JP2010269437A - 超硬合金製エンドミル - Google Patents

超硬合金製エンドミル Download PDF

Info

Publication number
JP2010269437A
JP2010269437A JP2009141629A JP2009141629A JP2010269437A JP 2010269437 A JP2010269437 A JP 2010269437A JP 2009141629 A JP2009141629 A JP 2009141629A JP 2009141629 A JP2009141629 A JP 2009141629A JP 2010269437 A JP2010269437 A JP 2010269437A
Authority
JP
Japan
Prior art keywords
outer peripheral
blade
end mill
peripheral blade
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009141629A
Other languages
English (en)
Other versions
JP2010269437A5 (ja
Inventor
Katsutoshi Maeda
勝俊 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2009141629A priority Critical patent/JP2010269437A/ja
Priority to SG2011063740A priority patent/SG174248A1/en
Priority to KR1020117021095A priority patent/KR101291486B1/ko
Priority to CN201080012698.9A priority patent/CN102365145B/zh
Priority to EP10780386.8A priority patent/EP2436467B1/en
Priority to PCT/JP2010/057067 priority patent/WO2010137429A1/ja
Priority to EP18184797.1A priority patent/EP3412390B1/en
Priority to US13/258,282 priority patent/US8827600B2/en
Publication of JP2010269437A publication Critical patent/JP2010269437A/ja
Publication of JP2010269437A5 publication Critical patent/JP2010269437A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)

Abstract

【課題】金型加工や部品加工の高能率加工において、安定した切削を行うと共に、製造コストを含めて容易に工具製造や工具の再研磨が行えること、及び、切削抵抗の分散を十分に行えることでびびり振動を抑制し、許容回転数を高速に設定できる長寿命の超硬合金製エンドミルを提供する。
【解決手段】工具の外周刃の径方向に山部と谷部を繰り返す複数の波形状外周刃を有するエンドミルにおいて、ある波形状外周刃を基準形状外周刃としたときに、その他の少なくとも一刃の波形状外周刃の位相の工具軸方向へのずれ量が、波ピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記波ピッチの0%を含まない5%以下の幅で工具軸方向にずれていることを特徴とする超硬合金製エンドミルである。
【選択図】図4

Description

本発明は、荒切削から中仕上げ切削に用いる超硬合金製エンドミルに関する。
本発明が対象とする用途の従来の一般的なエンドミルは、外周刃に波形状やニックを有し、この波形状外周刃やニック付き外周刃は、各刃で削り残しが出ないように工具軸方向に等間隔で位相がずれている。このような従来の波形状やニック付きの外周刃を有するエンドミルは、普通刃エンドミルと比較して、切り屑を分断しやすく切削抵抗を低減して加工ができるため、工具径方向の切り込み量を大きくでき、高能率加工が可能である。その反面、加工面は普通刃エンドミルより粗くなるため、荒加工で用いることが多い。
荒加工においても加工能率を上げるために、切り込み量を大きくして高能率加工を行うが、びびり振動の問題が生じることが多い。特にエンドミルの軸心から外周面の周方向に隣接する2枚の切れ刃までの線分で挟まれる分割角が切れ刃ごとに等しい等分割エンドミルは、製造が極めて容易であるメリットがあるが、加工中に共振が起こり、びびり振動が生じやすい。この対策として、製造上は費用と時間がかかるが、切れ刃の分割角を異なるようにして、切削力の周期を一定にしないようにした不等分割エンドミルが提案されている。
特許文献1には、波形状刃形のエンドミルにおいて、互いに隣接する各外周刃間における位相のずれ量を不均等にしたことにより、各外周刃の切り込み断面形状や断面積が不均等となり、不等分割同様にびびり振動を抑制し、工具寿命向上や高能率加工が可能となることが記載されている。また、特許文献2には、ラフィング切れ刃にて構成されている外周刃の波形状のピッチが、波形状の凹凸の偶数周期を1周期として正弦曲線状に増減させられているとともに、そのピッチの増減に連動して深さおよび曲率半径もそれぞれ波形状の凹凸が1周期毎に変化させられているため、その増減により軸方向各部の切削態様が変化して共振周波数がずれ、工具全体として共振が軽減されてびびり振動が抑制されることが記載されている。
特開平01−127214号公報 特開2002−233910号公報
近年、金型加工や部品加工の被削対象材として、構造用鋼、構造用合金鋼、冷間ダイス鋼、熱間ダイス鋼、ステンレス鋼、チタン合金及び超耐熱合金を用いた高能率加工への要求は一段と強く、荒加工においても高速機の普及と共に高速切削による高送り加工が注目されている。高速切削は切削速度を大きくすること、すなわち回転数を高く設定し、高能率加工を行う方法である。特に荒削り加工においては、波形状外周刃またはニック付き外周刃を持つエンドミルを用いて切り込み量を大きくし、回転数も高く設定するとびびり振動が発生し、異常摩耗やチッピングの発生により、寿命を短くするだけでなく、欠損や折損を引き起こす原因となっていた。
エンドミルにおけるびびり振動を抑制する技術として、従来技術で説明したように等分割に代わって不等分割によるエンドミルが提案されている。不等分割を適用したエンドミルは上手な形状設計をすれば、一定のびびり振動を抑制する効果があるが、切れ刃が不均一に並んでいることからエンドミルの製造が困難であり、製造コストが高くなる。さらにエンドミルの再研磨時にも各刃の分割角が異なるため、研削する際の位置あわせ等で問題になることが多かった。また、不等分割を適用したエンドミルは、形状的に刃溝が不均一によることを意味し、切り屑排出性が不均一になりやすく切り屑の排出性が悪いため、異常摩耗や欠けなどの問題があった。この問題は最近の高速切削に伴って多量に排出される切り屑の処理には特に重要な問題になる。
また、特許文献1では、互いに隣接する各外周刃間における位相のずれ量を不均等にし、不等分割同様の効果でびびり振動を抑制する方法が提案されている。しかし、特許文献1のエンドミルは高速度工具鋼を母材としているので、各外周刃の位相のずれ量は比較的大きい例が提案されている。エンドミル母材を本発明のように靭性の低い超硬合金とした場合には、単に位相のずれ量を不均等にしたり、前記のように位相のずれ量が大きい場合には、切削量が大きくなる超硬合金製エンドミルの外周刃では欠損やチッピングが生じやすく、さらなる高速切削での適用は問題が残っていた。さらに、特許文献2では、ラフィング切れ刃の波形状のピッチ、深さ、および曲率半径のうちの少なくとも一つが、該波形状の凹凸の周期よりも大きな周期で増減し、各刃の切削量を変えて、各刃の切削量を変えることによりびびり振動を抑制する方法が提案されている。しかし、波形状を各刃で変化させることは、エンドミル製造時に各波形状ごとの砥石が必要であり、不等分割を適用したエンドミルと同様に製造コストが高くなる。
本発明は、このような背景と課題認識の下に、製造コストを含めて容易に工具製造や工具の再研磨が行えること、及び、切削抵抗の分散を十分に行えることでびびり振動を抑制し、許容回転数を高速に設定できる長寿命の超硬合金製エンドミルを提供することを目的とする。
本発明は、従来よりも大きい単位時間当たりの切り屑排出量を達成できる高速切削用のエンドミルの開発に伴い、切り屑の排出と生産性の点で大きな優位性を持つ等分割エンドミルを採用し、びびり振動を極力抑えることができる他の形状要因を検討した結果として生まれたものである。すなわち本発明者は、エンドミル円周方向の刃先の配列は等分割とし、波形状外周刃の軸方向への相互の位相の最適なずれ量を形成することに着目して、高速切削に耐え、かつびびり振動を最小にする位相のずれ量を種々検討した。その結果、本発明のエンドミルは、ある波形状外周刃の山部を基準にしたときに、他の波形状外周刃の山部は工具の軸方向に前記波形状外周刃が欠損やチッピングを起こさない程度に特定の範囲内で位相がずれて配列されていることを特徴としている。
すなわち、本発明のエンドミルは、工具の外周刃の径方向に山部と谷部を繰り返す複数の波形状外周刃を有するエンドミルにおいて、ある波形状外周刃を基準形状外周刃としたときに、その他の少なくとも一刃の波形状外周刃の位相の工具軸方向へのずれ量が、波ピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記波ピッチの0%を含まない5%以下の幅で工具軸方向にずれていることを特徴とする超硬合金製エンドミルである。
本発明のエンドミルは、工具の外周刃の径方向に山部と谷部を繰り返す複数の波形状外周刃を有するエンドミルにおいて、ある波形状外周刃を基準形状外周刃としたときに、その他の少なくとも一刃の波形状外周刃の位相の工具軸方向へのずれ量が、波ピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記波ピッチの1%乃至3%の幅で工具軸方向にずれていることが望ましい。すなわち、波形状外周刃の位相の工具軸方向へのずれ量を設けた超硬合金製エンドミルを高速加工に適用するためには、位相のずれは必須であるが、前記位相のずれは前記波ピッチの1%乃至3%の幅にとどめるのが最も望ましく、その幅は多くても前記波ピッチ量の5%以下としなければならない。それ以外の範囲であれば、超硬合金製のエンドミルは工具の折損やチッピングを生じて高速の荒加工には適用できない。超硬合金製エンドミルを採用して、高速荒加工切削を可能にするために、この位相のずれの最適化を図ったことが本発明の最も重要な部分を占める。
本発明の他の発明に係るエンドミルは、工具の外周刃の径方向に山部と谷部を繰り返す3枚以上の波形状外周刃を有するエンドミルにおいて、隣接する各波形状外周刃のうち少なくとも1組の前記波形状外周刃は位相のずれ量が無く、その他の組の前記波形状外周刃は互いに位相のずれ量が不均等であることを特徴とする超硬合金製エンドミルである。
また、本発明のエンドミルは、工具の外周刃の径方向に切り屑を分断させる複数のニックを有するエンドミルにおいて、ある外周刃を基準形状外周刃としたときに、その他の少なくとも一刃のニックの位相の工具軸方向へのずれ量が、ニックのピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記ニックのピッチの0%を含まない5%以下の幅で工具軸方向にずれていることを特徴とする超硬合金製エンドミルである。
本発明のエンドミルは、被削対象材として、構造用鋼、構造用合金鋼、冷間ダイス鋼、熱間ダイス鋼、ステンレス鋼、チタン合金及び超耐熱合金を切削する超硬合金製エンドミルであって、前記超硬合金製エンドミルの外周刃の径方向に山部と谷部を繰り返す複数の波形状外周刃を有するエンドミルにおいて、ある波形状外周刃を基準形状外周刃としたときに、その他の少なくとも一刃の波形状外周刃の位相の工具軸方向へのずれ量が、波ピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記波ピッチの0%を含まない5%以下の幅で工具軸方向にずれていることを特徴とする超硬合金製エンドミルである。
本発明のエンドミルは、被削対象材として、構造用鋼、構造用合金鋼、冷間ダイス鋼、熱間ダイス鋼、ステンレス鋼、チタン合金及び超耐熱合金を切削する超硬合金製エンドミルであって、前記超硬合金製エンドミルの外周刃の径方向に切り屑を分断させる複数のニックを有するエンドミルにおいて、ある外周刃を基準形状外周刃としたときに、その他の少なくとも一刃のニックの位相の工具軸方向へのずれ量が、ニックのピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記ニックのピッチの0%を含まない5%以下の幅で工具軸方向にずれていることを特徴とする超硬合金製エンドミルである。
本発明の超硬合金製エンドミルは、ある波形状外周刃を基準形状外周刃としたときに、その他の少なくとも一刃の波形状外周刃の位相の工具軸方向へのずれ量が、波ピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記波ピッチの0%を含まない5%以下の幅で、望ましくは、前記ずれ量が前記波ピッチの1%〜3%の幅で配置されているため、切削抵抗が分散されて切削負荷が安定し、びびり振動を抑制できる。そのために工具軸方向への位相のずれがない従来のエンドミルと比較して、本発明のエンドミルの回転速度を1.5倍以上にあげることができ、高能率加工を達成できる。
本発明によれば、市場で適用の多い構造用鋼、構造用合金鋼、冷間ダイス鋼、熱間ダイス鋼、ステンレス鋼、チタン合金及び超耐熱合金を含む広い範囲の被加工材において、高能率加工を可能にする。
さらに、エンドミル製造時は不等分割ではないため、通常のエンドミルと同じように製造できるため製造コストも抑えて容易にエンドミルの製造が可能である。
また、各刃の刃溝の形状はすべて同一であるため、切り屑の排出性も良好であり、切削工具の寿命の安定と高速回転を可能にする効果が得られる。
本発明の他の発明による超硬合金製エンドミルは、ある外周刃を基準形状外周刃としたときに、その他の少なくとも一刃のニックの工具軸方向への位相のずれ量が、ニックのピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記波ピッチの0%を含まない5%以下の幅で、望ましくは、前記ずれ量が前記ニックのピッチの1%〜3%の幅で配置されているため、びびり振動の抑制と共に、切り屑の分断が適正に行なわれ、安定した高速回転ができ、工具寿命も延びる。
本発明は、特に加工目的として推奨される被加工材は40HRCを超える焼き入れ材であり、高速度工具鋼製のエンドミルでは工具の形状がいかなるものでも高能率加工条件では極端に工具寿命が短くなり加工は実質的に困難であるものを対象にしている。そこで、本発明は超硬合金製のエンドミルであるが、従来の高速度工具鋼製のエンドミルと比較して、波形状外周刃は大幅に耐摩耗性が向上するものの、位相をずらすために外周刃は欠損やチッピングの危険性にさらされる。そこで本発明者は超硬合金製のエンドミルについて、波ピッチの最適な配列を多数の切削試験から検討し、その結果として、位相のずれ量は、波ピッチ量を刃数で割った値で等間隔に並んだ基準波形状外周刃のそれぞれの位相から前記波ピッチの0%を含まない5%以下の比較的狭い幅のずれ量で軸方向にずれて配置されていることが必要であることを見出したものである。本発明では位相のずれ量は必須であるが、位相のずれ量は5%以下、望ましくは1ないし3%でなければならない。位相のずれ量が5%を超えると、超硬合金製エンドミルでは、波形状外周刃の欠損やチッピングが生じやすくなるためである。
本発明によれば、超硬合金製のエンドミルでありながら、工具の製造が容易であり、波形状外周刃の位相がずれている形状であることによる欠損やチッピングを起こすことなく、加工中のびびり振動を抑制することができる。したがって、高速切削による高能率荒加工または高能率中仕上げ加工が可能となり、さらに長寿命に加工が行える超硬合金製エンドミルを提供することができる。
本発明の一実施例を示す超硬合金製エンドミルの全体概観図である。 図1の外周刃A−A´断面の拡大図であり、(a)は波形状外周刃の拡大図を示し、(b)はニック付き外周刃としたときのニック付き外周刃の拡大図を示す。 従来の位相のずれの無いエンドミルの波形状外周刃の位相とピッチを示す展開図である。 本発明の超硬合金製エンドミルの波形状外周刃の位相とピッチを示す展開図である。 本発明の一実施例を示し、隣接する波形状外周刃のうち1組の前記波形状外周刃は位相のずれ量が無く、1刃に位相のずれ量があることを示す展開図である。 従来の位相のずれの無いエンドミルのニック付き外周刃の位相とニックのピッチを示す展開図である。 本発明の超硬合金製エンドミルのニック付き外周刃の位相とニックのピッチを示す展開図である。 本発明の一実施例を示し、隣接するニック付き外周刃のうち1組の前記ニック付き外周刃は位相のずれ量が無く、1刃に位相のずれ量があることを示す展開図である。 従来のエンドミルの位相を等間隔にした場合の切削抵抗図を示す。 従来のエンドミルに不等分割を採用した場合の切削抵抗図を示す。 本発明の超硬合金製エンドミルの切削抵抗図を示す。
以下、本発明を実施するための形態を図1〜図4に基づいて説明する。図1は本発明の一実施例を示すエンドミルの全体概観図である。図1に示すように、工具径Dで刃数が4枚の外周刃1を有する例である。前記外周刃には工具先端側2からシャンク側3に向かって波形状外周刃が設けられている。前記刃数は、2枚以上であれば、位相をずらすことが可能であるため刃数は必要に応じて変え得る。例えば、アルミニウムなどの切削は切り屑排出が多いため刃数は2枚程度とし、切り屑排出用のチップポケットを大きめに設定し、また、高硬度材の切削は刃数を8枚まで増やし、高送りに対応することができる。
図2は図1の外周刃A−A´断面の拡大図である。図2(a)は波形状外周刃の拡大図を示す。通常波形状刃形は図2のように波ピッチ4毎に波高さ5の山部6と谷部7を繰り返した刃形であり、切り屑を細かく分断できる刃形となる。図2(b)はニック付き外周刃としたときのニック付き外周刃の拡大図を示す。ニック付き刃形においてもニックのピッチ8毎にニックの深さ9の溝が入った形状を繰り返し、切り屑を分断できる刃形となる。切り屑を分断することにより切削抵抗を抑制できる効果がある。ここで、図2の斜線部は断面を示す。
本発明の超硬合金製エンドミルと従来のエンドミルの波形状外周刃の位相と波ピッチを比較するために図3〜図5を用いて説明をする。
図3は従来の位相のずれの無いエンドミルの波形状外周刃の位相とピッチを示す展開図、図4は本発明の超硬合金製エンドミルの波形状外周刃の位相とピッチを示す展開図、および図5は、本発明の一実施例を示し、隣接する波形状外周刃のうち1組の前記波形状外周刃は位相のずれ量が無く、1刃に位相のずれ量があることを示す展開図である。尚、図3〜図5では山部の位置を丸印で示している。
図3のように、従来のエンドミルでは図の一番上に示される第1波形状外周刃を基準形状外周刃10として、基準形状外周刃10の山部6から次の山部6までの波ピッチ4(ニック付きの場合は外周刃とニックの交点から次の外周刃とニックの交点までをニックのピッチ8とする。)を4等分したそれぞれの位相14(言い換えれば、基準形状外周刃10の1/4ピッチごと)に、連続して次の第2波形状外周刃11、第3波形状外周刃12及び第4波形状外周刃13の山部6が来るように等間隔に波形状外周刃がそれぞれ配置されている。このような配置は波形状外周刃の山部6の位相14が一定であり、エンドミルによって切削される被加工材の切削量は各波形状外周刃で同一となる。各刃で切削される被加工材の切削量が同一であれば、従来技術で説明した等分割エンドミルと同様に、加工中に共振が起こり、びびり振動が生じやすい。
これに対して、本発明では図4に示すように、基準形状外周刃10の次に配置される第2波形状外周刃11と第4波形状外周刃13の山部6の位置は、基準形状外周刃10の波ピッチ4を4等分した位相14から工具軸方向へずれ量15だけずれて配列されている。そして、基準形状外周刃10以外の波形状外周刃の位相14のずれ量15は、少なくとも一刃が基準形状外周刃10の波ピッチ4を4等分したそれぞれの位相14を基準にして、基準形状外周刃10の波ピッチ4の0%を含まない5%以下の範囲の幅で工具軸方向へ配設されている。図4の本発明の超硬合金製エンドミルの一例として、基準形状外周刃10の波ピッチ4を1mmとし4枚の刃数で割った値で等間隔に並んだそれぞれの波形状外周刃の位相14のずれ量15は、第2波形状外周刃11は波ピッチ4の2%である0.02mm、第3波形状外周刃12では0mm、第4波形状外周刃13では波ピッチ4の2%である0.02mmの位相のずれがある。ここでずれ量15はプラスをシャンク側方向3とし、マイナスを工具先端方向2とする。
また、本発明では図5に示すように、基準形状外周刃10の次に配置される第2波形状外周刃11の山部6の位置は、基準形状外周刃10の波ピッチ4を4等分した位相14から工具軸方向へずれ量15だけずれて配列され、隣接する第3波形状外周刃12と第4波形状外周刃13の位相のずれ量が無いように配列されている。そして、基準形状外周刃10以外の波形状外周刃の位相14のずれ量15は、少なくとも一刃が基準形状外周刃10の波ピッチ4を4等分したそれぞれの位相14を基準にして、基準形状外周刃10の波ピッチ4の0%を含まない5%以下の範囲の幅で工具軸方向へ配設されている。
1刃だけがずれ量15を有する例として、小径エンドミルでの被加工材を溝切削する場合、切屑排出の確保のため刃数が奇数となる3枚刃を用いることが多くこの場合、特許文献1の仕様では、互いの隣接する外周刃の位相14のずれ量15はすべて異ならせることとなるが、本発明を用いれば、1刃だけの位相14のずれ量15を異ならせることでよい。更に、刃数が奇数となる5枚刃の場合においても、前記特許文献1の仕様では、基準形状外周刃10からの位相14のずれ量15は2つの種類が必要となる。しかしながら、本発明では1つの種類の位相14のずれ量15だけでも、びびり振動の抑制と共に、高速切削による高能率加工が可能となり、さらに長寿命に加工が行える。このことは、後で述べる実施例においても確認している。
本発明の超硬合金製エンドミルでは、上記で述べたように波形状外周刃の山部の位置にずれ量があると、エンドミルで被加工材を切削する各刃の切削量は不均一になり、びびり振動抑制効果が発揮される。図9〜図11を用いて、従来の位相のずれの無いエンドミルと本発明の超硬合金製エンドミルの切削抵抗を測定し、びびり振動を比較した説明をする。図9は従来のエンドミルの位相を等間隔にした場合の切削抵抗図を示す。図10は従来のエンドミルに不等分割を採用した場合の切削抵抗図を示す。図11は本発明の波ピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から、本発明の望ましい範囲である前記波ピッチ4の2%のずれ量で工具軸方向にずらした超硬合金製エンドミルで切削した切削抵抗図を示す。被加工材は構造用鋼を用い、測定に使用したエンドミルは工具径Dが8mmで、4枚刃の超硬合金製とし、切削条件はN=8000回転/min(Vc=200m/min) Vf=3000mm/min(fz=0.09mm/tooth) 軸方向切り込み8mmの溝切削にてデータを採取した。切削抵抗波形の振幅量によりびびり振動を確認した。
従来の位相のずれの無いエンドミルでは、図9で示す振幅量は251.9N(ニュートン)であった。このことは、切削時の回転数に刃数を掛けた周期で切削力が掛かり、この周期の周波数で共振が起こりびびり振動と繋がる。特に高速切削においては共振が生じやすく、びびり振動が大きくなる。図10で示す不等分割を採用した従来のエンドミルでの振幅は151.9Nであった。図11の本発明例は146.1Nであり、本発明例を採用したエンドミルの切削抵抗波形の振幅が最も小さかった。
本発明は、工具の外周刃の径方向に山部と谷部を繰り返す複数の波形状外周刃を有するエンドミルにおいて、ある波形状外周刃を基準波形状外周刃としたときに、その他の少なくとも一刃の波形状外周刃の位相の工具軸方向へのずれ量が、波ピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記波ピッチの0%を含まない5%以下の幅で工具軸方向にずれている超硬合金製エンドミルを用いれば、各外周刃の1刃当たりの切削量が僅かづつに異なる。よって、高速切削を行っても切削抵抗が分散されて切削負荷が安定し、びびり振動を抑制できる。ここで、それぞれの位相のずれ量を波ピッチの0%を含まない5%以下としたのは、ずれ量が5%を超えて大きくなるとそれぞれの外周刃の切削量が大きく異なるため、位相が最も大きい外周刃に集中し、負荷が大きくなって工具の折損や波形状外周刃のチッピングが生じ、エンドミル全体としての寿命が短くなるためである。
特許文献1では、前記位相のずれ量が約6%の高速度工具製エンドミルで切削した例が紹介されている。このずれ量と同様の比率で本発明が対象とする超硬合金を母材としたエンドミルを用いて高速切削を行うと、切削負荷の変動が大きく、ずれ量が最も大きい波形状外周刃はチッピングを起こしてしまう。靭性の高い高速度工具鋼を母材にしたエンドミルを用い、切削速度が80m/min以下の低い条件で、鋳鉄など被削性の良い被加工物を加工すれば、問題なく加工できるが、さらなる高能率加工を行うために超硬合金製エンドミルを用いた場合、前記位相のずれ量が6%では大きすぎ、チッピングや欠損等の問題となる。このことは、後で述べる実施例においても確認している。
現在の金型や部品の加工現場では熱処理されていない非調質鋼は当然ながら、40HRCを超える焼き入れ材でも加工ができるエンドミルが当然のように求められている。このニーズに対しては、もはや高速度工具鋼製のエンドミルはいかなる形状であろうとも極端に工具寿命が短くなり、対応が困難である。本発明は、このような加工現場で常識化している高硬度材の切削や高能率加工を行うために、最適な波形状外周刃の位相をずらした超硬合金製エンドミルとして、高速切削での欠損やチッピングが生じない位相ずらし量を特徴とするものである。前記の位相のずれ量は5%以下とした。好ましくは基準形状外周刃のそれぞれの位相から前記波ピッチの1%〜3%の幅で工具軸方向にずれていることが望ましい。
次にニック付き外周刃としたときの本発明の超硬合金製エンドミルについて説明する。図6〜図8は、本発明の超硬合金製エンドミルと従来のエンドミルのニック付き外周刃の位相とニックのピッチを比較するための展開図を示す。図6は従来の位相のずれの無いエンドミルのニック付き外周刃の位相とニックのピッチを示す展開図、図7は本発明の超硬合金製エンドミルのニック付き外周刃の位相とニックのピッチを示す展開図、および図8は、本発明の一実施例を示し、隣接するニック付き外周刃のうち1組の前記ニック付き外周刃は位相のずれ量が無く、1刃に位相のずれ量があることを示す展開図である。尚、図6〜図8では山部の位置を丸印で示している。
図6のように、従来のエンドミルでは図の一番上に示される第1ニック付き外周刃を基準形状外周刃10として、基準形状外周刃10のニックのピッチ8(ニック付きの場合は外周刃とニックの交点20から次の外周刃とニックの交点20までをニックのピッチ8とする。)を4等分したそれぞれの位相14(言い換えれば、基準形状外周刃10の1/4ピッチごと)に、連続して次の第2ニック付き外周刃17、第3ニック付き外周刃18及び第4ニック付き外周刃19の外周刃とニックの交点20が来るように等間隔にニック付き外周刃がそれぞれ配置されている。このような配置はニック付き外周刃の外周刃とニックの交点20の位相14が一定であり、エンドミルによって切削される被加工材の切削量は各ニック付き外周刃で同一となる。各刃で切削される被加工材の切削量が同一であれば、従来技術で説明した等分割エンドミルと同様に、加工中に共振が起こり、びびり振動が生じやすい。
これに対して、本発明では図6に示すように、基準形状外周刃10の次に配置される第2ニック付き外周刃17と第4ニック付き外周刃19の外周刃とニックの交点20の位置は、基準形状外周刃10のニックのピッチ8を4等分した位相14から工具軸方向へずれ量15だけずれて配列されている。そして、基準形状外周刃10以外のニック付き外周刃の位相14のずれ量15は、少なくとも一刃が基準形状外周刃10のニックのピッチ8を4等分したそれぞれの位相14を基準にして、基準形状外周刃10のニックのピッチ8の0%を含まない5%以下の範囲の幅で工具軸方向へ配設されている。図7の本発明の超硬合金製エンドミルの一例として、基準形状外周刃10のニックのピッチ8を1mmとし4枚の刃数で割った値で等間隔に並んだそれぞれのニック付き外周刃の位相14のずれ量15は、第2ニック付き外周刃17はニックのピッチ8の2%である0.02mm、第3ニック付き外周刃18では0mm、第4ニック付き外周刃19ではニックのピッチ8の2%である0.02mmの位相のずれがある。ここでずれ量15はプラスをシャンク側方向3とし、マイナスを工具先端方向2とする。
また、本発明では図9に示すように、基準形状外周刃10の次に配置される第2ニック付き外周刃17の外周刃とニックの交点20の位置は、基準形状外周刃10の波ピッチ4を4等分した位相14から工具軸方向へずれ量15だけずれて配列され、隣接する第3ニック付き外周刃18と第4ニック付き外周刃19の位相のずれ量が無いように配列されている。そして、基準形状外周刃10以外のニック付き外周刃の位相14のずれ量15は、少なくとも一刃が基準形状外周刃10のニックのピッチ8を4等分したそれぞれの位相14を基準にして、基準形状外周刃10のニックのピッチ8の0%を含まない5%以下の範囲の幅で工具軸方向へ配設されている。また、前述した波形状外周刃が設けられた本発明の超硬合金製エンドミルの1刃だけがずれ量15を有する例と同様に、刃数が奇数となる場合においても、1刃だけの位相14のずれ量15を異ならせることで、びびり振動の抑制と共に、高速切削による高能率加工が可能となり、さらに長寿命に加工が行える。
本発明のニック付き外周刃とした場合の超硬合金製エンドミルの、それぞれの位相14のずれ量15をニックのピッチ8の0%を含まない5%以下としたのは、前記ずれ量15が5%を超えて大きい場合は、それぞれの外周刃の切削量が大きく異なるため、位相14が最も大きい外周刃に集中し、負荷が大きくなって工具の折損やニック付き外周刃にチッピングが生じ、エンドミル全体としての寿命が短くなるためである。好ましくは基準形状外周刃のそれぞれの位相14から前記ニックのピッチ8の1%〜3%の幅で工具軸方向にずれていることが望ましい。
このような本発明のニック付き外周刃とした場合の超硬合金製エンドミルを用いて切削した時の各ニック付き外周刃の切削量は僅かに異なる。よって、高速切削を行っても切削抵抗が分散されて切削負荷が安定し、びびり振動を抑制できるため、波形状外周刃を有する超硬合金製エンドミルと同様の効果が得られる。
以下、本発明を下記の実施例により詳細に説明するが、それらにより本発明が限定されるものではない。
以下の表中にある各実施例では、本発明、従来例、比較例を区分として示し、試料番号は本発明例、従来例、比較例ごとに、連続の通し番号で記載した。
(実施例1)
本発明例1及び2、比較例1、従来例1及び2においては基材はCo含有量が8重量パーセント、WC平均粒径が0.8μmの超硬合金で、工具径8mm、刃長16mm、全長70mm、シャンク径8mmで刃数は4枚とした。外周刃の形状は波刃形とし、波ピッチを1mmで、ねじれ角は45°とし、テストに用いた。用いた試料はすべて(TiAl)N系にSiを含有させた硬質皮膜を施した。
実施例1は特に波形状外周刃の最適な位相のずれ量を確認するために行った実施例である。本発明例1として、第1刃を基準形状外周刃として、基準形状外周刃の波ピッチを4等分したそれぞれの波形状外周刃の位相のずれ量を、第2波形状外周刃は波ピッチの1%とした0.01mm、第3波形状外周刃は波ピッチの0%とした0mm、第4波形状外周刃は波ピッチの1%とした0.01mmのものを作製した。
本発明例2は、第1刃を基準形状外周刃として、それぞれの波形状外周刃の位相の前記ずれ量を第2波形状外周刃は波ピッチの2%とした0.02mm、第3波形状外周刃は波ピッチの0%とした0mm、第4波形状外周刃は波ピッチの2%とした0.02mmのものを作製した。
本発明例3は、第1刃を基準形状外周刃として、それぞれの波形状外周刃の位相の前記ずれ量を第2波形状外周刃は波ピッチの2%とした0.02mm、第3波形状外周刃は波ピッチの3%とした0.03mm、第4波形状外周刃は波ピッチの2%とした0.02mmのものを作製した。
本発明例4は、第1刃を基準形状外周刃として、それぞれの波形状外周刃の位相の前記ずれ量を第2波形状外周刃は波ピッチの5%とした0.05mm、第3波形状外周刃は波ピッチの3%とした0.03mm、第4波形状外周刃は波ピッチの4%とした0.04mmのものを作製した。
本発明例5は、第1刃を基準形状外周刃として、それぞれの波形状外周刃の位相の前記ずれ量を第2波形状外周刃は波ピッチの2%とした0.02mm、第3波形状外周刃は波ピッチの0%とした0mm、第4波形状外周刃は波ピッチの0%とした0mmのものを作製した。
比較例1として、第1刃を基準形状外周刃として、それぞれの波形状外周刃の位相のずれ量を第2波形状外周刃は波ピッチの6%とした0.06mm、第3波形状外周刃は波ピッチの0%とした0mm、第4波形状外周刃は波ピッチの6%とした0.06mmとしたものを作製した。
従来例1として、基準形状外周刃の1/4ピッチごとのそれぞれの波形状外周刃の位相のずれ量の無い波ピッチの0%とした位相が一定のものを作製した。
従来例2として不等分割を採用し、各刃の分割角が95°・85°・95°・85°で、各刃の前記位相のずれ量の無い波ピッチの0%とした位相が一定のものを作製した。
従来例3として、特許文献1で紹介された位相のずれ量を同比率として算出し、第1刃を基準形状外周刃として、それぞれの波形状外周刃の位相の前記ずれ量を第2波形状外周刃は波ピッチの6%とした0.06mm、第3波形状外周刃は波ピッチの0%とした0mm、第4波形状外周刃は波ピッチの2%とした0.02mmのものを作製した。
また、本発明例1〜5、比較例1、従来例1及び3は各刃の分割角が等分割とした。
実施例1として、前記9種類のエンドミルで、硬さHRC40の熱間ダイス鋼SKD61を被加工材として切削を行った。切削条件は回転数を6000回転/min(切削速度150m/min)、送り速度を1600mm/min(1刃送り量0.06mm)とし、軸方向切り込みを4mm・径方向切り込みを4mmとして、寿命テストを行った。評価として、5m毎に外周刃を観察し、50mまで切削を行い欠損及びチッピングの無いものを良好として、その時の摩耗幅を測定した。また、50mまでに外周刃を観察し欠損及びチッピングが生じたものはその時点で終了し、切削長を記録した。その結果を表1に示す。
Figure 2010269437
その結果、本発明例1〜5はびびり振動も小さく、安定した切削が行え、50m切削しても正常摩耗であった。特に本発明例1〜3及び5は50m切削後の摩耗幅は0.10mm以下と小さかった。比較例1及び従来例3は位相のずれ量が大きいため、ずれ量が大きい波形状外周刃に切削負荷が大きくかかり30mでチッピングが生じる結果となった。従来例1においては等間隔の波ピッチのため、びびり振動が大きく、20m切削時に欠損が生じ、寿命となった。不等分割品である従来例2は分割角度が小さい溝の波形状外周刃が40m切削時にチッピングが生じた。
(実施例2)
実施例2として、実施例1と同様のテストをニック付き外周刃で行った。試料は波形状外周刃との切削性を比較するために位相のずれ量は実施例1で用いた試料に準じた。
本発明例6として、第1刃を基準形状外周刃として、基準形状外周刃のニックのピッチを4等分したそれぞれのニック付き外周刃の位相のずれ量を第2ニック付き外周刃はニックのピッチの1%とした0.01mm、第3ニック付き外周刃はニックのピッチの0%とした0mm、第4ニック付き外周刃はニックのピッチの1%とした0.01mmとしたものを作製した。
本発明例7として、第1刃を基準形状外周刃として、それぞれのニック付き外周刃の位相の前記ずれ量を第2ニック付き外周刃はニックのピッチの2%とした0.02mm、第3ニック付き外周刃はニックのピッチの0%とした0mm、第4ニック付き外周刃はニックのピッチの2%とした0.02mmとしたものを作製した。
本発明例8として、第1刃を基準形状外周刃として、それぞれのニック付き外周刃の位相の前記ずれ量を第2ニック付き外周刃はニックのピッチの2%とした0.02mm、第3ニック付き外周刃はニックのピッチの3%とした0.03mm、第4ニック付き外周刃はニックのピッチの2%とした0.02mmとしたものを作製した。
本発明例9として、第1刃を基準形状外周刃として、それぞれのニック付き外周刃の位相の前記ずれ量を第2ニック付き外周刃はニックのピッチの5%とした0.05mm、第3ニック付き外周刃はニックのピッチの3%とした0.03mm、第4ニック付き外周刃はニックのピッチの4%とした0.04mmとしたものを作製した。
本発明例10として、第1刃を基準形状外周刃として、それぞれのニック付き外周刃の位相の前記ずれ量を第2ニック付き外周刃はニックのピッチの2%とした0.02mm、第3ニック付き外周刃はニックのピッチの0%とした0mm、第4ニック付き外周刃はニックのピッチの0%とした0mmとしたものを作製した。
比較例2として、第1刃を基準形状外周刃として、それぞれのニック付き外周刃の位相の前記ずれ量を第2ニック付き外周刃はニックのピッチの6%とした0.06mm、第3ニック付き外周刃はニックのピッチの0%とした0mm、第4ニック付き外周刃はニックのピッチの6%とした0.06mmとしたものを作製した。
従来例4として、基準形状外周刃の1/4ピッチごとのそれぞれのニック付外周刃の位相のずれ量の無いニックのピッチを0%とした位相が一定のものを作製した。
従来例5として不等分割を採用し、各刃の分割角が95°・85°・95°・85°で、各刃の前記位相のずれ量の無い波ピッチの0%とした位相が一定としたものを作製した。
従来例6として、特許文献1で紹介された位相のずれ量が同比率で第1刃を基準形状外周刃として、それぞれの波形状外周刃の位相の前記ずれ量を第2ニック付き外周刃はニックのピッチの6%とした0.06mm、第3ニック付き外周刃はニックのピッチの0%とした0mm、第4ニック付き外周刃はニックのピッチの2%とした0.02mmのものを作製した。
本発明例6〜10、比較例2、従来例4及び6は各刃の分割角が等分割とした。
用いた試料以外は、実施例1と同様に、硬さHRC40の熱間ダイス鋼SKD61を被加工材として切削を行った。切削条件、評価方法は実施例1と同じであり、その結果を表2に示す。
Figure 2010269437
その結果、本発明例6〜10はびびり振動も小さく、安定した切削が行え、50m切削しても正常摩耗であった。特に本発明例6〜8及び10は、実施例1と同様に50m切削後の摩耗幅は0.10mm以下と小さかった。しかし、同条件でテストを行った実施例1の結果と合わせると、ニック付き外周刃が波形状外周刃と比較して僅かに摩耗が大きくなり、熱間ダイス鋼等の被加工物では波形状外周刃が優位の結果となった。比較例2及び従来例6は位相のずれ量が大きいため、ずれ量が大きいニック付き外周刃に切削負荷が大きく掛かり、比較例2及び従来例6は25mでチッピングが生じた。従来例4においては等間隔のニックのピッチのため、びびり振動が大きく、15m切削時に欠損が生じ、寿命となった。不等分割品である従来例5は分割角度が小さい溝のニック付き外周刃が35m切削時にチッピングが生じ、実施例1と同様の傾向が得られた。
(実施例3)
実施例3は本発明の高速条件での切削を行い、実施例1との寿命比較を行ったものである。
実施例3として、本発明例11は実施例1で用いた本発明例2、本発明例12は実施例1で用いた本発明例3、本発明例13は実施例1で用いた本発明例4と同仕様のエンドミルを作製した。被加工材は硬さHRC40の熱間ダイス鋼SKD61を被加工材として用い、切削を行った。切削条件は回転数を実施例1の1.5倍の9000回転/min(切削速度226m/min)、送り速度を2160mm/min(1刃送り量0.06mm)とし、軸方向切り込みを4mm、径方向切り込みを4mmとして、テストを行った。評価は実施例1と同様で50mまでの切削を行った。結果を表3に示す。
Figure 2010269437
結果として、本発明例11〜13は、安定した切削が行え、50m切削しても正常摩耗であり高速切削を行っても実施例1と同切削距離の加工が可能であった。特に、望ましいずれ量の範囲である本発明例11及び12は摩耗幅が0.1mmとなり、本発明例13より小さい摩耗幅であった。
(実施例4)
実施例4として、製造時の研削時間の比較を行った。不等分割品に関しては刃溝研削において、分割角度を調整するため研削時間が多くなり、さらに、ランド幅を均一にするための、研削する箇所が多くなり研削時間が多くなる。ここで、特に研削時間の異なる刃溝研削の時間を測定した。実施例1で用いた本発明例1と不等分割を採用した従来例2のエンドミルを作製するときの1本当たりの刃溝研削の研削時間の測定を行った。結果を表4に示す。
Figure 2010269437
不等分割品に関しては刃溝研削で切れ刃の分割角を調整するため、研削時間が多くなり、さらに、ランド幅を均一にするための、研削する箇所が多くなり研削時間が多くなる。従来例2の不等分割品に関しては本発明例1より研削時間が約1.4倍の4分長くなった。
(実施例5)
実施例5として切り屑の排出性を確認するため、溝切削による切削テストを行った。本発明例13として実施例1で用いた本発明例1と同仕様、従来例5として、実施例1で用いた従来例1と同仕様、従来例6として実施例1で用いた従来例2と同仕様の不等分割品のエンドミルを使用し、被加工材を構造用鋼として送り限界テストを行った。切削条件は回転数を8000回転/min(切削速度200m/min)、送り速度を2000mm/min(1刃送り量0.06mm)とし、軸方向切り込みを8mmとした。評価は1m切削毎に400mm/min送り速度を上げていき途中折損したところを記録した。加工後に問題なければ○を記し、折損または各送り速度で1m切削後に欠損又はチッピングが生じていれば×を示し送り速度3200mm/min以上のものは良好とした。結果を表5に示す。
Figure 2010269437
結果として、従来例8の不等分割品は、溝切削にて送りを上げて加工すると切り屑が大きくなっていき小さい刃溝であれば切り屑詰まりを生じ、刃欠けや欠損となる。本発明例14は送り速度が3200mm/minまで問題なく加工できたのに対し、従来例7は振動が大きく送り速度が3200mm/min時に欠損が生じた。従来例8の不等分割品に関しては送り速度が2800mm/min時に折損した。折損後の工具を観察すると、分割角が小さくなる刃溝に切り屑の擦れた溶着が見られ、切り屑詰まりによる折損が確認された。
(実施例6)
実施例6は被加工材として溶着しやすいステンレス鋼SUS304を用い、外周刃形状の異なる波形状外周刃とニック付き外周刃の比較を行った。本発明例14として実施例1で用いた本発明例2と同仕様、本発明例15として実施例2で用いた本発明例7と同仕様のものを使用し、切削を行った。
切削条件は回転数を5000回転/min(切削速度125m/min)、送り速度を1200mm/min(1刃送り量0.06mm)とし、軸方向切り込みを4mm・径方向切り込みを1mmとして、寿命テストを行った。評価として、5m毎に外周刃を観察し、30mまで切削を行い欠損及びチッピングの無いものを良好として、その時の摩耗幅を測定した。その結果を表6に示す。
Figure 2010269437
結果として、本発明例15及び16は30m切削しても正常摩耗であり、ステンレス鋼などの溶着しやすい被加工物でも加工ができることが実証できた。しかしながら、本発明例15の波形状外周刃は0.14mmで、ニック付き外周刃は0.13mmと僅かに本発明例16の摩耗幅が小さい結果となったため、ステンレス鋼などの溶着しやすい被加工物はニック付き外周刃が優位の結果となった。
本発明が対象とする金型加工や部品加工などの加工分野では、被削対象材として構造用鋼、構造用合金鋼、冷間ダイス鋼、熱間ダイス鋼、ステンレス鋼、チタン合金及び超耐熱合金のエンドミルの荒加工で1.5倍程度以上の高能率加工が要望されている。さらにこの分野では、HRC40程度以上の調質材や焼入材の加工はもはや常識化してきている。本発明はこのような市場のニーズに応じられる超硬合金製エンドミルを初めて提供できるものである。
1 外周刃
2 工具先端側
3 工具シャンク側
4 波ピッチ
5 波高さ
6 山部
7 谷部
8 ニックのピッチ
9 ニックの深さ
10 基準形状外周刃
11 第2波形状外周刃
12 第3波形状外周刃
13 第4波形状外周刃
14 位相
15 ずれ量
16 刃溝
17 第2ニック付き外周刃
18 第3ニック付き外周刃
19 第4ニック付き外周刃
20 外周刃とニックの交点
D 工具径

Claims (6)

  1. 工具の外周刃の径方向に山部と谷部を繰り返す複数の波形状外周刃を有するエンドミルにおいて、ある波形状外周刃を基準形状外周刃としたときに、その他の少なくとも一刃の波形状外周刃の位相の工具軸方向へのずれ量が、波ピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記波ピッチの0%を含まない5%以下の幅で工具軸方向にずれていることを特徴とする超硬合金製エンドミル。
  2. 工具の外周刃の径方向に山部と谷部を繰り返す複数の波形状外周刃を有するエンドミルにおいて、ある波形状外周刃を基準形状外周刃としたときに、その他の少なくとも一刃の波形状外周刃の位相の工具軸方向へのずれ量が、波ピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記波ピッチの1%乃至3%の幅で工具軸方向にずれていることを特徴とする超硬合金製エンドミル。
  3. 工具の外周刃の径方向に山部と谷部を繰り返す3枚以上の波形状外周刃を有するエンドミルにおいて、隣接する各波形状外周刃のうち少なくとも1組の前記波形状外周刃は位相のずれ量が無く、その他の組の前記波形状外周刃は互いに位相のずれ量が不均等であることを特徴とする超硬合金製エンドミル。
  4. 工具の外周刃の径方向に切り屑を分断させる複数のニックを有するエンドミルにおいて、ある外周刃を基準形状外周刃としたときに、その他の少なくとも一刃のニックの位相の工具軸方向へのずれ量が、ニックのピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記ニックのピッチの0%を含まない5%以下の幅で工具軸方向にずれていることを特徴とする超硬合金製エンドミル。
  5. 被削対象材として、構造用鋼、構造用合金鋼、冷間ダイス鋼、熱間ダイス鋼、ステンレス鋼、チタン合金及び超耐熱合金を切削する超硬合金製エンドミルであって、前記超硬合金製エンドミルの外周刃の径方向に山部と谷部を繰り返す複数の波形状外周刃を有するエンドミルにおいて、ある波形状外周刃を基準形状外周刃としたときに、その他の少なくとも一刃の波形状外周刃の位相の工具軸方向へのずれ量が、波ピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記波ピッチの0%を含まない5%以下の幅で工具軸方向にずれていることを特徴とする超硬合金製エンドミル。
  6. 被削対象材として、構造用鋼、構造用合金鋼、冷間ダイス鋼、熱間ダイス鋼、ステンレス鋼、チタン合金及び超耐熱合金を切削する超硬合金製エンドミルであって、前記超硬合金製エンドミルの外周刃の径方向に切り屑を分断させる複数のニックを有するエンドミルにおいて、ある外周刃を基準形状外周刃としたときに、その他の少なくとも一刃のニックの位相の工具軸方向へのずれ量が、ニックのピッチを刃数で割った値で等間隔に並んだ前記基準形状外周刃のそれぞれの位相から前記ニックのピッチの0%を含まない5%以下の幅で工具軸方向にずれていることを特徴とする超硬合金製エンドミル。
JP2009141629A 2009-05-25 2009-05-25 超硬合金製エンドミル Pending JP2010269437A (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009141629A JP2010269437A (ja) 2009-05-25 2009-05-25 超硬合金製エンドミル
SG2011063740A SG174248A1 (en) 2009-05-25 2010-04-21 Carbide end mill and cutting method using the end mill
KR1020117021095A KR101291486B1 (ko) 2009-05-25 2010-04-21 초경합금제 엔드밀 및 이 엔드밀을 사용한 절삭가공방법
CN201080012698.9A CN102365145B (zh) 2009-05-25 2010-04-21 超硬合金制立铣刀以及使用该立铣刀的切削加工方法
EP10780386.8A EP2436467B1 (en) 2009-05-25 2010-04-21 Carbide end mill
PCT/JP2010/057067 WO2010137429A1 (ja) 2009-05-25 2010-04-21 超硬合金製エンドミル及び該エンドミルを用いた切削加工方法
EP18184797.1A EP3412390B1 (en) 2009-05-25 2010-04-21 Carbide end mill and cutting method using the end mill
US13/258,282 US8827600B2 (en) 2009-05-25 2010-04-21 Carbide end mill and cutting method using the end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009141629A JP2010269437A (ja) 2009-05-25 2009-05-25 超硬合金製エンドミル

Publications (2)

Publication Number Publication Date
JP2010269437A true JP2010269437A (ja) 2010-12-02
JP2010269437A5 JP2010269437A5 (ja) 2011-10-27

Family

ID=43417888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141629A Pending JP2010269437A (ja) 2009-05-25 2009-05-25 超硬合金製エンドミル

Country Status (1)

Country Link
JP (1) JP2010269437A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8827600B2 (en) 2009-05-25 2014-09-09 Hitachi Tool Engineering, Ltd. Carbide end mill and cutting method using the end mill
JPWO2019082317A1 (ja) * 2017-10-25 2020-02-27 三菱重工業株式会社 エンドミル仕様設定方法、加工条件設定方法および加工方法
JP2020157413A (ja) * 2019-03-26 2020-10-01 三菱マテリアル株式会社 ラフィングエンドミル
CN111958029A (zh) * 2020-08-12 2020-11-20 内蒙古第一机械集团股份有限公司 一种钛合金材料铣削的加工方法
JP2021030328A (ja) * 2019-08-20 2021-03-01 三菱マテリアル株式会社 ラフィングエンドミル

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127214A (ja) * 1987-11-12 1989-05-19 O S G Kk 荒削りエンドミル

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127214A (ja) * 1987-11-12 1989-05-19 O S G Kk 荒削りエンドミル

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8827600B2 (en) 2009-05-25 2014-09-09 Hitachi Tool Engineering, Ltd. Carbide end mill and cutting method using the end mill
JPWO2019082317A1 (ja) * 2017-10-25 2020-02-27 三菱重工業株式会社 エンドミル仕様設定方法、加工条件設定方法および加工方法
JP2020157413A (ja) * 2019-03-26 2020-10-01 三菱マテリアル株式会社 ラフィングエンドミル
JP7227480B2 (ja) 2019-03-26 2023-02-22 三菱マテリアル株式会社 ラフィングエンドミル
JP2021030328A (ja) * 2019-08-20 2021-03-01 三菱マテリアル株式会社 ラフィングエンドミル
CN111958029A (zh) * 2020-08-12 2020-11-20 内蒙古第一机械集团股份有限公司 一种钛合金材料铣削的加工方法

Similar Documents

Publication Publication Date Title
KR101291486B1 (ko) 초경합금제 엔드밀 및 이 엔드밀을 사용한 절삭가공방법
JP3065020B2 (ja) 総形回転切削工具
CA2679026C (en) Rotary cutting tool
JP2004223642A (ja) スクエアエンドミル
JP2008055594A (ja) 切削によって加工部品を処理するためのフライス工具
EP2583788A1 (en) Formed cutter manufacturing method and formed cutter grinding tool
JP2012091306A (ja) 超硬合金製エンドミル
JP2010269437A (ja) 超硬合金製エンドミル
JP2012020394A (ja) 刃先交換式回転切削工具
JP4787910B2 (ja) 超硬合金製エンドミル及び該エンドミルを用いた切削加工方法
JP5644084B2 (ja) 超硬合金製エンドミル
JP4892039B2 (ja) ニック付き超硬合金製エンドミル
JP5289617B1 (ja) 工具
JP2010240818A (ja) ニック付きエンドミル
JP5953173B2 (ja) 切削工具
JP2011062807A (ja) 超硬合金製エンドミル
JP5492357B2 (ja) クリスマスカッタ
JP2013013962A (ja) Cbnエンドミル
JP2012081557A (ja) 総形回転切削工具
JP2012091259A (ja) エンドミル
JP2011110692A (ja) 超硬合金製エンドミル
JP2013208655A (ja) エンドミル
JP3191257U (ja) エンドミル
JP3957683B2 (ja) ラフィングエンドミル
JP2012011505A (ja) 翼溝加工用クリスマスカッタ

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111101

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111101

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221