JP2013155059A - Glass composition for dye-sensitized solar cell and material for the dye-sensitized solar cell - Google Patents

Glass composition for dye-sensitized solar cell and material for the dye-sensitized solar cell Download PDF

Info

Publication number
JP2013155059A
JP2013155059A JP2012015052A JP2012015052A JP2013155059A JP 2013155059 A JP2013155059 A JP 2013155059A JP 2012015052 A JP2012015052 A JP 2012015052A JP 2012015052 A JP2012015052 A JP 2012015052A JP 2013155059 A JP2013155059 A JP 2013155059A
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
glass
glass composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012015052A
Other languages
Japanese (ja)
Inventor
Tomoko Enomoto
朋子 榎本
Noriaki Masuda
紀彰 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012015052A priority Critical patent/JP2013155059A/en
Publication of JP2013155059A publication Critical patent/JP2013155059A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

PROBLEM TO BE SOLVED: To improve long-term durability of a dye-sensitized solar cell by providing a glass composition for the dye-sensitized solar cell and a material for the dye-sensitized solar cell, which have low melting point characteristics and are excellent in electrolyte resistance.SOLUTION: A glass composition for a dye-sensitized solar cell comprises, as a glass composition, 26-60 mol% VO, 20-48 mol% TeO, 6-35 mol% ZnO and 0.1-18 mol% BaO, calculated in terms of oxides. A material for a dye-sensitized solar cell comprises 50-100 vol% glass powder comprising the glass composition for a dye-sensitized solar cell and 0-50 vol% refractory filler.

Description

本発明は、色素増感型太陽電池用ガラス組成物及び色素増感型太陽電池用材料に関し、具体的には色素増感型太陽電池の透明電極基板と対極基板の封着、集電電極の被覆、セル間を区切るための隔壁の形成等に好適な色素増感型太陽電池用ガラス組成物及び色素増感型太陽電池用材料に関する。   The present invention relates to a glass composition for a dye-sensitized solar cell and a material for a dye-sensitized solar cell, specifically, sealing of a transparent electrode substrate and a counter electrode substrate of a dye-sensitized solar cell, The present invention relates to a glass composition for a dye-sensitized solar cell and a material for a dye-sensitized solar cell that are suitable for coating, formation of partition walls for separating cells, and the like.

グレッチェル等が開発した色素増感型太陽電池は、シリコン半導体を使用した太陽電池に比べて、低コストであり、且つ製造に必要な原料が豊富にあるため、次世代の太陽電池として期待されている。   Dye-sensitized solar cells developed by Gretcher et al. Are expected to be the next-generation solar cells because they are less expensive than the solar cells that use silicon semiconductors and have abundant raw materials necessary for production. Yes.

色素増感型太陽電池は、透明導電膜が形成された透明電極基板と、透明電極基板に形成された多孔質酸化物半導体層(主にTiO層)からなる多孔質酸化物半導体電極と、その多孔質酸化物半導体電極に吸着されたRu色素等の色素と、ヨウ素を含むヨウ素電解液と、触媒膜と透明導電膜が形成された対極基板等により構成される。 The dye-sensitized solar cell includes a transparent electrode substrate on which a transparent conductive film is formed, and a porous oxide semiconductor electrode composed of a porous oxide semiconductor layer (mainly a TiO 2 layer) formed on the transparent electrode substrate, It is composed of a dye such as Ru dye adsorbed on the porous oxide semiconductor electrode, an iodine electrolyte containing iodine, a counter electrode substrate on which a catalyst film and a transparent conductive film are formed, and the like.

透明電極基板と対極基板には、ガラス基板やプラスチック基板等が使用される。透明電極基板にプラスチック基板を使用すると、透明電極膜の抵抗値が大きくなり、色素増感型太陽電池の光電変換効率が低下する。一方、透明電極基板にガラス基板を使用すると、透明電極膜の抵抗値が上昇し難く、色素増感型太陽電池の光電変換効率を維持することができる。従って、近年では、透明電極基板として、ガラス基板が使用されている。   A glass substrate, a plastic substrate, or the like is used as the transparent electrode substrate and the counter electrode substrate. When a plastic substrate is used for the transparent electrode substrate, the resistance value of the transparent electrode film increases, and the photoelectric conversion efficiency of the dye-sensitized solar cell decreases. On the other hand, when a glass substrate is used as the transparent electrode substrate, the resistance value of the transparent electrode film hardly increases, and the photoelectric conversion efficiency of the dye-sensitized solar cell can be maintained. Therefore, in recent years, a glass substrate has been used as the transparent electrode substrate.

色素増感型太陽電池は、透明電極基板と対極基板の間にヨウ素電解液が充填される。色素増感型太陽電池からヨウ素電解液の漏れを防止するために、透明電極基板と対極基板の外周縁を封着する必要がある。また、発生した電子を効率良く取り出すために、集電電極(例えば、Ag等が用いられる)を透明電極基板上に形成することがある。このとき、集電電極を被覆し、ヨウ素電解液により、集電電極が侵食される事態を防止する必要がある。更に、一枚のガラス基板上に電池回路を形成する場合、透明電極基板と対極基板の間に隔壁を形成することがある。   In the dye-sensitized solar cell, an iodine electrolyte is filled between the transparent electrode substrate and the counter electrode substrate. In order to prevent the leakage of iodine electrolyte from the dye-sensitized solar cell, it is necessary to seal the outer peripheral edges of the transparent electrode substrate and the counter electrode substrate. Moreover, in order to take out generated electrons efficiently, a collecting electrode (for example, Ag or the like is used) may be formed on the transparent electrode substrate. At this time, it is necessary to cover the current collecting electrode and prevent the current collecting electrode from being eroded by the iodine electrolyte. Furthermore, when a battery circuit is formed on a single glass substrate, a partition wall may be formed between the transparent electrode substrate and the counter electrode substrate.

特開平1−220380号公報Japanese Patent Laid-Open No. 1-220380 特開2002−75472号公報JP 2002-75472 A 特開2004−146425号公報JP 2004-146425 A

色素増感型太陽電池は、長期耐久性の向上が実用化への課題である。長期耐久性を損なう原因として、太陽電池部材(封着材料、集電電極等)とヨウ素電解液が反応して、太陽電池部材やヨウ素電解液が劣化することが挙げられる。特に、封着材料に樹脂を用い、ヨウ素電解液にアセトニトリル等の有機溶媒を用いたときに、その傾向が顕著である。この場合、樹脂がヨウ素電解液により侵食されるため、色素増感型太陽電池からヨウ素電解液が漏洩し、電池特性が著しく低下する。同様にして、集電電極の被覆や隔壁の形成に樹脂を使用した場合も、樹脂がヨウ素電解液により侵食されるため、集電電極の劣化や隔壁の破れ等が生じる。   In dye-sensitized solar cells, improvement of long-term durability is a problem for practical use. As a cause of impairing the long-term durability, the solar cell member (sealing material, current collecting electrode, etc.) reacts with the iodine electrolyte, and the solar cell member and the iodine electrolyte are deteriorated. This tendency is particularly remarkable when a resin is used as the sealing material and an organic solvent such as acetonitrile is used as the iodine electrolyte. In this case, since the resin is eroded by the iodine electrolyte, the iodine electrolyte leaks from the dye-sensitized solar cell, and the battery characteristics are remarkably deteriorated. Similarly, when a resin is used for covering the collector electrode or forming the partition wall, the resin is eroded by the iodine electrolyte solution, so that the collector electrode is deteriorated or the partition wall is broken.

封着材料にガラスを用いると、この問題を解決できる可能性がある。例えば、特許文献1には、封着材料にガラスを用いることが記載されている。特許文献2、3には、封着材料に鉛ガラスを用いることが記載されている。   If glass is used as the sealing material, this problem may be solved. For example, Patent Document 1 describes using glass as a sealing material. Patent Documents 2 and 3 describe the use of lead glass as a sealing material.

しかし、鉛ガラスもヨウ素電解液に対する耐性(耐電解液性)が十分とは言えず、鉛ガラスを用いた場合でも、長期間の使用により、鉛ガラスの成分がヨウ素電解液中に溶出する。その結果、ヨウ素電解液が劣化し、電池特性が低下してしまう。また、集電電極の被覆や隔壁の形成に鉛ガラスを用いた場合でも、長期間の使用により、集電電極の劣化や隔壁の破れが生じる。これらの現象も、鉛ガラスの耐電解液性が不十分であることが原因である。   However, lead glass cannot be said to have sufficient resistance (electrolytic solution resistance) to iodine electrolyte, and even when lead glass is used, the components of lead glass are eluted into the iodine electrolyte by long-term use. As a result, the iodine electrolyte solution deteriorates and the battery characteristics deteriorate. Further, even when lead glass is used for covering the current collecting electrode and forming the partition walls, deterioration of the current collecting electrodes and breakage of the partition walls occur due to long-term use. These phenomena are also caused by the insufficient resistance to electrolyte of lead glass.

また、封着材料の軟化点が高過ぎると、特に透明電極基板と対極基板の歪点より高いと、封着に際し、高温焼成が必要になり、封着時に透明電極基板と対極基板が変形するおそれがある。従って、封着材料(封着材料に含まれるガラス)には、低融点特性が要求される。具体的には、封着材料には、500℃以下、特に450℃以下の軟化点が要求される。   Also, if the softening point of the sealing material is too high, especially if it is higher than the strain point of the transparent electrode substrate and the counter electrode substrate, high temperature firing is required for sealing, and the transparent electrode substrate and the counter electrode substrate are deformed during sealing. There is a fear. Accordingly, the sealing material (glass contained in the sealing material) is required to have a low melting point characteristic. Specifically, the sealing material is required to have a softening point of 500 ° C. or lower, particularly 450 ° C. or lower.

そこで、本発明は、上記事情に鑑みて創案されたものであり、その技術的課題は、低融点特性を有し、且つ耐電解液性に優れる色素増感型太陽電池用ガラス組成物及び色素増感型太陽電池用材料を提供することにより、色素増感型太陽電池の長期耐久性を高めることである。   Therefore, the present invention has been made in view of the above circumstances, and the technical problem thereof is a glass composition for dye-sensitized solar cells and a dye having low melting point characteristics and excellent electrolytic solution resistance. By providing a material for a sensitized solar cell, the long-term durability of the dye-sensitized solar cell is enhanced.

本発明者等は、種々の検討を行った結果、ガラス組成中にV、TeO、ZnO、及びBaOを必須成分として所定量導入することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の色素増感型太陽電池用ガラス組成物は、ガラス組成として、下記酸化物換算のモル%で、V 26〜60%、TeO 20〜48%、ZnO 6〜35%、BaO 0.1〜18%を含有することを特徴とする。 As a result of various studies, the present inventors have found that the above technical problem can be solved by introducing a predetermined amount of V 2 O 5 , TeO 2 , ZnO, and BaO as essential components into the glass composition. This is proposed as the present invention. That is, the glass composition for dye-sensitized solar cells of the present invention has a glass composition of mol% in terms of the following oxides: V 2 O 5 26 to 60%, TeO 2 20 to 48%, ZnO 6 to 35. %, BaO 0.1 to 18%.

本発明の色素増感型太陽電池用ガラス組成物は、ガラス組成中にV、TeO、ZnO、及びBaOを所定量含むため、低融点特性を有し、且つ耐電解液性が良好である。その結果、色素増感型太陽電池の長期耐久性が向上するため、長期間の使用により、電池特性が低下する事態を防止することができる。なお、一般的に、軟化点が低いガラスは、耐水性が低い傾向がある。しかし、本発明の色素増感型太陽電池用ガラス組成物は、ガラス組成中にV、TeO、ZnO、及びBaOを所定量含むため、軟化点が低いにもかかわらず、耐水性が良好である。 The glass composition for a dye-sensitized solar cell of the present invention includes a predetermined amount of V 2 O 5 , TeO 2 , ZnO, and BaO in the glass composition, and thus has a low melting point characteristic and has an electrolyte solution resistance. It is good. As a result, since the long-term durability of the dye-sensitized solar cell is improved, it is possible to prevent the battery characteristics from being deteriorated by long-term use. In general, a glass having a low softening point tends to have low water resistance. However, the glass composition for dye-sensitized solar cell of the present invention contains a predetermined amount of V 2 O 5 , TeO 2 , ZnO, and BaO in the glass composition, so that the water resistance is low even though the softening point is low. Is good.

第二に、本発明の色素増感型太陽電池用材料は、上記の色素増感型太陽電池用ガラス組成物からなるガラス粉末 50〜100体積%と、耐火性フィラー 0〜50体積%とを含有することを特徴とする。なお、本発明の色素増感型太陽電池用材料は、上記のガラス組成物からなるガラス粉末のみで構成される態様を含む。   Secondly, the material for a dye-sensitized solar cell of the present invention comprises 50 to 100% by volume of a glass powder composed of the above glass composition for a dye-sensitized solar cell and 0 to 50% by volume of a refractory filler. It is characterized by containing. In addition, the material for dye-sensitized solar cells of the present invention includes an embodiment constituted only by glass powder made of the above glass composition.

本発明の色素増感型太陽電池用材料は、ガラス粉末のガラス組成中にV、TeO、ZnO、及びBaOを所定量含むため、低融点特性を有し、且つ耐電解液性(特に70℃のヨウ素電解液に2週間浸漬させたときの質量減が0.1mg/cm以下)や耐水性が良好である。その結果、色素増感型太陽電池の長期耐久性が向上するため、長期間の使用により、電池特性が低下する事態を防止することができる。 The material for a dye-sensitized solar cell of the present invention includes a predetermined amount of V 2 O 5 , TeO 2 , ZnO, and BaO in the glass composition of the glass powder, and thus has a low melting point property and is resistant to an electrolytic solution. (In particular, the weight loss when immersed in an iodine electrolyte at 70 ° C. for 2 weeks is 0.1 mg / cm 2 or less) and the water resistance is good. As a result, since the long-term durability of the dye-sensitized solar cell is improved, it is possible to prevent the battery characteristics from being deteriorated by long-term use.

第三に、本発明の色素増感型太陽電池用材料は、70℃のヨウ素電解液に2週間浸漬したときの質量減が0.1mg/cm以下であることを特徴とする。ここで、「ヨウ素電解液」には、アセトニトリル中に、ヨウ化リチウム0.1M、ヨウ素0.05M、tert−ブチルピリジン0.5M、及び1,2−ジメチル−3−プロピルイミダゾリウムヨーダイド0.6Mを溶解させたものを使用する。また、「質量減」は、色素増感型太陽電池用材料を緻密に焼き付けたガラス基板(焼成膜付きガラス基板)を、密閉容器中にてヨウ素電解液に浸漬し、浸漬前の質量から2週間経過後の質量を減じた値を、ヨウ素電解液に接する焼成膜の面積で除することで算出する。なお、ガラス基板は、ヨウ素電解液によって侵食されないものを用いる。 Third, the dye-sensitized solar cell material of the present invention is characterized in that the mass loss when immersed in an iodine electrolyte solution at 70 ° C. for 2 weeks is 0.1 mg / cm 2 or less. Here, the “iodine electrolyte” includes 0.1M lithium iodide, 0.05M iodine, 0.5M tert-butylpyridine, and 1,2-dimethyl-3-propylimidazolium iodide in acetonitrile. Use 6M dissolved. Further, “mass loss” means that a glass substrate (a glass substrate with a fired film) onto which a dye-sensitized solar cell material has been finely baked is immersed in an iodine electrolytic solution in a sealed container, and the mass before immersion is 2 The value obtained by subtracting the mass after the lapse of the week is calculated by dividing the value by the area of the fired film in contact with the iodine electrolyte. A glass substrate that is not eroded by the iodine electrolyte is used.

一般的に、ヨウ素電解液は、ヨウ素、アルカリ金属ヨウ化物、イミダゾリウムヨウ化物、四級アンモニウム塩等のヨウ素化合物を有機溶媒に溶解させたものを指すが、ヨウ素化合物以外にもtert−ブチルピリジン、1メトキシベンゾイミダゾール等を溶解させたものもある。溶媒として、アセトニトリル、メトキシアセトニトリル、プロピオニトリル等のニトリル系溶媒、炭酸エチレン、炭酸プロピレン等のカーボネート系溶媒、ラクトン系溶媒等が用いられる。これら化合物や溶媒で構成されるヨウ素電解液であっても、ガラスがヨウ素電解液に侵食される上記問題は生じ得る。従って、本発明の色素増感型太陽電池用材料は、これらのヨウ素電解液に70℃で2週間浸漬したときの質量減も、0.1mg/cm以下であることが好ましい。 In general, an iodine electrolytic solution refers to an iodine compound such as iodine, alkali metal iodide, imidazolium iodide, quaternary ammonium salt or the like dissolved in an organic solvent. Some have 1 methoxybenzimidazole dissolved. As the solvent, nitrile solvents such as acetonitrile, methoxyacetonitrile, propionitrile, carbonate solvents such as ethylene carbonate and propylene carbonate, lactone solvents and the like are used. Even in the case of an iodine electrolytic solution composed of these compounds and solvents, the above problem that the glass is eroded by the iodine electrolytic solution may occur. Therefore, the dye-sensitized solar cell material of the present invention preferably has a mass loss of 0.1 mg / cm 2 or less when immersed in these iodine electrolytes at 70 ° C. for 2 weeks.

第四に、本発明の色素増感型太陽電池用材料は、軟化点が500℃以下であることを特徴とする。ここで、「軟化点」とは、マクロ型示差熱分析(DTA)装置で測定した値を指し、DTAは室温から測定を開始し、昇温速度は10℃/分とする。なお、マクロ型DTA装置で測定した場合、軟化点は、図1に示す第四屈曲点の温度(Ts)になる。   Fourth, the dye-sensitized solar cell material of the present invention has a softening point of 500 ° C. or lower. Here, the “softening point” refers to a value measured with a macro-type differential thermal analysis (DTA) apparatus, DTA starts measurement from room temperature, and the rate of temperature rise is 10 ° C./min. When measured with a macro DTA apparatus, the softening point is the temperature (Ts) of the fourth bending point shown in FIG.

第五に、本発明の色素増感型太陽電池用材料は、封着に用いることを特徴とする。ここで、封着には、透明電極基板と対極基板の封着に加えて、ガラス管の封着等が含まれる。
なお、透明電極基板と対極基板等に複数の開口部を設けて、各開口部にガラス管を封着した後、ガラス管を介して、色素増感型太陽電池内に色素を含有させた液体等を循環させて、多孔質酸化物半導体に色素を吸着させる場合がある。このような場合、本発明の色素増感型太陽電池用材料を用いると、ガラス管から液体等が漏洩する事態を防止することができる。
Fifth, the dye-sensitized solar cell material of the present invention is characterized by being used for sealing. Here, the sealing includes sealing of a glass tube in addition to sealing of the transparent electrode substrate and the counter electrode substrate.
In addition, after providing a plurality of openings in the transparent electrode substrate and the counter electrode substrate, and sealing the glass tube in each opening, the liquid containing the dye in the dye-sensitized solar cell through the glass tube Etc. may be circulated to adsorb the dye to the porous oxide semiconductor. In such a case, when the dye-sensitized solar cell material of the present invention is used, it is possible to prevent a liquid or the like from leaking from the glass tube.

第六に、本発明の色素増感型太陽電池用材料は、集電電極の被覆に用いることを特徴とする。   Sixth, the material for a dye-sensitized solar cell according to the present invention is used for coating a collecting electrode.

マクロ型DTA装置で測定した場合、軟化点(Ts)を示す概略図である。It is the schematic which shows a softening point (Ts) when it measures with a macro type | mold DTA apparatus.

本発明の色素増感型太陽電池用ガラス組成物において、上記のようにガラス組成範囲を限定した理由を以下に説明する。なお、各成分の含有範囲の説明において、%表示は、特に断りがある場合を除き、モル%を指す。   The reason for limiting the glass composition range as described above in the dye-sensitized solar cell glass composition of the present invention will be described below. In addition, in description of the content range of each component,% display points out mol% except the case where there is particular notice.

は、ガラスネットワークを形成する成分であると共に、軟化点を下げるための主要成分であり、その含有量は26〜60%、好ましくは28〜50%である。Vの含有量が少な過ぎると、ガラスの粘性(軟化点等)が高くなるため、焼成温度(封着温度等)が上昇する。一方、Vの含有量が多過ぎると、ガラスが熱的に不安定になり、また耐水性も低下し易くなる。 V 2 O 5 is a component that forms a glass network and is a main component for lowering the softening point, and its content is 26 to 60%, preferably 28 to 50%. If the content of V 2 O 5 is too small, the viscosity (softening point and the like) of the glass increases, and the firing temperature (sealing temperature and the like) increases. On the other hand, when the content of V 2 O 5 is too large, glass becomes thermally unstable, and water resistance tends to decrease.

TeOは、軟化点を下げると共に、耐水性を高める成分であり、その含有量は20〜48%、好ましくは20〜45%である。TeOの含有量が少な過ぎると、ガラスの粘性が高くなるため、焼成温度が上昇し、また耐水性が低下する。一方、TeOの含有量が多過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、熱膨張係数が大幅に増大して、ガラス基板等の熱膨張係数に整合させ難くなる。 TeO 2 is a component that lowers the softening point and increases water resistance, and its content is 20 to 48%, preferably 20 to 45%. When the content of TeO 2 is too small, the viscosity of the glass increases, so that the firing temperature increases and the water resistance decreases. On the other hand, when the content of TeO 2 is too large, the glass becomes thermally unstable, the glass tends to be devitrified at the time of melting or firing, and the thermal expansion coefficient is greatly increased. It becomes difficult to match the thermal expansion coefficient.

ZnOは、ガラスを熱的に安定化させると共に、耐水性を高める成分であり、その含有量は6〜35%、好ましくは6〜30%である。ZnOの含有量が少な過ぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。一方、ZnOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが熱的に不安定になり、またガラスの粘性が高くなるため、焼成温度が上昇する。   ZnO is a component that thermally stabilizes the glass and increases water resistance, and its content is 6 to 35%, preferably 6 to 30%. If the ZnO content is too small, the glass becomes thermally unstable, and the glass tends to devitrify during melting or firing. On the other hand, when the content of ZnO is too large, the component balance of the glass composition is impaired, and on the contrary, the glass becomes thermally unstable and the viscosity of the glass increases, so that the firing temperature rises.

BaOは、ガラスを熱的に安定化させると共に、耐水性を高める成分であり、その含有量は0.1〜18%、好ましくは2〜18%である。BaOの含有量が少な過ぎると、耐水性が低下する。一方、BaOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが熱的に不安定になる。   BaO is a component that thermally stabilizes the glass and enhances water resistance, and its content is 0.1 to 18%, preferably 2 to 18%. When there is too little content of BaO, water resistance will fall. On the other hand, when there is too much content of BaO, the component balance of a glass composition will be impaired and glass will become thermally unstable conversely.

上記の成分以外に、例えば、下記の成分をガラス組成中に添加してもよい。   In addition to the above components, for example, the following components may be added to the glass composition.

は、ガラスネットワークを形成する成分であり、その含有量は、好ましくは0〜20%、より好ましくは0〜10%である。Pの含有量が多過ぎると、ガラスの粘性が高くなるため、焼成温度が上昇し、また耐水性が低下し易くなる。 P 2 O 5 is a component that forms a glass network, and the content thereof is preferably 0 to 20%, more preferably 0 to 10%. When the content of P 2 O 5 is too large, the glass viscosity is higher, the firing temperature increases, also the water resistance tends to decrease.

SrOは、ガラスを熱的に安定化させて、失透を抑制する成分であると共に、ガラスの粘性を低下させる成分であり、その含有量は、好ましくは0〜20%、より好ましくは0〜15%である。SrOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが熱的に不安定になる。   SrO is a component that stabilizes the glass thermally and suppresses devitrification, and is a component that lowers the viscosity of the glass, and its content is preferably 0 to 20%, more preferably 0 to 0%. 15%. When there is too much content of SrO, the component balance of a glass composition will be impaired and glass will become thermally unstable conversely.

CuOは、ガラスを熱的に安定化させて、失透を抑制する成分であると共に、耐水性を高める成分であり、その含有量は、好ましくは0〜10%、より好ましくは0〜8%である。CuOの含有量が多過ぎると、ガラスの粘性が高くなるため、焼成温度が上昇する。   CuO is a component that thermally stabilizes the glass and suppresses devitrification, and is a component that increases water resistance, and its content is preferably 0 to 10%, more preferably 0 to 8%. It is. When there is too much content of CuO, since the viscosity of glass will become high, a calcination temperature will rise.

Alは、ガラスを熱的に安定化させて、失透を抑制する成分であると共に、耐水性を高める成分であり、その含有量は、好ましくは0〜10%、より好ましくは1〜5%である。Alの含有量が多過ぎると、ガラスの粘性が高くなり過ぎて、焼成温度が上昇する。 Al 2 O 3 is a component that thermally stabilizes the glass and suppresses devitrification, and is a component that increases water resistance, and its content is preferably 0 to 10%, more preferably 1 ~ 5%. When the content of Al 2 O 3 is too large, the viscosity of the glass becomes too high, the firing temperature increases.

Biは、耐水性を高める成分であり、その含有量は、好ましくは0〜10%、より好ましくは1〜5%である。Biの含有量が多過ぎると、ガラスの粘性が高くなり過ぎて、焼成温度が高くなり易い。 Bi 2 O 3 is a component for enhancing water resistance, its content is preferably 0-10%, more preferably 1 to 5%. If the content of Bi 2 O 3 is too large, the viscosity of the glass becomes too high, the firing temperature is increased easily.

上記成分に加えて、ガラス組成中にCaO、MgO、B、Fe、SiO等の他成分を10%まで添加してもよい。 In addition to the above components, other components such as CaO, MgO, B 2 O 3 , Fe 2 O 3 , and SiO 2 may be added to the glass composition up to 10%.

なお、耐電解液性を高めるために、実質的にPbOを含有しないことが好ましい。ここで、「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm(質量)未満の場合を指す。なお、実質的にPbOを含有しない態様にすれば、近年の環境的要請も満たすことができる。   In addition, in order to improve electrolyte solution resistance, it is preferable not to contain PbO substantially. Here, “substantially does not contain PbO” refers to a case where the content of PbO in the glass composition is less than 1000 ppm (mass). In addition, if it is set as the aspect which does not contain PbO substantially, the recent environmental request | requirement can also be satisfy | filled.

本発明の色素増感型太陽電池用材料において、ガラス粉末の平均粒子径D50は15μm未満、特に1〜10μmが好ましい。ガラス粉末の平均粒子径D50を15μm未満に規制すると、封着材料の流動性が高まると共に、封着厚みを狭小化し易くなり、このような場合、ガラス基板と封着材料の熱膨張係数の差が大きくても、ガラス基板や封着部位にクラック等が発生し難くなる。 In the dye-sensitized solar cell material of the present invention, the average particle diameter D 50 of the glass powder less than 15 [mu] m, particularly 1~10μm preferred. When regulating the average particle diameter D 50 of the glass powder to less than 15 [mu] m, with the flowability of the sealing material increases, liable to narrow the sealing thickness, in such a case, the thermal expansion coefficient of the glass substrate and the sealing material Even if the difference is large, cracks or the like hardly occur in the glass substrate or the sealing portion.

本発明の色素増感型太陽電池用材料は、上記の色素増感型太陽電池用ガラス組成物からなるガラス粉末のみで構成されるようにしてもよい。このようにすれば、太陽電池のセルギャップを小さく、且つ均一化し易くなると共に、耐火性フィラー等の混合工程等が不要になるため、色素増感型太陽電池用材料の製造コストを低廉化することができる。   The material for a dye-sensitized solar cell of the present invention may be composed only of glass powder made of the above-described glass composition for a dye-sensitized solar cell. In this way, the cell gap of the solar cell can be made small and easy to be uniformed, and a mixing step of a refractory filler or the like becomes unnecessary, thereby reducing the manufacturing cost of the dye-sensitized solar cell material. be able to.

本発明の色素増感型太陽電池用材料は、機械的強度を向上、或いは熱膨張係数を低下させるために、耐火性フィラーを含有してもよい。その混合割合は、ガラス粉末50〜100体積%、耐火性フィラー0〜50体積%が好ましく、ガラス粉末50〜95体積%、耐火性フィラー5〜50体積%がより好ましく、ガラス粉末50〜90体積%、耐火性フィラー10〜50体積%が更に好ましく、ガラス粉末50〜80体積%、耐火性フィラー20〜50体積%が特に好ましい。耐火性フィラーの含有量が50体積%より多いと、相対的にガラス粉末の割合が少なくなるため、所望の流動性を確保し難くなる。一方、耐火性フィラーの添加量を低減すれば、色素増感型太陽電池用材料の流動性、特に封着性を高めることができる。   The dye-sensitized solar cell material of the present invention may contain a refractory filler in order to improve the mechanical strength or lower the thermal expansion coefficient. The mixing ratio is preferably 50 to 100% by volume of glass powder and 0 to 50% by volume of refractory filler, more preferably 50 to 95% by volume of glass powder and 5 to 50% by volume of refractory filler, and 50 to 90 volume of glass powder. %, Refractory filler 10 to 50% by volume is more preferred, glass powder 50 to 80% by volume, and refractory filler 20 to 50% by volume is particularly preferred. When the content of the refractory filler is more than 50% by volume, the ratio of the glass powder is relatively reduced, so that it is difficult to ensure desired fluidity. On the other hand, if the addition amount of the refractory filler is reduced, the fluidity, particularly the sealing property, of the dye-sensitized solar cell material can be improved.

耐火性フィラーは、特に限定されず、種々の材料を選択することができるが、本発明に係るガラス粉末や電解液と反応し難いものが好ましい。具体的には、耐火性フィラーとして、ジルコン、ジルコニア、酸化錫、チタン酸アルミニウム、石英、β−スポジュメン、ムライト、チタニア、石英ガラス、β−ユークリプタイト、β−石英、リン酸ジルコニウム、ウイレマイト、コーディエライト、[AB(MO]の基本構造をもつ化合物、
A:Li、Na、K、Mg、Ca、Sr、Ba、Zn、Cu、Ni、Mn等
B:Zr、Ti、Sn、Nb、Al、Sc、Y等
M:P、Si、W、Mo等
若しくはこれらの固溶体が使用可能である。
The refractory filler is not particularly limited, and various materials can be selected, but those that do not easily react with the glass powder or the electrolytic solution according to the present invention are preferable. Specifically, as a refractory filler, zircon, zirconia, tin oxide, aluminum titanate, quartz, β-spodumene, mullite, titania, quartz glass, β-eucryptite, β-quartz, zirconium phosphate, willemite, Cordierite, a compound having a basic structure of [AB 2 (MO 4 ) 3 ],
A: Li, Na, K, Mg, Ca, Sr, Ba, Zn, Cu, Ni, Mn etc. B: Zr, Ti, Sn, Nb, Al, Sc, Y etc. M: P, Si, W, Mo etc. Alternatively, these solid solutions can be used.

耐火性フィラーを含む場合、耐火性フィラーの最大粒子径は25μm以下が好ましい。色素増感型太陽電池のセルギャップは非常に薄い(例えば50μm以下)。このため、耐火性フィラーの最大粒子径が大き過ぎると、透明電極基板と対極基板を適正に封着し難くなる。ここで、「最大粒子径」とは、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。   When the refractory filler is included, the maximum particle size of the refractory filler is preferably 25 μm or less. The cell gap of the dye-sensitized solar cell is very thin (for example, 50 μm or less). For this reason, if the maximum particle diameter of the refractory filler is too large, it becomes difficult to properly seal the transparent electrode substrate and the counter electrode substrate. Here, the “maximum particle size” represents a particle size whose cumulative amount is 99% cumulative from the smaller particle size in a volume-based cumulative particle size distribution curve measured by a laser diffraction method.

本発明の色素増感型太陽電池用材料において、70℃のヨウ素電解液に2週間浸漬させた時の質量減が0.1mg/cm以下、特に0.05mg/cm以下が好ましく、実質的に質量減がないことが望ましい。質量減が0.1mg/cm以下であれば、長期に亘り、ヨウ素電解液による侵食や電池特性の低下を防止することができる。ここで、「実質的に質量減がない」とは、質量減が0.01mg/cm以下の場合を指す。 In the dye-sensitized solar cell material of the present invention, the mass loss when immersed in an iodine electrolyte at 70 ° C. for 2 weeks is preferably 0.1 mg / cm 2 or less, particularly preferably 0.05 mg / cm 2 or less. It is desirable that there is no mass loss. If the mass loss is 0.1 mg / cm 2 or less, it is possible to prevent erosion due to iodine electrolyte and deterioration of battery characteristics over a long period of time. Here, “substantially no weight loss” refers to a case where the weight loss is 0.01 mg / cm 2 or less.

本発明の色素増感型太陽電池用材料において、軟化点は500℃以下、特に450℃以下が好ましい。軟化点が高過ぎると、ガラスの粘性が高くなるため、焼成温度(特に封着温度等)が不当に上昇して、焼成時に透明電極基板や対極基板が変形し易くなる。また、多孔質酸化物半導体(主にTiO)層の形成と透明電極基板と対極基板の封着を同時に行う場合、封着温度が高過ぎると、酸化物粒子の融着が進行して、多孔質酸化物半導体層を形成し難くなり、結果として、色素増感型太陽電池の製造工程を簡略化し難くなる。 In the dye-sensitized solar cell material of the present invention, the softening point is preferably 500 ° C. or lower, particularly preferably 450 ° C. or lower. If the softening point is too high, the viscosity of the glass becomes high, so that the firing temperature (especially the sealing temperature) rises unreasonably, and the transparent electrode substrate and the counter electrode substrate are easily deformed during firing. Also, when forming the porous oxide semiconductor (mainly TiO 2 ) layer and sealing the transparent electrode substrate and the counter electrode substrate at the same time, if the sealing temperature is too high, the fusion of the oxide particles proceeds, It becomes difficult to form the porous oxide semiconductor layer, and as a result, it becomes difficult to simplify the manufacturing process of the dye-sensitized solar cell.

本発明の色素増感型太陽電池用材料において、熱膨張係数は60×10−7〜120×10−7/℃、特に75×10−7〜115×10−7/℃が好ましい。色素増感型太陽電池用材料と透明電極基板や対極基板に用いられるソーダガラス等の熱膨張係数の差が大きいと、焼成後に、両者に不当な応力が残留し、クラックや剥れが生じ易くなる。ここで、「熱膨張係数」とは、押棒式熱膨張係数測定(TMA)装置により、30〜250℃の温度範囲で測定した値を指す。 In the dye-sensitized solar cell material of the present invention, the thermal expansion coefficient is preferably 60 × 10 −7 to 120 × 10 −7 / ° C., particularly preferably 75 × 10 −7 to 115 × 10 −7 / ° C. If the difference in thermal expansion coefficient between the dye-sensitized solar cell material and soda glass used for the transparent electrode substrate or counter electrode substrate is large, unreasonable stress will remain on both after firing, and cracks and peeling will easily occur. Become. Here, the “thermal expansion coefficient” refers to a value measured in a temperature range of 30 to 250 ° C. by a push rod type thermal expansion coefficient measurement (TMA) apparatus.

本発明の色素増感型太陽電池用材料は、粉末のまま使用に供してもよいが、ビークルと均一に混練し、ペーストに加工すると取り扱い易い。ビークルは、主に溶媒と樹脂とからなる。樹脂は、ペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。作製されたペーストは、ディスペンサーやスクリーン印刷機等の塗布機を用いてガラス基板上に塗布される。   The dye-sensitized solar cell material of the present invention may be used as it is in powder form, but is easy to handle when it is uniformly kneaded with a vehicle and processed into a paste. The vehicle mainly consists of a solvent and a resin. The resin is added for the purpose of adjusting the viscosity of the paste. Moreover, surfactant, a thickener, etc. can also be added as needed. The produced paste is applied onto the glass substrate using an applicator such as a dispenser or a screen printer.

樹脂としては、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステル、ニトロセルロースは、熱分解性が良好である。   As the resin, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic acid esters and nitrocellulose have good thermal decomposability.

溶媒としては、N、N’−ジメチルホルムアミド(DMF)、α−ターピネオール、高級アルコール、γ−ブチルラクトン(γ−BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3−メトキシ−3−メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン等が使用可能である。特に、α−ターピネオールは、高粘性であり、樹脂等の溶解性も良好である。   As the solvent, N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, Diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, triethylene glycol Propylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N-me -2-pyrrolidone and the like can be used. In particular, α-terpineol has high viscosity and good solubility for resins and the like.

本発明の色素増感型太陽電池用材料は、封着に用いることが好ましく、特に透明電極基板と対極基板の封着に用いることが好ましい。本発明の色素増感型太陽電池用材料は、低融点特性を有し、且つ耐電解液性や耐水性が良好であるため、色素増感型太陽電池の長期耐久性が向上し、長期間の使用により、電池特性が低下する事態を防止することができる。   The dye-sensitized solar cell material of the present invention is preferably used for sealing, and particularly preferably used for sealing a transparent electrode substrate and a counter electrode substrate. Since the dye-sensitized solar cell material of the present invention has low melting point characteristics and good electrolytic solution resistance and water resistance, the long-term durability of the dye-sensitized solar cell is improved, and the long-term By using this, it is possible to prevent the battery characteristics from deteriorating.

本発明の色素増感型太陽電池用材料は、ガラス粉末がガラス組成中にVを26モル%以上含むため、レーザー光による封着処理に供することができる。レーザー光を用いると、色素増感型太陽電池用材料を局所加熱できるため、ヨウ素電解液等の構成部材の熱劣化を防止した上で、透明電極基板と対極基板を封着することができる。本発明の色素増感型太陽電池用材料は、レーザー光を用いて透明電極基板と対極基板を封着する場合、ガラス粉末は、ガラス組成として、Vを30%モル以上含むことが好ましい。このようにすれば、レーザー光の光エネルギーを熱エネルギーに効率良く変換できるため、換言すればガラスがレーザー光を的確に吸収できるため、封着すべき部位のみを的確に局所加熱することができる。なお、レーザー光として、種々のレーザー光を使用することができるが、半導体レーザー、YAGレーザー、COレーザー、エキシマレーザー、赤外レーザー等は取り扱いが容易な点で好適である。また、ガラスに的確にレーザー光を吸収させるために、レーザー光は500〜1600nm、特に750〜1300nmの発光中心波長を有することが好ましい。 Since the glass powder contains 26 mol% or more of V 2 O 5 in the glass composition, the dye-sensitized solar cell material of the present invention can be subjected to sealing treatment with a laser beam. When laser light is used, the dye-sensitized solar cell material can be locally heated, so that the transparent electrode substrate and the counter electrode substrate can be sealed while preventing thermal deterioration of the constituent members such as iodine electrolyte. When the material for a dye-sensitized solar cell of the present invention seals a transparent electrode substrate and a counter electrode substrate using laser light, the glass powder may contain 30% mol or more of V 2 O 5 as a glass composition. preferable. In this way, the light energy of the laser light can be efficiently converted into thermal energy. In other words, since the glass can absorb the laser light accurately, only the part to be sealed can be locally heated accurately. . Various laser beams can be used as the laser beam, but a semiconductor laser, a YAG laser, a CO 2 laser, an excimer laser, an infrared laser, and the like are preferable in terms of easy handling. Moreover, in order to make a glass absorb a laser beam exactly, it is preferable that a laser beam has an emission center wavelength of 500-1600 nm, especially 750-1300 nm.

本発明の色素増感型太陽電池用材料は、ガラスビーズ等のスペーサーを含んでもよい。このようにすれば、透明電極基板と対極基板の封着に用いる場合に、太陽電池のセルギャップを均一化することができる。   The dye-sensitized solar cell material of the present invention may contain a spacer such as glass beads. If it does in this way, when using for sealing of a transparent electrode substrate and a counter electrode substrate, the cell gap of a solar cell can be made uniform.

本発明の色素増感型太陽電池用材料は、集電電極の被覆に用いることが好ましい。一般的に、集電電極にはAgが使用される。しかし、Agは、ヨウ素電解液に侵食され易い性質を有する。このため、集電電極にAgを用いる場合、ヨウ素電解液に接する表面を被覆する必要がある。そこで、本発明の色素増感型太陽電池用材料を用いると、低温で緻密な被覆層を形成でき、且つ耐電解液性が良好であるため、長期間に亘って、Agを保護することができる。   The dye-sensitized solar cell material of the present invention is preferably used for coating the current collecting electrode. Generally, Ag is used for the current collecting electrode. However, Ag has the property of being easily eroded by iodine electrolyte. For this reason, when using Ag for a current collection electrode, it is necessary to coat | cover the surface which contact | connects an iodine electrolyte solution. Therefore, when the material for a dye-sensitized solar cell of the present invention is used, a dense coating layer can be formed at low temperature and the resistance to electrolytic solution is good, so that Ag can be protected over a long period of time. it can.

本発明の色素増感型太陽電池用材料は、隔壁の形成に用いることができる。本発明の色素増感型太陽電池用材料は、低融点特性を有するため、緻密な隔壁を低温で形成できると共に、耐電解液性が良好であるため、長期間に亘って、隔壁の破れを防止することができる。なお、一般的に、隔壁で形成されたセル内にはヨウ素電解液が充填される。   The dye-sensitized solar cell material of the present invention can be used for forming partition walls. Since the dye-sensitized solar cell material of the present invention has a low melting point property, it can form dense barrier ribs at low temperature and has good electrolyte solution resistance, so that the barrier ribs can be broken for a long period of time. Can be prevented. In general, the cell formed by the partition walls is filled with an iodine electrolyte.

実施例に基づいて、本発明を詳細に説明する。表1、2は、本発明の実施例(試料No.1〜12)、及び比較例(試料No.13)を示している。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。   The present invention will be described in detail based on examples. Tables 1 and 2 show examples of the present invention (sample Nos. 1 to 12) and comparative examples (sample No. 13). The following examples are merely illustrative. The present invention is not limited to the following examples.

次のようにして、表中に記載の各試料を調製した。まず、表中のガラス組成になるように、各種酸化物、炭酸塩等の原料を調合したガラスバッチを準備し、これを白金坩堝に入れて1000〜1200℃で1〜2時間溶融した。次に、溶融ガラスを水冷ローラーにより薄片状に成形した。最後に、薄片状のガラスをボールミルにて粉砕後、目開き75μmの篩いを通過させて、平均粒子径が約10μmの各ガラス粉末を得た。   Each sample described in the table was prepared as follows. First, a glass batch in which raw materials such as various oxides and carbonates were prepared so as to have the glass composition in the table was prepared, and this was put in a platinum crucible and melted at 1000 to 1200 ° C. for 1 to 2 hours. Next, the molten glass was formed into a thin piece with a water-cooled roller. Finally, the glass flakes were pulverized with a ball mill and passed through a sieve having an opening of 75 μm to obtain glass powders having an average particle diameter of about 10 μm.

次いで、表中の耐火性フィラー(平均粒子径10μm)を添加、混合して、試料No.1〜11、13を作製した。なお、表中の「ZP」はリン酸ジルコニウム、「ZWP」はリン酸タングステン酸ジルコニウム、「ZS」はジルコンを指している。   Subsequently, the refractory filler (average particle diameter 10 μm) in the table was added and mixed. 1 to 11 and 13 were produced. In the table, “ZP” indicates zirconium phosphate, “ZWP” indicates zirconium tungstate phosphate, and “ZS” indicates zircon.

続いて、各粉末と、ビークル(エチルセルロースをα−ターピネオールに溶解させたもの)を混錬し、ペースト状とした。これをソーダガラス基板(熱膨張係数:85×10−7/℃)に、直径40mmで20〜40μm厚となるようにスクリーン印刷し、電気炉で120℃10分間乾燥した後、350〜420℃で10分間焼成し、質量減の評価用サンプルを得た。 Subsequently, each powder and a vehicle (ethyl cellulose dissolved in α-terpineol) were kneaded to obtain a paste. This was screen-printed on a soda glass substrate (thermal expansion coefficient: 85 × 10 −7 / ° C.) so as to be 20 to 40 μm in thickness of 40 mm, dried in an electric furnace at 120 ° C. for 10 minutes, and then 350 to 420 ° C. Was baked for 10 minutes to obtain a sample for mass reduction evaluation.

以上の試料を用いて、軟化点、及び耐電解液性を評価した。その結果を表に示す。   Using the above samples, the softening point and the electrolytic solution resistance were evaluated. The results are shown in the table.

軟化点は、マクロ型DTA装置により求めた値である。測定は、空気中で行い、昇温速度は10℃/分とした。   The softening point is a value obtained by a macro type DTA apparatus. The measurement was performed in air, and the rate of temperature increase was 10 ° C./min.

熱膨張係数は、押棒式熱膨張係数測定(TMA)装置により、30〜250℃の温度範囲で測定した値である。なお、測定試料として、各試料を緻密に焼結させたものを用いた。   A thermal expansion coefficient is the value measured in the temperature range of 30-250 degreeC with the push rod type | formula thermal expansion coefficient measurement (TMA) apparatus. In addition, as a measurement sample, a sample in which each sample was densely sintered was used.

次のようにして、耐電解液性を評価した。まず上記質量減の評価用サンプルについて、焼成膜の質量と焼成膜のヨウ素電解液に接する表面積を測定した。次に、このサンプルをガラス製密閉容器中のヨウ素電解液に浸漬した上で、70℃の恒温槽にガラス製密閉容器を静置し、浸漬前のサンプルの質量から2週間経過した後のサンプルの質量を減じた値を、焼成膜の表面積で除することで、ヨウ素電解液に浸漬させた時の焼成膜の質量減を算出し、耐電解液性を評価した。なお、ヨウ素電解液は、アセトニトリルに対し、ヨウ化リチウム0.1M、ヨウ素0.05M、tert−ブチルピリジン0.5M、及び1,2−ジメチル−3−プロピルイミダゾリウムヨーダイド0.6Mを加えたものを使用した。   Electrolytic solution resistance was evaluated as follows. First, the mass of the fired film and the surface area of the fired film in contact with the iodine electrolyte solution were measured for the sample for evaluation of mass reduction. Next, after immersing this sample in an iodine electrolyte solution in a glass sealed container, the glass sealed container is allowed to stand in a constant temperature bath at 70 ° C., and the sample after two weeks has passed from the mass of the sample before immersion. The value obtained by subtracting the mass of the fired film was divided by the surface area of the fired film to calculate the weight loss of the fired film when immersed in the iodine electrolyte, and the resistance to the electrolyte was evaluated. The iodine electrolyte was 0.1M lithium iodide, 0.05M iodine, 0.5M tert-butylpyridine and 0.6M 1,2-dimethyl-3-propylimidazolium iodide to acetonitrile. Used.

表から明らかなように、試料No.1〜12は、軟化点が十分に低く、且つヨウ素電解液に浸漬させた後の質量減が認められなかった。一方、試料No.13は、鉛ガラスであるため、質量減が0.32mg/cmであった。 As is apparent from the table, sample No. In Nos. 1 to 12, the softening point was sufficiently low, and no mass loss after immersion in iodine electrolyte was observed. On the other hand, Sample No. Since 13 is lead glass, the mass loss was 0.32 mg / cm 2 .

本発明の色素増感型太陽電池用ガラス組成物及び色素増感型太陽電池用材料は、色素増感型太陽電池の透明電極基板と対極基板の封着、集電電極の被覆、及びセル間を区切るための隔壁の形成に好適であり、特に色素増感型太陽電池の透明電極基板と対極基板の封着に好適である。   The glass composition for a dye-sensitized solar cell and the material for a dye-sensitized solar cell according to the present invention include sealing a transparent electrode substrate and a counter electrode substrate of a dye-sensitized solar cell, covering a collecting electrode, and between cells. It is suitable for the formation of the partition wall for separating the substrate, and particularly suitable for sealing the transparent electrode substrate and the counter electrode substrate of the dye-sensitized solar cell.

Claims (6)

ガラス組成として、下記酸化物換算のモル%で、V 26〜60%、TeO 20〜48%、ZnO 6〜35%、BaO 0.1〜18%を含有することを特徴とする色素増感型太陽電池用ガラス組成物。 As a glass composition, which in mole percent terms of oxide, V 2 O 5 26~60%, TeO 2 20~48%, ZnO 6~35%, characterized in that it contains 0.1 to 18% BaO A glass composition for a dye-sensitized solar cell. 請求項1に記載の色素増感型太陽電池用ガラス組成物からなるガラス粉末 50〜100体積%と、耐火性フィラー 0〜50体積%とを含有することを特徴とする色素増感型太陽電池用材料。   A dye-sensitized solar cell comprising 50 to 100% by volume of a glass powder comprising the glass composition for a dye-sensitized solar cell according to claim 1 and 0 to 50% by volume of a refractory filler. Materials. 70℃のヨウ素電解液に2週間浸漬したときの質量減が0.1mg/cm以下であることを特徴とする請求項2に記載の色素増感型太陽電池用材料。 The material for a dye-sensitized solar cell according to claim 2, wherein a weight loss when immersed in an iodine electrolyte at 70 ° C for 2 weeks is 0.1 mg / cm 2 or less. 軟化点が500℃以下であることを特徴とする請求項2又は3に記載の色素増感型太陽電池用材料。   The material for a dye-sensitized solar cell according to claim 2 or 3, wherein the softening point is 500 ° C or lower. 封着に用いることを特徴とする請求項2〜4の何れか一項に記載の色素増感型太陽電池用材料。   It uses for sealing, The material for dye-sensitized solar cells as described in any one of Claims 2-4 characterized by the above-mentioned. 集電電極の被覆に用いることを特徴とする請求項2〜4の何れか一項に記載の色素増感型太陽電池用材料。   The material for a dye-sensitized solar cell according to any one of claims 2 to 4, wherein the material is used for coating a collecting electrode.
JP2012015052A 2012-01-27 2012-01-27 Glass composition for dye-sensitized solar cell and material for the dye-sensitized solar cell Pending JP2013155059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015052A JP2013155059A (en) 2012-01-27 2012-01-27 Glass composition for dye-sensitized solar cell and material for the dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015052A JP2013155059A (en) 2012-01-27 2012-01-27 Glass composition for dye-sensitized solar cell and material for the dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2013155059A true JP2013155059A (en) 2013-08-15

Family

ID=49050638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015052A Pending JP2013155059A (en) 2012-01-27 2012-01-27 Glass composition for dye-sensitized solar cell and material for the dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2013155059A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063445A (en) * 2013-08-29 2015-04-09 セントラル硝子株式会社 Lead free glass and sealing material
JP2016044101A (en) * 2014-08-22 2016-04-04 旭硝子株式会社 Lead-free sealing glass, sealing material, sealing material paste and sealing package
WO2016110986A1 (en) * 2015-01-08 2016-07-14 ヤマト電子株式会社 Crystallized glass and binding method, and method for producing molded product
CN107074624A (en) * 2014-10-01 2017-08-18 费柔股份有限公司 Processing temperature is less than or equal to 420 DEG C of tellurate engagement glass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182347A (en) * 2006-01-06 2007-07-19 Hitachi Ltd Bonding glass and flat panel display using the bonding glass
JP2009274948A (en) * 2008-04-18 2009-11-26 Nippon Electric Glass Co Ltd Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
JP2010184852A (en) * 2009-01-16 2010-08-26 Hitachi Powdered Metals Co Ltd Low melting point glass composition, low-temperature sealing material using the same, and electronic component
JP2011057477A (en) * 2009-09-08 2011-03-24 Nippon Electric Glass Co Ltd Sealing material
JP2011126722A (en) * 2009-12-15 2011-06-30 Asahi Glass Co Ltd Sealing material for sealing laser, glass member with sealing material layer and solar cell using the member and method for producing the solar cell
WO2011108115A1 (en) * 2010-03-05 2011-09-09 ヤマト電子株式会社 Lead-free glass material for organic-el sealing, organic el display formed using same, and process for producing the display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182347A (en) * 2006-01-06 2007-07-19 Hitachi Ltd Bonding glass and flat panel display using the bonding glass
JP2009274948A (en) * 2008-04-18 2009-11-26 Nippon Electric Glass Co Ltd Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
JP2010184852A (en) * 2009-01-16 2010-08-26 Hitachi Powdered Metals Co Ltd Low melting point glass composition, low-temperature sealing material using the same, and electronic component
JP2011057477A (en) * 2009-09-08 2011-03-24 Nippon Electric Glass Co Ltd Sealing material
JP2011126722A (en) * 2009-12-15 2011-06-30 Asahi Glass Co Ltd Sealing material for sealing laser, glass member with sealing material layer and solar cell using the member and method for producing the solar cell
WO2011108115A1 (en) * 2010-03-05 2011-09-09 ヤマト電子株式会社 Lead-free glass material for organic-el sealing, organic el display formed using same, and process for producing the display

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063445A (en) * 2013-08-29 2015-04-09 セントラル硝子株式会社 Lead free glass and sealing material
EP3040319A4 (en) * 2013-08-29 2017-03-15 Central Glass Company, Limited Lead-free glass and sealing material
US9815735B2 (en) 2013-08-29 2017-11-14 Central Glass Company, Limited Lead-free glass and sealing material
JP2016044101A (en) * 2014-08-22 2016-04-04 旭硝子株式会社 Lead-free sealing glass, sealing material, sealing material paste and sealing package
CN107074624A (en) * 2014-10-01 2017-08-18 费柔股份有限公司 Processing temperature is less than or equal to 420 DEG C of tellurate engagement glass
WO2016110986A1 (en) * 2015-01-08 2016-07-14 ヤマト電子株式会社 Crystallized glass and binding method, and method for producing molded product

Similar Documents

Publication Publication Date Title
JP5534550B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
JP5489054B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
JP5713422B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
JP5418594B2 (en) Glass member with sealing material layer, electronic device using the same, and manufacturing method thereof
JP5349791B2 (en) Lead-free glass and glass-ceramic composition for manufacturing dye-sensitized solar cells
JP2015107906A (en) Sealing material
JP2010280554A (en) Glass for dye-sensitized solar cell, and material for dye-sensitized solar cell
JP2011126722A (en) Sealing material for sealing laser, glass member with sealing material layer and solar cell using the member and method for producing the solar cell
KR20200071675A (en) Glass composition, glass powder, sealing material, glass paste, sealing method, sealing package, and organic electroluminescence element
JP2014080351A (en) Bismuth-based glass and sealing material using the same
JP2013155059A (en) Glass composition for dye-sensitized solar cell and material for the dye-sensitized solar cell
JP5713189B2 (en) Dye-sensitized solar cell glass and dye-sensitized solar cell material
JP5534553B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
JP5354447B2 (en) Dye-sensitized solar cell glass composition and dye-sensitized solar cell material
WO2014010553A1 (en) Sealing material for dye-sensitized solar cells
JPWO2010137667A1 (en) Glass member with sealing material layer, electronic device using the same, and manufacturing method thereof
JP2022003682A (en) Seal-and-bonding package and organic electroluminescent device
JP2007186395A (en) Bismuth based glass composition and bismuth based sealing material
JP2011051811A (en) Method for manufacturing glass member with sealing material layer and method for manufacturing electronic device
JP5892467B2 (en) Glass substrate with sealing material layer and glass package using the same
JP5796281B2 (en) Electrode forming material
JP2014037334A (en) Lead-free glass for laser sealing and glass ceramic composition using the same
JP6885445B2 (en) Glass composition, glass powder, sealing material, glass paste, sealing method, sealing package and organic electroluminescence device
JP2013018666A (en) Electrode formation glass and electrode formation material
KR20240017761A (en) Glass composition, glass paste, sealing package, and organic electroluminescence element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151217