前に封止部材2を金属製容器3の開口端上に配置することができる。 [Modification 2]
Although themetal container 3 shown in FIG. 1 is crushed into a substantially flat shape, a cylindrical metal container 3 may be used as shown in FIG. Although the narrowed portion 7 is provided in the opening 5, a member for supporting the molten sealing member 2 may not be provided. In this case, the size of the opening 5 may be set smaller than the size of the sealing member 2 before the heat treatment. In this case, the sealing member 2 can be disposed on the open end of the metal container 3 before the heat treatment.
図1に示す金属製容器3は略扁平状に潰されていたが、図6に示すように円筒形状の金属製容器3が用いられてもよい。の開口部5に狭窄部7が設けられたが、溶融した封止部材2を支持するものが設けられなくてもよい。この場合、開口部5の大きさは、加熱処理前の封止部材2の大きさより小さく設定されてもよい。この場合、加熱処理前に封止部材2を金属製容器3の開口端上に配置することができる。 [Modification 2]
Although the
(実施の形態2)
[真空断熱体の構成]
図1は、本発明の実施の形態2に係る真空断熱体8を概略的に示す断面図である。 (Embodiment 2)
[Configuration of vacuum insulation]
FIG. 1 is a cross-sectional view schematically showing a vacuumheat insulating body 8 according to Embodiment 2 of the present invention.
[真空断熱体の構成]
図1は、本発明の実施の形態2に係る真空断熱体8を概略的に示す断面図である。 (Embodiment 2)
[Configuration of vacuum insulation]
FIG. 1 is a cross-sectional view schematically showing a vacuum
真空断熱体8は、気体吸着デバイス1としての密閉容器1と、芯部材9と、気体吸着デバイス1と芯部材9とを第2内部空間に収容し、第2内部空間が減圧されて密封されている外被部材10と、を備える。
The vacuum heat insulator 8 accommodates the sealed container 1 as the gas adsorption device 1, the core member 9, the gas adsorption device 1 and the core member 9 in the second internal space, and the second internal space is decompressed and sealed. An outer cover member 10.
外被部材10は、中空であって、いわゆる真空の内部空間(以下、第2内部空間という)を有する。ここで、いわゆる真空は、大気圧に比べて圧力が低い状態である。たとえば、第2内部空間の真空度は、1~200Paである。外被部材10は、水や気体などが第2内部空間に侵入することを遮断するガスバリア性のフィルムで構成される。このガスバリア性は、たとえば、気体透過度が104[cm3/m2・day・atm]以下であって、望ましくは103[cm3/m2・day・atm]以下であり、さらに望ましくは102[cm3/m2・day・atm]以下である。この外被部材10には、たとえば、樹脂膜およびアルミ箔などを積層したラミネートフィルムが用いられる。
ラミネートフィルムは、積層物がラミネート処理されたシートである。積層物は、最内層の熱溶着フィルムと、中間層のガスバリアフィルムと、最外層として表面保護フィルムとが積層されたシートである。 Thejacket member 10 is hollow and has a so-called vacuum internal space (hereinafter referred to as a second internal space). Here, so-called vacuum is a state where the pressure is lower than the atmospheric pressure. For example, the degree of vacuum in the second internal space is 1 to 200 Pa. The jacket member 10 is made of a gas barrier film that blocks water or gas from entering the second internal space. This gas barrier property is, for example, a gas permeability of 104 [cm 3 / m 2 · day · atm] or less, desirably 103 [cm 3 / m 2 · day · atm] or less, and more desirably 102. [Cm 3 / m 2 · day · atm] or less. For example, a laminate film in which a resin film and an aluminum foil are laminated is used for the jacket member 10.
A laminate film is a sheet obtained by laminating a laminate. The laminate is a sheet in which an innermost layer heat-welded film, an intermediate layer gas barrier film, and a surface protective film as an outermost layer are laminated.
ラミネートフィルムは、積層物がラミネート処理されたシートである。積層物は、最内層の熱溶着フィルムと、中間層のガスバリアフィルムと、最外層として表面保護フィルムとが積層されたシートである。 The
A laminate film is a sheet obtained by laminating a laminate. The laminate is a sheet in which an innermost layer heat-welded film, an intermediate layer gas barrier film, and a surface protective film as an outermost layer are laminated.
最内層の熱溶着フィルムとしては、特に指定するものではないが、たとえば、熱可塑性樹脂あるいはその混合体が用いられる。この熱可塑性樹脂には、たとえば、低密度ポリエチレンフィルム、直鎖低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルムが挙げられる。
The innermost layer heat welding film is not particularly specified, but for example, a thermoplastic resin or a mixture thereof is used. Examples of the thermoplastic resin include a low density polyethylene film, a linear low density polyethylene film, a high density polyethylene film, a polypropylene film, and a polyacrylonitrile film.
中間層のガスバリアフィルムとしては、特に指定するものではないが、たとえば、金属箔または金属蒸着フィルムが用いられる。金属箔には、アルミニウム箔や銅箔などが挙げられる。金属蒸着フィルムは、たとえば、樹脂フィルムにアルミニウムや銅等の金属や金属酸化物が蒸着ることにより形成される。この樹脂フィルムの樹脂には、たとえば、ポリエチレンテレフタレートフィルムやエチレン-ビニルアルコール共重合体が挙げられる。
The gas barrier film of the intermediate layer is not particularly specified, but for example, a metal foil or a metal vapor deposition film is used. Examples of the metal foil include aluminum foil and copper foil. A metal vapor deposition film is formed by vapor-depositing metals and metal oxides, such as aluminum and copper, on a resin film, for example. Examples of the resin of the resin film include a polyethylene terephthalate film and an ethylene-vinyl alcohol copolymer.
最外層の表面保護フィルムとしては、特に指定するものではないが、たとえば、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルムなどの樹脂フィルムが用いられる。
The outermost surface protective film is not particularly specified, and for example, a resin film such as a nylon film, a polyethylene terephthalate film, or a polypropylene film is used.
芯部材9は、外被部材10の第2内部空間内に収容され、真空の第2内部空間を維持する真空断熱体8の骨格部材である。外被部材10の真空の第2内部空間において、芯部材9は、多数の微細な空間を内部に有し、外被部材10を支えることにより外被部材10の内部空間を保持する。芯部材9は、多孔性物質であって、ポリスチレンやポリウレタンなどのポリマー材料の連通気泡体や、無機材料の連通気泡体、無機および有機の粉末、無機および有機の繊維材料などが利用できる。芯部材9には、たとえば、熱伝導性が低く、耐熱性が高く、かつ真空状態や高温状態においてガスの発生が少ない繊維などが用いられる。繊維には、たとえば、グラスウール、ロックウール、アルミナ繊維、金属繊維など無機繊維や、ポリエチレンテレフタレートなどの樹脂繊維が挙げられる。この中でも、グラスウールは、弾性が高く、熱伝導率が低く、工業的に安価であるため好ましい。また、繊維は細いほど、真空断熱体8の熱伝導率が低下し、細い繊維が好ましい。ただし、繊維が高価になるため、コストと熱伝統率を考慮にいれて、繊維の径が選択される。たとえば、真空断熱体8用の繊維として一般的に使用されている比較的安価な平均繊維径が3μm~6μm程度のグラスウールの集合体が望ましい。
The core member 9 is a skeleton member of the vacuum heat insulator 8 that is accommodated in the second internal space of the jacket member 10 and maintains the vacuum second internal space. In the vacuum second internal space of the jacket member 10, the core member 9 has a large number of minute spaces inside and supports the jacket member 10 to hold the inner space of the jacket member 10. The core member 9 is a porous substance, and can be made of open cells of polymer materials such as polystyrene and polyurethane, open cells of inorganic materials, inorganic and organic powders, inorganic and organic fiber materials, and the like. For the core member 9, for example, a fiber having low thermal conductivity, high heat resistance, and less gas generation in a vacuum state or a high temperature state is used. Examples of the fibers include inorganic fibers such as glass wool, rock wool, alumina fibers, and metal fibers, and resin fibers such as polyethylene terephthalate. Among these, glass wool is preferable because it has high elasticity, low thermal conductivity, and is industrially inexpensive. Moreover, the thinner the fiber, the lower the thermal conductivity of the vacuum heat insulating body 8, and a fine fiber is preferable. However, since the fiber becomes expensive, the diameter of the fiber is selected in consideration of the cost and the heat traditional rate. For example, a relatively inexpensive aggregate of glass wool having an average fiber diameter of about 3 μm to 6 μm that is generally used as a fiber for the vacuum heat insulator 8 is desirable.
芯部材9は、立体形状を有し、たとえば、厚みが小さい略直方体形状である。芯部材9は、1枚の繊維シート、または、積層された複数の薄い繊維シートにより構成される。複数の繊維シートが積層された芯部材9では、その積層方向に延びる切れ込み11が設けられている。
The core member 9 has a three-dimensional shape, for example, a substantially rectangular parallelepiped shape with a small thickness. The core member 9 is composed of one fiber sheet or a plurality of laminated thin fiber sheets. In the core member 9 in which a plurality of fiber sheets are laminated, a cut 11 extending in the lamination direction is provided.
切れ込み11は、気体吸着デバイス1を芯部材9の内部に入れるための挿入口であって、気体吸着デバイス1が収納された空間に通ずる。切れ込み11は、芯部材9の表面に対して垂直に設けられた切れ目であって、たとえば、矩形の形状を有する。芯部材9の表面に平行な切れ込み11の幅は気体吸着デバイス1の幅より大きい。切れ込み11は、芯部材9の表面から内部に延び、芯部材9の表面に垂直な深さは一枚以上の繊維シートの厚みより大きいため、一枚以上の繊維シートが切断される。
The notch 11 is an insertion port for inserting the gas adsorption device 1 into the core member 9 and communicates with the space in which the gas adsorption device 1 is stored. The cut 11 is a cut provided perpendicular to the surface of the core member 9 and has, for example, a rectangular shape. The width of the cut 11 parallel to the surface of the core member 9 is larger than the width of the gas adsorption device 1. The notch 11 extends inward from the surface of the core member 9, and since the depth perpendicular to the surface of the core member 9 is greater than the thickness of the one or more fiber sheets, one or more fiber sheets are cut.
気体吸着デバイス1の収納空間12は、芯部材9の内部に設けられる。気体吸着デバイス1の収納空間12には、芯部材9が切断されることにより形成されてもよいし、芯部材9の内部に予め形成されていてもよい。芯部材9が切断されることにより気体吸着デバイス1の収納空間12が形成される場合、切れ込み11により切断された繊維シートが剥がされ、これにより形成された裂け目12が収納空間12として用いられる。裂け目12は、芯部材9の表面に平行であって、積層された繊維シートの間に形成される。この裂け目12と切れ込み11は、芯部材9の表面に垂直な方向においてL字状に繋がる。このため、気体吸着デバイス1は、切れ込み11から裂け目12に挿入される。
The storage space 12 of the gas adsorption device 1 is provided inside the core member 9. The storage space 12 of the gas adsorption device 1 may be formed by cutting the core member 9 or may be formed in advance inside the core member 9. When the storage space 12 of the gas adsorption device 1 is formed by cutting the core member 9, the fiber sheet cut by the notch 11 is peeled off, and the tear 12 formed thereby is used as the storage space 12. The tear 12 is parallel to the surface of the core member 9 and is formed between the laminated fiber sheets. The tears 12 and the notches 11 are connected in an L shape in a direction perpendicular to the surface of the core member 9. For this reason, the gas adsorption device 1 is inserted into the slit 12 from the cut 11.
気体吸着デバイス1は、外被部材10の第2内部空間に残存または侵入する気体熱伝導成分を吸着するための部材である。金属製容器3の第1内部空間に気体吸着材が収納され、第1内部空間が減圧されて金属製容器3の開口部5が封止部材2で封止されている。気体吸着材には、酸化カルシウムや酸化マグネシウム等の化学吸着物質や、ゼオライトのような物理吸着物質、あるいは、それらの混合物が使用できる。また、化学吸着性と物理吸着性を持った銅イオン交換されたZSM-5型ゼオライトも使用できる。また、金属製容器3には、アルミおよび銅金属、樹脂等が用いられる。封止部材2には、金属性容器を封止可能であって金属製容器3よりも脆弱な材料が用いられ、たとえば、アルカリ金属酸化物またはアルカリ土類金属酸化物を含むガラスが用いられる。
The gas adsorption device 1 is a member for adsorbing a gas heat conduction component that remains or enters the second internal space of the jacket member 10. The gas adsorbent is stored in the first internal space of the metal container 3, the first internal space is decompressed, and the opening 5 of the metal container 3 is sealed with the sealing member 2. As the gas adsorbent, a chemical adsorption material such as calcium oxide or magnesium oxide, a physical adsorption material such as zeolite, or a mixture thereof can be used. Further, ZSM-5 type zeolite exchanged with copper ions having chemical adsorption properties and physical adsorption properties can also be used. The metal container 3 is made of aluminum, copper metal, resin, or the like. The sealing member 2 is made of a material that can seal the metallic container and is more fragile than the metallic container 3, and for example, glass containing an alkali metal oxide or an alkaline earth metal oxide is used.
気体吸着デバイス1は、芯部材9の内部に形成された裂け目12に収納されている。気体吸着デバイス1は、気体吸着デバイス1の形状は、特に限定されておらず、たとえば、真空断熱体8の形状に合わせられてもよい。たとえば、厚みの小さい略扁平形状の真空断熱体8には、幅が厚みより大きい略扁平な断面形状を有する気体吸着デバイス1の形状が用いられる。この場合、気体吸着デバイス1は、略扁平な断面の短軸(厚み)が真空断熱体8の厚み方向となり、略扁平な断面の長軸(幅)が真空断熱体8の表面に並行になるように配される。これにより、気体吸着デバイス1は、その略扁平な断面の短軸(厚み)が真空断熱体8の厚み方向となるように配置される。この真空断熱剤の表面において気体吸着デバイス1の配置箇所に対応する部分に印13が設けられる。
The gas adsorption device 1 is housed in a tear 12 formed inside the core member 9. As for the gas adsorption device 1, the shape of the gas adsorption device 1 is not specifically limited, For example, you may match | combine with the shape of the vacuum heat insulating body 8. FIG. For example, the shape of the gas adsorption device 1 having a substantially flat cross-sectional shape with a width larger than the thickness is used for the vacuum insulation body 8 with a small thickness and a substantially flat shape. In this case, in the gas adsorption device 1, the short axis (thickness) of the substantially flat cross section is in the thickness direction of the vacuum heat insulating body 8, and the long axis (width) of the substantially flat cross section is parallel to the surface of the vacuum heat insulating body 8. Arranged. Thereby, the gas adsorption device 1 is disposed so that the minor axis (thickness) of the substantially flat cross section is in the thickness direction of the vacuum heat insulating body 8. A mark 13 is provided on a portion of the surface of the vacuum heat insulating agent corresponding to the arrangement position of the gas adsorption device 1.
印13は、外被部材10の内部に配されている気体吸着デバイス1の位置、特に気体吸着デバイス1の開口部5の位置を示す目印である。印13は、外被部材10において、気体吸着デバイス1が配設されている箇所に相対する(対応する)部位に付けられる。印13は、外被部材10の外部から気体吸着デバイス1の位置がわかるものであれば、種類や形状などは特に限定されない。たとえば、印13は、外被部材10の外表面に記されたマークであってもよいし、外被部材10の外表面に貼り付けられたシールであってもよい。たとえば、外被部材10を作製する際や真空断熱体8にロットナンバーを印13字する際に、印13を外被部材10に印刷してもよい。また、真空断熱体8の製造後に、インク等を用いて人が印13を付けてもよい。
The mark 13 is a mark indicating the position of the gas adsorption device 1 disposed inside the outer cover member 10, particularly the position of the opening 5 of the gas adsorption device 1. The mark 13 is attached to a portion of the jacket member 10 that is opposite to (corresponding to) the portion where the gas adsorption device 1 is disposed. The type and shape of the mark 13 are not particularly limited as long as the position of the gas adsorption device 1 can be seen from the outside of the jacket member 10. For example, the mark 13 may be a mark written on the outer surface of the jacket member 10 or a seal attached to the outer surface of the jacket member 10. For example, the mark 13 may be printed on the jacket member 10 when the jacket member 10 is manufactured or when the lot number is marked 13 on the vacuum heat insulating body 8. Further, after manufacturing the vacuum heat insulating body 8, a person may mark the mark 13 using ink or the like.
また、気体吸着デバイス1の設置位置、特に封止部9のある位置の印13が外被部材106に印刷されており、気体吸着デバイス1の開封時の外力を加える位置となっている。
Also, the mark 13 at the installation position of the gas adsorbing device 1, particularly the position where the sealing portion 9 is located, is printed on the jacket member 106, and is the position to apply external force when the gas adsorbing device 1 is opened.
[真空断熱体の製造]
真空断熱体8の製造方法は、特に限定されない。たとえば、芯部材9の表面を上にして、芯部材9の表面から内部に向かって切断し、芯部材9に切り込みを形成する。この切れ込み11により切断された繊維シートを剥がすと、繊維シートが剥がれて、芯部材9の内部に裂け目12が形成される。そして、気体吸着デバイス1を切れ込み11から裂け目12に挿入すると、裂け目12に気体吸着デバイス1が収納される。このとき、そして、封止部材2が配置された気体吸着デバイス1の先端部から切れ込み11に挿入されるため、気体吸着デバイス1の後端部は切れ込み11の近傍に配置される。そして、略扁平な断面の短軸(厚み)が芯部材9の厚み方向となるように、気体吸着デバイス1が芯部材9内に配置される。この切れ込み11により、気体吸着デバイス1の芯部材9の表面に平行な方向の移動が規制される。 [Manufacture of vacuum insulation]
The manufacturing method of the vacuumheat insulating body 8 is not specifically limited. For example, the core member 9 is cut upward from the surface of the core member 9 with the surface of the core member 9 facing upward, and a cut is formed in the core member 9. When the fiber sheet cut by the notch 11 is peeled off, the fiber sheet is peeled off and a tear 12 is formed inside the core member 9. When the gas adsorbing device 1 is inserted into the slit 12 from the cut 11, the gas adsorbing device 1 is accommodated in the slit 12. At this time, the gas adsorption device 1 is inserted into the notch 11 from the front end portion of the gas adsorption device 1 where the sealing member 2 is arranged, so that the rear end portion of the gas adsorption device 1 is arranged in the vicinity of the notch 11. The gas adsorption device 1 is arranged in the core member 9 so that the minor axis (thickness) of the substantially flat cross section is in the thickness direction of the core member 9. This cut 11 restricts movement in a direction parallel to the surface of the core member 9 of the gas adsorption device 1.
真空断熱体8の製造方法は、特に限定されない。たとえば、芯部材9の表面を上にして、芯部材9の表面から内部に向かって切断し、芯部材9に切り込みを形成する。この切れ込み11により切断された繊維シートを剥がすと、繊維シートが剥がれて、芯部材9の内部に裂け目12が形成される。そして、気体吸着デバイス1を切れ込み11から裂け目12に挿入すると、裂け目12に気体吸着デバイス1が収納される。このとき、そして、封止部材2が配置された気体吸着デバイス1の先端部から切れ込み11に挿入されるため、気体吸着デバイス1の後端部は切れ込み11の近傍に配置される。そして、略扁平な断面の短軸(厚み)が芯部材9の厚み方向となるように、気体吸着デバイス1が芯部材9内に配置される。この切れ込み11により、気体吸着デバイス1の芯部材9の表面に平行な方向の移動が規制される。 [Manufacture of vacuum insulation]
The manufacturing method of the vacuum
また、最内層の熱溶着フィルムが内側になるように、一枚のラミネートフィルムを折る。これにより、重ねられたラミネートフィルムの2辺を加熱し、熱溶着フィルムどうしを溶着すると、1辺が開口した袋状のラミネートフィルムが形成される。この開口から中に、気体吸着デバイス1が収容された芯部材9を挿入し、真空ポンプが接続されたチャンバーの減圧下にラミネートを配置する。チャンバー内が10Pa程度に減圧されたら、袋状のラミネートフィルムの開口を閉じるように熱溶着フィルム同士を熱溶着する。これにより、第2内部空間が真空になった状態で外被部材10が密封される。この外被部材10には印13が設けられており、印13は気体吸着デバイス1に対応する位置に配されている。このようにして、第2内部空間が真空な真空断熱体8が完成する。
Also, fold one laminate film so that the innermost heat-sealing film is inside. Thereby, when the two sides of the laminated laminate film are heated and the heat welding films are welded to each other, a bag-like laminate film having one side opened is formed. The core member 9 in which the gas adsorbing device 1 is accommodated is inserted through the opening, and the laminate is placed under reduced pressure in a chamber to which a vacuum pump is connected. When the pressure in the chamber is reduced to about 10 Pa, the heat-welded films are heat-welded so as to close the opening of the bag-like laminate film. Thereby, the jacket member 10 is sealed in a state where the second internal space is evacuated. A mark 13 is provided on the outer cover member 10, and the mark 13 is arranged at a position corresponding to the gas adsorption device 1. Thus, the vacuum heat insulating body 8 whose second internal space is vacuum is completed.
なお、上記の真空断熱体8の製造では、一枚のラミネートフィルムを三方閉めとすることにより外被部材10が形成された。これに対して、二枚のラミネートフィルムを四方閉めとすることによっても、同様に外被部材10が形成される。
In addition, in manufacture of said vacuum heat insulating body 8, the jacket member 10 was formed by making one laminated film close three ways. On the other hand, the jacket member 10 is similarly formed by closing the two laminated films on all sides.
[真空断熱体の使用]
以上のように構成された真空断熱体8について、以下その動作を説明する。図8は、真空断熱体8の中に収容されている気体吸着デバイス1を示す斜視図である。図9は、変形した気体吸着デバイス1を示す斜視図である。 [Use of vacuum insulation]
About the vacuumheat insulating body 8 comprised as mentioned above, the operation | movement is demonstrated below. FIG. 8 is a perspective view showing the gas adsorption device 1 accommodated in the vacuum heat insulating body 8. FIG. 9 is a perspective view showing the deformed gas adsorption device 1.
以上のように構成された真空断熱体8について、以下その動作を説明する。図8は、真空断熱体8の中に収容されている気体吸着デバイス1を示す斜視図である。図9は、変形した気体吸着デバイス1を示す斜視図である。 [Use of vacuum insulation]
About the vacuum
図7に示すように、印13を上にして真空断熱体8を置き、印13に向かって略扁平の断面に対して平行な方向の外力を加えると、外被部材10および芯部材9が押し込まれる。そして、外力は、印13に対応する位置にある気体吸着デバイス1の封止部材2に作用する。この図8に示す気体吸着デバイス1は、図9に示すように、金属製容器3が曲がって変形する。そして、外力が封止部材2に作用し、脆弱な封止部材2が破壊される。これにより、封止部材2に貫通口14が形成され、金属製容器3内の第1内部空間と、金属製容器3外の第2内部空間が連通する。よって、第1内部空間内の気体吸着剤は、第2内部空間に残存する気体熱伝導成分および、第2内部空間に侵入してくる気体熱伝道成分を吸着する。この結果、第2内部空間が真空な状態、たちえば、1Pa以下に維持され、真空断熱体8は優れた断熱性能を維持することができる。
As shown in FIG. 7, when the vacuum heat insulating body 8 is placed with the mark 13 facing upward and an external force in a direction parallel to the substantially flat cross section is applied toward the mark 13, the jacket member 10 and the core member 9 are Pushed in. The external force acts on the sealing member 2 of the gas adsorption device 1 located at a position corresponding to the mark 13. In the gas adsorbing device 1 shown in FIG. 8, the metal container 3 is bent and deformed as shown in FIG. And external force acts on the sealing member 2, and the weak sealing member 2 is destroyed. Thereby, the through-hole 14 is formed in the sealing member 2, and the first internal space in the metal container 3 and the second internal space outside the metal container 3 communicate with each other. Therefore, the gas adsorbent in the first internal space adsorbs the gas heat conduction component remaining in the second internal space and the gas heat transfer component entering the second internal space. As a result, the second internal space is maintained in a vacuum state, for example, 1 Pa or less, and the vacuum heat insulating body 8 can maintain excellent heat insulating performance.
[作用、効果]
上記構成によれば、気体吸着デバイス1が外被部材10の第2内部空間に収容されることにより、第2内部空間が真空状態に維持される。このため、真空断熱体8の断熱性能の低下が防止される。 [Action, effect]
According to the above configuration, thegas adsorption device 1 is accommodated in the second internal space of the jacket member 10, whereby the second internal space is maintained in a vacuum state. For this reason, the fall of the heat insulation performance of the vacuum heat insulating body 8 is prevented.
上記構成によれば、気体吸着デバイス1が外被部材10の第2内部空間に収容されることにより、第2内部空間が真空状態に維持される。このため、真空断熱体8の断熱性能の低下が防止される。 [Action, effect]
According to the above configuration, the
また、気体吸着デバイス1の配置位置に対応する箇所に印13が設けられていることにより、印13を目印に外力を加えると、封止部材2が確実に破壊される。このため、真空断熱体8内において気体吸着デバイス1の機能が発揮され、真空断熱体8の真空度、ひいては断熱性が維持される。
Further, since the mark 13 is provided at a position corresponding to the arrangement position of the gas adsorption device 1, when an external force is applied to the mark 13 as a mark, the sealing member 2 is surely broken. For this reason, the function of the gas adsorption device 1 is demonstrated in the vacuum heat insulating body 8, and the vacuum degree of the vacuum heat insulating body 8, and by extension, heat insulation is maintained.
さらに、外力により気体吸着デバイス1が開放されることにより、気体吸着デバイス1を開放するための器具などを設ける必要がなく、簡単かつ確実に吸着デバイスが開放される。また、開封部材により真空断熱体8表面が隆起し、外被部材106が擦れて破れるなどの不具合が防がれる。
Furthermore, since the gas adsorption device 1 is opened by an external force, it is not necessary to provide an instrument for opening the gas adsorption device 1, and the adsorption device can be opened easily and reliably. Further, the opening member raises the surface of the vacuum heat insulating body 8, and the outer member 106 is rubbed and broken.
また、封止部材2が外被部材10の内部で破壊され、貫通口14が形成されることにより、気体吸着デバイス1の性能を発揮する。貫通口14の形成のこのため、たとえば、性能不良などの真空断熱体8の原因調査のために、真空断熱体8から気体吸着デバイス1を取り出し、封止部材2における貫通口14の形成状況を見ることにより、吸着デバイスが機能しているかどうかを確認することができる。
Further, the sealing member 2 is broken inside the jacket member 10 and the through hole 14 is formed, so that the performance of the gas adsorption device 1 is exhibited. For this reason, for example, in order to investigate the cause of the vacuum heat insulating body 8 such as poor performance, the gas adsorption device 1 is taken out from the vacuum heat insulating body 8, and the formation state of the through hole 14 in the sealing member 2 is determined. By looking, it can be confirmed whether the adsorption device is functioning.
さらに、気体吸着デバイス1が芯部材9の内部に設置されているため、芯部材9が緩衝材となり、気体吸着デバイス1の誤開封が防がれる。
Furthermore, since the gas adsorbing device 1 is installed inside the core member 9, the core member 9 serves as a buffer material, and the gas adsorbing device 1 is prevented from being unsealed.
また、気体吸着デバイス1の金属製容器3の開口部5が略扁平の断面を含む筒状で形成され、気体吸着デバイス1は略扁平の短軸が真空断熱体8の表面に垂直になるように配置されている。このため、略扁平の断面に対して平行な方向に外力が加えられると、略扁平な短軸の方向において外力が開口部5に対して封止部材2を曲げる力が作用する。この略扁平な短軸方向における外力に対する開口部5および封止部材2の強度は略扁平な長軸方向に比べて小さい。これにより、封止部材2が簡単かつ各軸に破壊され、貫通口14が形成される。
In addition, the opening 5 of the metal container 3 of the gas adsorption device 1 is formed in a cylindrical shape including a substantially flat cross section, and the gas adsorption device 1 has a substantially flat short axis perpendicular to the surface of the vacuum heat insulator 8. Is arranged. For this reason, when an external force is applied in a direction parallel to the substantially flat cross section, a force that the external force bends the sealing member 2 against the opening 5 acts in the direction of the substantially flat short axis. The strength of the opening 5 and the sealing member 2 with respect to the external force in the substantially flat short axis direction is smaller than that of the substantially flat long axis direction. Thereby, the sealing member 2 is easily broken on each axis, and the through hole 14 is formed.
さらに、芯部材9に形成された切れ込み11は、芯部材9の内部の裂け目12に通ずる。このため、気体吸着剤は、切れ込み11から裂け目12に挿入され、気体吸着デバイス1が裂け目12の空間に収納される。この切れ込み11により、気体吸着デバイス1の芯部材9の表面に平行な方向の移動が規制される。
Furthermore, the notch 11 formed in the core member 9 leads to the tear 12 inside the core member 9. For this reason, the gas adsorbent is inserted into the slit 12 from the cut 11, and the gas adsorption device 1 is accommodated in the space of the slit 12. This cut 11 restricts movement in a direction parallel to the surface of the core member 9 of the gas adsorption device 1.
[変形例3]
上記実施の形態2に係る真空断熱体8において、印13は、外被部材10の外表面に付されたマークやシールであった。ただし、印13は、外被部材10に現われた凹部、凸部、切り込みなどであってもよい。このため、芯部材9の切れ込み11も気体吸着デバイス1の設置位置の印13となり得る。また、図10に示すように、気体吸着デバイス1を芯部材9の内部に収容することにより、気体吸着デバイス1に対応する範囲において芯部材9の表面が外側に膨らむ。この膨らみは外被部材10に現われるため、この膨らみも気体吸着デバイス1の位置を表す印13に用いられる。さらに、図11に示すように、芯部材9に窪みが形成され、この窪みに気体吸着デバイス1が収容される場合、この窪みは外被部材10に現われるため、この窪みも気体吸着デバイス1の位置を示す印13として用いられる。 [Modification 3]
In the vacuumheat insulating body 8 according to the second embodiment, the mark 13 is a mark or seal attached to the outer surface of the jacket member 10. However, the mark 13 may be a concave portion, a convex portion, a notch, or the like that appears on the jacket member 10. For this reason, the notch 11 of the core member 9 can also be the mark 13 of the installation position of the gas adsorption device 1. In addition, as shown in FIG. 10, by accommodating the gas adsorption device 1 inside the core member 9, the surface of the core member 9 swells outside in a range corresponding to the gas adsorption device 1. Since this bulge appears on the jacket member 10, this bulge is also used for the mark 13 indicating the position of the gas adsorption device 1. Furthermore, as shown in FIG. 11, when the hollow is formed in the core member 9 and the gas adsorbing device 1 is accommodated in the hollow, the hollow appears in the outer cover member 10. Used as a mark 13 indicating the position.
上記実施の形態2に係る真空断熱体8において、印13は、外被部材10の外表面に付されたマークやシールであった。ただし、印13は、外被部材10に現われた凹部、凸部、切り込みなどであってもよい。このため、芯部材9の切れ込み11も気体吸着デバイス1の設置位置の印13となり得る。また、図10に示すように、気体吸着デバイス1を芯部材9の内部に収容することにより、気体吸着デバイス1に対応する範囲において芯部材9の表面が外側に膨らむ。この膨らみは外被部材10に現われるため、この膨らみも気体吸着デバイス1の位置を表す印13に用いられる。さらに、図11に示すように、芯部材9に窪みが形成され、この窪みに気体吸着デバイス1が収容される場合、この窪みは外被部材10に現われるため、この窪みも気体吸着デバイス1の位置を示す印13として用いられる。 [Modification 3]
In the vacuum
[変形例4]
上記実施の形態2に係る真空断熱体8において、芯部材9の内部に気体吸着デバイス1が収容されていた。これに対し、芯部材9の表面上に気体吸着デバイス1が配置されてもよい。この場合、切れ込み11や気体吸着デバイスの収容空間12は設けられない。 [Modification 4]
In the vacuumheat insulating body 8 according to the second embodiment, the gas adsorption device 1 is accommodated inside the core member 9. On the other hand, the gas adsorption device 1 may be disposed on the surface of the core member 9. In this case, the notch 11 and the accommodating space 12 for the gas adsorption device are not provided.
上記実施の形態2に係る真空断熱体8において、芯部材9の内部に気体吸着デバイス1が収容されていた。これに対し、芯部材9の表面上に気体吸着デバイス1が配置されてもよい。この場合、切れ込み11や気体吸着デバイスの収容空間12は設けられない。 [Modification 4]
In the vacuum
(実施の形態3)
実施の形態2では、気体吸着デバイス1が真空断熱体8に備えられていた。これに対し、実施の形態3では、気体吸着デバイス1が内袋15に収容され、さらに水分吸着剤16が真空断熱体8に備えられている。 (Embodiment 3)
In the second embodiment, thegas adsorption device 1 is provided in the vacuum heat insulating body 8. On the other hand, in Embodiment 3, the gas adsorption device 1 is accommodated in the inner bag 15, and the moisture adsorbent 16 is further provided in the vacuum heat insulator 8.
実施の形態2では、気体吸着デバイス1が真空断熱体8に備えられていた。これに対し、実施の形態3では、気体吸着デバイス1が内袋15に収容され、さらに水分吸着剤16が真空断熱体8に備えられている。 (Embodiment 3)
In the second embodiment, the
[真空断熱体の構成]
図12は、実施の形態3に係る真空断熱体8を示す断面図である。 [Configuration of vacuum insulation]
FIG. 12 is a cross-sectional view showing the vacuumheat insulating body 8 according to the third embodiment.
図12は、実施の形態3に係る真空断熱体8を示す断面図である。 [Configuration of vacuum insulation]
FIG. 12 is a cross-sectional view showing the vacuum
内袋15は、外被部材10の第2内部空間に設けられ、気体吸着デバイス1の位置ずれを抑制する移動抑制部である。内袋15には、摩擦力が大きい材料、たとえば、和紙やPEなどの樹脂で構成される不織布などが用いられる。特に、内袋15は、弾性材料で構成され、弾性材料には、PPおよびPETなどの樹脂で構成される不織布などが挙げられる。この弾性材料はやわらかく、変形しにくいため、内袋15によって気体吸着デバイス1にキズや凹みなどの外観異常が起きることが防止される。また、樹脂で構成された不織布は、和紙に比べて水分を含みにくく破れにくいという点から好ましい。特に、PPとPETで構成された不織布は、引張り強度、引裂き強度および耐熱性が高く、低コスト面であるため、安価で簡単な生産加工で製作することができるため、好ましい。
The inner bag 15 is a movement suppression unit that is provided in the second internal space of the jacket member 10 and suppresses the positional deviation of the gas adsorption device 1. The inner bag 15 is made of a material having a high frictional force, for example, a nonwoven fabric made of a resin such as Japanese paper or PE. In particular, the inner bag 15 is made of an elastic material, and examples of the elastic material include a nonwoven fabric made of a resin such as PP and PET. Since this elastic material is soft and difficult to deform, the inner bag 15 prevents the gas adsorbing device 1 from causing abnormal appearance such as scratches and dents. Moreover, the nonwoven fabric comprised with resin is preferable from the point that it is hard to contain a water | moisture content compared with Japanese paper, and torn easily. In particular, a nonwoven fabric composed of PP and PET is preferable because it has high tensile strength, tear strength, and heat resistance, and is low in cost, and can be manufactured by inexpensive and simple production processing.
内袋15は、気体吸着デバイス1の一部または全部を内包する。内袋15は、三方閉めや四方閉めされた形状を有する。内袋15が四方閉めされている場合、内袋15には通気性を有する材質が用いられる。四方閉めされた内袋15では、気体吸着デバイス1が外れにくいため、好ましい。
The inner bag 15 contains part or all of the gas adsorption device 1. The inner bag 15 has a three-way closed shape or a four-way closed shape. When the inner bag 15 is closed on all sides, a material having air permeability is used for the inner bag 15. The inner bag 15 that is closed on all sides is preferable because the gas adsorption device 1 is unlikely to come off.
水分吸着剤16は、真空断熱体8の第2内部空間に残存または侵入する水蒸気を吸着する材料である。水分吸着剤16には、たとえば、酸化カルシウムや酸化マグネシウム等の化学吸着物質やゼオライトのような物理吸着物質、あるいは、それらの混合物が用いられる。
The moisture adsorbent 16 is a material that adsorbs water vapor that remains or enters the second internal space of the vacuum heat insulator 8. As the moisture adsorbent 16, for example, a chemical adsorbent such as calcium oxide or magnesium oxide, a physical adsorbent such as zeolite, or a mixture thereof is used.
[作用、効果]
上記構成によれば、気体吸着デバイス1が内袋15に包まれている。これにより、気体吸着デバイス1を芯部材9内に設置する際や、この芯部材9を外被部材10で包む際などに、内袋15と芯部材9との摩擦によって気体吸着デバイス1の位置がずれることが防止される。これにより、気体吸着デバイス1の封止部材2の位置が簡単に特定でき、生産性の低下が抑えられる。また、外力が気体吸着デバイス1に確実に加わり、気体吸着デバイス1が開放される。 [Action, effect]
According to the above configuration, thegas adsorption device 1 is wrapped in the inner bag 15. Accordingly, when the gas adsorbing device 1 is installed in the core member 9, or when the core member 9 is wrapped with the outer cover member 10, the position of the gas adsorbing device 1 is caused by friction between the inner bag 15 and the core member 9. Is prevented from shifting. Thereby, the position of the sealing member 2 of the gas adsorption device 1 can be easily specified, and the decrease in productivity is suppressed. Moreover, an external force is reliably applied to the gas adsorption device 1, and the gas adsorption device 1 is opened.
上記構成によれば、気体吸着デバイス1が内袋15に包まれている。これにより、気体吸着デバイス1を芯部材9内に設置する際や、この芯部材9を外被部材10で包む際などに、内袋15と芯部材9との摩擦によって気体吸着デバイス1の位置がずれることが防止される。これにより、気体吸着デバイス1の封止部材2の位置が簡単に特定でき、生産性の低下が抑えられる。また、外力が気体吸着デバイス1に確実に加わり、気体吸着デバイス1が開放される。 [Action, effect]
According to the above configuration, the
さらに、内袋15は気体吸着デバイス1の緩衝材となるため、気体吸着デバイス1の誤開封が低減される。
Furthermore, since the inner bag 15 serves as a buffer material for the gas adsorption device 1, erroneous opening of the gas adsorption device 1 is reduced.
また、うち袋により気体吸着デバイス1の位置ずれが防止されるため、位置ずれした気体吸着デバイス1に外被部材10が擦れて破れてしまうことが防止される。
Further, since the position of the gas adsorbing device 1 is prevented from being shifted by the bag, it is possible to prevent the outer cover member 10 from being rubbed and torn against the gas adsorbing device 1 that has been displaced.
さらに、気体吸着デバイス1および水分吸着剤16が併用される。これにより、真空断熱体8の第2内部空間の気体の水分が安価な水分吸着剤16によって先に吸着される。その後、気体吸着デバイス1を開封すると、気体吸着デバイス1により第2内部空間において水分以外の気体が吸着される。このため、高価な気体吸着物質の使用量が減り、コストが削減される。
Furthermore, the gas adsorption device 1 and the moisture adsorbent 16 are used in combination. Thereby, the water | moisture content of the gas of the 2nd internal space of the vacuum heat insulating body 8 is adsorb | sucked previously with the cheap water | moisture-content adsorption agent 16. FIG. Thereafter, when the gas adsorption device 1 is opened, a gas other than moisture is adsorbed in the second internal space by the gas adsorption device 1. For this reason, the usage-amount of an expensive gas adsorption material reduces, and cost is reduced.
[変形例5]
なお、上記実施の形態3に係る真空断熱体8に、水分吸着剤16が備えられなくてもよい。 [Modification 5]
In addition, the water | moisture-content adsorption agent 16 does not need to be provided in the vacuum heat insulating body 8 which concerns on the said Embodiment 3. FIG.
なお、上記実施の形態3に係る真空断熱体8に、水分吸着剤16が備えられなくてもよい。 [Modification 5]
In addition, the water | moisture-
[変形例6]
さらに、上記実施の形態3に係る真空断熱体8の外被部材10に、実施の形態2に係る印13が付けられてもよい。この印13により、気体吸着デバイス1の封止部材2の位置が外から簡単に認識することができる。 [Modification 6]
Furthermore, themark 13 according to the second embodiment may be attached to the jacket member 10 of the vacuum heat insulating body 8 according to the third embodiment. By this mark 13, the position of the sealing member 2 of the gas adsorption device 1 can be easily recognized from the outside.
さらに、上記実施の形態3に係る真空断熱体8の外被部材10に、実施の形態2に係る印13が付けられてもよい。この印13により、気体吸着デバイス1の封止部材2の位置が外から簡単に認識することができる。 [Modification 6]
Furthermore, the
[変形例7]
また、上記実施の形態3に係る真空断熱体8の芯部材9に、図13に示すように、実施の形態2に係る切り込みおよび気体吸着デバイス1の収容空間が設けられてもよい。この場合、内袋15に包まれた気体吸着デバイス1は芯部材9の内部の収納空間12に収容される。この気体吸着デバイス1と内袋15との摩擦に加えて、内袋15と収納空間12の内面との摩擦によって、気体吸着デバイス1の移動が規制される。これにより、内袋15に加えて気体吸着デバイス1が収納された空間の内面が移動抑制部として機能する。 [Modification 7]
In addition, as shown in FIG. 13, thecore member 9 of the vacuum heat insulating body 8 according to the third embodiment may be provided with a notch and a space for accommodating the gas adsorption device 1 according to the second embodiment. In this case, the gas adsorption device 1 wrapped in the inner bag 15 is accommodated in the accommodation space 12 inside the core member 9. In addition to the friction between the gas adsorption device 1 and the inner bag 15, the movement of the gas adsorption device 1 is regulated by the friction between the inner bag 15 and the inner surface of the storage space 12. Thereby, in addition to the inner bag 15, the inner surface of the space in which the gas adsorbing device 1 is stored functions as a movement suppressing unit.
また、上記実施の形態3に係る真空断熱体8の芯部材9に、図13に示すように、実施の形態2に係る切り込みおよび気体吸着デバイス1の収容空間が設けられてもよい。この場合、内袋15に包まれた気体吸着デバイス1は芯部材9の内部の収納空間12に収容される。この気体吸着デバイス1と内袋15との摩擦に加えて、内袋15と収納空間12の内面との摩擦によって、気体吸着デバイス1の移動が規制される。これにより、内袋15に加えて気体吸着デバイス1が収納された空間の内面が移動抑制部として機能する。 [Modification 7]
In addition, as shown in FIG. 13, the
[変形例8]
さらに、上記実施の形態3に係る真空断熱体8において気体吸着デバイス1の封止部材2が外力により破壊されて開放された。ただし、気体吸着デバイス1の開封部材が真空断熱体8に備えられてもよい。 [Modification 8]
Furthermore, in the vacuumheat insulating body 8 according to the third embodiment, the sealing member 2 of the gas adsorption device 1 is broken and opened by an external force. However, the opening member of the gas adsorption device 1 may be provided in the vacuum heat insulating body 8.
さらに、上記実施の形態3に係る真空断熱体8において気体吸着デバイス1の封止部材2が外力により破壊されて開放された。ただし、気体吸着デバイス1の開封部材が真空断熱体8に備えられてもよい。 [Modification 8]
Furthermore, in the vacuum
[変形例9]
また、上記実施の形態3に係る真空断熱体8には、気体吸着デバイス1を包む内袋15が設けられていたが、内袋15が設けられなくてもよい。この場合、気体吸着デバイス1が芯部材9の内部に収容されることにより、収納空間12の内面との摩擦によって、気体吸着デバイス1の移動が規制される。これにより、気体吸着デバイス1が収納された空間の内面が移動抑制部として機能する。また、気体吸着デバイス1と外被部材10の間に必ず芯部材9が挟まれている。これによって、封止部材2に開封部材などに押し当てられるとき、封止部材2と外被部材10との間に存在する弾力性のある芯部材9が、外力の衝撃を和らげる。このため、封止部材2は外力により破壊されるが、封止部材2の破片の飛散が防がれる。よって、封止部材2と外被部材10との間を除き、芯部材9に封止部材2の破片が入り込まない。この結果、真空断熱体8を廃棄する際、それぞれの部材を容易に分けることができ、リサイクル性が向上する。なお、封止部材2の破壊され方によっては、封止部材2と外被部材10との間の芯部材9には、封止部材2の破片を含むことがある。この場合、封止部材2と外被部材10との間の芯部材9をこれ以外の芯部材9から取り除くことにより、真空断熱体8を分別することができる。また、封止部材2と外被部材10との間の芯部材9と、これ以外の芯部材9とが予め分けられていてもよい。この場合、真空断熱体8をさらに簡単に分別することができる。 [Modification 9]
Moreover, although theinner bag 15 which wraps the gas adsorption device 1 was provided in the vacuum heat insulating body 8 which concerns on the said Embodiment 3, the inner bag 15 does not need to be provided. In this case, when the gas adsorption device 1 is accommodated in the core member 9, the movement of the gas adsorption device 1 is regulated by friction with the inner surface of the accommodation space 12. Thereby, the inner surface of the space in which the gas adsorption device 1 is accommodated functions as a movement suppressing unit. Further, the core member 9 is always sandwiched between the gas adsorption device 1 and the jacket member 10. Accordingly, when the sealing member 2 is pressed against the opening member or the like, the elastic core member 9 existing between the sealing member 2 and the outer cover member 10 softens the impact of the external force. For this reason, although the sealing member 2 is destroyed by external force, scattering of the fragment of the sealing member 2 is prevented. Therefore, the fragments of the sealing member 2 do not enter the core member 9 except between the sealing member 2 and the jacket member 10. As a result, when the vacuum insulator 8 is discarded, the respective members can be easily separated, and the recyclability is improved. Depending on how the sealing member 2 is destroyed, the core member 9 between the sealing member 2 and the outer cover member 10 may include fragments of the sealing member 2. In this case, the vacuum heat insulator 8 can be separated by removing the core member 9 between the sealing member 2 and the jacket member 10 from the other core members 9. Moreover, the core member 9 between the sealing member 2 and the jacket member 10 and the other core member 9 may be separated in advance. In this case, the vacuum insulator 8 can be more easily separated.
また、上記実施の形態3に係る真空断熱体8には、気体吸着デバイス1を包む内袋15が設けられていたが、内袋15が設けられなくてもよい。この場合、気体吸着デバイス1が芯部材9の内部に収容されることにより、収納空間12の内面との摩擦によって、気体吸着デバイス1の移動が規制される。これにより、気体吸着デバイス1が収納された空間の内面が移動抑制部として機能する。また、気体吸着デバイス1と外被部材10の間に必ず芯部材9が挟まれている。これによって、封止部材2に開封部材などに押し当てられるとき、封止部材2と外被部材10との間に存在する弾力性のある芯部材9が、外力の衝撃を和らげる。このため、封止部材2は外力により破壊されるが、封止部材2の破片の飛散が防がれる。よって、封止部材2と外被部材10との間を除き、芯部材9に封止部材2の破片が入り込まない。この結果、真空断熱体8を廃棄する際、それぞれの部材を容易に分けることができ、リサイクル性が向上する。なお、封止部材2の破壊され方によっては、封止部材2と外被部材10との間の芯部材9には、封止部材2の破片を含むことがある。この場合、封止部材2と外被部材10との間の芯部材9をこれ以外の芯部材9から取り除くことにより、真空断熱体8を分別することができる。また、封止部材2と外被部材10との間の芯部材9と、これ以外の芯部材9とが予め分けられていてもよい。この場合、真空断熱体8をさらに簡単に分別することができる。 [Modification 9]
Moreover, although the
[変形例10]
上記実施の形態3に係る真空断熱体8において、芯部材9の内部に気体吸着デバイス1が収容されていた。これに対し、芯部材9の表面上に気体吸着デバイス1が配置されてもよい。 [Modification 10]
In the vacuumheat insulating body 8 according to the third embodiment, the gas adsorption device 1 is accommodated inside the core member 9. On the other hand, the gas adsorption device 1 may be disposed on the surface of the core member 9.
上記実施の形態3に係る真空断熱体8において、芯部材9の内部に気体吸着デバイス1が収容されていた。これに対し、芯部材9の表面上に気体吸着デバイス1が配置されてもよい。 [Modification 10]
In the vacuum
本発明の密閉容器およびその製造方法、ならびに真空断熱体は、固形物を収納した内部空間の真空度の低下が抑制される密閉容器およびその製造方法、ならびに真空断熱体などに適用可能である。
The sealed container, the manufacturing method thereof, and the vacuum heat insulating body of the present invention can be applied to a sealed container, a manufacturing method thereof, a vacuum heat insulating body, and the like in which a decrease in the degree of vacuum in the internal space containing the solid matter is suppressed.
1 密閉容器
2 封止部材
3 金属製容器
4 固形物
5 開口部
6 接合部
7 狭窄部
8 真空断熱体
9 芯部材
10 外被部材
11 切れ込み
12 裂け目
12 空間
13 印
14 貫通口
15 内袋
16 水分吸着剤 DESCRIPTION OFSYMBOLS 1 Airtight container 2 Sealing member 3 Metal container 4 Solid substance 5 Opening part 6 Joint part 7 Narrow part 8 Vacuum heat insulating body 9 Core member 10 Outer member 11 Notch 12 Rupture 12 Space 13 Mark 14 Through-hole 15 Inner bag 16 Moisture Adsorbent
2 封止部材
3 金属製容器
4 固形物
5 開口部
6 接合部
7 狭窄部
8 真空断熱体
9 芯部材
10 外被部材
11 切れ込み
12 裂け目
12 空間
13 印
14 貫通口
15 内袋
16 水分吸着剤 DESCRIPTION OF
Claims (19)
- 開口部を有し、その第1内部空間が減圧された金属製容器と、
前記金属製容器の第1内部空間内に収容された固形物と、
アルカリ土類金属酸化物およびアルカリ金属酸化物の少なくともいずれか一方を含むガラスから成る封止部材と、を備え、
前記封止部材は加熱溶融されて冷却固化されることにより前記金属製容器の開口部に接合されて前記開口部を封止している、密閉容器。 A metal container having an opening, the first internal space of which is decompressed;
A solid contained in the first internal space of the metal container;
A sealing member made of glass containing at least one of an alkaline earth metal oxide and an alkali metal oxide, and
An airtight container in which the sealing member is heated and melted and cooled and solidified to join the opening of the metal container and seal the opening. - 前記封止部材のアルカリ土類金属酸化物が、BaOおよびSrOのいずれかである、請求項1に記載の密閉容器。 The sealed container according to claim 1, wherein the alkaline earth metal oxide of the sealing member is one of BaO and SrO.
- 前記封止部材は前記開口部の内部に位置して当該開口部に接合されており、前記金属製容器は、前記封止部材の熱膨張係数より大きな熱膨張係数を有する、請求項1または2に記載の密閉容器。 The said sealing member is located in the inside of the said opening part, and is joined to the said opening part, The said metal container has a thermal expansion coefficient larger than the thermal expansion coefficient of the said sealing member. A sealed container according to 1.
- 前記金属製容器が、アルミニウムで構成されている、請求項1~3のいずれか一項に記載の密閉容器。 The sealed container according to any one of claims 1 to 3, wherein the metal container is made of aluminum.
- 前記金属製容器の開口部に狭窄部が設けられ、
前記封止部材は、前記狭窄部に接合されて該狭窄部を封止している、請求項1~4のいずれか一項に記載の密閉容器。 A narrow portion is provided in the opening of the metal container,
The sealed container according to any one of claims 1 to 4, wherein the sealing member is bonded to the narrowed portion to seal the narrowed portion. - 前記固形物が加熱処理により劣化しない気体吸着材を含み、気体吸着デバイスとして機能する、請求項1~5のいずれか一項に記載の密閉容器。 The sealed container according to any one of claims 1 to 5, wherein the solid material includes a gas adsorbent that does not deteriorate by heat treatment, and functions as a gas adsorption device.
- 請求項6に記載の密閉容器で構成される気体吸着デバイスと、
芯部材と、
前記気体吸着デバイスと前記芯部材とをその第2内部空間内に収容し、前記第2内部空間が減圧されて密封されている中空の外被部材と、を備える、真空断熱体。 A gas adsorption device comprising the sealed container according to claim 6;
A core member;
A vacuum heat insulating body, comprising: the gas adsorbing device and the core member housed in a second inner space thereof; and a hollow jacket member in which the second inner space is decompressed and sealed. - 前記外被部材の第2内部空間において前記封止部材が破壊されることにより、前記気体吸着デバイスを開放する貫通口が形成されている、請求項7に記載の真空断熱体。 The vacuum heat insulating body according to claim 7, wherein a through-hole for opening the gas adsorbing device is formed by breaking the sealing member in the second internal space of the jacket member.
- 前記金属製容器の開口部が、略扁平な断面を有する筒状に形成され、
前記開口部に略扁平な断面の短軸方向の外力が前記封止部材に加わり、前記封止部材が破壊されることにより、前記貫通口が形成されている、請求項8に記載の真空断熱体。 The opening of the metal container is formed in a cylindrical shape having a substantially flat cross section,
The vacuum insulation according to claim 8, wherein an external force in a minor axis direction having a substantially flat cross section is applied to the opening, and the through hole is formed by breaking the sealing member. body. - 前記気体吸着デバイスが前記芯部材の内部に収納され、前記外被部材と前記気体吸着デバイスとの間に前記芯部材が介在する、請求項7~9のいずれか一項に記載の真空断熱体。 The vacuum heat insulating body according to any one of claims 7 to 9, wherein the gas adsorbing device is housed inside the core member, and the core member is interposed between the jacket member and the gas adsorbing device. .
- 前記芯部材の内部において前記気体吸着デバイスが収納される空間に通ずる、前記芯部材に形成された切れ込みをさらに備える、請求項10に記載の真空断熱体。 The vacuum heat insulating body according to claim 10, further comprising a notch formed in the core member that communicates with a space in which the gas adsorbing device is accommodated inside the core member.
- 前記気体吸着デバイスが配設された箇所に対応する前記外被部材の部位に付けられた印をさらに備える、請求項7~11のいずれか一項に記載の真空断熱体。 The vacuum heat insulating body according to any one of claims 7 to 11, further comprising a mark attached to a portion of the jacket member corresponding to a portion where the gas adsorption device is disposed.
- 前記外被部材の第2内部空間に設けられ、前記気体吸着デバイスの移動を抑制する移動抑制部をさらに備えた、請求項7~12のいずれか一項に記載の真空断熱体。 The vacuum heat insulating body according to any one of claims 7 to 12, further comprising a movement suppression unit that is provided in a second internal space of the jacket member and suppresses movement of the gas adsorption device.
- 前記移動抑制部は、前記気体吸着デバイスの一部または全部を内包する内袋で構成された、請求項13に記載の真空断熱体。 The vacuum heat insulator according to claim 13, wherein the movement suppressing unit is configured by an inner bag that includes a part or all of the gas adsorption device.
- 前記内袋は弾性材料で構成される、請求項14に記載の真空断熱体。 The vacuum insulator according to claim 14, wherein the inner bag is made of an elastic material.
- 前記弾性材料は樹脂で構成される不織布を含む、請求項15に記載の真空断熱体。 The vacuum heat insulating body according to claim 15, wherein the elastic material includes a nonwoven fabric made of resin.
- 前記不織布を形成する樹脂は、PPおよびPETの少なくともいずれか1つを含む、請求項16に記載の真空断熱体。 The vacuum heat insulating body according to claim 16, wherein the resin forming the nonwoven fabric includes at least one of PP and PET.
- 前記移動抑制部は、前記芯部材の内部において前記気体吸着デバイスが収納された空間の内面で構成された、請求項13~17のいずれか一項に記載の真空断熱体。 The vacuum heat insulator according to any one of claims 13 to 17, wherein the movement suppressing unit is configured by an inner surface of a space in which the gas adsorption device is accommodated inside the core member.
- 金属製容器の第1内部空間内に固形物を収容することと、
前記金属製容器の第1内部空間を減圧しながら、アルカリ土類金属酸化物およびアルカリ金属酸化物の少なくともいずれか一方を含むガラスから成る封止部材を加熱溶融し冷却固化することにより当該封止部材を前記金属製容器の開口部に接合し、それにより前記封止部材で前記開口部を封止することとを含む、密閉容器の製造方法。 Containing solids in the first internal space of the metal container;
While sealing the first internal space of the metal container, the sealing member made of glass containing at least one of alkaline earth metal oxide and alkali metal oxide is heated and melted to be cooled and solidified. A method of manufacturing an airtight container, comprising joining a member to an opening of the metal container and thereby sealing the opening with the sealing member.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280039021.3A CN103732111A (en) | 2011-08-09 | 2012-08-08 | Airtight container, method for producing same and vacuum insulation body |
EP12822121.5A EP2742835A1 (en) | 2011-08-09 | 2012-08-08 | Airtight container, method for producing same and vacuum insulation body |
US14/237,496 US20140178613A1 (en) | 2011-08-09 | 2012-08-08 | Sealed container, method of manufacturing the same, and vacuum heat insulating body |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011173514 | 2011-08-09 | ||
JP2011-173514 | 2011-08-09 | ||
JP2011192662 | 2011-09-05 | ||
JP2011-192685 | 2011-09-05 | ||
JP2011-192662 | 2011-09-05 | ||
JP2011192685 | 2011-09-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013021639A1 true WO2013021639A1 (en) | 2013-02-14 |
Family
ID=47668174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/005044 WO2013021639A1 (en) | 2011-08-09 | 2012-08-08 | Airtight container, method for producing same and vacuum insulation body |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140178613A1 (en) |
EP (1) | EP2742835A1 (en) |
JP (5) | JP5356585B2 (en) |
CN (1) | CN103732111A (en) |
WO (1) | WO2013021639A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104138213B (en) * | 2014-06-23 | 2017-06-13 | 陈冬海 | Heat the glass wares and its manufacture method of liquid |
JP6646812B2 (en) * | 2014-06-24 | 2020-02-14 | パナソニックIpマネジメント株式会社 | Gas adsorption device and vacuum heat insulating material using the same |
JP6202174B1 (en) * | 2016-09-30 | 2017-09-27 | 大日本印刷株式会社 | Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation |
JP6867897B2 (en) | 2017-06-29 | 2021-05-12 | 株式会社ダイセル | Sealing structure |
JP2022040991A (en) * | 2020-08-31 | 2022-03-11 | 三恵技研工業株式会社 | Heat insulating panel and manufacturing method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06169850A (en) | 1992-12-07 | 1994-06-21 | Nippon Sanso Kk | Metallic vacuum double container and its manufacture |
JPH07269780A (en) * | 1994-03-30 | 1995-10-20 | Toshiba Corp | Vacuum heat insulating body and manufacture thereof |
JP2002125866A (en) | 2000-10-25 | 2002-05-08 | Nippon Electric Glass Co Ltd | Sealing glass for metal-made vacuum double wall vessel |
JP2005016629A (en) * | 2003-06-26 | 2005-01-20 | Nisshinbo Ind Inc | Vacuum heat insulating material and its manufacturing method |
JP2005090819A (en) * | 2003-09-16 | 2005-04-07 | Mitsubishi Electric Corp | Refrigerator and refrigerator recycling method |
JP2005319150A (en) | 2004-05-11 | 2005-11-17 | Nippon Electric Glass Co Ltd | Sealing glass |
JP2010137887A (en) * | 2008-12-11 | 2010-06-24 | Panasonic Corp | Gas adsorption device |
JP2010281424A (en) * | 2009-06-08 | 2010-12-16 | Mitsubishi Electric Corp | Vacuum heat insulation sheet, usage method of vacuum heat insulation sheet and recycling method of vacuum heat insulation sheet |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6166070A (en) * | 1984-09-07 | 1986-04-04 | 株式会社東芝 | Manufacture of vacuum heat-insulating panel |
JPH0592136A (en) * | 1991-08-30 | 1993-04-16 | Nippon Sanso Kk | Adsorbent packing bag and production thereof |
JP2001335077A (en) * | 2000-05-26 | 2001-12-04 | Ishikawajima Harima Heavy Ind Co Ltd | Sealing container for highly active material and its sealing method |
JP2002167234A (en) * | 2000-11-30 | 2002-06-11 | Nippon Electric Glass Co Ltd | Sealing glass for vacuum double-walled metal container |
JP4093353B2 (en) * | 2002-08-02 | 2008-06-04 | Agcテクノグラス株式会社 | Frit for sealing metal vacuum double structure container and metal vacuum double structure container |
JP3465713B1 (en) * | 2003-01-15 | 2003-11-10 | 松下電器産業株式会社 | Vacuum insulation |
JP2005337386A (en) * | 2004-05-27 | 2005-12-08 | Toyo Kogyo Kk | Vacuum seal construction method for vacuum heat-insulation type double-pipe, and vacuum heat-insulation type double-pipe |
WO2007034906A1 (en) * | 2005-09-26 | 2007-03-29 | Matsushita Electric Industrial Co., Ltd. | Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator |
JP4867699B2 (en) * | 2007-02-21 | 2012-02-01 | パナソニック株式会社 | Gas adsorption device |
EP2308806A4 (en) * | 2008-08-06 | 2013-01-02 | Nippon Electric Glass Co | Sealing glass |
EP2399661B1 (en) * | 2009-03-24 | 2017-01-18 | Panasonic Corporation | Fabrication method for gas-adsorbing device, gas-adsorbing device, and method of using the same |
JP2012102758A (en) * | 2010-11-08 | 2012-05-31 | Panasonic Corp | Vacuum heat insulation material |
-
2012
- 2012-08-08 WO PCT/JP2012/005044 patent/WO2013021639A1/en active Application Filing
- 2012-08-08 EP EP12822121.5A patent/EP2742835A1/en not_active Withdrawn
- 2012-08-08 JP JP2012176195A patent/JP5356585B2/en active Active
- 2012-08-08 US US14/237,496 patent/US20140178613A1/en not_active Abandoned
- 2012-08-08 CN CN201280039021.3A patent/CN103732111A/en active Pending
-
2013
- 2013-02-04 JP JP2013019728A patent/JP5356618B2/en active Active
- 2013-02-04 JP JP2013019727A patent/JP5356617B2/en active Active
- 2013-02-04 JP JP2013019729A patent/JP5356619B2/en active Active
- 2013-05-20 JP JP2013105949A patent/JP6041214B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06169850A (en) | 1992-12-07 | 1994-06-21 | Nippon Sanso Kk | Metallic vacuum double container and its manufacture |
JPH07269780A (en) * | 1994-03-30 | 1995-10-20 | Toshiba Corp | Vacuum heat insulating body and manufacture thereof |
JP2002125866A (en) | 2000-10-25 | 2002-05-08 | Nippon Electric Glass Co Ltd | Sealing glass for metal-made vacuum double wall vessel |
JP2005016629A (en) * | 2003-06-26 | 2005-01-20 | Nisshinbo Ind Inc | Vacuum heat insulating material and its manufacturing method |
JP2005090819A (en) * | 2003-09-16 | 2005-04-07 | Mitsubishi Electric Corp | Refrigerator and refrigerator recycling method |
JP2005319150A (en) | 2004-05-11 | 2005-11-17 | Nippon Electric Glass Co Ltd | Sealing glass |
JP2010137887A (en) * | 2008-12-11 | 2010-06-24 | Panasonic Corp | Gas adsorption device |
JP2010281424A (en) * | 2009-06-08 | 2010-12-16 | Mitsubishi Electric Corp | Vacuum heat insulation sheet, usage method of vacuum heat insulation sheet and recycling method of vacuum heat insulation sheet |
Also Published As
Publication number | Publication date |
---|---|
JP5356617B2 (en) | 2013-12-04 |
JP5356585B2 (en) | 2013-12-04 |
CN103732111A (en) | 2014-04-16 |
JP2013208615A (en) | 2013-10-10 |
JP2013100912A (en) | 2013-05-23 |
JP6041214B2 (en) | 2016-12-07 |
US20140178613A1 (en) | 2014-06-26 |
JP2013091527A (en) | 2013-05-16 |
JP5356618B2 (en) | 2013-12-04 |
JP2013130294A (en) | 2013-07-04 |
EP2742835A1 (en) | 2014-06-18 |
JP2013068323A (en) | 2013-04-18 |
JP5356619B2 (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016208193A1 (en) | Gas-adsorbing device and evacuated insulating material using same | |
JP6041214B2 (en) | GAS ADSORBENT, PROCESS FOR PRODUCING THE SAME, AND VACUUM INSULATOR | |
EP2676715B1 (en) | Gas adsorption device and vacuum heat insulating panel provided therewith | |
WO2012111311A1 (en) | Heat insulation box body | |
JP4897473B2 (en) | Vacuum insulation | |
JP2010060045A (en) | Vacuum heat insulating material, refrigerator using the same, and manufacturing method of vacuum heat insulating material | |
JP6531283B2 (en) | Residential walls with vacuum insulation and vacuum insulation | |
CN104428575A (en) | Vacuum insulation panel with improved rupturing and preparation method thereof | |
WO2016006186A1 (en) | Gas-adsorbing device, vacuum insulation material including same, and refrigerator and heat-insulating wall | |
JP2006118638A (en) | Vacuum insulation material and insulation housing | |
JP2012102758A (en) | Vacuum heat insulation material | |
JP2010096291A (en) | Vacuum heat insulated casing | |
JP2009168202A (en) | Vacuum heat insulation box body | |
JP2011089740A (en) | Bag body and vacuum heat insulating material | |
JP2010138956A (en) | Vacuum heat insulating material | |
JP5493706B2 (en) | Gas adsorption device and method of using gas adsorption device | |
JP4378953B2 (en) | Vacuum insulation | |
JP2006002920A (en) | Heat insulator | |
JP6465754B2 (en) | Gas adsorbent and vacuum heat insulating material using the same | |
JP7482437B2 (en) | Method for producing vacuum insulation material, method for producing vacuum insulation container, and method for producing thermal insulation bag | |
JP2006125527A (en) | Vacuum thermal insulation panel | |
JP2014213240A (en) | Gas absorption device and vacuum insulation material | |
JP2007040455A (en) | Vacuum heat insulating material | |
JP2006177497A (en) | Vacuum thermal insulation material, method of manufacturing the same, and thermal insulation box using the vacuum thermal insulation material | |
JP2011094637A (en) | Vacuum heat insulating material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12822121 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012822121 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14237496 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |