JP2010265143A - Method for producing silicon single crystal, and method for producing silicon wafer - Google Patents

Method for producing silicon single crystal, and method for producing silicon wafer Download PDF

Info

Publication number
JP2010265143A
JP2010265143A JP2009118454A JP2009118454A JP2010265143A JP 2010265143 A JP2010265143 A JP 2010265143A JP 2009118454 A JP2009118454 A JP 2009118454A JP 2009118454 A JP2009118454 A JP 2009118454A JP 2010265143 A JP2010265143 A JP 2010265143A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
silicon
wafer
pulled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009118454A
Other languages
Japanese (ja)
Other versions
JP2010265143A5 (en
JP5201077B2 (en
Inventor
Hironori Murakami
浩紀 村上
Yutaka Hayakawa
裕 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2009118454A priority Critical patent/JP5201077B2/en
Priority to DE102010028924.8A priority patent/DE102010028924B4/en
Publication of JP2010265143A publication Critical patent/JP2010265143A/en
Publication of JP2010265143A5 publication Critical patent/JP2010265143A5/ja
Application granted granted Critical
Publication of JP5201077B2 publication Critical patent/JP5201077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • C30B15/16Heating of the melt or the crystallised materials by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate COP over the whole region in the diameter direction and in the thickness direction of a silicon wafer obtained by slicing a silicon single crystal by subjecting the wafer to oxidative heat treatment. <P>SOLUTION: A silicon melt 15 is stored in a crucible 13 received in a chamber 12. A seed crystal 23 is immersed in the silicon melt 15. A silicon single crystal 11 is pulled up while rotating the seed crystal 23. Then, the silicon single crystal 11 is irradiated with neutrons to dope phosphorus into the silicon single crystal 11. After pulling up the silicon single crystal 11 from the crucible 13, the silicon single crystal 11 having an interstitial oxygen concentration in the inside of 6.0×10<SP>17</SP>atoms/cm<SP>3</SP>or less, and the silicon single crystal 11 containing a COP generating region having a size of 100 nm or less and a density of 3×10<SP>6</SP>atoms/cm<SP>3</SP>, the silicon single crystal 11 is irradiated with neutrons to reduce the variation of an in-plane resistivity in the diameter direction of the silicon single crystal 11 to 5% or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、絶縁ゲートバイポーラトランジスタに適したシリコンウェーハを製造するために、チョクラルスキー法によりシリコン単結晶を製造する方法と、ウェーハ内部の欠陥が低減されたシリコンウェーハの製造方法に関するものである。   The present invention relates to a method for producing a silicon single crystal by the Czochralski method in order to produce a silicon wafer suitable for an insulated gate bipolar transistor, and a method for producing a silicon wafer with reduced defects inside the wafer. .

近年、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、以下、IGBTという)の開発などが進められている。IGBTは、メモリ等のLSIのようにウェーハの表面近傍だけ(ウェーハの横方向だけ)を使う素子ではなく、ウェーハの厚さ方向(ウェーハの縦方向)をも使う素子であるので、その特性はウェーハのバルクの品質に影響される。このため、ウェーハ表層部に存在するCOP(Crystal Originated Particle:空孔型凝集欠陥)や酸素析出物だけではなく、ウェーハ内部のCOPや酸素析出物をも低減する必要がある。   In recent years, development of an insulated gate bipolar transistor (hereinafter referred to as IGBT) has been promoted. An IGBT is not an element that uses only the vicinity of the wafer surface (only in the lateral direction of the wafer) like an LSI such as a memory, but also an element that uses the thickness direction of the wafer (vertical direction of the wafer). Affected by wafer bulk quality. For this reason, it is necessary to reduce not only COP (Crystal Originated Particles) and oxygen precipitates existing in the wafer surface layer but also COP and oxygen precipitates inside the wafer.

従来、IGBT用シリコンウェーハの製造方法が、例えば、特許文献1に開示されている。この特許文献1には、チョクラルスキー法(以下、CZ法という)により格子間酸素濃度が7.0×1017atoms/cm3以下であるシリコン単結晶を形成し、このシリコン単結晶に中性子線を照射することによりリンをドープしてからウェーハを切り出し、このウェーハに対して少なくとも酸素を含む雰囲気で次の式(1)を満たす温度T(℃)で酸化雰囲気アニールを行い、ウェーハの一面側にポリシリコン層又は歪み層を形成することが開示されている。 Conventionally, a method for manufacturing an IGBT silicon wafer is disclosed in Patent Document 1, for example. In Patent Document 1, a silicon single crystal having an interstitial oxygen concentration of 7.0 × 10 17 atoms / cm 3 or less is formed by the Czochralski method (hereinafter referred to as CZ method), and neutrons are formed on the silicon single crystal. The wafer is cut out after doping with phosphorus by irradiating the wire, and the wafer is subjected to annealing in an oxidizing atmosphere at a temperature T (° C.) satisfying the following expression (1) in an atmosphere containing at least oxygen. Forming a polysilicon layer or strained layer on the side is disclosed.

[Oi]≦2.123×1021exp(−1.035/k(T+273))…(1)
上記式(1)において、[Oi]はASTM F−121(1979)に規格されたフーリエ変換赤外分光光度法による測定値であり、kはボルツマン定数8.617×10-5eV/Kである。このように製造されたシリコンウェーハでは、格子間酸素濃度が極めて低いシリコン単結晶を酸素雰囲気中でアニールすることで、COPを消滅させることができる。またシリコン単結晶に中性子を照射して原子核転換することにより、シリコン原子の一部をリン原子に変換させることで、抵抗率が均一なウェーハを得られるようになっている。
[Oi] ≦ 2.123 × 10 21 exp (−1.035 / k (T + 273)) (1)
In the above formula (1), [Oi] is a measured value by Fourier transform infrared spectrophotometry standardized by ASTM F-121 (1979), and k is a Boltzmann constant of 8.617 × 10 −5 eV / K. is there. In a silicon wafer manufactured in this way, COP can be eliminated by annealing a silicon single crystal having an extremely low interstitial oxygen concentration in an oxygen atmosphere. Further, by converting nuclei by irradiating a silicon single crystal with neutrons, a part of silicon atoms is converted into phosphorus atoms, whereby a wafer having a uniform resistivity can be obtained.

再公表特許 WO2004/073057号公報(請求項1及び2、明細書第5頁第9行〜同頁第17行、明細書第5頁第22行〜同頁第26行)Republished patent WO 2004/073057 (Claims 1 and 2, specification page 5, line 9 to page 17, line 17, specification page 5, line 22 to page 26, line 26)

しかし、上記従来の特許文献1に示されたIGBT用シリコンウェーハの製造方法では、シリコン融液にリン等のドーパントを含有させずにシリコン単結晶を引上げた後、このシリコン単結晶に中性子を照射することにより、径方向及び軸方向に抵抗率の均一なシリコンウェーハを得ることができるけれども、シリコン単結晶内に存在するCOPのサイズが大きい場合やCOPの密度が高い場合には、ウェーハに酸化熱処理を施してもCOPを完全に消滅させることができない不具合があった。   However, in the method of manufacturing a silicon wafer for IGBT shown in the above-mentioned conventional patent document 1, after a silicon single crystal is pulled up without containing a dopant such as phosphorus in the silicon melt, the silicon single crystal is irradiated with neutrons. As a result, a silicon wafer having a uniform resistivity in the radial direction and the axial direction can be obtained. However, when the size of the COP existing in the silicon single crystal is large or the density of the COP is high, the wafer is oxidized. There was a problem that COP could not be completely eliminated even after heat treatment.

一方、IGBT用のシリコン単結晶ウェーハとしては、これまで以上に酸素濃度が可及的に低減され、かつ面内の抵抗分布が均一なシリコンウェーハの提供が要求される。シリコン単結晶中の酸素濃度を低下させる技術として、これまでシリコン融液に水平磁場を印加してるつぼの回転速度を遅くすることにより、るつぼからシリコン融液中への酸素の取込み量を低減することができ、単結晶中の格子間酸素濃度を低下できることが知られていた。しかしながら、本発明者らの実験によれば、シリコン融液に水平磁場を印加した状態で、るつぼの回転速度を低速にするだけでは、格子間酸素濃度が6.0×1017atoms/cm3以下というような極めて酸素濃度の低いシリコン単結晶を育成できないことが明らかとなった。また、シリコン単結晶の回転速度を遅くすることで、格子間酸素濃度をより低減できることを知見した。 On the other hand, as a silicon single crystal wafer for IGBT, it is required to provide a silicon wafer in which the oxygen concentration is reduced as much as possible and the in-plane resistance distribution is uniform. As a technique for reducing the oxygen concentration in a silicon single crystal, the amount of oxygen taken from the crucible into the silicon melt is reduced by applying a horizontal magnetic field to the silicon melt and slowing the rotation speed of the crucible. It has been known that the interstitial oxygen concentration in the single crystal can be reduced. However, according to experiments conducted by the present inventors, the interstitial oxygen concentration is 6.0 × 10 17 atoms / cm 3 only by reducing the rotation speed of the crucible while applying a horizontal magnetic field to the silicon melt. It became clear that a silicon single crystal having a very low oxygen concentration cannot be grown as follows. It was also found that the interstitial oxygen concentration can be further reduced by slowing the rotation speed of the silicon single crystal.

本発明の第1の目的は、シリコン単結晶をスライスして得られたシリコンウェーハに酸化熱処理を施すことにより、ウェーハの径方向及び厚さ方向の全域にわたってCOPを消滅させることができる、シリコン単結晶の製造方法及びシリコンウェーハの製造方法を提供することにある。本発明の第2の目的は、複数本のシリコン単結晶の略全長にわたって、格子間酸素濃度を低減できる、シリコン単結晶の製造方法を提供することにある。本発明の第3の目的は、シリコン単結晶の回転速度を遅くして、シリコン単結晶内の格子間酸素濃度を低減できる、シリコン単結晶の製造方法を提供することにある。本発明の第4の目的は、単結晶の引上げ速度の幅を比較的広くすることができ、またシリコン単結晶内の径方向の面内抵抗率のバラツキを低減することができる、シリコン単結晶の製造方法を提供することにある。   A first object of the present invention is to provide a silicon single crystal that can extinguish COP over the entire area in the radial direction and thickness direction of the wafer by subjecting a silicon wafer obtained by slicing a silicon single crystal to an oxidation heat treatment. The object is to provide a crystal manufacturing method and a silicon wafer manufacturing method. A second object of the present invention is to provide a method for producing a silicon single crystal that can reduce the interstitial oxygen concentration over substantially the entire length of a plurality of silicon single crystals. A third object of the present invention is to provide a method for producing a silicon single crystal that can reduce the interstitial oxygen concentration in the silicon single crystal by slowing the rotational speed of the silicon single crystal. A fourth object of the present invention is to provide a silicon single crystal capable of relatively widening the pulling speed of the single crystal and reducing variations in in-plane resistivity in the radial direction in the silicon single crystal. It is in providing the manufacturing method of.

本発明の第1の観点は、チャンバに収容されたるつぼにシリコン融液を貯留し、このシリコン融液に種結晶を浸漬して回転させながらシリコン単結晶を引上げた後に、このシリコン単結晶に中性子を照射することによりシリコン単結晶にリンをドープするシリコン単結晶の製造方法において、るつぼから、内部の格子間酸素濃度が6.0×1017atoms/cm3以下であるシリコン単結晶であって、サイズが100nm以下でありかつ密度が3×106atoms/cm3以下であるCOPの発生領域を含むシリコン単結晶を引上げた後に、このシリコン単結晶への中性子の照射によりシリコン単結晶の径方向の面内抵抗率のバラツキを5%以下にすることを特徴とするシリコン単結晶の製造方法である。 According to a first aspect of the present invention, a silicon melt is stored in a crucible housed in a chamber, a seed crystal is immersed in the silicon melt, and the silicon single crystal is pulled up while being rotated. In the method for producing a silicon single crystal in which phosphorus is doped into the silicon single crystal by irradiating neutrons, the silicon single crystal has an internal interstitial oxygen concentration of 6.0 × 10 17 atoms / cm 3 or less from the crucible. Then, after pulling up a silicon single crystal including a COP generation region having a size of 100 nm or less and a density of 3 × 10 6 atoms / cm 3 or less, the silicon single crystal is irradiated with neutrons to irradiate the silicon single crystal. A variation of the in-plane resistivity in the radial direction is 5% or less.

本発明の第2の観点は、第1の観点に基づく発明であって、更に引上げ中のシリコン単結晶の中心部が融点から1370℃までの温度域におけるシリコン単結晶の引上げ軸方向の温度勾配のうち、引上げ中のシリコン単結晶の中心部の温度勾配をGcとし、引上げ中のシリコン単結晶の外周部の温度勾配をGeとするとき、Gc/Ge≧1の関係を満たす条件下でシリコン単結晶を引上げることを特徴とする。   A second aspect of the present invention is an invention based on the first aspect, and further includes a temperature gradient in the pulling axis direction of the silicon single crystal in a temperature range where the central portion of the silicon single crystal being pulled is from the melting point to 1370 ° C. Of these, when the temperature gradient of the central portion of the silicon single crystal being pulled is Gc and the temperature gradient of the outer peripheral portion of the silicon single crystal being pulled is Ge, silicon is used under the conditions satisfying the relationship of Gc / Ge ≧ 1. It is characterized by pulling up a single crystal.

本発明の第3の観点は、第1の観点に基づく発明であって、更にシリコン単結晶内の格子間酸素濃度が全長にわたって6.0×1017atoms/cm3以下となるようにシリコン単結晶を引上げた後に、るつぼ内にシリコン原料を供給して溶融させ、るつぼ内のシリコン融液から新たにシリコン単結晶を引上げることにより、複数本のシリコン単結晶を引上げるとともに、引上げ後の各シリコン単結晶に中性子を照射することによりシリコン単結晶にリンをドープすることを特徴とする。 A third aspect of the present invention is an invention based on the first aspect, and further includes silicon single crystals such that the interstitial oxygen concentration in the silicon single crystal is 6.0 × 10 17 atoms / cm 3 or less over the entire length. After pulling up the crystal, the silicon raw material is supplied into the crucible and melted, and a new silicon single crystal is pulled from the silicon melt in the crucible to pull up a plurality of silicon single crystals and The silicon single crystal is doped with phosphorus by irradiating each silicon single crystal with neutrons.

本発明の第4の観点は、第1ないし第4の観点に基づく発明であって、更にるつぼ内のシリコン融液に0.2T以上の水平磁場を印加するとともに、るつぼの回転速度が1.5rpm以下であり、引上げ中のシリコン単結晶の回転速度が7rpm以下であることを特徴とする。   A fourth aspect of the present invention is an invention based on the first to fourth aspects, in which a horizontal magnetic field of 0.2 T or more is further applied to the silicon melt in the crucible and the rotational speed of the crucible is 1. 5 rpm or less, and the rotational speed of the silicon single crystal being pulled is 7 rpm or less.

本発明の第5の観点は、第1ないし第4の観点に記載の方法で製造されたシリコン単結晶をスライスして得られたシリコンウェーハに、酸素ガス雰囲気中で1100〜1300℃の範囲内の所定の温度まで加熱し、この所定の温度に2〜5時間保持する熱処理を施すことにより、シリコンウェーハ全域にわたってCOPを消滅させることを特徴とするシリコンウェーハの製造方法である。   According to a fifth aspect of the present invention, there is provided a silicon wafer obtained by slicing a silicon single crystal produced by the method described in the first to fourth aspects, within a range of 1100 to 1300 ° C. in an oxygen gas atmosphere. The silicon wafer manufacturing method is characterized in that the COP is extinguished over the entire area of the silicon wafer by performing a heat treatment of heating to the predetermined temperature and maintaining the predetermined temperature for 2 to 5 hours.

本発明の第1の観点のシリコン単結晶の製造方法では、シリコン融液に電気抵抗率を調整するためのリン等のドーパントを含有させずにシリコン単結晶を引上げた後、このシリコン単結晶に中性子を照射して原子核転換することにより、シリコン原子の一部をリン原子に変換してシリコン単結晶にリンをドープしたので、シリコン単結晶内のリンの濃度を径方向及び軸方向にわたって均一にすることができる。この結果、シリコン単結晶内の径方向の面内抵抗率のバラツキをシリコン単結晶の直胴部のほぼ全長にわたって低減することができる。また所定のサイズ及び密度のCOP発生領域を含む結晶領域を対象とするので、無欠陥単結晶における問題点、即ち無欠陥単結晶の生産性が低下したり、或いは許容される引上げ速度の幅が狭いことによる単結晶の引上げ制御が困難となるという問題点を解消することができる。   In the method for producing a silicon single crystal according to the first aspect of the present invention, the silicon single crystal is pulled without containing a dopant such as phosphorus for adjusting the electrical resistivity in the silicon melt, By converting nuclei by neutron irradiation, some silicon atoms are converted to phosphorus atoms and phosphorus is doped into the silicon single crystal, so the concentration of phosphorus in the silicon single crystal is made uniform over the radial and axial directions. can do. As a result, the variation in the in-plane resistivity in the radial direction in the silicon single crystal can be reduced over almost the entire length of the straight body portion of the silicon single crystal. In addition, since a crystal region including a COP generation region having a predetermined size and density is targeted, there is a problem with a defect-free single crystal, that is, the productivity of the defect-free single crystal is reduced, or the allowable pulling speed is wide. The problem that it becomes difficult to control the pulling of the single crystal due to the narrowness can be solved.

本発明の第2の観点のシリコン単結晶の製造方法では、Gc/Ge≧1の関係を満たす条件下でCOPが発生するようにシリコン単結晶を引上げることにより、COPのサイズが小さくかつその密度が低い単結晶を得ることができる。従来の引上げ方法のGc/Ge<1の関係を満たす条件下でCOPが発生するように単結晶を引上げると、即ち引上げ速度を速くしてCOPサイズを縮小化させるのに適した冷却速度の速いホットゾーンで単結晶を引上げると、単結晶内のCOPのサイズは小さくなるけれども、その密度は高くなってしまう。この結果、従来のホットゾーンで引上げられた単結晶では、その後の酸化熱処理によってウェーハの径方向及び厚さ方向の全域にわたってCOPを消滅させることはできないけれども、本発明のホットゾーンで引上げられた単結晶では、その後の酸化熱処理によってウェーハの径方向及び厚さ方向の全域にわたってCOPを消滅させることができる。   In the method for producing a silicon single crystal according to the second aspect of the present invention, by pulling up the silicon single crystal so that COP is generated under the condition satisfying the relationship of Gc / Ge ≧ 1, A single crystal having a low density can be obtained. When a single crystal is pulled up so that COP is generated under the condition of satisfying the relationship of Gc / Ge <1 of the conventional pulling method, that is, a cooling rate suitable for reducing the COP size by increasing the pulling rate. When the single crystal is pulled in the fast hot zone, the size of the COP in the single crystal decreases, but the density increases. As a result, in the single crystal pulled in the conventional hot zone, COP cannot be extinguished over the entire area in the radial direction and the thickness direction of the wafer by the subsequent oxidation heat treatment, but the single crystal pulled in the hot zone of the present invention. In the crystal, COP can be extinguished over the entire area in the radial direction and the thickness direction of the wafer by the subsequent oxidation heat treatment.

本発明の第3の観点のシリコン単結晶の製造方法では、シリコン単結晶を引上げた直後のるつぼ内にシリコン原料を供給して溶融させ、先に引上げたシリコン単結晶と同等の品質特性を有するシリコン単結晶をるつぼから引上げることにより、1つのるつぼからシリコン単結晶を複数本引上げる、いわゆるマルチプリングが可能となる。この結果、複数本のシリコン単結晶の直胴部のほぼ全長にわたって、格子間酸素濃度を低減できる。   In the method for producing a silicon single crystal according to the third aspect of the present invention, the silicon raw material is supplied and melted in a crucible immediately after the silicon single crystal is pulled up, and has quality characteristics equivalent to those of the silicon single crystal pulled up earlier. By pulling the silicon single crystal from the crucible, so-called multiple pulling, in which a plurality of silicon single crystals are pulled from one crucible, becomes possible. As a result, the interstitial oxygen concentration can be reduced over substantially the entire length of the straight body portion of the plurality of silicon single crystals.

本発明の第4の観点のシリコン単結晶の製造方法では、シリコン融液に水平磁場を印加し、るつぼの回転速度を遅くし、更にシリコン単結晶の回転速度を遅くしたので、シリコン単結晶とシリコン融液との固液界面の形状が平坦化した状態でシリコン単結晶が引上げられる。この結果、シリコン単結晶の回転速度を遅くしても、シリコン単結晶内の格子間酸素濃度を直胴部のほぼ全長にわたって低減することができる。   In the method for producing a silicon single crystal according to the fourth aspect of the present invention, a horizontal magnetic field is applied to the silicon melt, the rotational speed of the crucible is slowed down, and the rotational speed of the silicon single crystal is slowed down. The silicon single crystal is pulled up in a state where the shape of the solid-liquid interface with the silicon melt is flattened. As a result, even if the rotation speed of the silicon single crystal is decreased, the interstitial oxygen concentration in the silicon single crystal can be reduced over almost the entire length of the straight body portion.

本発明の第5の観点のシリコンウェーハの製造方法では、上記シリコン単結晶をスライスして得られたシリコンウェーハ内のCOPのサイズが100nm以下であり、その密度が3×106atoms/cm3以下であるため、このウェーハに所定の酸化熱処理を施すと、ウェーハの径方向及び厚さ方向の全域にわたってCOPを消滅させることができる。 In the silicon wafer manufacturing method according to the fifth aspect of the present invention, the size of the COP in the silicon wafer obtained by slicing the silicon single crystal is 100 nm or less, and the density is 3 × 10 6 atoms / cm 3. Therefore, if the wafer is subjected to a predetermined oxidation heat treatment, COP can be extinguished over the entire area in the radial direction and thickness direction of the wafer.

本発明実施形態のシリコン単結晶の製造方法に用いられる装置の縦断面構成図である。It is a longitudinal cross-section block diagram of the apparatus used for the manufacturing method of the silicon single crystal of embodiment of this invention. 左半分は冷却速度の速いホットゾーンで引上げたシリコン単結晶中に発生する結晶欠陥の生成挙動を示す模式図であり、右半分は無欠陥単結晶の引上げに適したホットゾーンで引上げたシリコン単結晶中に発生する結晶欠陥の生成挙動を示す模式図である。The left half is a schematic diagram showing the generation behavior of crystal defects generated in a silicon single crystal pulled in a hot zone with a fast cooling rate, and the right half is a silicon single crystal pulled in a hot zone suitable for pulling a defect-free single crystal. It is a schematic diagram which shows the production | generation behavior of the crystal defect which generate | occur | produces in a crystal | crystallization. 比較例2及び3のウェーハ内の光散乱体(COP)のサイズ及び密度の関係を示す図である。It is a figure which shows the relationship between the size and density of the light-scattering body (COP) in the wafer of the comparative examples 2 and 3. FIG. 比較例4及び実施例2のウェーハ内の光散乱体(COP)のサイズ及び密度の関係を示す図である。It is a figure which shows the relationship between the size and density of the light-scattering body (COP) in the wafer of the comparative example 4 and Example 2. FIG. 比較例2及び3のウェーハについて酸化熱処理を施す前後におけるGOIの歩留まりを示す図である。It is a figure which shows the yield of GOI before and behind performing the oxidation heat processing about the wafer of the comparative examples 2 and 3. FIG. 比較例4及び実施例2のウェーハについて酸化熱処理を施す前後におけるGOIの歩留まりを示す図である。It is a figure which shows the yield of GOI before and behind performing the oxidation heat processing about the wafer of the comparative example 4 and Example 2. FIG. 比較例5及び6のウェーハについて酸化熱処理を施す前後におけるGOIの歩留まりを示す図である。It is a figure which shows the yield of GOI before and behind performing the oxidation heat processing about the wafer of the comparative examples 5 and 6. FIG. 実施例3〜5のウェーハについて酸化熱処理を施す前後におけるGOIの歩留まりを示す図である。It is a figure which shows the yield of GOI before and behind performing the oxidation heat processing about the wafer of Examples 3-5. 無欠陥単結晶の引上げに適したホットゾーンで引上げた実施例6のシリコン単結晶に対して中性子照射を行う前後の抵抗率の面内分布を示す図である。It is a figure which shows the in-plane distribution of the resistivity before and behind performing neutron irradiation with respect to the silicon single crystal of Example 6 pulled in the hot zone suitable for pulling of a defect-free single crystal. 無欠陥単結晶の引上げに適したホットゾーンで引上げた実施例7のシリコン単結晶に対して中性子照射を行う前後の抵抗率の面内分布を示す図である。It is a figure which shows the in-plane distribution of the resistivity before and behind performing neutron irradiation with respect to the silicon single crystal of Example 7 pulled in the hot zone suitable for pulling of a defect-free single crystal. 無欠陥単結晶の引上げに適したホットゾーンでマルチプリング法により引上げた2本のシリコン単結晶(実施例8及び9)の引上げ率と格子間酸素濃度との関係を示す図である。It is a figure which shows the relationship between the pulling rate and the interstitial oxygen concentration of two silicon single crystals (Examples 8 and 9) pulled by the multiple pulling method in a hot zone suitable for pulling defect-free single crystals. るつぼの回転速度とシリコン単結晶の回転速度と格子間酸素濃度との関係を示す図である。It is a figure which shows the relationship between the rotational speed of a crucible, the rotational speed of a silicon single crystal, and interstitial oxygen concentration.

次に本発明を実施するための形態を図面に基づいて説明する。図1に示すように、シリコン単結晶11の引上げ装置は、内部を真空可能に構成されたメインチャンバ12と、このチャンバ12内の中央に設けられたるつぼ13とを備える。メインチャンバ12は円筒状の真空容器である。またるつぼ13は、石英により形成されシリコン融液15が貯留される有底円筒状の内層容器13aと、黒鉛により形成され上記内層容器13aの外側に嵌合された有底円筒状の外層容器13bとからなる。外層容器13bの底部にはシャフト14の上端が接続され、このシャフト14の下端にはシャフト14を介してるつぼ13を回転させかつ昇降させるるつぼ駆動手段16が設けられる。更にるつぼ13の外周面は円筒状のヒータ17によりるつぼ13の外周面から所定の間隔をあけて包囲され、このヒータ17の外周面は円筒状の保温筒18によりヒータ17の外周面から所定の間隔をあけて包囲される。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings. As shown in FIG. 1, the pulling device for the silicon single crystal 11 includes a main chamber 12 configured to be vacuumable inside, and a crucible 13 provided in the center of the chamber 12. The main chamber 12 is a cylindrical vacuum container. The crucible 13 includes a bottomed cylindrical inner layer container 13 a formed of quartz and storing the silicon melt 15, and a bottomed cylindrical outer layer container 13 b formed of graphite and fitted to the outside of the inner layer container 13 a. It consists of. The upper end of the shaft 14 is connected to the bottom of the outer layer container 13 b, and a crucible driving means 16 that rotates the crucible 13 through the shaft 14 and moves up and down is provided at the lower end of the shaft 14. Furthermore, the outer peripheral surface of the crucible 13 is surrounded by a cylindrical heater 17 at a predetermined interval from the outer peripheral surface of the crucible 13. Surrounded at intervals.

一方、メインチャンバ12の上端には、内部が連通するようにメインチャンバ12より小径の円筒状のプルチャンバ19が接続される。このプルチャンバ19の上端には引上げ回転手段20が設けられる。この引上げ回転手段20は、下端にシードチャック21が取付けられた引上げ軸22を昇降させるとともに、この引上げ軸22をその軸線を中心に回転させるように構成される。また上記シードチャック21には種結晶23が着脱可能に装着される。この種結晶23の下端をシリコン融液15中に浸漬した後、種結晶23を引上げ回転手段20により回転させかつ引上げるとともに、るつぼ13をるつぼ駆動手段16により回転させかつ上昇させることにより、種結晶23の下端からシリコン単結晶11を引上げて引上げるように構成される。   On the other hand, a cylindrical pull chamber 19 having a smaller diameter than the main chamber 12 is connected to the upper end of the main chamber 12 so as to communicate with the inside. A pulling rotation means 20 is provided at the upper end of the pull chamber 19. The pulling rotation means 20 is configured to move up and down a pulling shaft 22 having a seed chuck 21 attached to the lower end, and to rotate the pulling shaft 22 about its axis. A seed crystal 23 is detachably attached to the seed chuck 21. After immersing the lower end of the seed crystal 23 in the silicon melt 15, the seed crystal 23 is rotated and pulled up by the pulling and rotating means 20, and the crucible 13 is rotated and raised by the crucible driving means 16. The silicon single crystal 11 is pulled up and pulled up from the lower end of the crystal 23.

メインチャンバ12内にはアルゴンガス等の不活性ガスが流通される。プルチャンバ19の側壁にはガス供給パイプ24の一端が接続され、このガス供給パイプ24の他端は不活性ガスを貯留するタンク(図示せず)に接続される。またメインチャンバ12の下壁にはガス排出パイプ26の一端が接続され、このガス排出パイプ26の他端は真空ポンプ27の吸入口に接続される。タンク内の不活性ガスは、ガス供給パイプ24を通ってプルチャンバ19内に導入され、メインチャンバ12内を通った後、ガス排出パイプ26を通ってメインチャンバ12から排出されるように構成される。なお、ガス供給パイプ24及び排出パイプ26にはこれらのパイプを流れる不活性ガスの流量を調整する第1及び第2流量調整弁41,42がそれぞれ設けられる。   An inert gas such as argon gas is circulated in the main chamber 12. One end of a gas supply pipe 24 is connected to the side wall of the pull chamber 19, and the other end of the gas supply pipe 24 is connected to a tank (not shown) for storing an inert gas. One end of a gas discharge pipe 26 is connected to the lower wall of the main chamber 12, and the other end of the gas discharge pipe 26 is connected to the suction port of the vacuum pump 27. The inert gas in the tank is introduced into the pull chamber 19 through the gas supply pipe 24, passes through the main chamber 12, and is then discharged from the main chamber 12 through the gas discharge pipe 26. . The gas supply pipe 24 and the exhaust pipe 26 are provided with first and second flow rate adjusting valves 41 and 42 for adjusting the flow rate of the inert gas flowing through these pipes, respectively.

またメインチャンバ12内には、シリコン単結晶11外周面へのヒータ17の輻射熱の照射を遮るとともに、上記不活性ガスを整流するための熱遮蔽体28が設けられる。この熱遮蔽体28は、下方に向うに従って直径が次第に小さくなりかつシリコン融液15から引上げられるシリコン単結晶11の外周面をこの外周面から所定の間隔をあけて包囲する円錐台状の筒体28aと、この筒体28aの上縁に連設され外方に略水平方向に張り出すフランジ部28bとを有する。熱遮蔽体28は、フランジ部28bを保温筒18上にリング板28cを介して載置することにより、筒体28aの下縁がシリコン融液15表面から所定のギャップをあけて上方に位置するようにメインチャンバ12内に固定される。更にシリコン融液15には水平磁場29を印加しながらシリコン単結晶11を引上げるように構成される。この水平磁場29は、同一のコイル直径を有する第1及び第2コイル31,32を、るつぼ13の外周面から水平方向に所定の間隔をあけた外側方に、るつぼ13を中心として互いに対向するように配設し、これらのコイル31,32にそれぞれ同一向きの電流を流すことにより発生する。なお、図1中の符号51は、シリコン原料52をるつぼ13に供給するための原料供給管である。この原料供給管51は1つのるつぼ13から複数本のシリコン単結晶11を引上げるマルチプリング法に用いられる。   A heat shield 28 is provided in the main chamber 12 to block the irradiation of the radiant heat of the heater 17 to the outer peripheral surface of the silicon single crystal 11 and to rectify the inert gas. The heat shield 28 has a truncated cone-like cylinder that gradually decreases in diameter as it goes downward and surrounds the outer peripheral surface of the silicon single crystal 11 pulled up from the silicon melt 15 at a predetermined interval from the outer peripheral surface. 28a and a flange portion 28b that is connected to the upper edge of the cylindrical body 28a and projects outward in a substantially horizontal direction. In the heat shield 28, the flange portion 28b is placed on the heat retaining cylinder 18 via the ring plate 28c, so that the lower edge of the cylinder 28a is positioned above the surface of the silicon melt 15 with a predetermined gap. In this way, it is fixed in the main chamber 12. Further, the silicon melt 15 is configured to pull up the silicon single crystal 11 while applying a horizontal magnetic field 29. The horizontal magnetic field 29 causes the first and second coils 31 and 32 having the same coil diameter to face each other around the crucible 13 outward from the outer peripheral surface of the crucible 13 at a predetermined interval in the horizontal direction. It is generated by flowing currents in the same direction through these coils 31 and 32, respectively. Note that reference numeral 51 in FIG. 1 denotes a raw material supply pipe for supplying the silicon raw material 52 to the crucible 13. This raw material supply pipe 51 is used in a multiple pulling method for pulling a plurality of silicon single crystals 11 from one crucible 13.

このように構成された引上げ装置を用いてシリコン単結晶11を引上げる方法を説明する。先ず第1及び第2コイル31,32にそれぞれ同一向きの電流を流すことにより水平磁場29を発生させる。この水平磁場29の磁場強度はシリコン融液15表面とるつぼ13の中心軸との交点で測定され、その磁場強度が0.2T(テスラ)以上となるように、第1及び第2コイル31,32に流れる電流が制御される。ここで、磁場強度を0.2T以上に限定したのは、磁場強度が0.2T未満ではシリコン単結晶11への酸素の取込みを低減するという効果が薄れてしまうからである。但し、過度に磁場強度を高くすると、るつぼ13の内層容器13aの内表面の劣化を促進し単結晶11の有転位化を招くおそれがあるため、磁場強度を0.5T以下とすることが望ましい。なお、るつぼ13内のシリコン融液15には、P(リン)等のドーパントは添加されていない。   A method for pulling up the silicon single crystal 11 using the pulling apparatus configured as described above will be described. First, a horizontal magnetic field 29 is generated by applying currents in the same direction to the first and second coils 31 and 32, respectively. The magnetic field strength of the horizontal magnetic field 29 is measured at the intersection of the surface of the silicon melt 15 and the central axis of the crucible 13 so that the magnetic field strength is 0.2 T (Tesla) or more. The current flowing through 32 is controlled. Here, the reason why the magnetic field strength is limited to 0.2 T or more is that if the magnetic field strength is less than 0.2 T, the effect of reducing oxygen uptake into the silicon single crystal 11 is diminished. However, if the magnetic field strength is excessively increased, deterioration of the inner surface of the inner layer container 13a of the crucible 13 may be promoted and dislocation of the single crystal 11 may be caused. Therefore, the magnetic field strength is desirably 0.5 T or less. . Note that a dopant such as P (phosphorus) is not added to the silicon melt 15 in the crucible 13.

次に上記装置を用いて引上げるシリコン単結晶11の中心部が融点から1370℃までの温度域における単結晶11の引上げ軸方向の温度勾配のうち、単結晶11の中心部の温度勾配をGcとし、単結晶11の外周部の温度勾配をGeとするとき、Gc/Ge≧1という関係を満たす条件下でCOPが発生するようにシリコン単結晶11を引上げる。ここで、Gc/Ge≧1という関係を満たす条件下でCOPが発生するようにシリコン単結晶11を引上げるのは、COPのサイズが小さくかつその密度が低い単結晶11を得るためである。具体的には、単結晶11内のCOPのサイズが100nm以下、かつその密度が3×106atoms/cm3以下、好ましくは1×106atoms/cm3以下となるCOPの発生領域を含む単結晶11を引上げる。ここで、単結晶11内におけるCOPのサイズを100nm以下に限定したのは、このサイズよりもCOPサイズが大きい場合には高温の酸化熱処理を施してもCOPが消滅し難くなるからであり、単結晶11内におけるCOPの密度を3×106atoms/cm3以下に限定したのは、3×106atoms/cm3を超えるとそのCOP密度が多いため、酸化熱処理を施しても消滅されないCOP密度が増加してしまうからである。 Next, of the temperature gradient in the pulling axis direction of the single crystal 11 in the temperature range from the melting point to 1370 ° C. of the central portion of the silicon single crystal 11 pulled using the above apparatus, the temperature gradient of the central portion of the single crystal 11 is expressed as Gc. When the temperature gradient of the outer periphery of the single crystal 11 is Ge, the silicon single crystal 11 is pulled so that COP is generated under the condition satisfying the relationship of Gc / Ge ≧ 1. Here, the reason why the silicon single crystal 11 is pulled up so that COP is generated under a condition satisfying the relationship of Gc / Ge ≧ 1 is to obtain a single crystal 11 having a small COP size and a low density. Specifically, it includes a COP generation region in which the size of the COP in the single crystal 11 is 100 nm or less and the density thereof is 3 × 10 6 atoms / cm 3 or less, preferably 1 × 10 6 atoms / cm 3 or less. The single crystal 11 is pulled up. Here, the size of the COP in the single crystal 11 is limited to 100 nm or less because when the COP size is larger than this size, the COP is difficult to disappear even if a high-temperature oxidation heat treatment is performed. The reason why the density of COP in the crystal 11 is limited to 3 × 10 6 atoms / cm 3 or less is that it exceeds 3 × 10 6 atoms / cm 3 , because the COP density is large. This is because the density increases.

更にシリコン単結晶11の引上げ中におけるるつぼ13の回転速度を1.5rpm以下、好ましくは0.3rpm以下に設定し、引上げ中のシリコン単結晶11の回転速度を7rpm以下、好ましくは5rpm以下に設定する。ここで、るつぼ13の回転速度を1.5rpm以下に限定し、シリコン単結晶11の回転速度を7rpm以下に限定したのは、シリコン単結晶11の格子間酸素濃度を6×1017atoms/cm3以下に保つためである。なお、シリコン単結晶11の回転速度の下限は0.5rpm以上とすることが望ましく、これよりも遅い場合にはシリコン単結晶11に変形を生じる。上述のように、Gc/Ge≧1という関係を満たす条件とすることで、単結晶11とシリコン融液15との固液界面の形状が平坦化し、この状態でシリコン融液15に水平磁場29を印加し、るつぼ13の回転速度を遅くし、更に単結晶11の回転速度を遅くすることで、シリコン単結晶11内の格子間酸素濃度を低減できる。但し、上記条件でシリコン単結晶11を引上げても、るつぼ13内のシリコン融液15の残量が少なくなると、るつぼ13の石英製の内層容器13aへのシリコン融液15の接触面積がシリコン融液15の残量に対して相対的に増すため、シリコン単結晶11内の格子間酸素濃度は増大し、シリコン単結晶11の直胴部後半において、格子間酸素濃度を6×1017atoms/cm3を超える直胴部が育成されることになる。 Furthermore, the rotational speed of the crucible 13 during pulling of the silicon single crystal 11 is set to 1.5 rpm or less, preferably 0.3 rpm or less, and the rotational speed of the silicon single crystal 11 being pulled is set to 7 rpm or less, preferably 5 rpm or less. To do. Here, the rotational speed of the crucible 13 is limited to 1.5 rpm or less, and the rotational speed of the silicon single crystal 11 is limited to 7 rpm or less. The interstitial oxygen concentration of the silicon single crystal 11 is 6 × 10 17 atoms / cm 3. This is to keep it below 3 . Note that the lower limit of the rotation speed of the silicon single crystal 11 is desirably 0.5 rpm or more, and if it is slower than this, the silicon single crystal 11 is deformed. As described above, by satisfying the condition of Gc / Ge ≧ 1, the shape of the solid-liquid interface between the single crystal 11 and the silicon melt 15 is flattened, and in this state, the horizontal magnetic field 29 is applied to the silicon melt 15. Is applied, the rotational speed of the crucible 13 is decreased, and the rotational speed of the single crystal 11 is further decreased, whereby the interstitial oxygen concentration in the silicon single crystal 11 can be reduced. However, even if the silicon single crystal 11 is pulled up under the above conditions, when the remaining amount of the silicon melt 15 in the crucible 13 decreases, the contact area of the silicon melt 15 with the quartz inner layer container 13a of the crucible 13 becomes the silicon melt. The interstitial oxygen concentration in the silicon single crystal 11 increases relative to the remaining amount of the liquid 15, and the interstitial oxygen concentration is 6 × 10 17 atoms / A straight body part exceeding cm 3 will be nurtured.

このため、マルチプリング法により1つのるつぼ13から複数本のシリコン単結晶11を引上げることが有効となる。即ち、シリコン単結晶11内の格子間酸素濃度が6.0×1017atoms/cm3を超えない範囲、好ましくは4×1017atoms/cm3を越えない範囲でシリコン単結晶11の引上げを完了させ、メインチャンバ12内を含む炉内を真空に保った状態で、シリコン単結晶11を取出し、シリコン原料52を原料供給管51からるつぼ13に供給して溶融させ、このるつぼ13内のシリコン融液15から新たにシリコン単結晶11を引上げる。このマルチプリング法による引上げでは、引上げるシリコン単結晶11内の格子間酸素濃度を6.0×1017atoms/cm3以下、好ましくは4×1017atoms/cm3以下となるように、引上げるシリコン単結晶11の直胴部のトップからボトムまでの長さを予め設定しておく。例えば、最初のシリコン単結晶11を引上げる前又は1本のシリコン単結晶11を引上げた後に、シリコン原料52をるつぼ13に供給して溶融されたシリコン融液15を全てシリコン単結晶11として引上げたときの引上げ率を100%とするとき、引上げ率が60〜80%となったときにシリコン単結晶11の引上げを完了するように設定する。そして、この予め設定した引上げ率までシリコン単結晶11を引上げた後、引上げ装置に設けられた原料供給管51からるつぼ13内にシリコン原料52を供給して溶融させ、再び種結晶23をシリコン融液15中に浸漬させてるつぼ13から新たにシリコン単結晶11を引上げることにより、複数本のシリコン単結晶11を引上げる。この結果、複数本のシリコン単結晶11の直胴部のほぼ全長にわたって、格子間酸素濃度を低減できる。なお、本明細書におけるシリコン単結晶11内の格子間酸素濃度は、ASTM F−121(1979)に規格されたフーリエ変換赤外分光光度法による測定値である。ここで、単結晶11内の格子間酸素濃度を6×1017atoms/cm3以下に限定したのは、6×1017atoms/cm3を超えると単結晶11内に酸素析出物が形成されて再結合ライフタイムが低下したり、酸素ドナー形成による抵抗率の変動を生じるという不具合があり、更に酸化熱処理によってCOPを消滅することが困難となるからである。 For this reason, it is effective to pull a plurality of silicon single crystals 11 from one crucible 13 by a multiple pulling method. That is, the silicon single crystal 11 is pulled in a range where the interstitial oxygen concentration in the silicon single crystal 11 does not exceed 6.0 × 10 17 atoms / cm 3 , and preferably does not exceed 4 × 10 17 atoms / cm 3. The silicon single crystal 11 is taken out in a state where the inside of the furnace including the inside of the main chamber 12 is kept in vacuum, and the silicon raw material 52 is supplied from the raw material supply pipe 51 to the crucible 13 to be melted. The silicon single crystal 11 is newly pulled from the melt 15. In the pulling by this multiple pulling method, the interstitial oxygen concentration in the silicon single crystal 11 to be pulled is 6.0 × 10 17 atoms / cm 3 or less, preferably 4 × 10 17 atoms / cm 3 or less. The length from the top to the bottom of the straight body portion of the silicon single crystal 11 to be raised is set in advance. For example, before pulling up the first silicon single crystal 11 or after pulling up one silicon single crystal 11, the silicon raw material 52 is supplied to the crucible 13 and all the melted silicon melt 15 is pulled up as the silicon single crystal 11. When the pulling rate is set to 100%, the pulling of the silicon single crystal 11 is set to be completed when the pulling rate reaches 60 to 80%. Then, after pulling up the silicon single crystal 11 to the preset pulling rate, the silicon raw material 52 is supplied into the crucible 13 from the raw material supply pipe 51 provided in the pulling device and melted, and the seed crystal 23 is melted again with the silicon melt. By newly pulling up the silicon single crystal 11 from the crucible 13 immersed in the liquid 15, a plurality of silicon single crystals 11 are pulled up. As a result, the interstitial oxygen concentration can be reduced over substantially the entire length of the straight body portion of the plurality of silicon single crystals 11. In addition, the interstitial oxygen concentration in the silicon single crystal 11 in this specification is a value measured by Fourier transform infrared spectrophotometry standardized by ASTM F-121 (1979). Here, the interstitial oxygen concentration in the single crystal 11 is limited to 6 × 10 17 atoms / cm 3 or less because if it exceeds 6 × 10 17 atoms / cm 3 , oxygen precipitates are formed in the single crystal 11. This is because there is a problem that the recombination lifetime is reduced or the resistivity varies due to the formation of oxygen donors, and it becomes difficult to eliminate COP by oxidation heat treatment.

このように引上げられたシリコン単結晶11に中性子ドーピング法により中性子を照射する。中性子ドーピング法は、シリコン単結晶11中に約3%存在する30Siを核反応により31Pに変換する反応を利用して、高純度のシリコン単結晶11にリンをドープ(添加)することにより、シリコン単結晶11を半導体化する方法である。シリコン単結晶11に上記中性子ドーピング法を用いて中性子を照射し原子核転換することにより、シリコン原子の一部をリン原子に転換させる。この結果、シリコン単結晶11にリンが均一にドープされるので、径方向の面内抵抗率が全長にわたって均一なシリコン単結晶11が得られる。即ち、シリコン単結晶11の径方向の面内抵抗率のバラツキを5%以下、好ましくは4%以下とすることができる。ここで、シリコン単結晶11の径方向の面内抵抗率のバラツキを5%以下に限定したのは、IGBTの品質を安定にすることができ、デバイス工程における歩留まりを向上させるためである。 The silicon single crystal 11 thus pulled up is irradiated with neutrons by neutron doping. In the neutron doping method, phosphorus is doped (added) into high-purity silicon single crystal 11 using a reaction that converts 30 Si present in silicon single crystal 11 into 31 P by nuclear reaction. In this method, the silicon single crystal 11 is made into a semiconductor. By irradiating the silicon single crystal 11 with neutrons using the above neutron doping method to convert the nuclei, some silicon atoms are converted into phosphorus atoms. As a result, since the silicon single crystal 11 is uniformly doped with phosphorus, the silicon single crystal 11 having a uniform radial in-plane resistivity over the entire length can be obtained. That is, the variation of the in-plane resistivity in the radial direction of the silicon single crystal 11 can be 5% or less, preferably 4% or less. The reason why the variation in the in-plane resistivity in the radial direction of the silicon single crystal 11 is limited to 5% or less is that the quality of the IGBT can be stabilized and the yield in the device process is improved.

上記シリコン単結晶11をスライスして得られたシリコンウェーハについて、酸素ガス雰囲気中で1100〜1300℃、好ましくは1150〜1200℃の範囲内の所定の温度まで加熱し、この所定の温度に2〜5時間、好ましくは3〜4℃保持する熱処理を施す。これによりウェーハの径方向及び厚さ方向の全域にわたってCOPを消滅させることができる。ここで、熱処理の保持温度1100〜1300℃の範囲内に限定したのは、1100℃未満ではCOPが消滅し難くなり、1300℃を超えるとウェーハに与える熱負荷が大きくなり過ぎてウェーハにスリップ転位などが発生してしまうからである。更に上記熱処理の保持時間を2〜5時間の範囲内に限定したのは、2時間未満ではCOPを十分に消滅させることができず、5時間を超えて熱処理を行ってもCOP消滅効果はさほど変わらないからである。   The silicon wafer obtained by slicing the silicon single crystal 11 is heated to a predetermined temperature in the range of 1100 to 1300 ° C., preferably 1150 to 1200 ° C. in an oxygen gas atmosphere. Heat treatment is performed for 5 hours, preferably 3 to 4 ° C. As a result, the COP can be eliminated over the entire area in the radial direction and the thickness direction of the wafer. Here, the heat treatment holding temperature is limited to the range of 1100 to 1300 ° C. The COP is difficult to disappear when the temperature is lower than 1100 ° C., and the thermal load applied to the wafer becomes excessive when the temperature exceeds 1300 ° C. This is because of this. Furthermore, the holding time of the heat treatment is limited to the range of 2 to 5 hours because the COP cannot be sufficiently eliminated in less than 2 hours, and even if the heat treatment is carried out for more than 5 hours, the COP disappearance effect is not so much. Because it doesn't change.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
図1に示す引上げ装置を用いて引上げるシリコン単結晶11の中心部が融点から1370℃までの温度域における単結晶11の引上げ軸方向の温度勾配のうち、単結晶11の中心部の温度勾配をGcとし、単結晶11の外周部の温度勾配をGeとするとき、Gc/Ge=1.2という関係を満たす条件下で、即ち図2のホットゾーンBで、引上げ速度を徐々に低下させて単結晶11を引上げた。ここで、るつぼ13内のシリコン融液15に0.3Tの水平磁場を印加して、格子間酸素濃度が13×1017atoms/cm3であるシリコン単結晶と、格子間酸素濃度が3×1017atoms/cm3であるシリコン単結晶を引上げた。上記格子間酸素濃度は、ASTM F−121(1979)に規格されたフーリエ変換赤外分光光度法に準じて測定した。なお、シリコン融液にはリン等のドーパントは添加せず、引上げ完了後にシリコン単結晶11に重水炉を用いて中性子を照射した。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
Of the temperature gradient in the pulling axis direction of the single crystal 11 in the temperature range from the melting point to 1370 ° C. of the center portion of the silicon single crystal 11 pulled using the pulling apparatus shown in FIG. Is Gc and the temperature gradient of the outer periphery of the single crystal 11 is Ge, the pulling speed is gradually decreased under the condition satisfying the relationship of Gc / Ge = 1.2, that is, in the hot zone B of FIG. The single crystal 11 was pulled up. Here, by applying a horizontal magnetic field of 0.3 T to the silicon melt 15 in the crucible 13, a silicon single crystal having an interstitial oxygen concentration of 13 × 10 17 atoms / cm 3 and an interstitial oxygen concentration of 3 × A silicon single crystal of 10 17 atoms / cm 3 was pulled. The interstitial oxygen concentration was measured according to the Fourier transform infrared spectrophotometry standardized by ASTM F-121 (1979). Note that no dopant such as phosphorus was added to the silicon melt, and the neutrons were irradiated to the silicon single crystal 11 using a heavy water reactor after the completion of the pulling.

一方、単結晶内の欠陥分布を調べるためには、OSFリングの発生分布を確認する必要がある。そこで、OSFリングの発生分布を確認するために、故意に酸素濃度の高いシリコン単結晶(酸素濃度:13×1017atoms/cm3)も引上げた。この結果に基づき酸素濃度の低いシリコン単結晶(酸素濃度:3×1017atoms/cm3)の欠陥分布を推定した。この場合、酸素濃度が異なるだけでその他の仕様は同一とした。具体的には、単結晶の直径を210mmとし、結晶方位を<100>とし、単結晶の直胴部の長さを1700mmとした。更に単結晶の引上げ速度をいくら速くしても、OSFリングの発生領域は単結晶の最外周部より外に排除する(消滅させる)ことができない。このため、単結晶の最外周部にOSFリングの発生領域が存在することになるけれども、このOSFリング領域はその後の単結晶の丸め加工、即ち単結晶の直径が210mmから200mmになるように単結晶の外周面を切削することにより排除される。このため、引上げる実際の単結晶の直径を目標直径よりも大きいものとした。 On the other hand, in order to investigate the defect distribution in the single crystal, it is necessary to confirm the generation distribution of the OSF ring. Therefore, in order to confirm the generation distribution of the OSF ring, a silicon single crystal having a high oxygen concentration (oxygen concentration: 13 × 10 17 atoms / cm 3 ) was intentionally raised. The results based on the oxygen concentration of low silicon single crystal: to estimate the defect distribution (oxygen concentration 3 × 10 17 atoms / cm 3 ). In this case, the other specifications were the same except that the oxygen concentration was different. Specifically, the diameter of the single crystal was 210 mm, the crystal orientation was <100>, and the length of the straight body of the single crystal was 1700 mm. Further, no matter how fast the pulling rate of the single crystal is, the OSF ring generation region cannot be excluded (disappeared) outside the outermost peripheral portion of the single crystal. For this reason, although an OSF ring generation region exists in the outermost peripheral portion of the single crystal, the OSF ring region is formed in the single crystal so that the subsequent single crystal is rounded, that is, the diameter of the single crystal is 210 mm to 200 mm. It is eliminated by cutting the outer peripheral surface of the crystal. For this reason, the diameter of the actual single crystal pulled up was made larger than the target diameter.

<比較例1>
引上げる単結晶の中心部が融点から1370℃までの温度域の冷却が促進されるように、炉内の構造部品(断熱材や熱遮蔽体等)の配設位置や構造を調整したホットゾーン、即ちGc<Geの関係、具体的にはGc/Ge=0.98という関係を満たす図2のホットゾーンAを有するシリコン単結晶の引上げ装置(図示せず)を用いたこと以外は、実施例1と同一条件でシリコン単結晶を引上げた。
<Comparative Example 1>
A hot zone that adjusts the location and structure of the structural components (heat insulation, thermal shield, etc.) in the furnace so that the center of the single crystal to be pulled is accelerated in the temperature range from the melting point to 1370 ° C. That is, except that a silicon single crystal pulling apparatus (not shown) having the hot zone A of FIG. 2 satisfying the relationship of Gc <Ge, specifically, the relationship of Gc / Ge = 0.98 is used. A silicon single crystal was pulled under the same conditions as in Example 1.

<比較試験1及び評価>
実施例1及び比較例1の装置により引上げかつ中性子を照射したシリコン単結晶のうち酸素濃度が13×1017atoms/cm3である高酸素濃度の単結晶を縦割りにして、評価用サンプルをそれぞれ作製した。そしてこれらの評価用サンプルについて酸素析出物を評価するための熱処理を施した。具体的には、評価用サンプルを酸化雰囲気中で800℃に4時間保持した後に、1000℃に16時間保持する熱処理を行った。次に熱処理後の評価用サンプルの表面に銅デコレーション法により欠陥を顕在化させた。具体的には、評価用サンプル表面を銅で汚染し、1000℃に1時間保持する熱処理を行って、銅を評価用サンプル中に拡散させた後に、評価用サンプルを急冷することにより、評価用サンプルの表面の欠陥を顕在化させた。更に急冷後の評価用サンプルをライト液で選択エッチングを行い、評価用サンプル表面に現れたピットを光学顕微鏡で観察した。その結果を図2に示す。
<Comparative test 1 and evaluation>
Samples for evaluation were prepared by vertically slicing a single crystal having a high oxygen concentration of 13 × 10 17 atoms / cm 3 among silicon single crystals that were pulled up by the apparatus of Example 1 and Comparative Example 1 and irradiated with neutrons. Each was produced. These samples for evaluation were subjected to heat treatment for evaluating oxygen precipitates. Specifically, after the sample for evaluation was held at 800 ° C. for 4 hours in an oxidizing atmosphere, a heat treatment was performed for 16 hours at 1000 ° C. Next, defects were made obvious on the surface of the evaluation sample after the heat treatment by a copper decoration method. Specifically, the evaluation sample surface is contaminated with copper, heat-treated at 1000 ° C. for 1 hour, copper is diffused in the evaluation sample, and then the evaluation sample is rapidly cooled to evaluate the sample. Sample surface defects were revealed. Further, the sample for evaluation after quenching was selectively etched with a light solution, and pits appearing on the surface of the sample for evaluation were observed with an optical microscope. The result is shown in FIG.

図2から明らかなように、実施例1のホットゾーンBでは図2の右側に示すようなOSFリングがV/Gが小さくなったときに中心部に向けて急激に縮小するような略U字状になり、比較例1のホットゾーンAでは図2の左側に示すようなOSFリングがV/Gが小さくなるに従って中心部に向けて徐々に縮小するような略V字状になることを確認できた。また、実施例1のホットゾーンBと、比較例1のホットゾーンAでは、COP領域におけるCOPのサイズ及び密度の分布が大きく異なり、比較例1のホットゾーンAの評価用サンプルでは、引上げ速度が速くなるほどCOPのサイズは小さくなるけれども、COPの密度が高くなるのに対し、実施例1のホットゾーンBの評価用サンプルでは、引上げ速度が遅いほどCOPのサイズが小さくなるとともに、COPの密度も減少する傾向があることが判明した。   As apparent from FIG. 2, in the hot zone B of the first embodiment, the OSF ring as shown on the right side of FIG. 2 is substantially U-shaped so as to rapidly shrink toward the center when V / G decreases. In the hot zone A of Comparative Example 1, it is confirmed that the OSF ring as shown on the left side of FIG. 2 is substantially V-shaped so that it gradually decreases toward the center as V / G decreases. did it. In addition, the distribution of COP size and density in the COP region is greatly different between the hot zone B of Example 1 and the hot zone A of Comparative Example 1. In the sample for evaluation of the hot zone A of Comparative Example 1, the pulling rate is high. Although the COP size decreases as the speed increases, the COP density increases. On the other hand, in the sample for evaluation in the hot zone B of Example 1, the COP size decreases and the COP density decreases as the pulling speed decreases. It turns out that there is a tendency to decrease.

<実施例2>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-2]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを実施例2とした。なお、[B-2]領域はOSFリングに近接したCOPの発生領域(引上げ速度が遅い条件)であることを意味する。
<Example 2>
In the above comparative test 1, a single crystal (13 × 10 17 atoms / cm 3 ) having a high oxygen concentration is vertically divided to reveal defects on the evaluation sample surface. The wafer was cut out from a portion of the silicon single crystal (3 × 10 17 atoms / cm 3 ) corresponding to the −2] region having a low oxygen concentration. This wafer was referred to as Example 2. Note that the [B-2] region is a COP generation region close to the OSF ring (a condition where the pulling speed is low).

<比較例2>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の左側のホットゾーンAにおける[A-1]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを比較例2とした。なお、[A-1]領域はOSFリングから離れたCOPの発生領域(引上げ速度が速い条件)であることを意味する。
<Comparative example 2>
[A in the hot zone A on the left side of FIG. 2 obtained by vertically dividing a single crystal (13 × 10 17 atoms / cm 3 ) having a high oxygen concentration in the comparative test 1 to reveal defects on the evaluation sample surface. -1] region, a wafer was cut out from a portion of a silicon single crystal (3 × 10 17 atoms / cm 3 ) having a low oxygen concentration. This wafer was designated as Comparative Example 2. Note that the [A-1] region means a COP generation region (a condition where the pulling speed is high) far from the OSF ring.

<比較例3>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の左側のホットゾーンAにおける[A-2]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを比較例3とした。なお、[A-2]領域はOSFリングに近接したCOPの発生領域(引上げ速度が遅い条件)であることを意味する。
<Comparative Example 3>
[A in the hot zone A on the left side of FIG. 2 obtained by vertically dividing a single crystal (13 × 10 17 atoms / cm 3 ) having a high oxygen concentration in the comparative test 1 to reveal defects on the evaluation sample surface. The wafer was cut out from a portion of the silicon single crystal (3 × 10 17 atoms / cm 3 ) corresponding to the −2] region having a low oxygen concentration. This wafer was designated as Comparative Example 3. Note that the [A-2] region means a COP generation region close to the OSF ring (a slow pulling speed condition).

<比較例4>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-1]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを比較例4とした。なお、[B-1]領域はOSFリングから離れたCOPの発生領域(引上げ速度が速い条件)であることを意味する。
<Comparative example 4>
In the above comparative test 1, a single crystal (13 × 10 17 atoms / cm 3 ) having a high oxygen concentration is vertically divided to reveal defects on the evaluation sample surface. -1] region, a wafer was cut out from a portion of a silicon single crystal (3 × 10 17 atoms / cm 3 ) having a low oxygen concentration. This wafer was designated as Comparative Example 4. Note that the [B-1] region means a COP generation region (a condition where the pulling speed is high) far from the OSF ring.

<比較試験2及び評価>
実施例2及び比較例2〜4のウェーハ内のCOPのサイズ及び密度を測定した。具体的には、各ウェーハについて、赤外散乱トモグラフ(三井金属社製:MO441)を用いてCOPのサイズ及び密度の分布をそれぞれ測定した。その結果を図3及び図4に示す。なお、COPは赤外散乱トモグラフにより光散乱体として測定された。即ち、図3及び図4の縦軸の光散乱体の密度はCOPの密度を意味する。
<Comparative test 2 and evaluation>
The size and density of the COP in the wafers of Example 2 and Comparative Examples 2 to 4 were measured. Specifically, COP size and density distributions were measured for each wafer using an infrared scattering tomograph (Mitsui Metals Co., Ltd .: MO441). The results are shown in FIGS. COP was measured as a light scatterer by infrared scattering tomograph. That is, the density of the light scatterer on the vertical axis in FIGS. 3 and 4 means the density of the COP.

図3から明らかなように、比較例2のウェーハ(引上げ速度が速い条件で引上げられた[A-1]領域のウェーハ)では、COPのサイズが小さいけれどもその密度が高かった。また比較例3のウェーハ(引上げ速度が遅い条件で引上げられた[A-2]領域のウェーハ)では、COPの密度が低いけれどもそのサイズが大きかった。更に比較例2のウェーハは比較例3のウェーハに比べてCOPのサイズが小さいけれどもそのサイズが100nmを超えるものが半数以上あった。一方、図4から明らかなように、比較例4のウェーハ(引上げ速度が速い条件で引上げられた[B-1]領域のウェーハ)では、COPの密度は小さかったけれども、そのサイズが大きかったのに対し、実施例2のウェーハ(引上げ速度が遅い条件で引上げられた[B-2]領域のウェーハ)では、COPのサイズが小さく100nmを超えるものが存在せず、かつその密度も3×106atoms/cm3以下であった。 As is apparent from FIG. 3, the wafer of Comparative Example 2 (the wafer in the [A-1] region pulled up under a high pulling speed condition) had a high density even though the COP size was small. Further, the wafer of Comparative Example 3 (the wafer in the [A-2] region pulled under a slow pulling speed condition) had a large COP density but a large size. Furthermore, although the wafer of Comparative Example 2 has a smaller COP size than the wafer of Comparative Example 3, more than half of the wafers have a size exceeding 100 nm. On the other hand, as is apparent from FIG. 4, the wafer of Comparative Example 4 (the wafer in the [B-1] region pulled under a high pulling speed condition) had a small COP density but a large size. On the other hand, in the wafer of Example 2 (wafer in the [B-2] region pulled up under a slow pulling speed condition), there is no COP size smaller than 100 nm, and its density is also 3 × 10. It was 6 atoms / cm 3 or less.

<比較試験3及び評価>
実施例1及び比較例1の引上げ装置を用いてシリコン単結晶を引上げるときのV/G範囲について調査した。具体的には、実施例2の[B-2]領域が得られる条件、即ちCOPのサイズが100nm以下であって、その密度が3×106atoms/cm3以下である結晶領域が得られるV/G[mm2/(分・℃)]範囲を調査した。ここで、Vは引上げ速度(mm/分)であり、Gは固液界面近傍の引上げ軸方向の温度勾配(℃/mm)である。その結果、実施例2の[B-2]領域が得られるV/Gは0.23〜0.33[mm2/(分・℃)]の範囲であった。このV/Gの範囲はコンピュータを用いた伝熱計算により求めた。なお、図2の破線で囲む領域は、実施例2の[B-2]領域と同等のCOP特性、即ちCOPのサイズが100nm以下であり、その密度3×106atoms/cm3以下である結晶領域の範囲を模式的に示したものである。一方、図2の二点鎖線で囲む領域は、比較例4の[B-1]領域と同等のCOP特性、即ちCOPのサイズが100nm以下であるけれども、その密度が3×106atoms/cm3以下であることを満たさない結晶領域の範囲を模式的に示したものである。
<Comparative test 3 and evaluation>
Using the pulling apparatus of Example 1 and Comparative Example 1, the V / G range when pulling a silicon single crystal was investigated. Specifically, a condition for obtaining the [B-2] region of Example 2, that is, a crystal region having a COP size of 100 nm or less and a density of 3 × 10 6 atoms / cm 3 or less is obtained. The V / G [mm 2 / (min · ° C.)] range was investigated. Here, V is the pulling speed (mm / min), and G is the temperature gradient (° C./mm) in the pulling axis direction near the solid-liquid interface. As a result, V / G at which the [B-2] region of Example 2 was obtained was in the range of 0.23 to 0.33 [mm 2 / (min · ° C.)]. The range of V / G was obtained by heat transfer calculation using a computer. The area surrounded by the broken line in FIG. 2 has the same COP characteristics as the [B-2] area of Example 2, that is, the COP size is 100 nm or less, and its density is 3 × 10 6 atoms / cm 3 or less. The range of the crystal region is schematically shown. On the other hand, the region surrounded by the two-dot chain line in FIG. 2 has the same COP characteristics as the [B-1] region of Comparative Example 4, that is, the COP size is 100 nm or less, but the density is 3 × 10 6 atoms / cm 3. The range of the crystal region that does not satisfy the condition of 3 or less is schematically shown.

<比較試験4及び評価>
実施例2及び比較例2〜4のウェーハについて、酸素ガス100%の雰囲気中で1100℃の温度に4時間保持する酸化熱処理を施した。この酸化熱処理の前後におけるGOIの歩留まりをTZDB(Time Zero Dielectric Breakdown:瞬時絶縁破壊)法により求めた。GOIの歩留まりは、シリコンウェーハ上にゲート酸化膜(酸化膜)と電極を形成してMOS(Metal Oxide Semiconductor)構造を作製した後、電極に電圧を印加しゲート酸化膜を破壊させて、ブレイクダウン電圧を測定することにより求めた。ここで、ゲート酸化膜の絶縁破壊はウェーハの欠陥部分で生じた。なお、TZDB法による具体的なゲート酸化膜の耐圧の測定は次のようにして行った。先ずウェーハ表面上に厚さ25nmのゲート酸化膜(SiO2)を形成した。次にこのゲート酸化膜上にゲート電極面積10mm2のポリシリコン電極を形成した。更にウェーハとポリシリコン電極との間にステップ電圧印加法により電圧を印加し、最終的に判定電界強度11MV/cmの電圧を印加した。測定温度は室温(25℃)とした。その結果を図5及び図6に示す。
<Comparative test 4 and evaluation>
About the wafer of Example 2 and Comparative Examples 2-4, the oxidation heat processing hold | maintained at the temperature of 1100 degreeC in the atmosphere of 100% oxygen gas for 4 hours was performed. The yield of GOI before and after this oxidation heat treatment was determined by a TZDB (Time Zero Dielectric Breakdown) method. The yield of GOI is broken down by forming a gate oxide film (oxide film) and electrode on a silicon wafer to produce a MOS (Metal Oxide Semiconductor) structure, and then applying a voltage to the electrode to destroy the gate oxide film. It was determined by measuring the voltage. Here, the dielectric breakdown of the gate oxide film occurred at the defective portion of the wafer. The specific measurement of the breakdown voltage of the gate oxide film by the TZDB method was performed as follows. First, a gate oxide film (SiO 2 ) having a thickness of 25 nm was formed on the wafer surface. Next, a polysilicon electrode having a gate electrode area of 10 mm 2 was formed on the gate oxide film. Further, a voltage was applied between the wafer and the polysilicon electrode by a step voltage application method, and finally a voltage having a judgment electric field strength of 11 MV / cm was applied. The measurement temperature was room temperature (25 ° C.). The results are shown in FIGS.

図5及び図6から明らかなように、比較例2〜4のウェーハでは、酸化熱処理によりGOI歩留まりは多少向上したけれども、いずれも酸化熱処理後のGOI歩留まりは80%程度であったのに対し、実施例2のウェーハでは、GOI歩留まりが100%に向上した。また赤外散乱トモグラフ(三井金属社製:MO441)を用いて、酸化熱処理後の比較例4及び実施例2のウェーハについてCOPの発生状況を確認したところ、比較例4のウェーハにはCOPが観察されたけれども、実施例2のウェーハにはCOPは観察されなかった。   As apparent from FIGS. 5 and 6, in the wafers of Comparative Examples 2 to 4, although the GOI yield was slightly improved by the oxidation heat treatment, the GOI yield after the oxidation heat treatment was about 80% in all cases, In the wafer of Example 2, the GOI yield was improved to 100%. In addition, using an infrared scattering tomograph (manufactured by Mitsui Kinzoku Co., Ltd .: MO441), the occurrence of COP was confirmed for the wafers of Comparative Example 4 and Example 2 after the oxidation heat treatment. However, no COP was observed on the wafer of Example 2.

<実施例3>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-2-1]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを実施例3とした。なお、[B-2-1]領域は単結晶の径方向の中央から外周に向ってCOPの発生領域、OSFリング及び無欠陥領域がこの順に存在することを意味する。
<実施例4>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-2-2]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを実施例4とした。なお、[B-2-2]領域は単結晶の径方向の中央にCOPの発生領域が存在し、径方向の外周部にOSFリングが存在することを意味する。
<実施例5>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-2-3]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを実施例5とした。なお、[B-2-3]領域は単結晶の径方向の全面にCOP領域が存在することを意味する。
<Example 3>
In the above comparative test 1, a single crystal (13 × 10 17 atoms / cm 3 ) having a high oxygen concentration is vertically divided to reveal defects on the evaluation sample surface. A wafer was cut out from a portion of a silicon single crystal (3 × 10 17 atoms / cm 3 ) corresponding to the −2-1] region and having a low oxygen concentration. This wafer was referred to as Example 3. The [B-2-1] region means that a COP generation region, an OSF ring, and a defect-free region exist in this order from the center in the radial direction of the single crystal toward the outer periphery.
<Example 4>
In the above comparative test 1, a single crystal (13 × 10 17 atoms / cm 3 ) having a high oxygen concentration is vertically divided to reveal defects on the evaluation sample surface. The wafer was cut out from a portion of a silicon single crystal having a low oxygen concentration (3 × 10 17 atoms / cm 3 ) corresponding to the −2-2] region. This wafer was referred to as Example 4. The [B-2-2] region means that a COP generation region exists in the center of the single crystal in the radial direction, and an OSF ring exists in the outer peripheral portion in the radial direction.
<Example 5>
In the above comparative test 1, a single crystal (13 × 10 17 atoms / cm 3 ) having a high oxygen concentration is vertically divided to reveal defects on the evaluation sample surface. A wafer was cut out from a portion of a silicon single crystal having a low oxygen concentration (3 × 10 17 atoms / cm 3 ) corresponding to the -2-3] region. This wafer was referred to as Example 5. The [B-2-3] region means that a COP region is present on the entire surface in the radial direction of the single crystal.

<比較例5>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-1-1]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを比較例5とした。なお、[B-1-1]領域は[B-1]領域のうち引上げ速度の速い側のCOPの発生領域(COP密度が3×106atoms/cm3を超える領域)であることを意味する。
<比較例6>
上記比較試験1で酸素濃度の高い単結晶(13×1017atoms/cm3)を縦割りにし評価用サンプル表面の欠陥を顕在化させて得られた図2の右側のホットゾーンBにおける[B-1-2]領域に対応する、酸素濃度の低いシリコン単結晶(3×1017atoms/cm3)の部位からウェーハを切り出した。このウェーハを比較例6とした。なお、[B-1-2]領域は[B-1]領域のうち引上げ速度の遅い側のCOPの発生領域([B-2]領域に近い側の領域)であることを意味する。
<Comparative Example 5>
In the above comparative test 1, a single crystal (13 × 10 17 atoms / cm 3 ) having a high oxygen concentration is vertically divided to reveal defects on the evaluation sample surface. A wafer was cut out from a portion of a silicon single crystal having a low oxygen concentration (3 × 10 17 atoms / cm 3 ) corresponding to the −1-1] region. This wafer was designated as Comparative Example 5. Note that the [B-1-1] region is a COP generation region (region where the COP density exceeds 3 × 10 6 atoms / cm 3 ) on the faster pulling speed side of the [B-1] region. To do.
<Comparative Example 6>
In the above comparative test 1, a single crystal (13 × 10 17 atoms / cm 3 ) having a high oxygen concentration is vertically divided to reveal defects on the evaluation sample surface. The wafer was cut out from a portion of a silicon single crystal having a low oxygen concentration (3 × 10 17 atoms / cm 3 ) corresponding to the −1-2] region. This wafer was designated as Comparative Example 6. Note that the [B-1-2] region means a COP generation region (region closer to the [B-2] region) on the slow pulling speed side in the [B-1] region.

<比較試験5及び評価>
実施例3〜5と比較例5及び6のウェーハについても上記比較試験4と同様にしてGOIの歩留まりを求めた。この比較試験5は各結晶領域の有効性を更に検証するために行った。その結果を図7及び図8に示す。図7から明らかなように、比較例5及び6では、いずれも酸化熱処理後のGOIの歩留まりが80%程度と低かったのに対し、実施例3〜5のウェーハでは、いずれも酸化熱処理後のGOIの歩留まりが100%まで向上した。また赤外散乱トモグラフ(三井金属社製:MO441)を用いて、酸化熱処理後の実施例3〜5のウェーハについてCOPの発生状況を確認したところ、いずれもCOPは観察されなかった。
<Comparative test 5 and evaluation>
For the wafers of Examples 3 to 5 and Comparative Examples 5 and 6, the GOI yield was determined in the same manner as in Comparative Test 4 above. This comparative test 5 was conducted to further verify the effectiveness of each crystal region. The results are shown in FIGS. As is clear from FIG. 7, in Comparative Examples 5 and 6, the GOI yield after the oxidation heat treatment was as low as about 80%, whereas in the wafers of Examples 3 to 5, both were after the oxidation heat treatment. GOI yield improved to 100%. Moreover, when the generation | occurrence | production state of COP was confirmed about the wafer of Examples 3-5 after oxidation heat processing using the infrared-scattering tomograph (Mitsui Metals make: MO441), all COP was not observed.

<実施例6及び7>
実施例2のウェーハを作製したときのV/Gの条件で、シリコン単結晶を引上げた後、このシリコン単結晶に中性子照射を行った。そしてこのシリコン単結晶の直胴部のトップ及びボトムをスライスして2枚のウェーハを作製した後に、これらのウェーハを酸化雰囲気中で1000℃に10分間保持した。直胴部のトップをスライスして得られたウェーハを実施例6とし、直胴部のボトムをスライスして得られたウェーハを実施例7とした。なお、V/Gを一定としたこと以外は、実施例1の装置を用いて引上げたシリコン単結晶をスライスして実施例2のウェーハを得たときと同一条件で2枚のウェーハを作製した。
<実施例8及び9>
実施例6及び7と同一条件でシリコン単結晶を引上げ、このシリコン単結晶に中性子を照射し、このシリコン単結晶の直胴部のトップ及びボトムをスライスして2枚のウェーハを作製し、更にこれらのウェーハを酸化雰囲気中で1000℃に10分間保持した。直胴部のトップをスライスして得られたウェーハを実施例8とし、直胴部のボトムをスライスして得られたウェーハを実施例9とした。
<比較例7及び8>
シリコン単結晶に中性子照射を行わなかったこと以外は、実施例6及び7と同様にして2枚のウェーハを得た。直胴部のトップをスライスして得られたウェーハを比較例7とし、直胴部のボトムをスライスして得られたウェーハを比較例8とした。
<比較例9及び10>
シリコン単結晶に中性子照射を行わなかったこと以外は、実施例8及び9と同様にして2枚のウェーハを得た。直胴部のトップをスライスして得られたウェーハを比較例9とし、直胴部のボトムをスライスして得られたウェーハを比較例10とした。
<Examples 6 and 7>
After pulling up the silicon single crystal under the condition of V / G when the wafer of Example 2 was produced, the silicon single crystal was irradiated with neutrons. Then, after slicing the top and bottom of the straight body portion of this silicon single crystal to produce two wafers, these wafers were held at 1000 ° C. for 10 minutes in an oxidizing atmosphere. A wafer obtained by slicing the top of the straight body part was designated as Example 6, and a wafer obtained by slicing the bottom of the straight body part was designated as Example 7. Except that V / G was constant, two wafers were produced under the same conditions as when the silicon single crystal pulled using the apparatus of Example 1 was sliced to obtain the wafer of Example 2. .
<Examples 8 and 9>
Pulling up the silicon single crystal under the same conditions as in Examples 6 and 7, irradiating this silicon single crystal with neutrons, slicing the top and bottom of the straight body of this silicon single crystal, and producing two wafers, These wafers were held at 1000 ° C. for 10 minutes in an oxidizing atmosphere. A wafer obtained by slicing the top of the straight body part was designated as Example 8, and a wafer obtained by slicing the bottom of the straight body part was designated as Example 9.
<Comparative Examples 7 and 8>
Two wafers were obtained in the same manner as in Examples 6 and 7, except that the silicon single crystal was not irradiated with neutrons. A wafer obtained by slicing the top of the straight body was designated as Comparative Example 7, and a wafer obtained by slicing the bottom of the straight body was designated as Comparative Example 8.
<Comparative Examples 9 and 10>
Two wafers were obtained in the same manner as in Examples 8 and 9, except that the silicon single crystal was not irradiated with neutrons. A wafer obtained by slicing the top of the straight body was designated as Comparative Example 9, and a wafer obtained by slicing the bottom of the straight body was designated as Comparative Example 10.

<比較試験6及び評価>
実施例6〜9及び比較例7〜10のシリコンウェーハの径方向の抵抗率の面内分布を測定し、この測定値から面内抵抗率のバラツキを算出した。具体的には、ウェーハの左端から5mm内側に入った位置、ウェーハの左端と中心との中間位置、ウェーハの中心、ウェーハの右端と中心との中間位置、及びウェーハの右端から5mm内側に入った位置で抵抗率をそれぞれ測定し、これらの測定値の分布幅を算出した後に、この分布幅を測定値の最小値で除して100倍することにより、面内抵抗率のバラツキを算出した。なお、抵抗率は4探針法により測定した。これらの結果を図9及び図10に示す。図9から明らかなように、中性子を照射しなかった比較例7及び8のウェーハでは径方向の抵抗率の分布幅が約1400Ω・cm(面内抵抗率のバラツキ:約36%)及び約2400Ω・cm(面内抵抗率のバラツキ:約85%)と非常に大きかったのに対し、中性子を照射した実施例6及び7のウェーハでは径方向の抵抗率の分布幅が約1.6Ω・cm(面内抵抗率のバラツキ:約3.2%)及び約1.2Ω・cm(面内抵抗率のバラツキ:約2.5%)と極めて小さくなった。また図10から明らかなように、中性子を照射しなかった比較例9及び10のウェーハでは径方向の抵抗率の分布幅が約2300Ω・cm(面内抵抗率のバラツキ:約10%)及び約1400Ω・cm(面内抵抗率のバラツキ:約36%)と非常に大きかったのに対し、中性子を照射した実施例8及び9のウェーハでは径方向の抵抗率の分布幅が約2.2Ω・cm(面内抵抗率のバラツキ:約4.5%)及び約2.1Ω・cm(面内抵抗率のバラツキ:約4.2%)と極めて小さくなった。即ち、実施例6〜9のウェーハでは、目標とする径方向の面内抵抗率のバラツキの範囲内、即ち5%以内であった。
<Comparative test 6 and evaluation>
The in-plane distribution of the resistivity in the radial direction of the silicon wafers of Examples 6 to 9 and Comparative Examples 7 to 10 was measured, and variations in the in-plane resistivity were calculated from the measured values. Specifically, the position is 5 mm inside from the left edge of the wafer, the intermediate position between the left edge and the center of the wafer, the center of the wafer, the intermediate position between the right edge and the center of the wafer, and 5 mm inside from the right edge of the wafer. After measuring the resistivity at each position and calculating the distribution width of these measured values, the distribution width was divided by the minimum value of the measured values and multiplied by 100 to calculate the variation in in-plane resistivity. The resistivity was measured by a 4-probe method. These results are shown in FIG. 9 and FIG. As is apparent from FIG. 9, in the wafers of Comparative Examples 7 and 8 that were not irradiated with neutrons, the radial resistivity distribution width was about 1400 Ω · cm (in-plane resistivity variation: about 36%) and about 2400 Ω. * Cm (in-plane resistivity variation: about 85%), whereas in the wafers of Examples 6 and 7 irradiated with neutrons, the radial resistivity distribution width is about 1.6 Ω.cm (In-plane resistivity variation: about 3.2%) and about 1.2 Ω · cm (in-plane resistivity variation: about 2.5%). Further, as apparent from FIG. 10, in the wafers of Comparative Examples 9 and 10 that were not irradiated with neutrons, the radial resistivity distribution width was about 2300 Ω · cm (in-plane resistivity variation: about 10%) and about In contrast to the very large 1400 Ω · cm (in-plane resistivity variation: about 36%), in the wafers of Examples 8 and 9 irradiated with neutrons, the radial resistivity distribution width is about 2.2 Ω · cm. It was as extremely small as cm (in-plane resistivity variation: about 4.5%) and about 2.1 Ω · cm (in-plane resistivity variation: about 4.2%). That is, in the wafers of Examples 6 to 9, it was within the target range of variation in the in-plane resistivity in the radial direction, that is, within 5%.

<実施例10及び11>
図1に示す引上げ装置を用い、内径24インチ(約600mm)のるつぼ13を使用して多結晶シリコン原料を170kg充填して溶融し、このシリコン融液15から引上げ長さ(引上げ率)の異なる、結晶方位が<100>であって直径が210mmであるシリコン単結晶11をそれぞれ引上げた。そして引上げ率80%で引上げたシリコン単結晶を実施例10とし、引上げ率95%で引上げたシリコン単結晶を実施例11とした。これらのシリコン単結晶の引上げ後に、面内抵抗率が50Ω・cmとなるように、シリコン単結晶に中性子を照射した。なお、その他の引上げ条件は次のようであった。引上げ中のシリコン単結晶11の中心部が融点から1370℃までの温度域における単結晶11の引上げ軸方向の温度勾配のうち、単結晶11の中心部の温度勾配をGcとし、単結晶11の外周部の温度勾配をGeとするとき、Gc/Ge≧1という関係、具体的にはGc/Ge=1.2という関係を満たす図2のホットゾーンBを用いた。またV/Gが0.23〜0.33の範囲内になるように引上げ速度を調整し、るつぼ13内のシリコン融液15に0.3Tの水平磁場を印加した。更にるつぼの回転速度は0.3rpmとした。
<Examples 10 and 11>
1, using a crucible 13 having an inner diameter of 24 inches (about 600 mm), 170 kg of polycrystalline silicon raw material is filled and melted. Each of the silicon single crystals 11 having a crystal orientation of <100> and a diameter of 210 mm was pulled up. The silicon single crystal pulled at a pulling rate of 80% was designated as Example 10, and the silicon single crystal pulled at a pulling rate of 95% was designated as Example 11. After pulling up these silicon single crystals, the silicon single crystals were irradiated with neutrons so that the in-plane resistivity was 50 Ω · cm. Other pulling conditions were as follows. Of the temperature gradient in the pulling axis direction of the single crystal 11 in the temperature range from the melting point to 1370 ° C. of the center portion of the silicon single crystal 11 being pulled, the temperature gradient at the center portion of the single crystal 11 is Gc. When the temperature gradient of the outer peripheral portion is Ge, the hot zone B of FIG. 2 that satisfies the relationship of Gc / Ge ≧ 1, specifically, the relationship of Gc / Ge = 1.2, was used. The pulling rate was adjusted so that V / G was in the range of 0.23 to 0.33, and a horizontal magnetic field of 0.3 T was applied to the silicon melt 15 in the crucible 13. Furthermore, the rotational speed of the crucible was 0.3 rpm.

<比較試験7及び評価>
実施例10及び11のシリコン単結晶の直胴部をその引上げ方向に一定の間隔をあけて所定の厚さとなるように切り出した複数のウェーハの格子間酸素濃度を測定した。格子間酸素濃度は、ASTM F−121(1979)に規格されたフーリエ変換赤外分光光度法に準じて測定した。その結果を図11に示す。図11から明らかなように、実施例11ではシリコン単結晶の直胴部後半(引上げ率80%以上)において、格子間酸素濃度が6.0×1017atoms/cm3を超える結晶部分が育成されたのに対し、実施例10ではシリコン単結晶の引上げ方向の位置に拘らず、シリコン単結晶内の酸素濃度はほぼ均一であった。即ち、この引上げ条件では、引上げ率80%以下の範囲でシリコン単結晶を引上げることにより、直胴部全長にわたって格子間酸素濃度が6.0×1017atoms/cm3以下のシリコン単結晶を育成できることが分かった。なお、実施例10のシリコン単結晶の引上げが終了してシリコン単結晶を取出した後に、るつぼ内に残留するシリコン融液に多結晶シリコン原料を再度充填して実施例10と同じ融液量に調整し、実施例10と同条件で再度シリコン単結晶を育成した(マルチプリング法で育成した)ところ、このシリコン単結晶の酸素濃度分布は実施例10のシリコン単結晶の酸素濃度分布と略同じであった。
<Comparative test 7 and evaluation>
The interstitial oxygen concentrations of a plurality of wafers obtained by cutting the straight body portions of the silicon single crystals of Examples 10 and 11 so as to have a predetermined thickness with a certain interval in the pulling direction were measured. The interstitial oxygen concentration was measured according to the Fourier transform infrared spectrophotometry standardized by ASTM F-121 (1979). The result is shown in FIG. As is apparent from FIG. 11, in Example 11, a crystal portion having an interstitial oxygen concentration exceeding 6.0 × 10 17 atoms / cm 3 is grown in the latter half of the straight body portion of the silicon single crystal (with a pulling rate of 80% or more). In contrast, in Example 10, the oxygen concentration in the silicon single crystal was almost uniform regardless of the position in the pulling direction of the silicon single crystal. That is, under this pulling condition, a silicon single crystal having an interstitial oxygen concentration of 6.0 × 10 17 atoms / cm 3 or less over the entire length of the straight body is obtained by pulling the silicon single crystal within a pulling rate of 80% or less. I found out that I can train it. After the pulling of the silicon single crystal of Example 10 was completed and the silicon single crystal was taken out, the silicon melt remaining in the crucible was filled again with the polycrystalline silicon raw material to obtain the same melt amount as in Example 10. The silicon single crystal was grown again under the same conditions as in Example 10 (grown by the multiple pulling method). The oxygen concentration distribution of this silicon single crystal was almost the same as the oxygen concentration distribution of the silicon single crystal of Example 10. Met.

<比較試験8及び評価>
図1に示す引上げ装置を用いてシリコン単結晶11を引上げた。この引上げ中のシリコン単結晶11の中心部が融点から1370℃までの温度域における単結晶11の引上げ軸方向の温度勾配のうち、単結晶11の中心部の温度勾配をGcとし、単結晶11の外周部の温度勾配をGeとするとき、Gc/Ge≧1という関係、具体的にはGc/Ge=1.2という関係を満たす図2のホットゾーンBを用いた。またV/Gが0.23〜0.33の範囲内になるように引上げ速度を調整した。また引上げた単結晶11の直胴部トップの位置における径方向の面内抵抗率が100Ω・cmとなるように、溶解前にシリコン原料にリンを添加してシリコン融液15にリンを含有させ、るつぼ13内のシリコン融液15に0.2Tの水平磁場を印加した。更に単結晶の直径は210mmであり、単結晶の結晶方位は<100>であり、単結晶の直胴部の長さは1700mmであった。一方、るつぼの回転速度を0.1rpm、0.3rpm、0.7rpm、1.0rpm、1.7rpm及び2.0rpmの6水準とし、単結晶の回転速度を1〜8rpmの8水準として、互いに逆方向に回転させながらシリコン単結晶を引上げた。これらのシリコン単結晶の直胴部トップ部から200mmの位置で切り出したウェーハ内の格子間酸素濃度を測定した。格子間酸素濃度は、ASTM F−121(1979)に規格されたフーリエ変換赤外分光光度法に準じて測定した。その結果を図12に示す。
<Comparative test 8 and evaluation>
The silicon single crystal 11 was pulled up using the pulling apparatus shown in FIG. Of the temperature gradient in the pulling axis direction of the single crystal 11 in the temperature range from the melting point to 1370 ° C. of the central portion of the silicon single crystal 11 being pulled, the temperature gradient at the central portion of the single crystal 11 is Gc. 2 is used, which satisfies the relationship of Gc / Ge ≧ 1, specifically, the relationship of Gc / Ge = 1.2. The pulling speed was adjusted so that V / G was in the range of 0.23 to 0.33. Further, phosphorus is added to the silicon raw material so that the silicon melt 15 contains phosphorus so that the in-plane resistivity in the radial direction at the position of the straight body top of the pulled single crystal 11 is 100 Ω · cm. A 0.2 T horizontal magnetic field was applied to the silicon melt 15 in the crucible 13. Furthermore, the diameter of the single crystal was 210 mm, the crystal orientation of the single crystal was <100>, and the length of the straight body portion of the single crystal was 1700 mm. On the other hand, the rotation speed of the crucible is set to 6 levels of 0.1 rpm, 0.3 rpm, 0.7 rpm, 1.0 rpm, 1.7 rpm and 2.0 rpm, and the rotation speed of the single crystal is set to 8 levels of 1 to 8 rpm. The silicon single crystal was pulled up while rotating in the reverse direction. The interstitial oxygen concentration in the wafer cut out at a position of 200 mm from the top of the straight body portion of these silicon single crystals was measured. The interstitial oxygen concentration was measured according to the Fourier transform infrared spectrophotometry standardized by ASTM F-121 (1979). The result is shown in FIG.

図12から明らかなように、るつぼの回転速度が1.5rpm以下であり、かつ単結晶の回転速度が7rpm以下であると、ウェーハ中の格子間酸素濃度を6.0×1017atoms/cm3以下にすることができることが分かった。 As is apparent from FIG. 12, when the rotational speed of the crucible is 1.5 rpm or less and the rotational speed of the single crystal is 7 rpm or less, the interstitial oxygen concentration in the wafer is 6.0 × 10 17 atoms / cm. It turned out that it can be made 3 or less.

11 シリコン単結晶
12 メインチャンバ(チャンバ)
13 るつぼ
15 シリコン融液
22 引上げ軸
23 種結晶
29 水平磁場
52 シリコン原料
11 Silicon single crystal 12 Main chamber (chamber)
13 crucible 15 silicon melt 22 pulling shaft 23 seed crystal 29 horizontal magnetic field 52 silicon raw material

Claims (5)

チャンバに収容されたるつぼにシリコン融液を貯留し、このシリコン融液に種結晶を浸漬して回転させながらシリコン単結晶を引上げた後に、このシリコン単結晶に中性子を照射することにより前記シリコン単結晶にリンをドープするシリコン単結晶の製造方法において、
前記るつぼから、内部の格子間酸素濃度が6.0×1017atoms/cm3以下であるシリコン単結晶であって、サイズが100nm以下でありかつ密度が3×106atoms/cm3以下であるCOPの発生領域を含むシリコン単結晶を引上げた後に、
このシリコン単結晶への中性子の照射により前記シリコン単結晶の径方向の面内抵抗率のバラツキを5%以下にする
ことを特徴とするシリコン単結晶の製造方法。
A silicon melt is stored in a crucible accommodated in a chamber, a seed crystal is immersed in the silicon melt, the silicon single crystal is pulled up while rotating, and then the silicon single crystal is irradiated with neutrons to irradiate the silicon single crystal. In the method for producing a silicon single crystal in which the crystal is doped with phosphorus,
From the crucible, a silicon single crystal having an internal interstitial oxygen concentration of 6.0 × 10 17 atoms / cm 3 or less, having a size of 100 nm or less and a density of 3 × 10 6 atoms / cm 3 or less. After pulling up a silicon single crystal including a COP generation region,
A method for producing a silicon single crystal, wherein the variation of in-plane resistivity in the radial direction of the silicon single crystal is reduced to 5% or less by irradiating the silicon single crystal with neutrons.
引上げ中のシリコン単結晶の中心部が融点から1370℃までの温度域における前記シリコン単結晶の引上げ軸方向の温度勾配のうち、前記引上げ中のシリコン単結晶の中心部の温度勾配をGcとし、前記引上げ中のシリコン単結晶の外周部の温度勾配をGeとするとき、Gc/Ge≧1の関係を満たす条件下で前記シリコン単結晶を引上げる請求項1記載のシリコン単結晶の製造方法。   Of the temperature gradient in the pulling axis direction of the silicon single crystal in the temperature range from the melting point to 1370 ° C. of the center portion of the silicon single crystal being pulled, the temperature gradient of the center portion of the silicon single crystal being pulled is Gc, 2. The method for producing a silicon single crystal according to claim 1, wherein the silicon single crystal is pulled under conditions satisfying a relationship of Gc / Ge ≧ 1, where Ge is a temperature gradient of the outer peripheral portion of the silicon single crystal being pulled. シリコン単結晶内の格子間酸素濃度が全長にわたって6.0×1017atoms/cm3以下となるようにシリコン単結晶を引上げた後に、るつぼ内にシリコン原料を供給して溶融させ、前記るつぼ内のシリコン融液から新たにシリコン単結晶を引上げることにより、複数本のシリコン単結晶を引上げるとともに、引上げ後の各シリコン単結晶に中性子を照射することにより前記シリコン単結晶にリンをドープする請求項1記載のシリコン単結晶の製造方法。 After pulling up the silicon single crystal so that the interstitial oxygen concentration in the silicon single crystal is 6.0 × 10 17 atoms / cm 3 or less over the entire length, the silicon raw material is supplied into the crucible and melted, The silicon single crystal is newly pulled from the silicon melt to pull up a plurality of silicon single crystals, and each silicon single crystal after the pulling is irradiated with neutrons to dope the silicon single crystal The method for producing a silicon single crystal according to claim 1. るつぼ内のシリコン融液に0.2T以上の水平磁場を印加するとともに、前記るつぼの回転速度が1.5rpm以下であり、引上げ中のシリコン単結晶の回転速度が7rpm以下である請求項1ないし3いずれか1項に記載のシリコン単結晶の製造方法。   A horizontal magnetic field of 0.2 T or more is applied to the silicon melt in the crucible, the rotation speed of the crucible is 1.5 rpm or less, and the rotation speed of the silicon single crystal being pulled is 7 rpm or less. 3. The method for producing a silicon single crystal according to any one of 3 above. 請求項1ないし4いずれか1項に記載の方法で製造されたシリコン単結晶をスライスして得られたシリコンウェーハに、酸素ガス雰囲気中で1100〜1300℃の範囲内の所定の温度まで加熱し、この所定の温度に2〜5時間保持する熱処理を施すことにより、前記シリコンウェーハ全域にわたってCOPを消滅させることを特徴とするシリコンウェーハの製造方法。   A silicon wafer obtained by slicing a silicon single crystal produced by the method according to any one of claims 1 to 4, is heated to a predetermined temperature within a range of 1100 to 1300 ° C in an oxygen gas atmosphere. A method for producing a silicon wafer, wherein the COP is extinguished over the entire area of the silicon wafer by performing a heat treatment that is maintained at the predetermined temperature for 2 to 5 hours.
JP2009118454A 2009-05-15 2009-05-15 Silicon wafer manufacturing method Active JP5201077B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009118454A JP5201077B2 (en) 2009-05-15 2009-05-15 Silicon wafer manufacturing method
DE102010028924.8A DE102010028924B4 (en) 2009-05-15 2010-05-12 A method of producing a silicon single crystal and a method of producing a silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118454A JP5201077B2 (en) 2009-05-15 2009-05-15 Silicon wafer manufacturing method

Publications (3)

Publication Number Publication Date
JP2010265143A true JP2010265143A (en) 2010-11-25
JP2010265143A5 JP2010265143A5 (en) 2012-03-01
JP5201077B2 JP5201077B2 (en) 2013-06-05

Family

ID=43362492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118454A Active JP5201077B2 (en) 2009-05-15 2009-05-15 Silicon wafer manufacturing method

Country Status (2)

Country Link
JP (1) JP5201077B2 (en)
DE (1) DE102010028924B4 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192232A1 (en) * 2013-05-29 2014-12-04 信越半導体株式会社 Method for producing monocrystalline silicon
JP2015040142A (en) * 2013-08-21 2015-03-02 信越半導体株式会社 Manufacturing method of silicon single crystal material, and silicon single crystal material
KR20160106602A (en) 2014-01-16 2016-09-12 신에쯔 한도타이 가부시키가이샤 Heat-treatment method for single-crystal silicon wafer
KR20160107169A (en) 2014-01-16 2016-09-13 신에쯔 한도타이 가부시키가이샤 Heat-treatment method for single-crystal silicon wafer
JP6052392B2 (en) * 2013-03-06 2016-12-27 トヨタ自動車株式会社 Method for reducing forward voltage variation of semiconductor wafer
WO2018012027A1 (en) * 2016-07-11 2018-01-18 株式会社Sumco Method for producing neutron-irradiated silicon single crystal
JP2018503591A (en) * 2015-04-06 2018-02-08 エスケー シルトロン カンパニー リミテッド Silicon single crystal ingot growth equipment
WO2018116637A1 (en) * 2016-12-20 2018-06-28 株式会社Sumco Method for producing silicon single crystal
JP2019504817A (en) * 2016-02-08 2019-02-21 トプシル、グローバルウェハース、アクティーゼルスカブTopsil Globalwafers A/S Phosphorus-doped silicon single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019213236A1 (en) 2019-09-02 2021-03-04 Siltronic Ag Process for the production of semiconductor wafers from monocrystalline silicon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208368A (en) * 1996-02-08 1997-08-12 Shin Etsu Handotai Co Ltd Feeding of granular silicon raw material and feed pipe
WO2004037057A1 (en) * 2002-10-22 2004-05-06 Alain Franchet Adjustable manual grinder
WO2004083496A1 (en) * 2003-02-25 2004-09-30 Sumitomo Mitsubishi Silicon Corporation Silicon wafer, process for producing the same and method of growing silicon single crystal
JP2005035802A (en) * 2003-07-15 2005-02-10 Sumitomo Mitsubishi Silicon Corp Method and device for feeding raw material
WO2009025336A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and process for producing silicon single crystal wafer for igbt
WO2009025340A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073057A1 (en) 2003-02-14 2004-08-26 Sumitomo Mitsubishi Silicon Corporation Method for manufacturing silicon wafer
JP4760729B2 (en) * 2006-02-21 2011-08-31 株式会社Sumco Silicon single crystal wafer for IGBT and manufacturing method of silicon single crystal wafer for IGBT
JP2010202414A (en) * 2009-02-27 2010-09-16 Sumco Corp Method for growing silicon single crystal and method for producing silicon wafer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208368A (en) * 1996-02-08 1997-08-12 Shin Etsu Handotai Co Ltd Feeding of granular silicon raw material and feed pipe
WO2004037057A1 (en) * 2002-10-22 2004-05-06 Alain Franchet Adjustable manual grinder
WO2004083496A1 (en) * 2003-02-25 2004-09-30 Sumitomo Mitsubishi Silicon Corporation Silicon wafer, process for producing the same and method of growing silicon single crystal
JP2005035802A (en) * 2003-07-15 2005-02-10 Sumitomo Mitsubishi Silicon Corp Method and device for feeding raw material
WO2009025336A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and process for producing silicon single crystal wafer for igbt
WO2009025340A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052392B2 (en) * 2013-03-06 2016-12-27 トヨタ自動車株式会社 Method for reducing forward voltage variation of semiconductor wafer
JPWO2014136215A1 (en) * 2013-03-06 2017-02-09 トヨタ自動車株式会社 Method for reducing forward voltage variation of semiconductor wafer
US9938634B2 (en) 2013-05-29 2018-04-10 Shin-Etsu Handotai Co., Ltd. Method of producing silicon single crystal
JP2014231448A (en) * 2013-05-29 2014-12-11 信越半導体株式会社 Manufacturing method of silicon single crystal
CN105247115A (en) * 2013-05-29 2016-01-13 信越半导体株式会社 Method for producing monocrystalline silicon
KR20160012138A (en) * 2013-05-29 2016-02-02 신에쯔 한도타이 가부시키가이샤 Method for producing monocrystalline silicon
KR102054186B1 (en) 2013-05-29 2019-12-10 신에쯔 한도타이 가부시키가이샤 Method for producing monocrystalline silicon
WO2014192232A1 (en) * 2013-05-29 2014-12-04 信越半導体株式会社 Method for producing monocrystalline silicon
CN105247115B (en) * 2013-05-29 2019-01-04 信越半导体株式会社 monocrystalline silicon manufacturing method
JP2015040142A (en) * 2013-08-21 2015-03-02 信越半導体株式会社 Manufacturing method of silicon single crystal material, and silicon single crystal material
KR20160107169A (en) 2014-01-16 2016-09-13 신에쯔 한도타이 가부시키가이샤 Heat-treatment method for single-crystal silicon wafer
KR20160106602A (en) 2014-01-16 2016-09-12 신에쯔 한도타이 가부시키가이샤 Heat-treatment method for single-crystal silicon wafer
DE112015000282B4 (en) 2014-01-16 2021-10-14 Shin-Etsu Handotai Co., Ltd. Process for the heat treatment of silicon single crystal wafers
US9938640B2 (en) 2014-01-16 2018-04-10 Shin-Etsu Handotai Co., Ltd. Method for heat treatment of silicon single crystal wafer
DE112015000269B4 (en) 2014-01-16 2021-10-07 Shin-Etsu Handotai Co., Ltd. Process for the heat treatment of a silicon single crystal wafer
US9850595B2 (en) 2014-01-16 2017-12-26 Shin-Etsu Handotai Co., Ltd. Method for heat treatment of silicon single crystal wafer
US10066322B2 (en) 2014-01-16 2018-09-04 Shin-Etsu Handotai Co., Ltd. Method for heat treatment of silicon single crystal wafer
JP2018503591A (en) * 2015-04-06 2018-02-08 エスケー シルトロン カンパニー リミテッド Silicon single crystal ingot growth equipment
JP2019504817A (en) * 2016-02-08 2019-02-21 トプシル、グローバルウェハース、アクティーゼルスカブTopsil Globalwafers A/S Phosphorus-doped silicon single crystal
WO2018012027A1 (en) * 2016-07-11 2018-01-18 株式会社Sumco Method for producing neutron-irradiated silicon single crystal
JP2018100196A (en) * 2016-12-20 2018-06-28 株式会社Sumco Method for manufacturing silicon single crystal
KR20190089978A (en) * 2016-12-20 2019-07-31 가부시키가이샤 사무코 Method for manufacturing silicon single crystal
KR102265466B1 (en) 2016-12-20 2021-06-15 가부시키가이샤 사무코 Silicon single crystal manufacturing method
WO2018116637A1 (en) * 2016-12-20 2018-06-28 株式会社Sumco Method for producing silicon single crystal
US11242617B2 (en) 2016-12-20 2022-02-08 Sumco Corporation Method for producing silicon single crystal

Also Published As

Publication number Publication date
JP5201077B2 (en) 2013-06-05
DE102010028924B4 (en) 2016-02-11
DE102010028924A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP5201077B2 (en) Silicon wafer manufacturing method
US6702892B2 (en) Production device for high-quality silicon single crystals
JP5138678B2 (en) Control of formation of cohesive point defects and oxygen clusters induced from silicon single crystal side surface during CZ growth
KR101929506B1 (en) Method for producing silicon single crystal wafer
EP2226412B1 (en) Method for growing silicon single crystal and method for producing silicon wafer
JP3624827B2 (en) Method for producing silicon single crystal
JP5321460B2 (en) Manufacturing method of silicon single crystal wafer for IGBT
JP3692812B2 (en) Nitrogen-doped low-defect silicon single crystal wafer and manufacturing method thereof
JP5283543B2 (en) Method for growing silicon single crystal
JP2006344823A (en) Silicon wafer for igbt and its manufacturing method
JP4699675B2 (en) Annealed wafer manufacturing method
JP3255114B2 (en) Method for producing nitrogen-doped low defect silicon single crystal
JP2010265143A5 (en)
JPWO2009025340A1 (en) Silicon single crystal wafer for IGBT and manufacturing method of silicon single crystal wafer for IGBT
JP2010222241A (en) Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
JP2010132509A (en) Method for growing silicon single crystal and method for inspecting silicon wafer
EP2159827A2 (en) Silicon wafer and method for producing the same
JP2020033200A (en) Method for manufacturing silicon single crystal, and silicon wafer
JP4857517B2 (en) Annealed wafer and method for manufacturing annealed wafer
JP5668786B2 (en) Method for growing silicon single crystal and method for producing silicon wafer
US8460463B2 (en) Silicon wafer and method for producing the same
JP4150167B2 (en) Method for producing silicon single crystal
JP2007210820A (en) Method of manufacturing silicon single crystal
JPH11335198A (en) Silicon single crystal wafer and its production
JP4501507B2 (en) Silicon single crystal growth method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R150 Certificate of patent or registration of utility model

Ref document number: 5201077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250