JP2010272605A - Method of manufacturing electronic equipment by fine soldering of lead wire or the like, and soldering iron therefor - Google Patents

Method of manufacturing electronic equipment by fine soldering of lead wire or the like, and soldering iron therefor Download PDF

Info

Publication number
JP2010272605A
JP2010272605A JP2009121505A JP2009121505A JP2010272605A JP 2010272605 A JP2010272605 A JP 2010272605A JP 2009121505 A JP2009121505 A JP 2009121505A JP 2009121505 A JP2009121505 A JP 2009121505A JP 2010272605 A JP2010272605 A JP 2010272605A
Authority
JP
Japan
Prior art keywords
solder
tip
soldering
hole
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009121505A
Other languages
Japanese (ja)
Inventor
Mitsuo Ebisawa
満男 海老澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009121505A priority Critical patent/JP2010272605A/en
Publication of JP2010272605A publication Critical patent/JP2010272605A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve high-quality manufacture of electronic equipment that is compact and requires fine soldering by determining a position and accurately soldering a terminal and a lead wire in a narrow and fine land part, and further adjusting the amount of solder to be used by the length of thread solder fed into a through hole. <P>SOLUTION: An iron tip having a cylindrical through hole is used so as to prevent flux from scattering, and a convex projection portion is formed at an opening of the iron tip. The convex projection portion is bonded to a soldering part of the lead wire or land and heated to achieve soldering to the suitable part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、糸半田を溶融させて、微細な部分に設置されたリード線等を的確に半田付けする電子機器製造方法とそのために使用する半田鏝に関するものである。   The present invention relates to a method of manufacturing an electronic device that melts thread solder and solders a lead wire or the like installed in a fine portion accurately and a soldering iron used for the method.

配線基板のランドと金属ピンやワイヤなどの端子同士を半田付けするための半田鏝として、鏝先が椀状又はキャップ状をなすものが知られている(特許文献1)。この方法は、ランドから突き出たピンを鏝先の開口部で囲った状態で鏝のキャップ内に糸半田を供給し、鏝を加熱することにより、半田を溶融し、ピンに半田付けを実施する方法である。更にこれを改良したものとして、貫通孔を持った筒状の半田鏝を用いた半田付け方法が知られている(特許文献2)。この方法は、半田鏝先端部の貫通孔の中で、半田を溶融させ、金属ピンへ半田付けする方法である。これにより、不要個所への半田付けとフラックスの飛散を防止することが特徴となっている。   As a soldering iron for soldering a land of a wiring board and terminals such as metal pins and wires, a soldering iron having a hook shape or a cap shape is known (Patent Document 1). In this method, the pin protruding from the land is surrounded by the opening of the tip of the hook, the thread solder is supplied into the cap of the hook, the solder is heated, the solder is melted, and the pin is soldered. Is the method. As a further improvement, a soldering method using a cylindrical solder rod having a through hole is known (Patent Document 2). This method is a method in which solder is melted and soldered to a metal pin in the through hole at the tip of the solder iron. This is characterized by preventing soldering to unnecessary portions and scattering of flux.

一方、携帯電話に内蔵されている振動モーターのような、微小精密機器の微細な半田付けにおいては、これまでの半田付け方法では、的確な位置に適量の半田付けを行なうことが非常に困難であった。即ち、例えばリード線を微小なランドに半田付けするためには、半田付け位置の的確な予備加熱と半田の熔融が大きな影響を与えるが、これまでの方法では半田付けの位置と半田量が的確なものではなかった。そのため、微細な箇所へのリード線の半田付けに関しては、半田付けの位置や半田量のコントロールが難しく、精度のよい半田付けを行なうことは困難であった。
以上のように、微細な半田付けを必要とする精密電子機器のために、新たな半田付けの手法による、電子機器の製造方法が求められていた。
On the other hand, in the fine soldering of minute precision equipment such as a vibration motor built in a mobile phone, it is very difficult to perform an appropriate amount of soldering at an accurate position with the conventional soldering methods. there were. That is, for example, in order to solder a lead wire to a small land, accurate preheating of the soldering position and melting of the solder have a great influence, but in the conventional methods, the position of soldering and the amount of solder are accurate. It was not something. For this reason, regarding the soldering of the lead wire to a fine part, it is difficult to control the soldering position and the amount of solder, and it is difficult to perform soldering with high accuracy.
As described above, there has been a demand for a method for manufacturing an electronic device by a new soldering method for a precision electronic device that requires fine soldering.

特開平11−245029号公報JP-A-11-245029 WO2008/023461WO2008 / 023461

本発明の課題は、フラックスの飛散を防止するとともに、微小部位におけるリード線の半田付けを精度よく実施できる半田鏝を提供することである。これまで多くの試みがなされてきたが、微小精密機器の微細な被半田付け部分への的確な半田付けは困難であった。例えば、特許文献2に記載の貫通孔を持った筒状の半田鏝をリード線の半田付けに使用すると、貫通孔内で熔融した半田が、鏝先が接触して加熱されたランド部位に流れ、目的とする部分ではなく、加熱されたランド部位に滞留して固化する傾向にあった。そのため、鏝先の開口部の孔径が大き過ぎると、鏝先の開口部内で半田付けが行なわれず、鏝先が接触して加熱された部分に熔融半田が流れて行き、目的とする半田付け箇所に溶融半田が定着固化しない傾向がある。そこで、微小部位への的確な半田付け、特にリード線への微小半田付けが求められていた。   An object of the present invention is to provide a soldering iron capable of preventing the flux from being scattered and performing the soldering of lead wires in a minute portion with high accuracy. Many attempts have been made so far, but it has been difficult to perform accurate soldering on a fine soldered portion of a fine precision device. For example, when a cylindrical solder rod having a through hole described in Patent Document 2 is used for soldering a lead wire, the solder melted in the through hole flows into a land portion heated by contact with the tip. , It tends to stay and solidify in the heated land portion instead of the intended portion. Therefore, if the hole diameter of the tip opening is too large, soldering will not be performed in the opening of the tip, but the molten solder will flow to the heated part by contact with the tip, and the target soldering location There is a tendency that the molten solder does not solidify. Therefore, there has been a demand for accurate soldering to a minute portion, particularly minute soldering to a lead wire.

本発明者らは、特許文献2に記載の貫通孔を持つ筒状の半田鏝の改良を種々検討した。その結果、該半田鏝の先端部に凸状の突出部を形成させ、この凸状突出部を端子やリード線やランドの半田付け予定部位に接触させて予備加熱することにより、良好な半田付けを行なえることが分かった。即ち、鏝先の凸状突出部によって被半田付け部分の端子やリード線やランド部位を予備加熱すると、鏝先の貫通孔内で熔融した半田が予備加熱された部位に流れて行き、そこで滞留凝固するため。所望の部位で端子やリード線を半田付けできることを見出した。更に、本発明者らは、図1に示されるように凸状突出部の各種の態様(被半田付け部分への突出部の接触面積、鏝先と突出部の先端との間の距離等)と鏝先の貫通孔開口部の径を検討した結果、以下のことを見出した。   The present inventors have studied various improvements of the cylindrical solder iron having a through hole described in Patent Document 2. As a result, a convex protrusion is formed at the tip of the soldering iron, and the convex protrusion is brought into contact with a terminal, a lead wire or a land to be soldered and preheated, thereby achieving good soldering. I understood that I can do. That is, when the terminal, lead wire, or land part of the soldered part is preheated by the protruding protrusion on the tip, solder melted in the through hole of the tip flows to the preheated part and stays there. To solidify. It has been found that terminals and lead wires can be soldered at desired sites. Furthermore, the present inventors, as shown in FIG. 1, various aspects of the protruding protrusion (contact area of the protrusion to the soldered part, distance between the tip of the protrusion and the tip of the protrusion, etc.) As a result of examining the diameter of the opening of the through hole at the tip of the hook, the following was found.

a)鏝先の平面と凸状突出部の先端との間の距離A(突出部の高さ):
距離Aは、半田片を鏝先の貫通孔内に保持し、加熱できる距離である。半田の使用量が少ない場合には、半田片の径を小さくして、半田片の長さが約1mm以上であることが好ましい。それ故、距離Aは0.1〜1.5mmの範囲であれば良好な結果を得ることが出来る。
b)凸状突出部の形状は、予備加熱部位(被半田付け部位)の形状(ランド部位とリード線等の形状)に応じて適宜選択することができる。しかし、被半田付け部分を適切な温度まで予備加熱するために、熱伝導に必要な凸状突出部の面積は、約0.1〜9平方mmであることが好ましい。
c)半田鏝先端部の貫通孔開口部の孔径は、半田片が通過する距離であれば特に限定されない。しかし、半田鏝先端部の開口部の孔径が3.5mm以上になると凸状突出部で加熱されるランド部位と、熔融半田の距離が大きく離れることになり、加熱されたランド部位に熔融半田が流れ込まないことが起きる。従って、0.5〜3.5mmの範囲が好ましい。
a) Distance A between the flat surface of the heel and the tip of the convex protrusion (height of the protrusion):
The distance A is a distance at which the solder piece can be held and heated in the through hole at the tip. When the amount of solder used is small, it is preferable that the diameter of the solder piece is reduced and the length of the solder piece is about 1 mm or more. Therefore, good results can be obtained when the distance A is in the range of 0.1 to 1.5 mm.
b) The shape of the protruding protrusion can be appropriately selected according to the shape of the preheating portion (soldered portion) (the shape of the land portion and the lead wire). However, in order to preheat the soldered portion to an appropriate temperature, the area of the convex protrusion necessary for heat conduction is preferably about 0.1 to 9 square mm.
c) The hole diameter of the through hole opening at the solder iron tip is not particularly limited as long as it is a distance through which the solder piece passes. However, when the hole diameter of the opening at the tip of the soldering iron is 3.5 mm or more, the distance between the land portion heated by the convex protrusion and the molten solder is greatly separated, and the molten solder is placed on the heated land portion. It happens not to flow. Therefore, the range of 0.5 to 3.5 mm is preferable.

更に、本発明者らは、半田鏝先端部の形状(半田鏝先端部の径と貫通孔の径の大きさ/筒状の肉厚サイズ)が貫通孔内の温度に及ぼす影響を検討した。まず、図8に示される形状の半田鏝を用いて、貫通孔内の温度を熱電対で測定した。タイプBの方が半田鏝先が細いため、外部温度の影響を受け易く、タイプAより温度が低くなると考えられたが、図9に示されるように貫通孔内の温度に大きな相違がなかった。
本発明者らは、これらの知見を総合して、本発明を完成した。
Furthermore, the present inventors examined the influence of the shape of the solder iron tip (the diameter of the solder iron tip and the diameter of the through hole / the cylindrical wall thickness) on the temperature in the through hole. First, the temperature in the through hole was measured with a thermocouple using a soldering iron having the shape shown in FIG. Type B had a thinner solder iron tip, so it was more susceptible to external temperature and was thought to be lower in temperature than type A, but there was no significant difference in the temperature in the through hole as shown in FIG. .
The present inventors combined these findings and completed the present invention.

即ち、本発明の要旨は以下の通りである。
(1)次の形状の半田鏝を用いて、
a)貫通孔を有する筒状半田鏝であって、
b)半田鏝の先端部と貫通孔の内面がセラミック、タングステン、ステンレス又はチタンの材質で形成され、
c)半田鏝の先端部に凸状の突出部が設置されており、
d)上記凸状突出部と半田鏝先端部の間の距離が0.1〜1.5mmであり、
e)被半田付け部材と電子機器基板(ランド)の被半田付け部位に接触する、上記凸状突出部の接触面の面積が0.1〜9平方mmである、
上記凸突出部の接触面を、被半田付け部材と上記半田付け予定部位に接触させて予備加熱し、
糸半田片を貫通孔に投入して、鏝先の貫通孔内で熔融させ、
熔融半田を上記凸突出部で予熱加熱された部位に流入させ、
上記流入部位で凝固させて、被半田付け部材を基板(ランド)に半田付けする
ことを特徴とする、電子機器の製造方法。
(2)筒状半田鏝先端部の貫通孔の内径が0.5〜3.5mmであることを特徴とする、上記(1)の電子機器の製造方法。
(3)上記糸半田片が1〜5mgであることを特徴とする、上記(1)又は(2)に記載の電子機器の製造方法。
(4)上記半田鏝先端部の貫通孔の内径が0.6〜1.5mmであり、
上記凸状突出部の接触面の面積が0.3〜5平方mmであり、
上記凸状突出部と半田鏝先端部の間の距離が0.3〜1.0mmである
ことを特徴とする、上記(3)の電子機器の製造方法。
That is, the gist of the present invention is as follows.
(1) Using a soldering iron with the following shape:
a) a cylindrical soldering iron having a through hole,
b) The tip of the solder iron and the inner surface of the through hole are formed of a material of ceramic, tungsten, stainless steel or titanium,
c) A convex protrusion is installed at the tip of the soldering iron,
d) The distance between the protruding protrusion and the solder iron tip is 0.1 to 1.5 mm,
e) The area of the contact surface of the convex protrusion that contacts the soldered member and the soldered portion of the electronic device substrate (land) is 0.1 to 9 square mm.
Pre-heat the contact surface of the convex protrusion in contact with the member to be soldered and the part to be soldered,
Insert the thread solder piece into the through hole and melt it in the through hole at the tip,
Let the molten solder flow into the part preheated and heated at the convex protrusion,
A method for manufacturing an electronic device, comprising: solidifying at an inflow portion and soldering a member to be soldered to a substrate (land).
(2) The method for manufacturing an electronic device according to (1) above, wherein the inner diameter of the through hole at the tip of the cylindrical soldering iron is 0.5 to 3.5 mm.
(3) The method for manufacturing an electronic device according to (1) or (2), wherein the thread solder piece is 1 to 5 mg.
(4) The inner diameter of the through hole at the tip of the solder iron is 0.6 to 1.5 mm,
The area of the contact surface of the convex protrusion is 0.3-5 square mm,
The method for manufacturing an electronic device according to (3) above, wherein the distance between the convex protrusion and the solder iron tip is 0.3 to 1.0 mm.

(5)鏝先に凸状の突出部と貫通孔を有する半田鏝であって、
半田鏝の先端部と貫通孔の内面がセラミック、タングステン、ステンレス又はチタンの材質で形成され、
上記半田鏝先端部の貫通孔の内径が0.6〜1.5mmであり、
上記凸状突出部の接触面の面積が0.3〜5平方mmであり、
上記凸状突出部と半田鏝先端部の間の距離が0.3〜1.0mmである
ことを特徴とする、糸半田片用の半田鏝。
(6)鏝先の先端部と凸状の突出部の間の距離が、0.3〜0.5mmである、上記(5)記載の半田鏝。
(7)上記半田鏝先端部の貫通孔の内径が1〜1.5mmである、上記(5)又は(6)記載の半田鏝。
(8)上記凸状の突出部の接触表面に、リード線逃がし溝、ピン逃がし穴を設けていることを特徴とする、上記(5)〜(7)のいずれかに記載の半田鏝。
(5) A soldering iron having a protruding portion and a through hole at the tip,
The tip of the solder iron and the inner surface of the through hole are made of ceramic, tungsten, stainless steel or titanium material,
The inner diameter of the through hole at the solder iron tip is 0.6 to 1.5 mm,
The area of the contact surface of the convex protrusion is 0.3-5 square mm,
A soldering iron for a thread solder piece, wherein a distance between the convex protrusion and the tip of the soldering iron is 0.3 to 1.0 mm.
(6) The soldering iron according to (5) above, wherein the distance between the tip of the soldering tip and the protruding protrusion is 0.3 to 0.5 mm.
(7) The soldering iron according to (5) or (6) above, wherein the inner diameter of the through hole at the tip of the soldering iron is 1 to 1.5 mm.
(8) The soldering iron according to any one of (5) to (7) above, wherein a lead wire escape groove and a pin relief hole are provided on the contact surface of the convex protrusion.

本発明の製造方法を用いることにより、狭く微小なランド部位における端子やリード線の半田付けに関して、位置を定めて的確に行なうことができるようになった。しかも、使用する半田の量も、貫通孔に投入する糸半田の長さで加減することができることから、例えば図10のような携帯電話機の振動モーター等の極めて小型の電子機器の半田付けに関しても、精度よく実施できるようになった。しかもフラックスの飛散も防止できている。以上のように、本発明により、小型で微小な半田付けを必要とする電子機器において、品質の良い製造が可能となった。
By using the manufacturing method of the present invention, it has become possible to accurately determine the position of soldering of terminals and lead wires in narrow and minute land portions. Moreover, since the amount of solder to be used can be adjusted depending on the length of the thread solder to be inserted into the through hole, for example, soldering of an extremely small electronic device such as a vibration motor of a mobile phone as shown in FIG. It became possible to carry out with accuracy. Moreover, the flux can be prevented from scattering. As described above, according to the present invention, it is possible to manufacture a high-quality electronic device that requires small soldering.

本発明の鏝先の形状の特徴と半田付けの状況を説明する概略図(断面図)である。It is the schematic (sectional drawing) explaining the feature of the shape of the tip of this invention, and the condition of soldering. 本発明の鏝先に設置された凸状突出部の形状の一例を表した斜視図である。It is a perspective view showing an example of the shape of the convex protrusion part installed in the tip of the present invention. 本発明の鏝先に設置された凸状突出部の形状の一例を表した斜視図である。It is a perspective view showing an example of the shape of the convex protrusion part installed in the tip of the present invention. 本発明の鏝先に設置された凸状突出部の形状の一例を表した斜視図である。It is a perspective view showing an example of the shape of the convex protrusion part installed in the tip of the present invention. 本発明の鏝先を使用した半田付けの実施状況を表した概要図(断面図)である。It is the schematic diagram (sectional drawing) showing the implementation condition of the soldering which uses the tip of this invention. 本発明において凸状突出部が大きくなり、加熱ブロックと一体になった形状を表した概略図(断面図)である。It is the schematic (sectional drawing) showing the shape with which the convex protrusion part became large and integrated with the heating block in this invention. 本発明において凸状突出部が大きくなり、加熱ブロックと一体になった形状を表した概略図(断面図)である。It is the schematic (sectional drawing) showing the shape with which the convex protrusion part became large and integrated with the heating block in this invention. 本発明の半田鏝において、形状の相違(貫通孔の周りの肉厚の相違)を表した概略図(断面図、単位mm)である。In the soldering iron of this invention, it is the schematic (sectional drawing, unit mm) showing the difference in shape (difference in the thickness around a through-hole). 図8の2種の半田鏝における貫通孔内の温度の相違を比較した図である。It is the figure which compared the difference in the temperature in the through-hole in two types of soldering irons of FIG. 本発明により製造される携帯電話用振動モーターの半田付け箇所の斜視図(単位mm)である。It is a perspective view (unit mm) of the soldering location of the vibration motor for portable telephones manufactured by this invention. 図10の振動モーターに微小半田付けするための半田鏝の先端部の形状を表わす斜視図(単位mm)である。It is a perspective view (unit mm) showing the shape of the front-end | tip part of the soldering iron for carrying out minute soldering to the vibration motor of FIG. 図12の半田鏝を用いて、被半田付け部分を予備加熱し、半田片を投入して溶解することにより、給電端子と通電端子を半田付けすることを表わした断面図である。It is sectional drawing showing soldering a feeding terminal and a current-carrying terminal by preheating a to-be-soldered part using the soldering iron of FIG. 12, throwing in a solder piece, and melt | dissolving.

以下、本発明を、添付図面に示された好ましい態様を参照して更に詳細に説明する。
本発明の鏝先は、図2〜図4の形状を持つものであり、これを用いて図5に示されるように電子機器の製造が実施される。即ち、図5に示される工程としては、次の4つの工程に分かれる。
(1)半田鏝で被半田部位を予備加熱する。
図5の左図(a)に示されるように、半田鏝の凸部先端面を被半田付け部位(リード線とランド)に接触させ、被半田付け部位を予備加熱する。本工程は、被半田付け部位の熱容量が小さい場合等は省略することもできる。
(2)予備加熱後、半田片を供給する。
図5の中央図(b)に示されるように、半田鏝の貫通孔の上方の開口部から半田片(糸半田片)を供給する。
(3)半田片を貫通孔内で熔解する。
図1で示されるように、半田鏝先端部の貫通孔内で半田片が加熱されると、半田片からフラックスが溶け出し、被半田付け部位を浄化する。被半田付け部位は半田鏝の凸状先端面で加熱されているのでフラックスは凸状先端面と被半田付け部位の間に浸透する。
(4)熔融半田が予備加熱部位へ移動する。
溶解した半田は、予備加熱された部分(温度の高い部分)に移動し、そこで滞留する性質を持っている。そのため、図5の右図(c)に示されるように、熔融半田がフラックスで浄化された被半田付け部位と凸状先端面の間に浸透する。次に半田鏝を上昇させると、浸透した熔融半田が凝固し、ランドとリード線等の半田付けを完了することが出来る。
Hereinafter, the present invention will be described in more detail with reference to preferred embodiments shown in the accompanying drawings.
The tip of the present invention has the shape shown in FIGS. 2 to 4, and an electronic device is manufactured as shown in FIG. 5. That is, the process shown in FIG. 5 is divided into the following four processes.
(1) Preheat the part to be soldered with a soldering iron.
As shown in the left figure (a) of FIG. 5, the front end surface of the convex portion of the soldering iron is brought into contact with a part to be soldered (lead wire and land) and the part to be soldered is preheated. This step can be omitted when the heat capacity of the part to be soldered is small.
(2) After preheating, a solder piece is supplied.
As shown in the central view (b) of FIG. 5, a solder piece (thread solder piece) is supplied from the opening above the through hole of the solder iron.
(3) The solder piece is melted in the through hole.
As shown in FIG. 1, when the solder piece is heated in the through hole at the tip of the solder iron, the flux is melted from the solder piece and the soldered portion is purified. Since the part to be soldered is heated by the convex tip surface of the soldering iron, the flux permeates between the convex tip surface and the part to be soldered.
(4) The molten solder moves to the preheating site.
The melted solder moves to the preheated portion (high temperature portion) and has a property of staying there. Therefore, as shown in the right figure (c) of FIG. 5, the molten solder permeates between the soldered portion purified by the flux and the convex tip end surface. Next, when the soldering iron is raised, the penetrated molten solder is solidified, and the soldering of the land and the lead wire can be completed.

本発明の半田鏝は、600℃程度の温度に耐えることが出来て少なくとも鏝先先端部と貫通孔内面が半田に対して濡れ難い性質を有するものであれば良く、単一材料からなっていても複数部材の組合わせであってもよい。単一部材からなる場合には、セラミック、またはタングステン、ステンレス、チタンなどの非半田濡れ性金属が望ましい。また、セラミックの場合は窒化アルミニウム、炭化ケイ素などの高熱伝導性セラミックが特に望ましい。複数部材の組合わせとしては、銅等の高熱伝導性金属に、セラミック、またはタングステン、ステンレス、チタンなどの非半田濡れ性金属で被覆するか、あるいは貫通孔や鏝先の先端部に非半田濡れ性金属部材のチップや筒を嵌合することができる。   The soldering iron of the present invention may be any material as long as it can withstand a temperature of about 600 ° C. and at least the tip of the tip and the inner surface of the through hole are difficult to get wet with the solder. Or a combination of a plurality of members. In the case of a single member, ceramic or a non-solder wettable metal such as tungsten, stainless steel or titanium is desirable. In the case of a ceramic, a high thermal conductive ceramic such as aluminum nitride or silicon carbide is particularly desirable. As a combination of multiple members, high thermal conductivity metal such as copper is coated with ceramic or non-solder wettability metal such as tungsten, stainless steel, titanium, etc. It is possible to fit a chip or a tube of a conductive metal member.

本発明の貫通孔の内径は半田片が通過する距離であれば特に限定されない。特に半田が熔解する半田鏝先端部の開口部の孔径が重要であり、開口部の内径は、使用する半田片の径以上であれば良く、使用する半田片の長さ以下であることが好ましい。なお、半田鏝先端部の開口部の孔径が3.5mm以上になると凸状突出部で加熱される基板(ランド)部位と、熔融半田の距離が大きく離れることになり、加熱されたランド部位に熔融半田が流れ込まない場合が起きる。従って、開口部の孔径は、0.5〜3.5mmの範囲が可能である。また、糸半田の長さを大きく超えるような孔径は好ましくないことから、好ましい孔径としては0.6〜2.5mmの径を挙げることができる。より好ましくは、0.6〜1.5mmの径を挙げることができる。   The inner diameter of the through hole of the present invention is not particularly limited as long as it is a distance through which the solder piece passes. In particular, the hole diameter of the opening portion of the solder iron tip where the solder melts is important, and the inner diameter of the opening portion may be not less than the diameter of the solder piece to be used, and preferably not more than the length of the solder piece to be used. . In addition, when the hole diameter of the opening part of the soldering iron tip becomes 3.5 mm or more, the distance between the substrate (land) part heated by the convex protrusion and the molten solder is greatly separated, and the heated land part is separated. There are cases where molten solder does not flow. Therefore, the hole diameter of the opening can be in the range of 0.5 to 3.5 mm. Moreover, since a hole diameter that greatly exceeds the length of the thread solder is not preferable, a preferable hole diameter is 0.6 to 2.5 mm. More preferably, the diameter of 0.6-1.5 mm can be mentioned.

本発明は、微細部位の半田付けが可能な方法であり、使用する糸半田の量も、微小半田付けが可能な、約1〜40mgの量が使用できる。より微小な半田付けのために、約1〜10mgの半田量を使用できる。更に、約1〜5mgの範囲の半田付けも可能である。
糸半田の径は、0.3〜1.2mmの範囲のものが汎用されている。従って、使用する糸半田の量によって、糸半田の径と長さを選択することが出来る。例えば、使用半田量が約3mgの場合には、糸半田として径が0.8mm、長さが約1.1mmのものを使用できる。また、糸半田として径が0.6mm、長さが約2.0mmのものも使用可能である。
従って、目的とする微小半田付けのための半田使用量に対応して、適宜、糸半田の径と長さを調整することが出来る。糸半田の径に対応して、半田鏝の貫通孔の内径(特に鏝先の開口部の内径)が適切なものを選択する。糸半田として、径が0.8mmのものを使用する場合には、貫通孔の内径(特に鏝先の開口部の内径)は、径が1.2mmのものを使用することができる。
The present invention is a method capable of soldering a fine portion, and the amount of yarn solder used can be an amount of about 1 to 40 mg, which enables fine soldering. For finer soldering, a solder amount of about 1-10 mg can be used. Furthermore, soldering in the range of about 1 to 5 mg is also possible.
The diameter of the thread solder is generally in the range of 0.3 to 1.2 mm. Therefore, the diameter and length of the thread solder can be selected according to the amount of thread solder used. For example, when the amount of solder used is about 3 mg, a thread solder having a diameter of 0.8 mm and a length of about 1.1 mm can be used. A thread solder having a diameter of 0.6 mm and a length of about 2.0 mm can be used.
Therefore, the diameter and length of the thread solder can be adjusted as appropriate in accordance with the amount of solder used for the intended minute soldering. Corresponding to the diameter of the solder wire, an appropriate one is selected in which the inner diameter of the through hole of the solder iron (especially, the inner diameter of the opening of the iron tip) is selected. When the thread solder having a diameter of 0.8 mm is used, the inner diameter of the through hole (particularly, the inner diameter of the opening of the tip) can be 1.2 mm.

本発明における半田鏝の先端部と凸状突出部先端面の間の距離A(突出部の高さ)は、図1に示されるように、半田片を鏝先の貫通孔に保持し、加熱できる距離が好ましい。Aが大きい場合には、投入した半田片を貫通孔内(凸部近傍)に留めることができない。従って、糸半田片を使用する場合、距離Aは、0.1mm以上であり、1.5mm以下が好適である。また、使用する半田片の長さにもよるが、半田片の長さの2分の1以下であることが好ましい。
本発明は、前述のように微小部分の半田付けが可能な方法であるため、例えば、使用半田量が約3mgの場合には、糸半田として径が0.6〜0.8mm、長さが約1.1〜2.0mmのものが使用可能である。従って、微小半田付けの場合には、距離Aは0.1〜1.0mmが好ましく、より好ましくは0.2〜0.6mmを挙げることができる。
In the present invention, the distance A (the height of the protruding portion) between the tip of the solder iron and the protruding protrusion tip is as shown in FIG. A possible distance is preferred. When A is large, the inserted solder piece cannot be retained in the through hole (near the convex portion). Therefore, when using a thread solder piece, the distance A is 0.1 mm or more, and preferably 1.5 mm or less. Further, although it depends on the length of the solder piece to be used, it is preferably less than or equal to one half of the length of the solder piece.
Since the present invention is a method capable of soldering a minute portion as described above, for example, when the amount of solder used is about 3 mg, the diameter is 0.6 to 0.8 mm as the thread solder and the length is About 1.1 to 2.0 mm can be used. Therefore, in the case of fine soldering, the distance A is preferably 0.1 to 1.0 mm, more preferably 0.2 to 0.6 mm.

本発明における凸状突出部の形状は、予熱部位(半田付け予定部位)の形状(ランド部位とリード線等の形状)に応じて適宜選択することができる。しかし、予熱部位を半田付けに適切な温度まで加熱するため、伝熱のための接触面積が必要である。従って、予熱部位に接触する凸状突出部の接触面積は、約0.1〜9平方mmであることが好ましい。より好ましくは、約0.3〜5平方mmを挙げることができる。
なお、予熱を効果的に行なうため、ランド部位とリード線等との接触性を向上させることが必要である。そのために、例えば図2〜4、図11に示されるような平面形状を取り、接触性を高めることが好ましい。更に上記凸状突出部の接触面にはリード線逃がし溝、図2右図(a)のようなピン逃がし穴を設けてもよい。
The shape of the convex protrusion in the present invention can be appropriately selected according to the shape of the preheating part (part to be soldered) (the shape of the land part and the lead wire). However, in order to heat the preheated part to a temperature suitable for soldering, a contact area for heat transfer is required. Therefore, it is preferable that the contact area of the convex protrusion part which contacts a preheating site | part is about 0.1-9 square mm. More preferably, about 0.3-5 square mm can be mentioned.
In order to effectively perform preheating, it is necessary to improve the contact between the land portion and the lead wire. Therefore, for example, it is preferable to take a planar shape as shown in FIGS. Further, the contact surface of the convex protrusion may be provided with a lead wire escape groove and a pin relief hole as shown in FIG.

次に、本発明の半田鏝先端部の形状が貫通孔内の温度に及ぼす影響を検討した。即ち、貫通孔内の温度に影響する半田鏝先端部の太さ(貫通孔の周辺の肉厚の程度)の効果を評価した。図8に示される形状の2種(タイプAとタイプB)の半田鏝を用いて、貫通孔内の温度を熱電対で測定し、半田鏝先端部の形状の相違による貫通孔内温度への影響を評価した。半田鏝の本体部分(加熱ブロック)を約520℃に設定すると、貫通孔内の温度は、図9に示されるように半田鏝先端部からの距離に比例して温度が上昇した。鏝先の開口部では、タイプB(b)の半田鏝先が細いため、タイプA(a)よりも約35℃低い温度であった。しかし、予想した程には、半田鏝先端部の形状の影響を受けることはなかった。
以上のことから、本発明の半田鏝の凸状突出部表面温度は、図9のデータを外挿することにより、凸状突出部の高さ(距離A)により影響を受け、鏝先の開口部より、約20〜50℃低いことが推定された。従って、被半田付け部分への必要な予備加熱時間は、凸状突出部の接触面積と貫通孔開口部の温度に基いて適宜長くも短くもすることが出来る。
Next, the influence of the shape of the solder iron tip of the present invention on the temperature in the through hole was examined. That is, the effect of the thickness of the solder iron tip (the thickness around the through hole) that affects the temperature in the through hole was evaluated. Using the two types (type A and type B) of the soldering iron shown in FIG. 8, the temperature inside the through hole is measured with a thermocouple, and the temperature inside the through hole due to the difference in the shape of the tip of the soldering iron is measured. The impact was evaluated. When the main body part (heating block) of the solder iron was set to about 520 ° C., the temperature in the through hole increased in proportion to the distance from the tip of the solder iron as shown in FIG. At the tip opening, the solder tip of type B (b) was thin, so the temperature was about 35 ° C. lower than that of type A (a). However, as expected, it was not affected by the shape of the solder iron tip.
From the above, the surface temperature of the convex protrusion of the soldering iron of the present invention is affected by the height (distance A) of the convex protrusion by extrapolating the data of FIG. It was estimated that it was about 20-50 degreeC lower than the part. Therefore, the necessary preheating time for the soldered portion can be appropriately increased or decreased based on the contact area of the convex protrusion and the temperature of the through hole opening.

本発明の被半田付け部分とは、電子機器の配線基板に挿入された金属ピンまたはリード線、および電子機器の配線基板(ランド)のことを言う。電子機器の配線基板の材質によっては、高温の予備加熱では変質するものもあるので、材質の耐熱性を勘案して、半田鏝の接触時間と半田鏝本体の温度を適宜設定することが出来る。また、金属ピンやリード線が配線基板表面に突出して、本発明の凸状突出部が充分ランドに接触し難い場合には、凸状突出部の接触面にリード線の逃がし溝、ピン逃がし穴を設けて、ランドへの接触性を向上させることができる。   The part to be soldered according to the present invention refers to metal pins or lead wires inserted into a wiring board of an electronic device and a wiring board (land) of the electronic device. Depending on the material of the wiring board of the electronic device, there is a material that changes in quality by preheating at a high temperature. Therefore, the contact time of the solder iron and the temperature of the solder iron main body can be appropriately set in consideration of the heat resistance of the material. Also, if the metal pin or lead wire protrudes from the surface of the wiring board and the convex protrusion of the present invention is not sufficiently in contact with the land, the lead wire relief groove and pin relief hole are formed on the contact surface of the convex protrusion. The contact property to the land can be improved.

本発明の半田付け製造方法のもう一つの態様としては、図6や図7に示される半田付け製造方法がある。使用する半田鏝としては、図6のようにセラミック、またはタングステン、ステンレス、チタンなどの非半田濡れ性金属で作製された真直ぐな管状部材部分が、高熱伝導性セラミックや高熱伝導性金属のブロックの側壁に付着した形で作製されている。このブロックは、管状部材に熱を伝達する役割のものである。また、図7のように加熱ブロックと一体になっていてもよい。管状部材の先端とブロックの先端の間の距離が、前述の距離Aと同じものである。
まず、ブロックの先端部を被半田付け部分に接触させ、予備加熱する。その後、管状部材の上部から半田片を投入し、管状部材の下部で半田片を熔解させる。熔解した半田は、ブロックで予備加熱された部分に流れて行き、その場所で凝固、固化して、半田付けが完了することになる。従って、被半田付け部分を予備加熱するために、接触させるブロックの先端部は、前述の半田鏝の凸状突起部分と同じ形状を持つものである。また、ブロックの材質も、例えば窒化アルミニウム、炭化ケイ素などの高熱伝導性セラミックや、例えばセラミック、またはタングステン、ステンレス、チタンなどの非半田濡れ性金属で先端部が被覆された銅などの高熱伝導性金属を使用することができる。
Another embodiment of the soldering manufacturing method of the present invention is the soldering manufacturing method shown in FIGS. As a solder rod to be used, as shown in FIG. 6, a straight tubular member made of ceramic or a non-solder wettable metal such as tungsten, stainless steel or titanium is used as a block of a high heat conductive ceramic or high heat conductive metal. It is made in a form attached to the side wall. This block has a role of transferring heat to the tubular member. Moreover, you may be united with a heating block like FIG. The distance between the tip of the tubular member and the tip of the block is the same as the distance A described above.
First, the tip of the block is brought into contact with the part to be soldered and preheated. Thereafter, a solder piece is introduced from the upper part of the tubular member, and the solder piece is melted at the lower part of the tubular member. The melted solder flows to the portion preheated by the block, solidifies and solidifies there, and soldering is completed. Therefore, in order to preheat the soldered portion, the tip of the block to be contacted has the same shape as the above-mentioned convex protrusion portion of the soldering iron. The material of the block is also high thermal conductivity such as high thermal conductivity ceramic such as aluminum nitride and silicon carbide, or copper whose tip is coated with non-solder wettable metal such as ceramic or tungsten, stainless steel, titanium, etc. Metal can be used.

更に、図7では、非半田濡れ性金属で作製された真直ぐな管状部材部分が、加熱ブロックの側壁に付着せず、離れている。そのため、管状部材は加熱されることがなく、管状部材の中で半田片が熔解することもない。管状部材は半田片を誘導して加熱ブロックに接触させる役割を果たしている。即ち、加熱ブロックの先端部で被半田付け部分を図7のように加熱し、半田片を管状部材の上部から投入する。半田片は、管状部材の内部を下って、加熱ブロックに接触し、そこで熔解されて、加熱ブロックで予備加熱された部分に浸透して行く。次いで、加熱ブロックを引き上げると、流れ込んだ熔融半田が固化して、半田付けが完了する。
使用される管状部材は、前述と同じセラミック、またはタングステン、ステンレス、チタンなどの非半田濡れ性金属で作製されており、加熱ブロックには、例えば窒化アルミニウム、炭化ケイ素などの高熱伝導性セラミックや、例えばセラミック、またはタングステン、ステンレス、チタンなどの非半田濡れ性金属で先端部が被覆された銅などの高熱伝導性金属が使用されている。
Further, in FIG. 7, the straight tubular member portion made of non-solder wettable metal is not attached to the side wall of the heating block but is separated. Therefore, the tubular member is not heated, and the solder pieces are not melted in the tubular member. The tubular member plays a role of inducing a solder piece to contact the heating block. That is, the part to be soldered is heated as shown in FIG. 7 at the tip of the heating block, and the solder piece is introduced from the top of the tubular member. The solder pieces go down inside the tubular member and contact the heating block, where they are melted and penetrate into the portion preheated by the heating block. Next, when the heating block is pulled up, the molten solder that has flowed in is solidified and soldering is completed.
The tubular member used is made of the same ceramic as described above, or a non-solder wettable metal such as tungsten, stainless steel, titanium, etc., and for the heating block, for example, a high thermal conductive ceramic such as aluminum nitride, silicon carbide, For example, a ceramic or a highly thermally conductive metal such as copper whose tip is coated with a non-solder wettable metal such as tungsten, stainless steel, or titanium is used.

加熱ブロックとは、図7に示されるように発熱体を埋め込んだブロックのことを言う。発熱体は、公知の汎用技術を適用することが出来、例えばセラミックヒーター等を使用することができる。発熱体による加熱温度としては、約550℃が好ましく、被半田付け部分の熱容量と、該当する回路基板の熱安定性を考慮して、更に温度を下げることが出来る。
しかしながら、貫通孔の存在する半田鏝先端部の温度が半田片の熔解温度以上でなければならない。従って、好ましくは発熱ブロックの温度は、約500〜550℃を挙げることができる。
The heating block is a block in which a heating element is embedded as shown in FIG. A known general-purpose technique can be applied to the heating element, and for example, a ceramic heater or the like can be used. The heating temperature by the heating element is preferably about 550 ° C., and the temperature can be further lowered in consideration of the heat capacity of the part to be soldered and the thermal stability of the corresponding circuit board.
However, the temperature of the solder iron tip where the through hole exists must be equal to or higher than the melting temperature of the solder piece. Therefore, the temperature of the heat generating block is preferably about 500 to 550 ° C.

以下、実施例を示して本発明をより具体的に説明する。但し、本発明は以下の実施例に何等限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)携帯電話の振動モーターの微小半田付け
図11の形状の窒化アルミニウム焼結体で形成され、内径1.3mmの半田鏝を使用する。凸状突出部接触面の面積は約0.4平方mm(0.6×0.6mm)である。そして、図10の振動モーターの給電端子と通電端子を半田付けするため、図12に示すように通電端子と半田鏝の凸状突出部を接触させ、給電端子が貫通孔の中に納まるように調節する。次いで、直径0.8mm、長さ1.1mmの共晶半田の糸半田片を貫通孔内に供給する。半田鏝先端開口部の温度を約370℃に保持して半田付けを行なうと、熔融半田が大きく広がることなく、予備加熱された部分と給電端子と含むようにして半田付けすることが出来る。
比較のために、図11の形状で凸状突出部がない半田鏝で、同様に半田付けをおこなったところ、熔融半田が広がってしまい、半田付け箇所に必要な半田量を確保することができなかった。即ち、半田付けの強度が不足する傾向にあった。
(Example 1) Micro soldering of a vibration motor of a mobile phone A soldering iron formed with an aluminum nitride sintered body having a shape shown in FIG. 11 and having an inner diameter of 1.3 mm is used. The area of the convex protrusion contact surface is about 0.4 square mm (0.6 × 0.6 mm). Then, in order to solder the power feeding terminal and the current-carrying terminal of the vibration motor of FIG. 10, the current-carrying terminal and the convex protrusion of the soldering iron are brought into contact with each other as shown in FIG. Adjust. Next, a thread solder piece of eutectic solder having a diameter of 0.8 mm and a length of 1.1 mm is supplied into the through hole. When soldering is performed while maintaining the temperature of the opening of the solder iron tip at about 370 ° C., the solder can be soldered so as to include the preheated portion and the power supply terminal without spreading greatly.
For comparison, when soldering is performed in the same manner with a soldering iron having the shape shown in FIG. 11 and no protruding protrusion, the molten solder spreads, and a necessary amount of solder can be secured at the soldering portion. There wasn't. That is, the soldering strength tends to be insufficient.

本発明の製造方法を使用することにより、携帯電話機等の精密微細機器の半田付けが精度よく良好に実施できる。従って、本発明により、半田付けの多用される軽量で、小型の電子機器を品質よく製造することが出来る。
By using the manufacturing method of the present invention, it is possible to accurately and satisfactorily perform soldering of precision fine equipment such as a mobile phone. Therefore, according to the present invention, it is possible to manufacture a lightweight, small-sized electronic device with high quality that is frequently used for soldering.

Claims (8)

次の形状の半田鏝を用いて、
a)貫通孔を有する筒状半田鏝であって、
b)半田鏝の先端部と貫通孔の内面がセラミック、タングステン、ステンレス又はチタンの材質で形成され、
c)半田鏝の先端部に凸状の突出部が設置されており、
d)上記凸状突出部と半田鏝先端部の間の距離が0.1〜1.5mmであり、
e)被半田付け部材と電子機器基板(ランド)の被半田付け部位に接触する、上記凸状突出部の接触面の面積が0.1〜9平方mmである、
上記凸突出部の接触面を、被半田付け部材と上記半田付け予定部位に接触させて予備加熱し、
糸半田片を貫通孔に投入して、鏝先の貫通孔内で熔融させ、
熔融半田を上記凸突出部で予熱加熱された部位に流入させ、
上記流入部位で凝固させて、被半田付け部材を基板(ランド)に半田付けする
ことを特徴とする、電子機器の製造方法。
Using a soldering iron of the following shape,
a) a cylindrical soldering iron having a through hole,
b) The tip of the solder iron and the inner surface of the through hole are formed of a material of ceramic, tungsten, stainless steel or titanium,
c) A convex protrusion is installed at the tip of the soldering iron,
d) The distance between the protruding protrusion and the solder iron tip is 0.1 to 1.5 mm,
e) The area of the contact surface of the convex protrusion that contacts the soldered member and the soldered portion of the electronic device substrate (land) is 0.1 to 9 square mm.
Pre-heat the contact surface of the convex protrusion in contact with the member to be soldered and the part to be soldered,
Insert the thread solder piece into the through hole and melt it in the through hole at the tip,
Let the molten solder flow into the part preheated and heated at the convex protrusion,
A method for manufacturing an electronic device, comprising: solidifying at an inflow portion and soldering a member to be soldered to a substrate (land).
筒状半田鏝先端部の貫通孔の内径が0.5〜3.5mmであることを特徴とする、請求項1の電子機器の製造方法。   2. The method of manufacturing an electronic device according to claim 1, wherein the inner diameter of the through hole at the tip of the cylindrical soldering iron is 0.5 to 3.5 mm. 上記糸半田片が1〜5mgであることを特徴とする、請求項1又は2に記載の電子機器の製造方法。   The method of manufacturing an electronic device according to claim 1 or 2, wherein the thread solder piece is 1 to 5 mg. 上記半田鏝先端部の貫通孔の内径が0.6〜1.5mmであり、
上記凸状突出部の接触面の面積が0.3〜5平方mmであり、
上記凸状突出部と半田鏝先端部の間の距離が0.3〜1.0mmである
ことを特徴とする、請求項3の電子機器の製造方法。
The inner diameter of the through hole at the solder iron tip is 0.6 to 1.5 mm,
The area of the contact surface of the convex protrusion is 0.3-5 square mm,
4. The method of manufacturing an electronic device according to claim 3, wherein a distance between the convex protrusion and a solder iron tip is 0.3 to 1.0 mm.
鏝先に凸状の突出部と貫通孔を有する半田鏝であって、
半田鏝の先端部と貫通孔の内面がセラミック、タングステン、ステンレス又はチタンの材質で形成され、
上記半田鏝先端部の貫通孔の内径が0.6〜1.5mmであり、
上記凸状突出部の接触面の面積が0.3〜5平方mmであり、
上記凸状突出部と半田鏝先端部の間の距離が0.3〜1.0mmである
ことを特徴とする、糸半田片用の半田鏝。
A soldering iron having a protruding portion and a through hole at the tip,
The tip of the solder iron and the inner surface of the through hole are made of ceramic, tungsten, stainless steel or titanium material,
The inner diameter of the through hole at the solder iron tip is 0.6 to 1.5 mm,
The area of the contact surface of the convex protrusion is 0.3-5 square mm,
A soldering iron for a thread solder piece, wherein a distance between the convex protrusion and the tip of the soldering iron is 0.3 to 1.0 mm.
鏝先の先端部と凸状の突出部の間の距離が、0.3〜1.0mmである、請求項5記載の半田鏝。   The soldering iron according to claim 5, wherein the distance between the tip of the iron tip and the convex protrusion is 0.3 to 1.0 mm. 上記半田鏝先端部の貫通孔の内径が1〜1.5mmである、請求項5又は6記載の半田鏝。   The soldering iron according to claim 5 or 6, wherein an inner diameter of the through hole at the tip of the soldering iron is 1 to 1.5 mm. 上記凸状の突出部の接触表面に、リード線逃がし溝、ピン逃がし穴を設けていることを特徴とする、請求項5〜7のいずれかに記載の半田鏝。
The soldering iron according to any one of claims 5 to 7, wherein a lead wire escape groove and a pin escape hole are provided on a contact surface of the convex protrusion.
JP2009121505A 2009-05-20 2009-05-20 Method of manufacturing electronic equipment by fine soldering of lead wire or the like, and soldering iron therefor Pending JP2010272605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121505A JP2010272605A (en) 2009-05-20 2009-05-20 Method of manufacturing electronic equipment by fine soldering of lead wire or the like, and soldering iron therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121505A JP2010272605A (en) 2009-05-20 2009-05-20 Method of manufacturing electronic equipment by fine soldering of lead wire or the like, and soldering iron therefor

Publications (1)

Publication Number Publication Date
JP2010272605A true JP2010272605A (en) 2010-12-02

Family

ID=43420416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121505A Pending JP2010272605A (en) 2009-05-20 2009-05-20 Method of manufacturing electronic equipment by fine soldering of lead wire or the like, and soldering iron therefor

Country Status (1)

Country Link
JP (1) JP2010272605A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102319935A (en) * 2011-09-05 2012-01-18 宁波市灵羊电器有限公司 External heating soldering iron core structure
JP2016004846A (en) * 2014-06-14 2016-01-12 株式会社アンド Soldering device
JP2016059927A (en) * 2014-09-16 2016-04-25 株式会社アンド Soldering iron
JP2021053686A (en) * 2019-10-01 2021-04-08 株式会社デンソー Soldering device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102319935A (en) * 2011-09-05 2012-01-18 宁波市灵羊电器有限公司 External heating soldering iron core structure
CN102319935B (en) * 2011-09-05 2013-02-27 宁波市灵羊电器有限公司 External heating soldering iron core structure
JP2016004846A (en) * 2014-06-14 2016-01-12 株式会社アンド Soldering device
JP2016059927A (en) * 2014-09-16 2016-04-25 株式会社アンド Soldering iron
JP2021053686A (en) * 2019-10-01 2021-04-08 株式会社デンソー Soldering device

Similar Documents

Publication Publication Date Title
US10593495B2 (en) Fuse element, fuse device, protective device, short-circuit device, switching device
JP2009195938A (en) Soldering gun and method for manufacturing electronic device by using the same
JP2010272605A (en) Method of manufacturing electronic equipment by fine soldering of lead wire or the like, and soldering iron therefor
JP2009131898A (en) Soldering tip, soldering iron, and soldering system
WO2016153017A1 (en) Soldering device
CN105452818A (en) Thermal mass flow meter and mass flow control device
WO2017166656A1 (en) Printed circuit board and manufacturing method therefor
JP2010258000A (en) Electronic apparatus manufacturing method by soldering of through-hole and soldering iron for the same
CN100420106C (en) Method of making an electrical connector
JP2018020326A (en) Solder treatment equipment
JP2020123725A (en) Electric terminal
JP4263765B1 (en) Electronic component soldering method
CN104582306B (en) Nozzle and soft soldering apparatus
JP2008177383A (en) Metal/ceramic bonding circuit board and method of manufacturing the same
JP4409747B2 (en) Alloy type thermal fuse
KR20090115857A (en) Soldering tip having a surface with a lattice structure
JP2011134831A (en) Method of mounting electronic components
US11478869B2 (en) Method for forming bump electrode substrate
JP2019195820A (en) Iron tip for soldering iron
JP2002246721A (en) Semiconductor device
JP2005324247A (en) Ceramic chip for soldering iron and its production method
JP2010080533A (en) Manufacturing method of electronic component bonded structure and electronic component bonded structure obtained by manufacturing method
JP2010212729A (en) Semiconductor device and manufacturing method of the same
JPH07144271A (en) Soldering iron
JP5477012B2 (en) Manufacturing method of electronic circuit unit