JP2010278315A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2010278315A
JP2010278315A JP2009130779A JP2009130779A JP2010278315A JP 2010278315 A JP2010278315 A JP 2010278315A JP 2009130779 A JP2009130779 A JP 2009130779A JP 2009130779 A JP2009130779 A JP 2009130779A JP 2010278315 A JP2010278315 A JP 2010278315A
Authority
JP
Japan
Prior art keywords
light
led chip
emitting device
surface side
mounting substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009130779A
Other languages
Japanese (ja)
Other versions
JP5320169B2 (en
Inventor
Akira Tomoida
亮 友井田
Masao Kirihara
昌男 桐原
Kaoru Tone
薫 戸根
Kazuyuki Tomii
和志 富井
Yoshiharu Sanagawa
佳治 佐名川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009130779A priority Critical patent/JP5320169B2/en
Publication of JP2010278315A publication Critical patent/JP2010278315A/en
Application granted granted Critical
Publication of JP5320169B2 publication Critical patent/JP5320169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device whose structure is simplified and which can suppress heat conduction from an LED chip to an optical detection part having a light reception part for receiving part of light emitted by the LED chip although employing constitution wherein the optical detection part is provided to a mounting substrate in one body. <P>SOLUTION: The light emitting device includes the LED chip 1, the mounting substrate 2 where a storage recessed part 2b for storing the LED chip 1 is formed on one surface, the LED chip 1 is mounted, and the optical detection part 4 having the light reception part 4a for receiving part of the light emitted by the LED chip 1 is formed, and a lens part 3 (a light guide part for guiding part of the light emitted by the LED chip 1 to the light reception part 4a) which is provided on the one surface side of the mounting substrate 2 and controls distribution of the light emitted by the LED chip 1. The mounting substrate 2 has the optical detection part 4 formed on a silicon layer 10c on the one surface side of an SOI substrate 10, and also has the storage recessed part 2b formed deeply enough to reach a silicon layer 10a on the other surface side of the SOI substrate 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、LEDチップ(発光ダイオードチップ)を用いた発光装置に関するものである。   The present invention relates to a light emitting device using an LED chip (light emitting diode chip).

従来から、図4に示すように、LEDチップ1と、LEDチップ1を収納するパッケージAとを備え、LEDチップ1から放射される光の一部を受光する受光部4aを有するフォトダイオードからなる光検出部4がパッケージAに一体に設けられた発光装置が提案されている(例えば、特許文献1参照)。   Conventionally, as shown in FIG. 4, the LED chip 1 and a package A that houses the LED chip 1 are provided, and the photodiode has a light receiving portion 4 a that receives a part of the light emitted from the LED chip 1. A light emitting device in which the light detection unit 4 is provided integrally with the package A has been proposed (see, for example, Patent Document 1).

上述のパッケージAは、LEDチップ1を収納する収納凹所2b’が一表面に形成されLEDチップ1が実装される実装基板2’と、実装基板2’の上記一表面側で収納凹所2b’を閉塞する形で配設された透光性部材8とで構成され、光検出部4が実装基板2’における収納凹所2b’の周部から内方へ突出する突出部2c’に形成されており、収納凹所2b内がLEDチップ1を封止した透光性封止材(例えば、シリコーン樹脂など)からなる封止部9により充実されている。   In the package A, the housing recess 2b ′ for housing the LED chip 1 is formed on one surface, and the mounting substrate 2 ′ on which the LED chip 1 is mounted, and the housing recess 2b on the one surface side of the mounting substrate 2 ′. The light-detecting portion 4 is formed in a protruding portion 2c ′ protruding inward from the peripheral portion of the housing recess 2b ′ in the mounting substrate 2 ′. The inside of the storage recess 2b is filled with a sealing portion 9 made of a light-transmitting sealing material (for example, silicone resin) that seals the LED chip 1.

ここにおいて、実装基板2’は、シリコン基板20aを用いて形成されLEDチップ1が実装されるベース基板20と、シリコン基板40aを用いて形成され光取出窓41が形成されるとともに光検出部4が形成された光検出部形成基板40と、シリコン基板30aを用いて形成されてなり光取出窓41に連通する開口窓31が形成されベース基板20と光検出部形成基板40との間に介在する配光用基板30とで構成されており、光検出部4は、配光用基板30に形成された貫通孔配線34およびベース基板20に形成された貫通孔配線24を介して外部接続用電極27c,27dと電気的に接続されている。なお、LEDチップ1は、ベース基板20に形成された図示しない貫通孔配線を介して図示しない外部接続用電極と電気的に接続されている。   Here, the mounting substrate 2 ′ is formed using the silicon substrate 20a and the base substrate 20 on which the LED chip 1 is mounted, the silicon substrate 40a is used, the light extraction window 41 is formed, and the light detection unit 4 is formed. Is formed between the base substrate 20 and the photodetection unit forming substrate 40. The photodetection unit forming substrate 40 is formed with an opening window 31 that is formed using the silicon substrate 30a and communicates with the light extraction window 41. The light detection unit 4 is configured for external connection via a through hole wiring 34 formed in the light distribution substrate 30 and a through hole wiring 24 formed in the base substrate 20. It is electrically connected to the electrodes 27c and 27d. The LED chip 1 is electrically connected to an external connection electrode (not shown) through a through-hole wiring (not shown) formed in the base substrate 20.

上述の図4に示した構成の発光装置では、実装基板2’においてLEDチップ1を収納する収納凹所2b’の周部から内方へ突出する突出部2c’に、LEDチップ1から放射される光を検出する光検出部4が形成されているので、実装基板2’の上記一表面側において収納凹所2b’の周囲に光検出部4を配置するためのスペースを別途に確保する必要がなく、光検出部4を実装基板2’に設けながらも平面サイズの小型化が可能になるという利点がある。なお、図4に示した構成の発光装置では、光検出部形成基板40の基礎となるシリコン基板40aの導電形がn形であり、光検出部4においてLEDチップ1からの光を受光する受光部4aがp形領域により構成されている。   In the light emitting device having the configuration shown in FIG. 4 described above, the LED chip 1 emits the projection 2c ′ projecting inward from the peripheral portion of the housing recess 2b ′ that houses the LED chip 1 in the mounting substrate 2 ′. Since the light detecting portion 4 for detecting the light to be detected is formed, it is necessary to separately secure a space for arranging the light detecting portion 4 around the housing recess 2b ′ on the one surface side of the mounting substrate 2 ′. However, there is an advantage that the planar size can be reduced while the light detection unit 4 is provided on the mounting substrate 2 ′. In the light emitting device having the configuration shown in FIG. 4, the silicon substrate 40 a serving as the basis of the light detection unit forming substrate 40 has an n-type conductivity, and the light detection unit 4 receives light from the LED chip 1. The part 4a is constituted by a p-type region.

しかして、例えば、LEDチップ1として赤色LEDチップを採用した発光装置と、LEDチップ1として緑色LEDチップを採用した発光装置と、LEDチップ1として青色LEDチップを採用した発光装置とを同一の回路基板上に近接して配置して、当該回路基板に各発光装置のLEDチップ1を駆動する駆動回路部と、各光検出部4の出力がそれぞれの目標値に保たれるように駆動回路部から各発光色のLEDチップ1に流れる電流をフィードバック制御する制御回路部などを設けておくことにより、各光検出部4それぞれの出力に基づいて各発光色のLEDチップ1の光出力を各別に制御することができ、各発光色ごとのLEDチップ1の光出力の経時変化の違いなどによらず混色光(ここでは、白色光)の光色や色温度の精度を向上することができる。要するに、所望の混色光を安定して得ることができる。なお、上記特許文献1には、図4に示した構成の発光装置において、透光性部材8に、LEDチップ1から放射される光(例えば、青色光)によって励起されてLEDチップよりも長波長の光(例えば、黄色光)を放射する蛍光体を含有させておくことにより、LEDチップ1からの光と蛍光体からの光との混色光(例えば、白色光)を得ることができることも記載されている。   Thus, for example, a light emitting device employing a red LED chip as the LED chip 1, a light emitting device employing a green LED chip as the LED chip 1, and a light emitting device employing a blue LED chip as the LED chip 1 are the same circuit. A drive circuit unit that is arranged close to the substrate and drives the LED chip 1 of each light-emitting device on the circuit board, and a drive circuit unit so that the output of each light detection unit 4 is maintained at the target value. By providing a control circuit unit that feedback-controls the current flowing from the LED chip 1 of each emission color to the light output of the LED chip 1 of each emission color based on the output of each light detection unit 4 It is possible to control the accuracy of the light color and color temperature of the mixed color light (here, white light) regardless of the temporal change in the light output of the LED chip 1 for each emission color. It can be. In short, desired mixed color light can be stably obtained. In Patent Document 1, in the light emitting device having the configuration shown in FIG. 4, the translucent member 8 is excited by light (for example, blue light) emitted from the LED chip 1 and is longer than the LED chip. By including a phosphor that emits light of a wavelength (for example, yellow light), it is possible to obtain mixed light (for example, white light) of the light from the LED chip 1 and the light from the phosphor. Are listed.

また、従来から、図5に示すように、半導体レーザチップからなる発光素子101と、当該発光素子101を収納する収納凹所2b”が一表面に形成され発光素子101が実装されるとともに発光素子101から放射された光を検出するフォトダイオードからなる光検出部4が形成された実装基板2”とを備えた発光装置が提案されている(特許文献2参照)。ここにおいて、図5に示した構成の発光装置では、実装基板2”が1枚のn形シリコン基板200を用いて形成され、収納凹所2b”が異方性エッチングにより形成されており、当該収納凹所2b”は、内底面から離れるにつれて開口面積が徐々に大きくなっている。   Conventionally, as shown in FIG. 5, a light emitting element 101 made of a semiconductor laser chip and a housing recess 2b ″ for housing the light emitting element 101 are formed on one surface so that the light emitting element 101 is mounted and the light emitting element. There has been proposed a light-emitting device including a mounting substrate 2 ″ on which a light detection unit 4 made of a photodiode for detecting light emitted from 101 is formed (see Patent Document 2). Here, in the light emitting device having the configuration shown in FIG. 5, the mounting substrate 2 ″ is formed using one n-type silicon substrate 200, and the housing recess 2b ″ is formed by anisotropic etching. The opening area of the storage recess 2b ″ gradually increases as the distance from the inner bottom surface increases.

また、図5に示した構成の発光装置は、光検出部4におけるp形領域からなる受光部4aが収納凹所2b”の内側面に沿って形成されている。また、図5に示した構成の発光装置は、n形シリコン基板200の一表面と収納凹所2b”の内底面および内側面とに跨って絶縁膜23が形成されており、絶縁膜23において受光部4aに対応する部位上に、発光素子101からの光の一部を反射し一部を透過する所定膜厚(例えば、100nm〜400nm)のAu膜からなる金属膜190”が形成されている。なお、図5中の一点鎖線は発光素子101から放射された光の光路を示しており、破線は金属膜19”を透過して光検出部4の受光部4aに吸収される光の光路を示している。   Further, in the light emitting device having the configuration shown in FIG. 5, the light receiving portion 4a composed of the p-type region in the light detecting portion 4 is formed along the inner side surface of the housing recess 2b ″. In the light emitting device having the configuration, the insulating film 23 is formed across one surface of the n-type silicon substrate 200 and the inner bottom surface and the inner side surface of the housing recess 2b ″, and a portion of the insulating film 23 corresponding to the light receiving portion 4a. A metal film 190 ″ made of an Au film having a predetermined thickness (for example, 100 nm to 400 nm) that reflects part of the light from the light emitting element 101 and transmits part of the light is formed on the top. The one-dot chain line indicates the optical path of the light emitted from the light emitting element 101, and the broken line indicates the optical path of the light that passes through the metal film 19 ″ and is absorbed by the light receiving unit 4a.

特開2007−294834号公報JP 2007-294834 A 特開平7−297480号公報JP-A-7-297480

ところで、図4に示した構成の発光装置では、実装基板2’を3枚のシリコン基板20a,30a,40aを用いて形成する必要があり、構造が複雑になってしまうとともにコストが高くなってしまう。   By the way, in the light emitting device having the configuration shown in FIG. 4, it is necessary to form the mounting substrate 2 ′ using the three silicon substrates 20a, 30a, and 40a, which complicates the structure and increases the cost. End up.

また、図5に示した構成の発光装置は、実装基板2”が1枚のn形シリコン基板200を用いて形成されており、発光素子101で発生した熱がn形シリコン基板200へ伝熱され、光検出部4にも伝熱されるので、光検出部4の温度が上昇し、光検出部4の検出精度が低下してしまう。また、図5に示した構成の発光装置では、金属膜19”が発光素子101からの光の一部を透過させる必要があるので、金属膜19”の材料の選択肢が少なくなってしまうとともに発光効率が低下してしまう。   In the light emitting device having the configuration shown in FIG. 5, the mounting substrate 2 ″ is formed using one n-type silicon substrate 200, and heat generated by the light emitting element 101 is transferred to the n-type silicon substrate 200. Since the heat is also transferred to the light detection unit 4, the temperature of the light detection unit 4 rises and the detection accuracy of the light detection unit 4 decreases, and the light emitting device having the configuration shown in FIG. Since the film 19 ″ needs to transmit part of the light from the light emitting element 101, the choice of material for the metal film 19 ″ is reduced and the light emission efficiency is lowered.

本発明は上記事由に鑑みて為されたものであり、その目的は、LEDチップから放射される光の一部を受光する受光部を有する光検出部を実装基板に一体に設けた構成を採用しながらも、構造の簡略化を図れ、且つ、LEDチップから光検出部への伝熱を抑制することが可能な発光装置を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and its purpose is to adopt a configuration in which a light detection unit having a light receiving unit that receives a part of light emitted from an LED chip is integrally provided on a mounting substrate. However, an object of the present invention is to provide a light emitting device that can simplify the structure and can suppress heat transfer from the LED chip to the light detection unit.

請求項1の発明は、LEDチップと、当該LEDチップを収納する収納凹所が一表面に形成されLEDチップが実装されるとともにLEDチップから放射された光の一部を受光する受光部を有する光検出部が形成された実装基板と、実装基板の前記一表面側に設けられLEDチップから放射された光の一部を受光部へ導く導光部とを備え、実装基板は、厚み方向の中間に絶縁層を有する1枚のSOI基板を用いて形成されるとともに、SOI基板の一表面側のシリコン層に光検出部が形成され、収納凹所が、少なくとも絶縁層に達する深さで形成されてなることを特徴とする。   The invention according to claim 1 has an LED chip and a light receiving portion for receiving a part of the light emitted from the LED chip while the LED chip is mounted on the surface with a housing recess for housing the LED chip. A mounting substrate on which the light detection unit is formed, and a light guide unit that is provided on the one surface side of the mounting substrate and guides a part of the light emitted from the LED chip to the light receiving unit. It is formed using a single SOI substrate having an insulating layer in the middle, and a light detection portion is formed in a silicon layer on one surface side of the SOI substrate, and a storage recess is formed at a depth reaching at least the insulating layer. It is characterized by being made.

この発明によれば、LEDチップを収納する収納凹所が一表面に形成されLEDチップが実装されるとともにLEDチップから放射された光を受光する受光部を有する光検出部が形成された実装基板と、実装基板の前記一表面側に設けられLEDチップから放射された光の一部を受光部へ導く導光部とを備えているので、LEDチップから放射された光の一部を光検出部の受光部で受光することができ、また、実装基板が厚み方向の中間に絶縁層を有する1枚のSOI基板を用いて形成されるとともに、当該SOI基板の一表面側のシリコン層に光検出部が形成され、収納凹所が、少なくとも絶縁層に達する深さで形成されているので、LEDチップから放射される光の一部を受光する受光部を有する光検出部を実装基板に一体に設けた構成を採用しながらも、構造の簡略化を図れ、且つ、LEDチップから光検出部への伝熱をSOI基板の絶縁層により阻止して抑制することが可能となる。   According to the present invention, a mounting substrate in which a housing recess for housing an LED chip is formed on one surface, the LED chip is mounted, and a light detection unit having a light receiving unit that receives light emitted from the LED chip is formed. And a light guide part that is provided on the one surface side of the mounting substrate and guides a part of the light emitted from the LED chip to the light receiving part, so that a part of the light emitted from the LED chip is detected. In addition, the mounting substrate is formed using a single SOI substrate having an insulating layer in the middle in the thickness direction, and light is applied to the silicon layer on the one surface side of the SOI substrate. Since the detection part is formed and the housing recess is formed at a depth reaching at least the insulating layer, the light detection part having a light receiving part for receiving a part of the light emitted from the LED chip is integrated with the mounting substrate. Configuration provided in While employed, Hakare to simplify the structure, and, the heat transfer from the LED chip to the light detection section can be suppressed by preventing the insulating layer of the SOI substrate.

請求項2の発明は、請求項1の発明において、前記収納凹所の深さ寸法が、前記SOI基板の前記一表面側の前記シリコン層と前記絶縁層との合計寸法よりも大きく設定されてなることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the depth dimension of the storage recess is set larger than the total dimension of the silicon layer and the insulating layer on the one surface side of the SOI substrate. It is characterized by becoming.

この発明によれば、前記LEDチップで発生した熱を実装基板の他表面側へ効率良く放熱させることが可能となる。   According to the present invention, it is possible to efficiently dissipate heat generated in the LED chip to the other surface side of the mounting substrate.

請求項3の発明は、請求項1の発明において、前記収納凹所の深さ寸法が、前記SOI基板の前記一表面側の前記シリコン層の厚さ寸法と同じに設定されてなることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the present invention, the depth dimension of the storage recess is set to be the same as the thickness dimension of the silicon layer on the one surface side of the SOI substrate. And

この発明によれば、製造時において前記収納凹所を形成する際に、前記SOI基板の前記絶縁層をエッチングストッパ層として利用することができるので、前記収納凹所の深さ寸法の精度を向上できる。   According to this invention, when the storage recess is formed during manufacturing, the insulating layer of the SOI substrate can be used as an etching stopper layer, so that the accuracy of the depth dimension of the storage recess is improved. it can.

請求項4の発明は、請求項1ないし請求項3の発明において、前記光検出部において前記LEDチップからの光を受光する前記受光部は、前記SOI基板の前記一表面側における前記収納凹所の周部で前記SOI基板の前記一表面に沿って形成されてなることを特徴とする。   According to a fourth aspect of the present invention, in the first to third aspects of the invention, the light receiving portion that receives light from the LED chip in the light detecting portion is the storage recess on the one surface side of the SOI substrate. And is formed along the one surface of the SOI substrate.

この発明によれば、前記受光部を前記実装基板における前記収納凹所の内側面に沿って形成する場合に比べて、前記受光部を容易に形成することができる。   According to this invention, compared with the case where the said light-receiving part is formed along the inner surface of the said storage recess in the said mounting substrate, the said light-receiving part can be formed easily.

請求項5の発明は、請求項4の発明において、前記収納凹所は、内底面から離れるにつれて徐々に開口面積が大きくなっており、前記実装基板は、前記SOI基板の前記一表面側および前記収納凹所の内側面側に、前記LEDチップから放射された光を反射する反射膜が前記受光部を避けて形成されてなることを特徴とする。   According to a fifth aspect of the present invention, in the invention of the fourth aspect, an opening area of the storage recess gradually increases as the distance from the inner bottom surface increases, and the mounting substrate includes the one surface side of the SOI substrate and the surface of the mounting substrate. A reflection film that reflects light emitted from the LED chip is formed on an inner surface side of the housing recess so as to avoid the light receiving portion.

この発明によれば、前記実装基板は、前記SOI基板の前記一表面側および前記収納凹所の内側面側に、前記LEDチップから放射された光を反射する反射膜が前記受光部を避けて形成されているので、反射膜の材料選択の自由度が高く、前記実装基板での吸収損失を低減でき、発光効率の向上を図れる。   According to the present invention, the mounting substrate has a reflection film that reflects light emitted from the LED chip on the one surface side of the SOI substrate and the inner surface side of the housing recess, avoiding the light receiving unit. Since it is formed, the degree of freedom in selecting a material for the reflective film is high, absorption loss in the mounting substrate can be reduced, and light emission efficiency can be improved.

請求項6の発明は、請求項1ないし請求項5の発明において、前記導光部が、前記LEDチップから放射された光の配光を制御するレンズ部であって、前記LEDチップから放射される光によって励起されて前記LEDチップよりも長波長の光を放射する蛍光体を含有した透光性材料により形成され、前記実装基板の前記一表面側においてレンズ部と前記光検出部との間に、透光性および断熱性を有し蛍光体から前記受光部への伝熱を阻止する透光性断熱部が設けられてなることを特徴とする。   According to a sixth aspect of the present invention, in the first to fifth aspects of the invention, the light guide unit is a lens unit that controls light distribution of light emitted from the LED chip, and is emitted from the LED chip. Formed of a light-transmitting material containing a phosphor that emits light having a wavelength longer than that of the LED chip when excited by the light, and between the lens portion and the light detection portion on the one surface side of the mounting substrate In addition, a translucent heat insulating portion that has translucency and heat insulating properties and prevents heat transfer from the phosphor to the light receiving portion is provided.

この発明によれば、蛍光体でのストークスシフトによるエネルギ損失に起因した熱が前記受光部へ伝熱されるのを透光性断熱部により阻止することができるから、前記LEDチップから放射される光と蛍光体から放射される光との混色光を得ることができるようにしながらも、蛍光体から前記受光部への伝熱を抑制することができる。   According to the present invention, the light transmitted from the LED chip can be prevented from being transmitted to the light-receiving unit by heat caused by energy loss due to Stokes shift in the phosphor. Heat transfer from the phosphor to the light receiving portion can be suppressed while obtaining mixed color light of the light emitted from the phosphor and the light emitted from the phosphor.

請求項1の発明では、LEDチップから放射される光の一部を検出する光検出部を実装基板に一体に設けた構成を採用しながらも、構造の簡略化を図れ、且つ、LEDチップから光検出部への伝熱を抑制することが可能となるという効果がある。   According to the first aspect of the present invention, the structure can be simplified while adopting a configuration in which the light detection unit for detecting a part of the light emitted from the LED chip is integrally provided on the mounting substrate, and from the LED chip. There is an effect that heat transfer to the light detection unit can be suppressed.

実施形態1の発光装置を示し、(a)は概略断面図、(b)は要部概略平面図である。The light-emitting device of Embodiment 1 is shown, (a) is a schematic sectional drawing, (b) is a principal part schematic plan view. 実施形態2の発光装置を示し、(a)は概略断面図、(b)は要部概略平面図である。The light-emitting device of Embodiment 2 is shown, (a) is a schematic sectional drawing, (b) is a principal part schematic plan view. 実施形態3の発光装置を示し、(a)は概略断面図、(b)は要部概略平面図である。The light-emitting device of Embodiment 3 is shown, (a) is a schematic sectional drawing, (b) is a principal part schematic plan view. 従来例を示す概略断面図である。It is a schematic sectional drawing which shows a prior art example. 他の従来例を示す概略断面図である。It is a schematic sectional drawing which shows another prior art example.

(実施形態1)
本実施形態の発光装置は、図1に示すように、LEDチップ1と、当該LEDチップ1を収納する収納凹所2bが一表面に形成されLEDチップ1が実装されるとともにLEDチップ1から放射された光の一部を受光する受光部4aを有する光検出部4が形成された実装基板2と、実装基板2の上記一表面側に設けられLEDチップ1から放射された光の配光を制御するレンズ部3とを備えている。
(Embodiment 1)
As shown in FIG. 1, the light emitting device of the present embodiment has an LED chip 1 and a housing recess 2 b for housing the LED chip 1 formed on one surface so that the LED chip 1 is mounted and radiates from the LED chip 1. A light distribution of the light emitted from the LED chip 1 provided on the one surface side of the mounting substrate 2 and the mounting substrate 2 on which the light detecting portion 4 having the light receiving portion 4a for receiving a part of the emitted light is formed. And a lens unit 3 to be controlled.

上述の実装基板2は、厚み方向の中間に絶縁層10bを有する1枚のSOI基板10を用いて形成されている。ここにおいて、SOI基板10は、一表面側(図1(a)の上面側)のシリコン層10cと他表面側(図1(a)の下面側)のシリコン層10aとの間にシリコン酸化膜からなる絶縁層10bが介在しており、上記一表面側のシリコン層10cの表面が(100)面となっている。なお、SOI基板10の上記一表面側のシリコン層10cは導電形がn形となっている。   The mounting substrate 2 described above is formed by using a single SOI substrate 10 having an insulating layer 10b in the middle in the thickness direction. Here, the SOI substrate 10 includes a silicon oxide film between a silicon layer 10c on one surface side (upper surface side in FIG. 1A) and a silicon layer 10a on the other surface side (lower surface side in FIG. 1A). An insulating layer 10b made of is interposed, and the surface of the silicon layer 10c on the one surface side is a (100) plane. The silicon layer 10c on the one surface side of the SOI substrate 10 has an n-type conductivity.

また、実装基板2は、SOI基板10の上記一表面側のシリコン層10cに光検出部4が形成され、収納凹所2bが、SOI基板10の上記他表面側のシリコン層10aに達する深さで形成されている。要するに、本実施形態の発光装置では、収納凹所2bの深さ寸法が、SOI基板10の上記一表面側のシリコン層10cと絶縁層10bとの合計寸法よりも大きく設定されている。   Further, the mounting substrate 2 has a depth at which the light detection portion 4 is formed in the silicon layer 10 c on the one surface side of the SOI substrate 10 and the storage recess 2 b reaches the silicon layer 10 a on the other surface side of the SOI substrate 10. It is formed with. In short, in the light emitting device of this embodiment, the depth dimension of the storage recess 2b is set to be larger than the total dimension of the silicon layer 10c and the insulating layer 10b on the one surface side of the SOI substrate 10.

ここにおいて、実装基板2は、上記一表面側に、LEDチップ1の両電極(図示せず)それぞれと電気的に接続される2つの導体パターン15a,15bが形成されるとともに、光検出部4に電気的に接続された2つの導体パターン15c,15dが形成されており、各導体パターン15a,15b,15c,15dとSOI基板10の他表面側(図1(a)における下面側)に形成された4つの外部接続用電極17a,17b,17c,17dとがそれぞれ貫通孔配線14を介して電気的に接続されている。ただし、LEDチップ1の両電極それぞれと電気的に接続される2つの導体パターン15a,15bは、後述の絶縁膜13のうち収納凹所2bの内底面に形成された部位の上に形成されている。   Here, the mounting substrate 2 is formed with two conductor patterns 15a and 15b electrically connected to both electrodes (not shown) of the LED chip 1 on the one surface side, and the light detection unit 4 Are formed on the other surface side (the lower surface side in FIG. 1A) of each of the conductor patterns 15a, 15b, 15c, 15d and the SOI substrate 10. The four external connection electrodes 17a, 17b, 17c, and 17d are electrically connected through the through-hole wiring 14, respectively. However, the two conductor patterns 15a and 15b that are electrically connected to the two electrodes of the LED chip 1 are formed on a portion formed on the inner bottom surface of the housing recess 2b in the insulating film 13 described later. Yes.

本実施形態におけるLEDチップ1は、結晶成長用基板として導電性基板を用い厚み方向の両面に電極が形成され、可視光(例えば、赤色光、緑色光、青色光など)を放射するLEDチップである。そこで、実装基板2は、LEDチップ1が電気的に接続される2つの導体パターン15a,15bのうちの一方の導体パターン15aを、LEDチップ1がダイボンディングされる矩形状のダイパッド部15aaと、ダイパッド部15aaに連続一体に形成され貫通孔配線14との接続部位となる引き出し配線部15abとで構成してある。要するに、LEDチップ1は、上記一方の導体パターン15aのダイパッド部15aaにダイボンディングされており、ダイパッド部15aa側の電極がダイパッド部15aaに接合されて電気的に接続され、ダイパッド部15aa側とは反対側の電極がボンディングワイヤW1を介して他方の導体パターン15bと電気的に接続されている。   The LED chip 1 in this embodiment is an LED chip that emits visible light (for example, red light, green light, blue light, etc.) by using a conductive substrate as a crystal growth substrate and electrodes formed on both sides in the thickness direction. is there. Therefore, the mounting substrate 2 has one of the two conductor patterns 15a and 15b to which the LED chip 1 is electrically connected, a rectangular die pad portion 15aa to which the LED chip 1 is die-bonded, and The lead-out wiring part 15ab is formed integrally with the die pad part 15aa and is connected to the through-hole wiring 14. In short, the LED chip 1 is die-bonded to the die pad portion 15aa of the one conductor pattern 15a, and the electrode on the die pad portion 15aa side is joined and electrically connected to the die pad portion 15aa. The opposite electrode is electrically connected to the other conductor pattern 15b via the bonding wire W1.

また、実装基板2は、SOI基板10の上記他表面側に、SOI基板10よりも熱伝導率の高い金属材料からなる矩形状の放熱用パッド部18が形成されており、ダイパッド部15aaと放熱用パッド部18とがSOI基板10よりも熱伝導率の高い金属材料(例えば、Cuなど)からなる複数(本実施形態では、9つ)の円柱状のサーマルビア16を介して熱的に結合されており、LEDチップ1で発生した熱が各サーマルビア16および放熱用パッド部18を介して放熱されるようになっている。   Further, the mounting substrate 2 is formed with a rectangular heat radiation pad portion 18 made of a metal material having a higher thermal conductivity than the SOI substrate 10 on the other surface side of the SOI substrate 10. The pad portion 18 is thermally coupled to a plurality of (in this embodiment, nine) cylindrical thermal vias 16 made of a metal material (for example, Cu) having a higher thermal conductivity than the SOI substrate 10. The heat generated in the LED chip 1 is radiated through the thermal vias 16 and the heat radiating pad portions 18.

ところで、実装基板2は、SOI基板10に、上述の4つの貫通孔配線14それぞれが内側に形成される4つの貫通孔12aと、上述の9つのサーマルビア16それぞれが内側に形成される9つの貫通孔12bとが厚み方向に貫設され、SOI基板10の上記一表面とSOI基板10における収納凹所2bの内底面および内側面とSOI基板10の上記他表面と各貫通孔12a,12bの内面とに跨って熱酸化膜(シリコン酸化膜)からなる上述の絶縁膜13が形成されており、各導体パターン15a,15b,15c,15d、各外部接続用電極17a,17b,17c,17d、放熱用パッド部18、各貫通孔配線14および各サーマルビア16がSOI基板10と電気的に絶縁されている。   By the way, the mounting substrate 2 is formed on the SOI substrate 10 with four through-holes 12a in which each of the four through-hole wirings 14 described above is formed and nine nine thermal vias 16 are formed on the inside. A through hole 12b is provided in the thickness direction, the one surface of the SOI substrate 10, the inner bottom surface and the inner surface of the storage recess 2b in the SOI substrate 10, the other surface of the SOI substrate 10, and the through holes 12a, 12b. The insulating film 13 made of a thermal oxide film (silicon oxide film) is formed across the inner surface, and each conductor pattern 15a, 15b, 15c, 15d, each external connection electrode 17a, 17b, 17c, 17d, The heat dissipation pad portion 18, each through-hole wiring 14, and each thermal via 16 are electrically insulated from the SOI substrate 10.

ここにおいて、各導体パターン15a,15b,15c,15d、各外部接続用電極17a,17b,17c,17d、放熱用パッド部18は、絶縁膜13上に形成されたTi膜と当該Ti膜上に形成されたAu膜との積層膜により構成されており、SOI基板10の上記一表面側の各導体パターン15a,15b,15c,15dが同時に形成され、SOI基板10の上記他表面側の各外部接続用電極17a,17b,17c,17d、放熱用パッド部18が同時に形成してある。なお、本実施形態では、絶縁膜13上のTi膜の膜厚を15〜50nm、Ti膜上のAu膜の膜厚を500nmに設定してあるが、これらの数値は一例であって特に限定するものではない。また、各Au膜の材料は、純金に限らず不純物を添加したものでもよい。また、各Au膜と絶縁膜13との間に密着性改善用の密着層としてTi膜を介在させてあるが、密着層の材料はTiに限らず、例えば、Cr、Nb、Zr、TiN、TaNなどでもよい。また、貫通孔配線14およびサーマルビア16の材料としては、Cuを採用しているが、Cuに限らず、例えば、Niなどを採用してもよい。   Here, the conductor patterns 15a, 15b, 15c, 15d, the external connection electrodes 17a, 17b, 17c, 17d, and the heat dissipation pad 18 are formed on the Ti film formed on the insulating film 13 and the Ti film. Each conductive pattern 15a, 15b, 15c, 15d on the one surface side of the SOI substrate 10 is formed at the same time, and each external pattern on the other surface side of the SOI substrate 10 is formed by a laminated film with the formed Au film. Connection electrodes 17a, 17b, 17c, and 17d and a heat dissipation pad portion 18 are formed at the same time. In the present embodiment, the thickness of the Ti film on the insulating film 13 is set to 15 to 50 nm, and the thickness of the Au film on the Ti film is set to 500 nm. However, these numerical values are examples and are particularly limited. Not what you want. Further, the material of each Au film is not limited to pure gold, and may be one added with impurities. Further, although a Ti film is interposed as an adhesion layer for improving adhesion between each Au film and the insulating film 13, the material of the adhesion layer is not limited to Ti, for example, Cr, Nb, Zr, TiN, TaN or the like may be used. Further, although Cu is adopted as a material for the through-hole wiring 14 and the thermal via 16, it is not limited to Cu, and for example, Ni may be adopted.

また、実装基板2は、上述の光検出部4としてフォトダイオードが形成されている。ここにおいて、光検出部4は、SOI基板10の上記一表面側のシリコン層10cに、上記フォトダイオードのp形領域からなる受光部4aが形成されており、上述の2つの導体パターン15c,15dのうちの一方の導体パターン15cが、当該受光部4aに電気的に接続され、他方の導体パターン15dが、上記フォトダイオードのn形領域4bを構成するシリコン層10cに電気的に接続されている。なお、各導体パターン15c,15dは、絶縁膜13に形成したコンタクトホール13c,13dを通して光検出部4と電気的に接続されている。   In addition, the mounting substrate 2 is formed with a photodiode as the above-described light detection unit 4. Here, in the light detection unit 4, the light receiving unit 4 a made of the p-type region of the photodiode is formed on the silicon layer 10 c on the one surface side of the SOI substrate 10, and the two conductor patterns 15 c and 15 d described above are formed. One of the conductor patterns 15c is electrically connected to the light receiving portion 4a, and the other conductor pattern 15d is electrically connected to the silicon layer 10c constituting the n-type region 4b of the photodiode. . The conductor patterns 15c and 15d are electrically connected to the light detection unit 4 through contact holes 13c and 13d formed in the insulating film 13.

また、光検出部4においてLEDチップ1からの光を受光する受光部4aは、SOI基板10の上記一表面側における収納凹所2bの周部でSOI基板10の上記一表面に沿って形成されている。しかして、本実施形態の発光装置では、図5に示した構成のように受光部4aを実装基板2”における収納凹所2b”の内側面に沿って形成する場合に比べて、受光部4aを容易に形成することができる。なお、受光部4aの平面視形状は、収納凹所2bを全周に亘って囲む枠状(ここでは、矩形枠状)の形状としてある。   In addition, the light receiving unit 4 a that receives light from the LED chip 1 in the light detecting unit 4 is formed along the one surface of the SOI substrate 10 at the peripheral portion of the storage recess 2 b on the one surface side of the SOI substrate 10. ing. Thus, in the light emitting device of the present embodiment, the light receiving portion 4a is compared with the case where the light receiving portion 4a is formed along the inner surface of the housing recess 2b ″ in the mounting substrate 2 ″ as in the configuration shown in FIG. Can be easily formed. In addition, the planar view shape of the light-receiving part 4a is a frame shape (here, a rectangular frame shape) surrounding the housing recess 2b over the entire circumference.

また、実装基板2の収納凹所2bは、エッチング速度の結晶方位依存性を利用した湿式の異方性エッチングにより形成されており、内底面から離れるにつれて徐々に開口面積が大きくなっている。ここにおいて、実装基板2は、SOI基板10の上記一表面側および収納凹所2bの内側面側に、LEDチップ1から放射された光を反射する反射膜19が受光部4aを避けて形成されている。ここにおいて、反射膜19の材料としては、LEDチップ1から放射される光に対する反射率の高い材料(例えば、Al、Agなど)を適宜選択すればよい。しかして、本実施形態の発光装置では、実装基板2は、SOI基板10の上記一表面側および収納凹所2bの内側面側に、LEDチップ1から放射された光を反射する反射膜19が受光部4aを避けて形成されているので、反射膜19の材料選択の自由度が高く、実装基板2での吸収損失を低減でき、発光効率の向上を図れる。   The housing recess 2b of the mounting substrate 2 is formed by wet anisotropic etching utilizing the crystal orientation dependence of the etching rate, and the opening area gradually increases as the distance from the inner bottom surface increases. Here, the mounting substrate 2 is formed on the one surface side of the SOI substrate 10 and the inner surface side of the housing recess 2b with a reflection film 19 that reflects light emitted from the LED chip 1 avoiding the light receiving portion 4a. ing. Here, as the material of the reflective film 19, a material having high reflectivity with respect to the light emitted from the LED chip 1 (for example, Al, Ag, etc.) may be appropriately selected. Thus, in the light emitting device of this embodiment, the mounting substrate 2 has the reflective film 19 that reflects the light emitted from the LED chip 1 on the one surface side of the SOI substrate 10 and the inner surface side of the housing recess 2b. Since it is formed so as to avoid the light receiving portion 4a, the degree of freedom in selecting the material of the reflective film 19 is high, the absorption loss in the mounting substrate 2 can be reduced, and the light emission efficiency can be improved.

レンズ部3は、透光性材料(例えば、シリコーン樹脂など)により形成され実装基板2の上記一表面側においてLEDチップ1および当該LEDチップ1に接続されたボンディングワイヤW1を封止した半球状のレンズ状封止部により構成されている。ここにおいて、レンズ部3の透光性材料は、シリコーン樹脂に限らず、例えば、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、ガラスなどを採用してもよい。また、レンズ部3の形状は半球状に限らず、例えば、半楕円球状の形状でもよい。なお、本実施形態では、実装基板2とレンズ部3とでパッケージを構成している。   The lens unit 3 is formed of a translucent material (for example, silicone resin) and is a hemispherical shape that seals the LED chip 1 and the bonding wire W1 connected to the LED chip 1 on the one surface side of the mounting substrate 2. It is comprised by the lens-shaped sealing part. Here, the translucent material of the lens unit 3 is not limited to a silicone resin, and for example, an acrylic resin, an epoxy resin, a polycarbonate resin, glass, or the like may be employed. In addition, the shape of the lens unit 3 is not limited to a hemispherical shape, and may be a hemispherical spherical shape, for example. In the present embodiment, the mounting substrate 2 and the lens unit 3 constitute a package.

本実施形態の発光装置の製造にあたっては、上述のSOI基板10として実装基板2を多数形成可能なSOIウェハを用い、実装基板2にLEDチップ1を実装してからレンズ部3を形成し、その後、ダイシング工程により実装基板2のサイズに分割するようにしている。   In manufacturing the light emitting device of this embodiment, an SOI wafer capable of forming a large number of mounting substrates 2 is used as the SOI substrate 10 described above, the LED chip 1 is mounted on the mounting substrate 2, and then the lens unit 3 is formed. The substrate is divided into the size of the mounting substrate 2 by a dicing process.

以上説明した本実施形態の発光装置は、LEDチップ1を収納する収納凹所2bが上記一表面に形成されLEDチップ1が実装されるとともにLEDチップ1から放射された光の一部を受光する受光部4aを有する光検出部4が形成された実装基板2と、実装基板2の上記一表面側に設けられLEDチップ1から放射された光の配光を制御するレンズ部3とを備えているので、LEDチップ1から放射されレンズ部3と空気との界面で反射された光の一部を光検出部4で受光することができ、また、実装基板2が厚み方向の中間に絶縁層10bを有する1枚のSOI基板10を用いて形成されるとともに、当該SOI基板10の上記一表面側のシリコン層10cに光検出部4が形成され、収納凹所2bの深さ寸法が、SOI基板10の上記一表面側のシリコン層10cと絶縁層10bとの合計寸法よりも大きく設定されているので、LEDチップ1から放射される光の一部を受光する受光部4aを有する光検出部4を実装基板2に一体に設けた構成を採用しながらも、構造の簡略化を図れ、且つ、LEDチップ1から光検出部4への伝熱をSOI基板10の絶縁層10bにより阻止して抑制することが可能となる。しかして、本実施形態の発光装置では、光検出部4の検出精度を向上させることが可能となる。なお、本実施形態では、レンズ部3が、実装基板2の上記一表面側に設けられLEDチップ1から放射された光の一部を受光部4aへ導く導光部を構成している。ここで、当該導光部は、LEDチップ1から放射された光の一部を受光部4aへ導くことができればよく、必ずしもレンズ部3のようなレンズ形状に形成する必要はない。   In the light emitting device of the present embodiment described above, the housing recess 2b for housing the LED chip 1 is formed on the one surface, the LED chip 1 is mounted, and a part of the light emitted from the LED chip 1 is received. A mounting substrate 2 on which a light detection unit 4 having a light receiving unit 4a is formed, and a lens unit 3 that is provided on the one surface side of the mounting substrate 2 and controls light distribution of light emitted from the LED chip 1 are provided. Therefore, a part of the light emitted from the LED chip 1 and reflected by the interface between the lens unit 3 and the air can be received by the light detection unit 4, and the mounting substrate 2 has an insulating layer in the middle in the thickness direction. In addition to the formation of one SOI substrate 10 having 10b, the photodetecting portion 4 is formed in the silicon layer 10c on the one surface side of the SOI substrate 10, and the depth dimension of the storage recess 2b is set to SOI. The above one of the substrate 10 Since it is set to be larger than the total size of the silicon layer 10c on the surface side and the insulating layer 10b, the light detection unit 4 having the light receiving unit 4a for receiving a part of the light emitted from the LED chip 1 is mounted on the mounting substrate 2. The structure can be simplified while the structure provided integrally with the LED chip 1 and the heat transfer from the LED chip 1 to the light detection unit 4 can be prevented and suppressed by the insulating layer 10b of the SOI substrate 10. It becomes. Therefore, in the light emitting device of this embodiment, the detection accuracy of the light detection unit 4 can be improved. In the present embodiment, the lens unit 3 constitutes a light guide unit that is provided on the one surface side of the mounting substrate 2 and guides part of the light emitted from the LED chip 1 to the light receiving unit 4a. Here, the light guide section only needs to be able to guide a part of the light emitted from the LED chip 1 to the light receiving section 4a, and is not necessarily formed in a lens shape like the lens section 3.

また、本実施形態の発光装置では、収納凹所2bの深さ寸法が、SOI基板10の上記一表面側のシリコン層10cと絶縁層10bとの合計寸法よりも大きく設定されているので、LEDチップ1で発生した熱を実装基板2の他表面側へ効率良く放熱させることが可能となる。   Further, in the light emitting device of this embodiment, the depth dimension of the storage recess 2b is set larger than the total dimension of the silicon layer 10c and the insulating layer 10b on the one surface side of the SOI substrate 10, so that the LED The heat generated in the chip 1 can be efficiently radiated to the other surface side of the mounting substrate 2.

また、本実施形態の発光装置は、実装基板2に光検出部4が設けられているので、例えば、LEDチップ1として赤色LEDチップを採用した発光装置と、LEDチップ1として緑色LEDチップを採用した発光装置と、LEDチップ1として青色LEDチップを採用した発光装置とを同一の配線基板(回路基板)上に近接して配置して、当該配線基板に各発光装置のLEDチップ1を駆動する駆動回路部と、各光検出部4の出力がそれぞれの目標値に保たれるように駆動回路部から各発光色のLEDチップ1に流れる電流をフィードバック制御する制御回路部などを設けておくことにより、各光検出部4それぞれの出力に基づいて各発光色のLEDチップ1の光出力を各別に制御することができ、各発光色ごとのLEDチップ1の光出力の経時変化の違いなどによらず混色光(ここでは、白色光)の光色や色温度の精度を向上することができる。要するに、所望の混色光を安定して得ることができる。   In the light emitting device of this embodiment, since the light detection unit 4 is provided on the mounting substrate 2, for example, a light emitting device using a red LED chip as the LED chip 1 and a green LED chip as the LED chip 1 are used. The light emitting device and the light emitting device adopting the blue LED chip as the LED chip 1 are arranged close to each other on the same wiring board (circuit board), and the LED chip 1 of each light emitting apparatus is driven on the wiring board. Provide a drive circuit unit and a control circuit unit that feedback-controls the current flowing from the drive circuit unit to the LED chip 1 of each emission color so that the output of each light detection unit 4 is maintained at the respective target value. Thus, the light output of the LED chip 1 of each emission color can be controlled separately based on the output of each light detection unit 4, and the light output of the LED chip 1 for each emission color can be controlled. Time change difference etc. depending not mixed color light (in this case, white light) can be improved accuracy of the light color and color temperature. In short, desired mixed color light can be stably obtained.

(実施形態2)
本実施形態の発光装置の基本構成は実施形態1と略同じであって、図2に示すように、実装基板2における収納凹所2bの深さ寸法が、SOI基板10の上記一表面側のシリコン層10cの厚さ寸法と同じに設定されている点が相違する。ここにおいて、SOI基板10の各シリコン層10a,10cの厚さは、LEDチップ1の厚みなどに基づいて規定する収納凹所2bの所望の深さ寸法に応じて適宜設定すればよい。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the first embodiment. As shown in FIG. 2, the depth dimension of the housing recess 2b in the mounting substrate 2 is the same as that on the one surface side of the SOI substrate 10. The difference is that it is set to be the same as the thickness dimension of the silicon layer 10c. Here, the thickness of each of the silicon layers 10a and 10c of the SOI substrate 10 may be appropriately set according to a desired depth dimension of the housing recess 2b defined based on the thickness of the LED chip 1 and the like. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

しかして、本実施形態の発光装置によれば、製造時において収納凹所2bを形成する際に、SOI基板10の絶縁層10bをエッチングストッパ層として利用することができるので、収納凹所2bの深さ寸法の精度を向上できる。   Thus, according to the light emitting device of the present embodiment, the insulating layer 10b of the SOI substrate 10 can be used as an etching stopper layer when the storage recess 2b is formed during manufacturing. The accuracy of the depth dimension can be improved.

(実施形態3)
図3に示す本実施形態の発光装置の基本構成は実施形態1と略同じであって、レンズ部3が、LEDチップ1から放射される光によって励起されてLEDチップ1よりも長波長の光を放射する蛍光体(図示せず)を含有した透光性材料(例えば、シリコーン樹脂、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、ガラス、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料など)により形成されており、実装基板2の上記一表面側においてレンズ部3と光検出部4との間に、透光性および断熱性を有し蛍光体から受光部4aへの伝熱を阻止する透光性断熱部5が設けられている点が相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 3)
The basic configuration of the light emitting device of the present embodiment shown in FIG. 3 is substantially the same as that of the first embodiment, and the lens unit 3 is excited by the light emitted from the LED chip 1 and has a longer wavelength than the LED chip 1. Translucent materials containing phosphors (not shown) that emit light (for example, silicone resin, acrylic resin, epoxy resin, polycarbonate resin, glass, organic component and inorganic component are mixed and bonded at nm level or molecular level) Between the lens part 3 and the light detection part 4 on the one surface side of the mounting substrate 2 and having a light-transmitting property and a heat-insulating property. The point which the translucent heat insulation part 5 which prevents the heat transfer to 4a is provided is different. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

本実施形態の発光装置において、例えば、LEDチップ1として青色の光を放射するLEDチップを用い、上述の蛍光体として、LEDチップ1から放射された青色の光によって励起されてブロードな黄色系の光を放射する粒子状の黄色蛍光体を採用すれば、LEDチップ1から放射された青色の光と黄色蛍光体から放射された光とがレンズ部3から出射されることとなり、白色光を得ることができる。なお、レンズ部3の透光性材料としてガラスを採用すれば、シリコーン樹脂などの有機材料を採用している場合に比べて、レンズ部3の熱伝導性が向上するので、蛍光体の温度上昇を抑制できて蛍光体の温度消光による量子効率の低下を抑制することができ、しかも、水蒸気やNOなど対するガスバリア性や耐透湿性が向上するとともに、蛍光体の吸湿劣化を抑制でき、信頼性および耐久性が向上する。また、レンズ部3の材料として用いる透光性材料に混合する蛍光体も黄色蛍光体に限らず、例えば、赤色蛍光体と緑色蛍光体とを混合しても白色光を得ることができ、赤色蛍光体と緑色蛍光体とを用いれば演色性を高めることができる。 In the light emitting device of the present embodiment, for example, an LED chip that emits blue light is used as the LED chip 1, and the above-described phosphor is excited by the blue light emitted from the LED chip 1 and has a broad yellow color. If a particulate yellow phosphor that emits light is employed, the blue light emitted from the LED chip 1 and the light emitted from the yellow phosphor are emitted from the lens unit 3 to obtain white light. be able to. If glass is used as the translucent material of the lens unit 3, the thermal conductivity of the lens unit 3 is improved as compared with the case where an organic material such as silicone resin is used. the can be suppressed can suppress a decrease in quantum efficiency due to the temperature quenching of phosphor, moreover, with improved gas barrier properties and moisture impermeability against water vapor and NO x, can suppress moisture absorption deterioration of the phosphor, trust And durability are improved. Further, the phosphor mixed with the translucent material used as the material of the lens unit 3 is not limited to the yellow phosphor. For example, white light can be obtained by mixing a red phosphor and a green phosphor. Color rendering properties can be improved by using a phosphor and a green phosphor.

上述の透光性断熱部5は、平面視形状が受光部4aの平面視形状に沿った矩形枠状であり、断面形状が半円状に形成されているが、透光性断熱部5の形状は特に限定するものではない。ここにおいて、透光性断熱部5の材料は、レンズ部3の材料と絶縁膜13の材料とに応じて、シリコーン樹脂、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂などから適宜選択して採用すればよい。   The translucent heat insulating part 5 described above has a rectangular frame shape in plan view along the plan view shape of the light receiving part 4a and a cross-sectional shape formed in a semicircular shape. The shape is not particularly limited. Here, the material of the translucent heat insulating part 5 may be appropriately selected from silicone resin, acrylic resin, epoxy resin, polycarbonate resin, etc. according to the material of the lens part 3 and the material of the insulating film 13. .

しかして、本実施形態の発光装置によれば、蛍光体でのストークスシフトによるエネルギ損失に起因した熱が光検出部4の受光部4aへ伝熱されるのを透光性断熱部5により阻止することができるから、LEDチップ1から放射される光と蛍光体から放射される光との混色光を得ることができるようにしながらも、蛍光体から受光部4aへの伝熱を抑制することができ、光検出部4の検出精度の向上を図れる。   Thus, according to the light emitting device of the present embodiment, the translucent heat insulating portion 5 prevents heat caused by energy loss due to Stokes shift in the phosphor from being transferred to the light receiving portion 4a of the light detecting portion 4. Therefore, it is possible to obtain mixed color light of the light emitted from the LED chip 1 and the light emitted from the phosphor, while suppressing the heat transfer from the phosphor to the light receiving unit 4a. It is possible to improve the detection accuracy of the light detection unit 4.

なお、本実施形態のレンズ部3および透光性断熱部5を実施形態2の発光装置に適用してもよい。要するに、実装基板2の収納凹所2bは、少なくともSOI基板10の絶縁層10bに達する深さで形成されていればよい。   In addition, you may apply the lens part 3 and the translucent heat insulation part 5 of this embodiment to the light-emitting device of Embodiment 2. FIG. In short, the housing recess 2b of the mounting substrate 2 only needs to be formed at a depth that reaches at least the insulating layer 10b of the SOI substrate 10.

1 LEDチップ
2 実装基板
2b 収納凹所
3 レンズ部(導光部)
4 光検出部
4a 受光部
10 SOI基板
10a シリコン層
10b 絶縁層
10c シリコン層
DESCRIPTION OF SYMBOLS 1 LED chip 2 Mounting board 2b Storage recess 3 Lens part (light guide part)
4 Photodetector 4a Light receiver 10 SOI substrate 10a Silicon layer 10b Insulating layer 10c Silicon layer

Claims (6)

LEDチップと、当該LEDチップを収納する収納凹所が一表面に形成されLEDチップが実装されるとともにLEDチップから放射された光の一部を受光する受光部を有する光検出部が形成された実装基板と、実装基板の前記一表面側に設けられLEDチップから放射された光の一部を受光部へ導く導光部とを備え、実装基板は、厚み方向の中間に絶縁層を有する1枚のSOI基板を用いて形成されるとともに、SOI基板の一表面側のシリコン層に光検出部が形成され、収納凹所が、少なくとも絶縁層に達する深さで形成されてなることを特徴とする発光装置。   An LED chip and a housing recess for housing the LED chip are formed on one surface, the LED chip is mounted, and a light detection unit having a light receiving unit that receives a part of the light emitted from the LED chip is formed A mounting substrate; and a light guide portion that is provided on the one surface side of the mounting substrate and guides part of the light emitted from the LED chip to the light receiving portion. The mounting substrate has an insulating layer in the middle in the thickness direction. It is formed using a single SOI substrate, a light detection portion is formed in a silicon layer on one surface side of the SOI substrate, and a storage recess is formed at a depth reaching at least the insulating layer. Light-emitting device. 前記収納凹所の深さ寸法が、前記SOI基板の前記一表面側の前記シリコン層と前記絶縁層との合計寸法よりも大きく設定されてなることを特徴とする請求項1記載の発光装置。   2. The light emitting device according to claim 1, wherein a depth dimension of the housing recess is set larger than a total dimension of the silicon layer and the insulating layer on the one surface side of the SOI substrate. 前記収納凹所の深さ寸法が、前記SOI基板の前記一表面側の前記シリコン層の厚さ寸法と同じに設定されてなることを特徴とする請求項1記載の発光装置。   2. The light emitting device according to claim 1, wherein a depth dimension of the storage recess is set to be the same as a thickness dimension of the silicon layer on the one surface side of the SOI substrate. 前記光検出部において前記LEDチップからの光を受光する前記受光部は、前記SOI基板の前記一表面側における前記収納凹所の周部で前記SOI基板の前記一表面に沿って形成されてなることを特徴とする請求項1ないし請求項3のいずれか1項に記載の発光装置。   The light receiving portion that receives light from the LED chip in the light detection portion is formed along the one surface of the SOI substrate at a peripheral portion of the storage recess on the one surface side of the SOI substrate. The light emitting device according to claim 1, wherein the light emitting device is a light emitting device. 前記収納凹所は、内底面から離れるにつれて徐々に開口面積が大きくなっており、前記実装基板は、前記SOI基板の前記一表面側および前記収納凹所の内側面側に、前記LEDチップから放射された光を反射する反射膜が前記受光部を避けて形成されてなることを特徴とする請求項4記載の発光装置。   The opening of the storage recess gradually increases as the distance from the inner bottom surface increases, and the mounting substrate radiates from the LED chip on the one surface side of the SOI substrate and the inner side surface of the storage recess. 5. The light emitting device according to claim 4, wherein a reflection film for reflecting the emitted light is formed so as to avoid the light receiving portion. 前記導光部が、前記LEDチップから放射された光の配光を制御するレンズ部であって、前記LEDチップから放射される光によって励起されて前記LEDチップよりも長波長の光を放射する蛍光体を含有した透光性材料により形成され、前記実装基板の前記一表面側においてレンズ部と前記光検出部との間に、透光性および断熱性を有し蛍光体から前記受光部への伝熱を阻止する透光性断熱部が設けられてなることを特徴とする請求項1ないし請求項5のいずれか1項に記載の発光装置。   The light guide unit is a lens unit that controls light distribution of light emitted from the LED chip, and is excited by light emitted from the LED chip to emit light having a longer wavelength than the LED chip. It is formed of a translucent material containing a phosphor, and has a translucency and a heat insulating property between the lens unit and the light detection unit on the one surface side of the mounting substrate, from the phosphor to the light receiving unit. The light-emitting device according to claim 1, further comprising a light-transmitting heat insulating portion that prevents heat transfer.
JP2009130779A 2009-05-29 2009-05-29 Light emitting device Active JP5320169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130779A JP5320169B2 (en) 2009-05-29 2009-05-29 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130779A JP5320169B2 (en) 2009-05-29 2009-05-29 Light emitting device

Publications (2)

Publication Number Publication Date
JP2010278315A true JP2010278315A (en) 2010-12-09
JP5320169B2 JP5320169B2 (en) 2013-10-23

Family

ID=43424992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130779A Active JP5320169B2 (en) 2009-05-29 2009-05-29 Light emitting device

Country Status (1)

Country Link
JP (1) JP5320169B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089816A (en) * 2010-10-19 2012-05-10 Unistars Corp Package substrate and method of manufacturing the same
WO2022124204A1 (en) * 2020-12-10 2022-06-16 スタンレー電気株式会社 Semiconductor light emitting device and supporting substrate for semiconductor light emitting elements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176184A (en) * 2000-12-11 2002-06-21 Rohm Co Ltd Infrared data communication module and its manufacturing method
JP2002344031A (en) * 2001-03-14 2002-11-29 Matsushita Electric Ind Co Ltd Illuminating unit
JP2006190951A (en) * 2004-12-29 2006-07-20 Ind Technol Res Inst Light emitting diode package and its manufacturing process
JP2007294834A (en) * 2006-03-28 2007-11-08 Matsushita Electric Works Ltd Light emitting device
JP2009010048A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176184A (en) * 2000-12-11 2002-06-21 Rohm Co Ltd Infrared data communication module and its manufacturing method
JP2002344031A (en) * 2001-03-14 2002-11-29 Matsushita Electric Ind Co Ltd Illuminating unit
JP2006190951A (en) * 2004-12-29 2006-07-20 Ind Technol Res Inst Light emitting diode package and its manufacturing process
JP2007294834A (en) * 2006-03-28 2007-11-08 Matsushita Electric Works Ltd Light emitting device
JP2009010048A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089816A (en) * 2010-10-19 2012-05-10 Unistars Corp Package substrate and method of manufacturing the same
WO2022124204A1 (en) * 2020-12-10 2022-06-16 スタンレー電気株式会社 Semiconductor light emitting device and supporting substrate for semiconductor light emitting elements

Also Published As

Publication number Publication date
JP5320169B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5192666B2 (en) Light emitting device
JP5243806B2 (en) Ultraviolet light emitting device
JP2004327863A (en) Semiconductor light emitting device having reflection plate with heat dissipation function
JP2008270707A (en) Light-emitting device
JP2009130204A (en) Light source apparatus
JP5010203B2 (en) Light emitting device
JP2007243054A (en) Light-emitting device
JP5010366B2 (en) Light emitting device
JP4029918B2 (en) LED lighting device
US8461609B2 (en) Light emitting device package
JP5390938B2 (en) Light emitting device
JP5320169B2 (en) Light emitting device
JP4877239B2 (en) Method for manufacturing light emitting device
JP2009302145A (en) Light-emitting device
JP5102652B2 (en) Light emitting device
JP5249856B2 (en) Light emitting device
JP2010278316A (en) Light emitting device
JP2009177095A (en) Light-emitting device
JP2011009559A (en) Light-emitting device
JP2009010048A (en) Light-emitting device
JP5351624B2 (en) LED module
JP5475954B2 (en) Light emitting device
WO2013021518A1 (en) Light emitting device
JP2009177099A (en) Light-emitting device
JP5102605B2 (en) Light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R150 Certificate of patent or registration of utility model

Ref document number: 5320169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150