JP2015040142A - Manufacturing method of silicon single crystal material, and silicon single crystal material - Google Patents

Manufacturing method of silicon single crystal material, and silicon single crystal material Download PDF

Info

Publication number
JP2015040142A
JP2015040142A JP2013170917A JP2013170917A JP2015040142A JP 2015040142 A JP2015040142 A JP 2015040142A JP 2013170917 A JP2013170917 A JP 2013170917A JP 2013170917 A JP2013170917 A JP 2013170917A JP 2015040142 A JP2015040142 A JP 2015040142A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
resistivity
crystal material
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013170917A
Other languages
Japanese (ja)
Other versions
JP6167752B2 (en
Inventor
雅紀 高沢
Masanori Takazawa
雅紀 高沢
布施川 泉
Izumi Fusegawa
泉 布施川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2013170917A priority Critical patent/JP6167752B2/en
Priority to PCT/JP2014/003737 priority patent/WO2015025463A1/en
Publication of JP2015040142A publication Critical patent/JP2015040142A/en
Application granted granted Critical
Publication of JP6167752B2 publication Critical patent/JP6167752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a silicon single crystal material to be used as a sputtering target material having no slip and less deviation from a target resistivity or an electrode for plasma etching.SOLUTION: A manufacturing method of a silicon single crystal material pulls upward a silicon single crystal having a resistivity of 10 to 50 Ωcm by a Czochralski method, cuts the silicon single crystal into pieces of a thickness of 5 to 50 mm, and controls the resistivity within the range of ±10% of a target resistivity without donor killer heat treatment. Preferably, the concentration of interstitial oxygen in the silicon single crystal to be pulled upward is set to be a low oxygen concentration of 6.6 to 10×1017 atoms/cm3 (ASTM'79) in order that the deviation from the target resistivity is certainly controlled within the range of ±10%. Preferably, a site is cut which is located upward from the bottom edge of a silicon single crystal trunk by 20% of the length ratio of the trunk.

Description

本発明は、半導体製造に使用されるスパッタリングやプラズマエッチングを行う装置に搭載されるシリコン単結晶材料において、特に300mmウェーハを用いた半導体デバイスを製造する製造装置(スパッターやプラズマエッチャー)に使用される、シリコン単結晶材料に関する。   INDUSTRIAL APPLICABILITY The present invention is a silicon single crystal material mounted on an apparatus for performing sputtering or plasma etching used for semiconductor manufacturing, and particularly used for a manufacturing apparatus (sputtering or plasma etcher) for manufacturing a semiconductor device using a 300 mm wafer. And relates to a silicon single crystal material.

半導体デバイス製造工程において、金属ケイ素や酸化ケイ素等の薄膜を得る方法としてスパッタリングが知られている。このスパッタリングのターゲット材として、特許文献1、2に示されるように、シリコンが用いられている。また、特許文献3では、シリコン薄膜の製造効率を高めるため、シリコン単結晶材料をターゲット材として使用している。また、半導体デバイス製造工程における加工方法の一つとしてプラズマエッチングが知られており、上記と同様の材料をプラズマエッチング用の電極として使用することもある(特許文献4)。通常、これらのシリコン単結晶材料は、半導体製造用のシリコンウェーハとは異なり、所要の厚さ、例えば10mm程度の厚さを有する。   In a semiconductor device manufacturing process, sputtering is known as a method for obtaining a thin film of metal silicon, silicon oxide or the like. As a sputtering target material, silicon is used as disclosed in Patent Documents 1 and 2. Moreover, in patent document 3, in order to improve the manufacturing efficiency of a silicon thin film, the silicon single crystal material is used as a target material. Further, plasma etching is known as one of processing methods in a semiconductor device manufacturing process, and the same material as described above may be used as an electrode for plasma etching (Patent Document 4). Usually, these silicon single crystal materials have a required thickness, for example, a thickness of about 10 mm, unlike a silicon wafer for semiconductor manufacturing.

近年の半導体用シリコンウェーハの大口径化に伴い、半導体デバイス製造工程であるスパッタリングのターゲット材やプラズマエッチング用電極も大口径のものが要求されている。そのため、上記のターゲット材やプラズマエッチング用電極として用いるシリコン単結晶材料を大口径結晶の製造が比較的容易なチョクラルスキー(CZ)法で製造する機会が増えている。従って、シリコンウェーハの大口径化に伴い、ターゲット材やプラズマエッチング用電極自体のサイズも大きくなってきた。近年主流である、直径300mmのウェーハにスパッタリングやプラズマエッチングを施すには、処理対象のウェーハよりも大きなターゲットや電極が必要となる。   With the recent increase in diameter of silicon wafers for semiconductors, sputtering target materials and plasma etching electrodes, which are semiconductor device manufacturing processes, are also required to have large diameters. For this reason, there are increasing opportunities to manufacture the silicon single crystal material used as the target material or the plasma etching electrode by the Czochralski (CZ) method, which makes it relatively easy to manufacture large-diameter crystals. Therefore, with the increase in the diameter of the silicon wafer, the size of the target material and the plasma etching electrode itself has also increased. In order to perform sputtering and plasma etching on a wafer having a diameter of 300 mm, which is the mainstream in recent years, a larger target and electrode than the wafer to be processed are required.

一般的に、CZ法により得られたシリコン単結晶は、単結晶中に格子間酸素に起因するサーマルドナーが発生する。このサーマルドナーによりシリコン単結晶材料とした際に抵抗率が目標抵抗率に対してずれが生じる。スパッタリングのターゲット材やプラズマエッチング用電極に用いるシリコン単結晶材料及びその製造方法において、特許文献4では抵抗率の制御方法としてドナーキラー熱処理の方法が開示されている。   In general, a silicon single crystal obtained by the CZ method generates thermal donors due to interstitial oxygen in the single crystal. When the silicon single crystal material is formed by this thermal donor, the resistivity is shifted from the target resistivity. In a silicon single crystal material used for a sputtering target material or a plasma etching electrode and a manufacturing method thereof, Patent Document 4 discloses a donor killer heat treatment method as a resistivity control method.

特開昭61−117275号公報Japanese Patent Laid-Open No. 61-117275 特開平11−117063号公報JP 11-117063 A 特開2001−60553号公報JP 2001-60553 A 特許4105688号公報Japanese Patent No. 4105688

しかし、近年要求されているような厚さが10mm程度かつ大口径のターゲット材や電極のシリコン単結晶材料では、単結晶製造後の抵抗測定の前にドナーキラー熱処理を行い、加熱後の急冷工程を行うことにより、単結晶材料の内部にスリップが導入されることが明らかになり、抵抗率を制御するために上記のドナーキラー熱処理ができない問題がでてきた。   However, in the case of a silicon single crystal material of a target material or electrode having a thickness of about 10 mm and a large diameter as required in recent years, a donor killer heat treatment is performed before resistance measurement after the single crystal is manufactured, and a rapid cooling process after heating. As a result, it became clear that slip was introduced into the single crystal material, and the above-mentioned donor killer heat treatment could not be performed in order to control the resistivity.

ドナーキラー熱処理を施さない場合のターゲット材や電極でスパッタリングやエッチングを行うと、目標抵抗率からのずれが生じるため、所望のスパッタリングやエッチングができない。そこで、大口径でありながら目標抵抗率に対しサーマルドナーによる抵抗率のずれが少ない、スパッタリング用のターゲット材やプラズマエッチング用の電極材に用いられるシリコン単結晶材料の製造方法が必要とされている。   When sputtering or etching is performed with a target material or electrode when the donor killer heat treatment is not performed, deviation from the target resistivity occurs, and thus desired sputtering or etching cannot be performed. Therefore, there is a need for a method for producing a silicon single crystal material used for a sputtering target material or plasma etching electrode material, which has a large diameter but has a small deviation in resistivity due to a thermal donor with respect to a target resistivity. .

本発明は上記問題点を鑑みなされたものであり、大口径であっても、スリップの導入がなく、かつ、目標抵抗率からのずれの少ないシリコン単結晶材料を製造することのできるシリコン単結晶材料の製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and a silicon single crystal capable of producing a silicon single crystal material that does not introduce slip and has a small deviation from the target resistivity even when having a large diameter. It aims at providing the manufacturing method of material.

上記課題を解決するために、本発明によれば、
スパッタリングのターゲット材又はプラズマエッチング用電極として用いるシリコン単結晶材料の製造方法であって、
チョクラルスキー法により抵抗率が10〜50Ωcmのシリコン単結晶を引き上げ、該シリコン単結晶を厚さ5〜50mmに切り出して、ドナーキラー熱処理を行わずに、抵抗率を目標抵抗率の±10%の範囲内に制御するシリコン単結晶材料の製造方法を提供する。
In order to solve the above problems, according to the present invention,
A method for producing a silicon single crystal material used as a sputtering target material or plasma etching electrode,
A silicon single crystal having a resistivity of 10 to 50 Ωcm is pulled up by the Czochralski method, the silicon single crystal is cut into a thickness of 5 to 50 mm, and the resistivity is ± 10% of the target resistivity without performing donor killer heat treatment. A method for producing a silicon single crystal material that is controlled within the above range is provided.

このようなシリコン単結晶材料の製造方法であれば、ドナーキラー熱処理を行わないことからスリップの導入がなく、かつ、目標抵抗率からのずれの少ないシリコン単結晶材料を製造することができる。   With such a method for producing a silicon single crystal material, it is possible to produce a silicon single crystal material which does not introduce a slip and does not undergo a donor killer heat treatment and has little deviation from the target resistivity.

このとき、前記チョクラルスキー法によるシリコン単結晶の引き上げで、格子間酸素濃度が6.6〜10×1017atoms/cm(ASTM’79)のものを引き上げることが好ましい。 At this time, it is preferable that the silicon single crystal is pulled by the Czochralski method and the one having an interstitial oxygen concentration of 6.6 to 10 × 10 17 atoms / cm 3 (ASTM'79) is pulled.

このようなシリコン単結晶を引き上げて切り出すことで、ドナーキラー熱処理を行わなくても、目標抵抗率からのずれの少ないシリコン単結晶材料を製造することができる。   By pulling up and cutting out such a silicon single crystal, a silicon single crystal material with little deviation from the target resistivity can be manufactured without performing donor killer heat treatment.

また、前記チョクラルスキー法によるシリコン単結晶の引き上げで、格子間酸素濃度が10〜13×1017atoms/cm(ASTM’79)のものを引き上げ、前記シリコン単結晶の切り出しは、直胴部下端から直胴の長さ比で上方に20%の領域から切り出すことが好ましい。 Further, by pulling up the silicon single crystal by the Czochralski method, a silicon single crystal having an interstitial oxygen concentration of 10 to 13 × 10 17 atoms / cm 3 (ASTM'79) is pulled up. It is preferable to cut out from the region of 20% upward in the length ratio of the straight body from the lower end of the part.

このようなシリコン単結晶の切り出しを行うことでも、ドナーキラー熱処理を行わなくても、目標抵抗率からのずれの少ないシリコン単結晶材料を製造することができる。   A silicon single crystal material with little deviation from the target resistivity can be manufactured without performing such silicon single crystal cutting or donor killer heat treatment.

また、本発明は、
スパッタリングのターゲット材として用いるシリコン単結晶材料であって、
チョクラルスキー法により引き上げられた格子間酸素濃度が6.6〜10×1017atoms/cm(ASTM’79)のシリコン単結晶を厚さ5〜50mmに切り出したものであり、ドナーキラー熱処理が施されていないものであり、抵抗率が10〜50Ωcmの範囲内のものであるシリコン単結晶材料を提供する。
The present invention also provides:
A silicon single crystal material used as a sputtering target material,
A silicon single crystal having an interstitial oxygen concentration of 6.6 to 10 × 10 17 atoms / cm 3 (ASTM'79) pulled up by the Czochralski method is cut out to a thickness of 5 to 50 mm, and a donor killer heat treatment is performed. A silicon single crystal material having a resistivity in the range of 10 to 50 Ωcm is provided.

さらに、本発明は、
スパッタリングのターゲット材として用いるシリコン単結晶材料であって、
チョクラルスキー法により引き上げられた格子間酸素濃度が10〜13×1017atoms/cm(ASTM’79)のシリコン単結晶の直胴部下端から直胴の長さ比で上方に20%の領域を厚さ5〜50mmに切り出したものであり、ドナーキラー熱処理が施されていないものであり、抵抗率が10〜50Ωcmの範囲内のものであるシリコン単結晶材料を提供する。
Furthermore, the present invention provides
A silicon single crystal material used as a sputtering target material,
The interstitial oxygen concentration pulled up by the Czochralski method is 10 to 13 × 10 17 atoms / cm 3 (ASTM'79). Provided is a silicon single crystal material in which a region is cut to a thickness of 5 to 50 mm, has not been subjected to donor killer heat treatment, and has a resistivity in the range of 10 to 50 Ωcm.

このようなシリコン単結晶材料は、ドナーキラー熱処理が施されていないためスリップが導入されることがなく、また、ドナーキラー熱処理が施されておらずとも目標抵抗率のものとなっており、ターゲット材と使用しても抵抗率のずれが少ないため、スパッタリングのターゲット材として好適に用いることができる。   Such a silicon single crystal material is not subjected to donor killer heat treatment, so that slip is not introduced, and even if it is not subjected to donor killer heat treatment, it has a target resistivity. Since there is little deviation in resistivity even when used with a material, it can be suitably used as a sputtering target material.

また、本発明は、
プラズマエッチング用電極として用いるシリコン単結晶材料であって、
チョクラルスキー法により引き上げられた格子間酸素濃度が6.6〜10×1017atoms/cm(ASTM’79)のシリコン単結晶を厚さ5〜50mmに切り出したものであり、ドナーキラー熱処理が施されていないものであり、抵抗率が10〜50Ωcmの範囲内のものであるシリコン単結晶材料を提供する。
The present invention also provides:
A silicon single crystal material used as an electrode for plasma etching,
A silicon single crystal having an interstitial oxygen concentration of 6.6 to 10 × 10 17 atoms / cm 3 (ASTM'79) pulled up by the Czochralski method is cut out to a thickness of 5 to 50 mm, and a donor killer heat treatment is performed. A silicon single crystal material having a resistivity in the range of 10 to 50 Ωcm is provided.

さらに、本発明は、
プラズマエッチング用電極として用いるシリコン単結晶材料であって、
チョクラルスキー法により引き上げられた格子間酸素濃度が10〜13×1017atoms/cm(ASTM’79)のシリコン単結晶の直胴部下端から直胴の長さ比で上方に20%の領域を厚さ5〜50mmに切り出したものであり、ドナーキラー熱処理が施されていないものであり、抵抗率が10〜50Ωcmの範囲内のものであるシリコン単結晶材料を提供する。
Furthermore, the present invention provides
A silicon single crystal material used as an electrode for plasma etching,
The interstitial oxygen concentration pulled up by the Czochralski method is 10 to 13 × 10 17 atoms / cm 3 (ASTM'79). Provided is a silicon single crystal material in which a region is cut to a thickness of 5 to 50 mm, has not been subjected to donor killer heat treatment, and has a resistivity in the range of 10 to 50 Ωcm.

このようなシリコン単結晶材料は、ドナーキラー熱処理が施されていないためスリップが導入されることがなく、また、ドナーキラー熱処理が施されておらずとも目標抵抗率のものとなっており、電極と使用しても抵抗率のずれが少ないため、プラズマエッチング用電極として好適に用いることができる。   Such a silicon single crystal material is not subjected to donor killer heat treatment, so that slip is not introduced, and even if it is not subjected to donor killer heat treatment, it has a target resistivity. Can be suitably used as an electrode for plasma etching.

以上説明したように、本発明のシリコン単結晶材料の製造方法であれば、スリップの導入がなく、かつ、目標抵抗率からのずれの少ないシリコン単結晶材料を製造することができる。また、このように製造されたシリコン単結晶材料は、ドナーキラー熱処理が施されていないためスリップが導入されることがなく、また、目標抵抗率からのずれが少ないため、スパッタリングのターゲット材又はプラズマエッチング用電極として好適に用いることができる。   As described above, according to the method for producing a silicon single crystal material of the present invention, it is possible to produce a silicon single crystal material that does not introduce slip and has little deviation from the target resistivity. Further, since the silicon single crystal material thus manufactured is not subjected to donor killer heat treatment, slip is not introduced, and since there is little deviation from the target resistivity, sputtering target material or plasma It can be suitably used as an etching electrode.

実験における目標抵抗率からのずれと目標抵抗率との関係性を示すグラフである。It is a graph which shows the relationship between the deviation | shift from the target resistivity in an experiment, and target resistivity. 実施例1における目標抵抗率10Ωcm時の目標抵抗率からのずれと格子間酸素濃度との関係性を示すグラフである。It is a graph which shows the relationship between the deviation | shift from the target resistivity at the time of the target resistivity of 10 Ωcm in Example 1 and the interstitial oxygen concentration. 実施例2における目標抵抗率50Ωcm時の目標抵抗率からのずれと格子間酸素濃度との関係性を示すグラフである。It is a graph which shows the relationship between the shift | offset | difference from the target resistivity at the time of the target resistivity of 50 ohm-cm in Example 2, and an interstitial oxygen concentration. 実施例3における直胴長さと目標抵抗率からのずれとの関係性を示すグラフである。It is a graph which shows the relationship between the straight body length in Example 3, and the shift | offset | difference from target resistivity.

本発明者らは、ドナーキラー熱処理を行わなくとも抵抗率のずれを抑制することのできるシリコン単結晶材料の製造方法について鋭意検討したところ、切り出しに用いるシリコン単結晶自体の抵抗率が特定の範囲内であれば、抵抗率のずれをある程度抑制できることを見出した。また、上記のような抵抗率を有するシリコン単結晶のうち、格子間酸素濃度の値が低いものから切り出しを行うことで、抵抗率のずれをさらに抑制できることを見出した。さらに、格子間酸素濃度の値がある程度高い場合においても、上記シリコン単結晶の直胴部下端の特定領域から切り出しを行うことで、格子間酸素濃度の値が低いものの場合と同程度に抵抗率のずれを抑制できることを見出し、本発明を完成させた。   The present inventors have intensively studied a method for producing a silicon single crystal material that can suppress the deviation in resistivity without performing donor killer heat treatment. As a result, the resistivity of the silicon single crystal itself used for cutting is within a specific range. It was found that the deviation in resistivity can be suppressed to some extent within the range. Moreover, it discovered that the shift | offset | difference of a resistivity could further be suppressed by cutting out from the silicon | silicone single crystal which has the above resistivities from the thing with the low value of interstitial oxygen concentration. Furthermore, even when the value of interstitial oxygen concentration is high to some extent, by cutting out from the specific region at the lower end of the straight body of the silicon single crystal, the resistivity is about the same as when the value of interstitial oxygen concentration is low The present inventors have found that the deviation can be suppressed and completed the present invention.

即ち、本発明は、
スパッタリングのターゲット材又はプラズマエッチング用電極として用いるシリコン単結晶材料の製造方法であって、
チョクラルスキー法により抵抗率が10〜50Ωcmのシリコン単結晶を引き上げ、該シリコン単結晶を厚さ5〜50mmに切り出して、ドナーキラー熱処理を行わずに、抵抗率を目標抵抗率の±10%の範囲内に制御するシリコン単結晶材料の製造方法である。
That is, the present invention
A method for producing a silicon single crystal material used as a sputtering target material or plasma etching electrode,
A silicon single crystal having a resistivity of 10 to 50 Ωcm is pulled up by the Czochralski method, the silicon single crystal is cut into a thickness of 5 to 50 mm, and the resistivity is ± 10% of the target resistivity without performing donor killer heat treatment. This is a method for producing a silicon single crystal material that is controlled within the above range.

本発明では、スパッタリングのターゲット材又はプラズマエッチング用電極として用いるシリコン単結晶材料をCZ法により引き上げられたシリコン単結晶から製造する。従って、直径300mm以上の大口径の単結晶を容易に製造することができる。
このシリコン単結晶の抵抗率は10〜50Ωcmであり、好ましくは10〜30Ωcmである。10Ωcm未満ではスパッタリング又はプラズマエッチングを安定して行うことが困難となり、50Ωcmを超えると抵抗率のずれが抑制・制御できる範囲よりも大幅に外れてしまう。
In the present invention, a silicon single crystal material used as a sputtering target material or a plasma etching electrode is manufactured from a silicon single crystal pulled by the CZ method. Therefore, a single crystal having a large diameter of 300 mm or more can be easily produced.
The resistivity of this silicon single crystal is 10 to 50 Ωcm, preferably 10 to 30 Ωcm. If it is less than 10 Ωcm, it is difficult to perform sputtering or plasma etching stably, and if it exceeds 50 Ωcm, the deviation in resistivity is significantly out of the range in which it can be suppressed and controlled.

通常、CZ法により引き上げられたシリコン単結晶は、格子間酸素を含有し、ドナーキラー熱処理を施さない場合、単結晶中に格子間酸素に起因するサーマルドナーが発生する。このサーマルドナーにより、添加したドーパントに基づく目標抵抗率からのずれが生じる。本発明では、シリコン単結晶の抵抗率を上記の範囲に設定することにより、ターゲット材や電極として用いることができるとともに、抵抗率のずれを抑制することができる。   Usually, a silicon single crystal pulled by the CZ method contains interstitial oxygen, and when donor killer heat treatment is not performed, thermal donors due to interstitial oxygen are generated in the single crystal. This thermal donor causes a deviation from the target resistivity based on the added dopant. In the present invention, by setting the resistivity of the silicon single crystal in the above range, it can be used as a target material or an electrode, and a deviation in resistivity can be suppressed.

本発明では、シリコン単結晶材料の抵抗率のずれを目標抵抗率の値に対して±10%の範囲内と設定する。スパッタリングのターゲット材として用いる際にシリコン単結晶材料の抵抗率のずれが±10%の範囲を超えていると、ターゲット材裏面に設定電圧を負荷しても、ターゲット材表面の電圧が変化するため、狙い通りのスパッタリングができない。また、プラズマエッチング用電極として用いる際にシリコン単結晶材料の抵抗率のずれが±10%の範囲を超えていると、所望のプラズマエッチングを安定して行うことができない。   In the present invention, the deviation in resistivity of the silicon single crystal material is set within a range of ± 10% with respect to the target resistivity value. If the deviation of resistivity of silicon single crystal material exceeds the range of ± 10% when used as a sputtering target material, the voltage on the surface of the target material changes even when a set voltage is applied to the back surface of the target material. Can't perform sputtering as intended. Further, when the deviation of the resistivity of the silicon single crystal material exceeds the range of ± 10% when used as an electrode for plasma etching, desired plasma etching cannot be stably performed.

上記の目標抵抗率からのずれを確実に±10%とするために、本発明は、一態様として、引き上げるシリコン単結晶の格子間酸素濃度を6.6〜10×1017atoms/cm(ASTM’79)といった低酸素濃度とする方法を提供する。10×1017atoms/cm以下とすれば、低酸素濃度であることから、発生するサーマルドナーの量を確実に減少させることができ、抵抗率のずれを±10%の範囲内とすることができるため好ましい。また、6.6×1017atoms/cm以上であれば、ターゲット材や電極として用いた際の十分な強度を得ることができるし、CZ法における低酸素濃度結晶の製造も可能な濃度である。 In order to ensure that the deviation from the target resistivity is ± 10%, according to one aspect of the present invention, the interstitial oxygen concentration of the silicon single crystal to be pulled is set to 6.6 to 10 × 10 17 atoms / cm 3 ( A method for providing a low oxygen concentration such as ASTM '79) is provided. If it is 10 × 10 17 atoms / cm 3 or less, the amount of generated thermal donors can be surely reduced because the oxygen concentration is low, and the deviation in resistivity is within ± 10%. Is preferable. Moreover, if it is 6.6 * 10 < 17 > atoms / cm < 3 > or more, sufficient intensity | strength at the time of using it as a target material or an electrode can be obtained, and it is the density | concentration which can manufacture the low oxygen concentration crystal | crystallization in CZ method. is there.

また、本発明は、別の態様として、引き上げるシリコン単結晶の格子間酸素濃度を10〜13×1017atoms/cm(ASTM’79)とし、このシリコン単結晶の直胴部下端から直胴の長さ比で上方に20%の領域を切り出す方法を提供する。通常、格子間酸素濃度が10.0×1017atoms/cmを超えてしまうと、直胴部の上方部分ではサーマルドナーにより目標抵抗率からのずれが±10%を超えてしまうことがある。しかし、CZ法により引き上げられるシリコン単結晶は、成長中の単結晶の熱履歴の違いから直胴部下端ではサーマルドナーが発生しにくい。従って、直胴部下端の領域であれば、シリコン単結晶中の格子間酸素濃度が10×1017atoms/cm以上のものであっても好適に用いることができる。また、13×1017atoms/cm以下であれば、抵抗率のずれを確実に±10%の範囲内とすることができるため好ましい。この態様では、酸素濃度を極端に低酸素にしなくてもよいため、単結晶の製造が容易で、歩留りが向上する利点がある。 Further, according to another aspect of the present invention, the interstitial oxygen concentration of the silicon single crystal to be pulled is set to 10 to 13 × 10 17 atoms / cm 3 (ASTM'79). A method of cutting out a 20% region upward at a length ratio of Normally, when the interstitial oxygen concentration exceeds 10.0 × 10 17 atoms / cm 3 , the deviation from the target resistivity may exceed ± 10% due to the thermal donor in the upper part of the straight body portion. . However, a silicon single crystal pulled by the CZ method is unlikely to generate a thermal donor at the lower end of the straight body due to a difference in thermal history of the growing single crystal. Therefore, the region at the lower end of the straight body portion can be suitably used even if the interstitial oxygen concentration in the silicon single crystal is 10 × 10 17 atoms / cm 3 or more. Moreover, if it is 13 * 10 < 17 > atoms / cm < 3 > or less, since the shift | offset | difference of a resistivity can be reliably within the range of +/- 10%, it is preferable. In this aspect, since it is not necessary to make the oxygen concentration extremely low, there is an advantage that the production of the single crystal is easy and the yield is improved.

CZ法により引き上げられるシリコン単結晶の抵抗率及び格子間酸素濃度は、例えば、磁場印加CZ(MCZ)法における製造条件や、ドープ剤を単結晶育成に用いるシリコン融液に投入すること等により適宜調整することができる。例えば、酸素濃度の調整は、原料融液を保持するルツボの回転数や炉内圧、導入ガス流量、ヒーターの温度分布等を制御することにより行うことができる。また、抵抗率は、例えばP型であれば、B、Ga、Al等のドーパントの投入量、n型であれば、P、As、Sb等のドーパントの投入量により制御することができる。   The resistivity and interstitial oxygen concentration of the silicon single crystal pulled by the CZ method are appropriately determined depending on, for example, the manufacturing conditions in the magnetic field application CZ (MCZ) method, or by introducing a dopant into the silicon melt used for single crystal growth. Can be adjusted. For example, the oxygen concentration can be adjusted by controlling the number of revolutions of the crucible holding the raw material melt, the furnace pressure, the introduced gas flow rate, the heater temperature distribution, and the like. The resistivity can be controlled by the amount of dopant such as B, Ga, Al, etc., if it is P-type, and by the amount of dopant such as P, As, Sb, etc. if it is n-type.

本発明のシリコン単結晶材料の製造方法は、300mm以上の大口径のシリコン単結晶材料を製造するのに好適に用いることができる。   The method for producing a silicon single crystal material of the present invention can be suitably used for producing a silicon single crystal material having a large diameter of 300 mm or more.

シリコン単結晶からの切り出しは、例えば、通常のウェーハのスライス工程と同様に行うことができる。このときの厚さは、5〜50mmであり、10mm程度のものが特に好ましい。   The cutting from the silicon single crystal can be performed, for example, in the same manner as a normal wafer slicing step. The thickness at this time is 5 to 50 mm, and a thickness of about 10 mm is particularly preferable.

従来、小口径のスパッタリング用のターゲット材やプラズマエッチング用電極の材料には、所望の抵抗率からの変化を抑制するため、ドナーキラー熱処理を施していた。しかし、前述のように300mm以上の大口径で、かつ、5〜50mmの厚さを持つ材料に対してドナーキラー熱処理を施した場合、材料の内部にスリップが導入されてしまう問題が発生した。
本発明では、ドナーキラー熱処理を施さないため、ドナーキラー熱処理由来のスリップの導入は起こらない。
Conventionally, donor killer heat treatment has been applied to a target material for sputtering having a small diameter and a material for an electrode for plasma etching in order to suppress a change from a desired resistivity. However, as described above, when donor killer heat treatment is performed on a material having a large diameter of 300 mm or more and a thickness of 5 to 50 mm, a problem that slip is introduced into the material occurs.
In the present invention, since the donor killer heat treatment is not performed, the introduction of slips derived from the donor killer heat treatment does not occur.

上記の製造方法により、スリップの導入がなく、抵抗率が目標抵抗率の±10%の範囲内に制御されているため、特に直径300mm以上、さらには直径500mm以上といった大口径のスパッタリングのターゲット材又はプラズマエッチング用電極に好適に用いられるシリコン単結晶材料を提供することができる。
具体的には、以下のようなものを提供することができる。
By the above manufacturing method, no slip is introduced, and the resistivity is controlled within a range of ± 10% of the target resistivity. Therefore, a sputtering target material having a large diameter of particularly 300 mm or more, further 500 mm or more in diameter. Alternatively, it is possible to provide a silicon single crystal material suitably used for an electrode for plasma etching.
Specifically, the following can be provided.

スパッタリングのターゲット材として用いるシリコン単結晶材料であって、
チョクラルスキー法により引き上げられた格子間酸素濃度が6.6〜10×1017atoms/cm(ASTM’79)のシリコン単結晶を厚さ5〜50mmに切り出したものであり、ドナーキラー熱処理が施されていないものであり、抵抗率が10〜50Ωcmの範囲内のものであるシリコン単結晶材料。
A silicon single crystal material used as a sputtering target material,
A silicon single crystal having an interstitial oxygen concentration of 6.6 to 10 × 10 17 atoms / cm 3 (ASTM'79) pulled up by the Czochralski method is cut out to a thickness of 5 to 50 mm, and a donor killer heat treatment is performed. Is a silicon single crystal material having a resistivity in the range of 10 to 50 Ωcm.

スパッタリングのターゲット材として用いるシリコン単結晶材料であって、
チョクラルスキー法により引き上げられた格子間酸素濃度が10〜13×1017atoms/cm(ASTM’79)のシリコン単結晶の直胴部下端から直胴の長さ比で上方に20%の領域を厚さ5〜50mmに切り出したものであり、ドナーキラー熱処理が施されていないものであり、抵抗率が10〜50Ωcmの範囲内のものであるシリコン単結晶材料。
A silicon single crystal material used as a sputtering target material,
The interstitial oxygen concentration pulled up by the Czochralski method is 10 to 13 × 10 17 atoms / cm 3 (ASTM'79). A silicon single crystal material having a region cut into a thickness of 5 to 50 mm, not subjected to donor killer heat treatment, and having a resistivity in the range of 10 to 50 Ωcm.

このようなシリコン単結晶材料をスパッタリングのターゲット材として使用すれば、内部にスリップの導入がなく。抵抗率も目標抵抗率の範囲内となっているため、ターゲット材裏面に設定電圧を負荷しても、ターゲット材表面の電圧が変化することなく、狙い通りのスパッタリングができる。   If such a silicon single crystal material is used as a sputtering target material, no slip is introduced inside. Since the resistivity is also within the range of the target resistivity, even if a set voltage is applied to the back surface of the target material, the target sputtering can be performed without changing the voltage on the target material surface.

スパッタリングの方法としては、特に限定されないが、本発明では、目標抵抗率を10〜50Ωcmとしていることから、DCスパッタリングに好適に用いることができる。   Although it does not specifically limit as a sputtering method, In this invention, since the target resistivity is 10-50 ohm-cm, it can use suitably for DC sputtering.

また、スパッタリングのターゲット材としての用途以外にも以下のようなものを提供することができる。   In addition to the use as a sputtering target material, the following can be provided.

プラズマエッチング用電極として用いるシリコン単結晶材料であって、
チョクラルスキー法により引き上げられた格子間酸素濃度が6.6〜10×1017atoms/cm(ASTM’79)のシリコン単結晶を厚さ5〜50mmに切り出したものであり、ドナーキラー熱処理が施されていないものであり、抵抗率が10〜50Ωcmの範囲内のものであるシリコン単結晶材料。
A silicon single crystal material used as an electrode for plasma etching,
A silicon single crystal having an interstitial oxygen concentration of 6.6 to 10 × 10 17 atoms / cm 3 (ASTM'79) pulled up by the Czochralski method is cut out to a thickness of 5 to 50 mm, and a donor killer heat treatment is performed. Is a silicon single crystal material having a resistivity in the range of 10 to 50 Ωcm.

プラズマエッチング用電極として用いるシリコン単結晶材料であって、
チョクラルスキー法により引き上げられた格子間酸素濃度が10〜13×1017atoms/cm(ASTM’79)のシリコン単結晶の直胴部下端から直胴の長さ比で上方に20%の領域を厚さ5〜50mmに切り出したものであり、ドナーキラー熱処理が施されていないものであり、抵抗率が10〜50Ωcmの範囲内のものであるシリコン単結晶材料。
A silicon single crystal material used as an electrode for plasma etching,
The interstitial oxygen concentration pulled up by the Czochralski method is 10 to 13 × 10 17 atoms / cm 3 (ASTM'79). A silicon single crystal material having a region cut into a thickness of 5 to 50 mm, not subjected to donor killer heat treatment, and having a resistivity in the range of 10 to 50 Ωcm.

このようなシリコン単結晶材料をプラズマエッチング用電極として使用すれば、内部にスリップの導入がなく。抵抗率も目標抵抗率の範囲内となっているため、プラズマエッチング時に設定電圧を負荷しても、電極の電圧が変化することなく、安定したプラズマエッチングを行うことができる。   If such a silicon single crystal material is used as an electrode for plasma etching, no slip is introduced inside. Since the resistivity is also within the range of the target resistivity, stable plasma etching can be performed without changing the electrode voltage even when a set voltage is applied during plasma etching.

以下、実験及び実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an experiment and an Example are shown and this invention is demonstrated more concretely, this invention is not limited to these.

<目標抵抗率からのずれと目標抵抗率との関係性>
[実験]
まず、同一の格子間酸素濃度を持つシリコン単結晶を、抵抗率を変化させて、ドナーキラー熱処理を施さずに、目標抵抗率からのずれを確認した。尚、このときのシリコン単結晶材料は、直胴部下端から直胴の長さ比で上方に60%〜90%の位置から切り出した。
図1に、格子間酸素濃度1.2×1018atoms/cm(ASTM’79)における、目標抵抗率からのずれと目標抵抗率の関係を示す。
図1に示される様に、格子間酸素濃度が同じでも、目標抵抗率の値が高くなるほど目標抵抗率からのずれが大きくなることがわかる。
<Relationship between target resistivity and target resistivity>
[Experiment]
First, a silicon single crystal having the same interstitial oxygen concentration was checked for deviation from the target resistivity without changing the resistivity and performing donor killer heat treatment. In addition, the silicon single crystal material at this time was cut out from the position of 60% to 90% upward in the length ratio of the straight body from the lower end of the straight body.
FIG. 1 shows the relationship between the deviation from the target resistivity and the target resistivity at an interstitial oxygen concentration of 1.2 × 10 18 atoms / cm 3 (ASTM'79).
As shown in FIG. 1, even when the interstitial oxygen concentration is the same, the deviation from the target resistivity increases as the target resistivity value increases.

次に、シリコン単結晶の抵抗率10Ωcm及び50Ωcmとして、目標抵抗率からのずれと格子間酸素濃度の関係性を確認した。   Next, the relationship between the deviation from the target resistivity and the interstitial oxygen concentration was confirmed with the resistivity of the silicon single crystal being 10 Ωcm and 50 Ωcm.

<目標抵抗率からのずれと格子間酸素濃度との関係性>
[実施例1]
図2に、抵抗率が10Ωcmのシリコン単結晶において、格子間酸素濃度を変化させたときの、目標抵抗率からのずれの関係性を示す。尚、このときのシリコン単結晶材料は、直胴部下端から直胴の長さ比で上方に60%〜90%の位置から切り出した。
図2に示されているように、抵抗率が10Ωcmかつ格子間酸素濃度が10.0×1017atoms/cm(ASTM’79)以下のシリコン単結晶であれば、目標抵抗率からのずれが確実に±10%の範囲内になることがわかる。
<Relationship between deviation from target resistivity and interstitial oxygen concentration>
[Example 1]
FIG. 2 shows the relationship of deviation from the target resistivity when the interstitial oxygen concentration is changed in a silicon single crystal having a resistivity of 10 Ωcm. In addition, the silicon single crystal material at this time was cut out from the position of 60% to 90% upward in the length ratio of the straight body from the lower end of the straight body.
As shown in FIG. 2, if the silicon single crystal has a resistivity of 10 Ωcm and an interstitial oxygen concentration of 10.0 × 10 17 atoms / cm 3 (ASTM'79) or less, the deviation from the target resistivity is achieved. It can be seen that is surely within the range of ± 10%.

[実施例2]
図3は、図2と同様に、抵抗率50Ωcmのシリコン単結晶において、格子間酸素濃度と目標抵抗率からのずれの関係性を示す。尚、このときのシリコン単結晶材料は、直胴部下端から直胴の長さ比で上方に60%〜90%の位置から切り出した。
図3に示されているように、抵抗率が50Ωcmかつ格子間酸素濃度が10.0×1017atoms/cm(ASTM’79)以下のシリコン単結晶においても、目標抵抗率からのずれが確実に±10%の範囲内になることがわかる。
[Example 2]
FIG. 3 shows the relationship between the interstitial oxygen concentration and the deviation from the target resistivity in a silicon single crystal having a resistivity of 50 Ωcm, as in FIG. In addition, the silicon single crystal material at this time was cut out from the position of 60% to 90% upward in the length ratio of the straight body from the lower end of the straight body.
As shown in FIG. 3, even in a silicon single crystal having a resistivity of 50 Ωcm and an interstitial oxygen concentration of 10.0 × 10 17 atoms / cm 3 (ASTM'79) or less, there is a deviation from the target resistivity. It can be seen that it is within the range of ± 10%.

<直胴長さと目標抵抗率からのずれとの関係性>
[実施例3]
図4は、目標抵抗率10Ωcmにおける格子間酸素濃度が10×1017atoms/cm(ASTM’79)以下の場合(○)と、10×1017atoms/cm(ASTM’79)よりも高い値の場合(●)の直胴長さと目標抵抗率からのずれとの関係性を示す。
図4に示されているように、格子間酸素濃度10×1017atoms/cm(ASTM’79)の場合は直胴全長に渡って目標抵抗からのずれが±10%以下の範囲内であるが、高酸素の場合は直胴部の上方では±10%よりも大きい範囲となるものもある。しかし、直胴全長を1として規格化した直胴位置が直胴部下端から直胴の長さ比で上方に20%以内(直胴長さ:0.8以上)であれば、高酸素である10×1017atoms/cm(ASTM’79)以上の場合でも、ドナーキラー熱処理をせずに、測定した抵抗値が目標抵抗率の±10%の範囲内に確実に入っていることがわかる。
<Relationship between straight body length and deviation from target resistivity>
[Example 3]
FIG. 4 shows a case where the interstitial oxygen concentration at the target resistivity of 10 Ωcm is 10 × 10 17 atoms / cm 3 (ASTM'79) or less (◯), and more than 10 × 10 17 atoms / cm 3 (ASTM'79). In the case of a high value, the relationship between the straight body length and the deviation from the target resistivity is shown.
As shown in FIG. 4, when the interstitial oxygen concentration is 10 × 10 17 atoms / cm 3 (ASTM'79), the deviation from the target resistance is within ± 10% or less over the entire length of the straight body. However, in the case of high oxygen, there are some which are larger than ± 10% above the straight body portion. However, if the straight cylinder position normalized with the total length of the straight cylinder as 1 is within 20% upward (straight cylinder length: 0.8 or more) in the length ratio of the straight cylinder from the lower end of the straight cylinder part, high oxygen Even in the case of 10 × 10 17 atoms / cm 3 (ASTM'79) or more, the measured resistance value is surely within the range of ± 10% of the target resistivity without performing the donor killer heat treatment. Recognize.

以上の結果から、本発明のシリコン単結晶材料の製造方法であれば、ドナーキラー熱処理を行わないことから、スリップの導入がなく、かつ、目標抵抗率からのずれの少ないシリコン単結晶材料を製造できることが明らかになった。   From the above results, the silicon single crystal material production method of the present invention does not perform donor killer heat treatment, and thus produces a silicon single crystal material that does not introduce slip and has little deviation from the target resistivity. It became clear that we could do it.

尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

しかし、近年要求されているような厚さが10mm程度かつ大口径のターゲット材や電極のシリコン単結晶材料では、単結晶製造後の抵抗測定の前にドナーキラー熱処理を行い、加熱後の急冷工程を行うことにより、単結晶材料の内部にスリップが導入されることが明らかになり、抵抗率を制御するため上記のドナーキラー熱処理ができない問題がでてきた。 However, in the case of a silicon single crystal material of a target material or electrode having a thickness of about 10 mm and a large diameter as required in recent years, a donor killer heat treatment is performed before resistance measurement after the single crystal is manufactured, and a rapid cooling process after heating. As a result, it became clear that slip was introduced into the single crystal material, and the above-mentioned donor killer heat treatment for controlling the resistivity could not be performed.

このようなシリコン単結晶材料は、ドナーキラー熱処理が施されていないためスリップが導入されることがなく、また、ドナーキラー熱処理が施されておらずとも目標抵抗率のものとなっており、電極として使用しても抵抗率のずれが少ないため、プラズマエッチング用電極として好適に用いることができる。 Such a silicon single crystal material is not subjected to donor killer heat treatment, so that slip is not introduced, and even if it is not subjected to donor killer heat treatment, it has a target resistivity. deviation of resistivity also be used as for a small, it can be suitably used as a plasma etching electrode.

このようなシリコン単結晶材料をスパッタリングのターゲット材として使用すれば、内部にスリップの導入がなく抵抗率も目標抵抗率の範囲内となっているため、ターゲット材裏面に設定電圧を負荷しても、ターゲット材表面の電圧が変化することなく、狙い通りのスパッタリングができる。 If such a silicon single crystal material is used as a sputtering target material, no slip is introduced inside, and the resistivity is within the target resistivity range. However, the target sputtering can be performed without changing the voltage on the surface of the target material.

このようなシリコン単結晶材料をプラズマエッチング用電極として使用すれば、内部にスリップの導入がなく抵抗率も目標抵抗率の範囲内となっているため、プラズマエッチング時に設定電圧を負荷しても、電極の電圧が変化することなく、安定したプラズマエッチングを行うことができる。 If such a silicon single crystal material is used as an electrode for plasma etching, no slip is introduced inside, and the resistivity is within the range of the target resistivity. Stable plasma etching can be performed without changing the voltage of the electrode.

<直胴長さと目標抵抗率からのずれとの関係性>
[実施例3]
図4は、目標抵抗率10Ωcmにおける格子間酸素濃度が10×1017atoms/cm(ASTM’79)以下の場合(○)と、10×1017atoms/cm(ASTM’79)よりも高い値の場合(●)の直胴長さと目標抵抗率からのずれとの関係性を示す。
図4に示されているように、格子間酸素濃度10×1017atoms/cm(ASTM’79)以下の低酸素の場合は直胴全長に渡って目標抵抗からのずれが±10%以下の範囲内であるが、格子間酸素濃度が10×10 17 atoms/cm (ASTM’79)より高い高酸素の場合は直胴部の上方では±10%よりも大きい範囲となるものもある。しかし、直胴全長を1として規格化した直胴位置が直胴部下端から直胴の長さ比で上方に20%以内(直胴長さ:0.8以上)であれば、高酸素である10×1017atoms/cm(ASTM’79)より高い場合でも、ドナーキラー熱処理をせずに、測定した抵抗値が目標抵抗率の±10%の範囲内に確実に入っていることがわかる。
<Relationship between straight body length and deviation from target resistivity>
[Example 3]
FIG. 4 shows a case where the interstitial oxygen concentration at the target resistivity of 10 Ωcm is 10 × 10 17 atoms / cm 3 (ASTM'79) or less (◯), and more than 10 × 10 17 atoms / cm 3 (ASTM'79). In the case of a high value, the relationship between the straight body length and the deviation from the target resistivity is shown.
As shown in FIG. 4, in the case of low oxygen with an interstitial oxygen concentration of 10 × 10 17 atoms / cm 3 (ASTM'79) or less, the deviation from the target resistance is ± 10% or less over the entire length of the straight body. In the case of high oxygen with an interstitial oxygen concentration higher than 10 × 10 17 atoms / cm 3 (ASTM'79) , there may be a range larger than ± 10% above the straight body portion. . However, if the straight cylinder position normalized with the total length of the straight cylinder as 1 is within 20% upward (straight cylinder length: 0.8 or more) in the length ratio of the straight cylinder from the lower end of the straight cylinder part, high oxygen Even when higher than a certain 10 × 10 17 atoms / cm 3 (ASTM'79), the measured resistance value is surely within a range of ± 10% of the target resistivity without donor killer heat treatment. Recognize.

Claims (7)

スパッタリングのターゲット材又はプラズマエッチング用電極として用いるシリコン単結晶材料の製造方法であって、
チョクラルスキー法により抵抗率が10〜50Ωcmのシリコン単結晶を引き上げ、該シリコン単結晶を厚さ5〜50mmに切り出して、ドナーキラー熱処理を行わずに、抵抗率を目標抵抗率の±10%の範囲内に制御することを特徴とするシリコン単結晶材料の製造方法。
A method for producing a silicon single crystal material used as a sputtering target material or plasma etching electrode,
A silicon single crystal having a resistivity of 10 to 50 Ωcm is pulled up by the Czochralski method, the silicon single crystal is cut into a thickness of 5 to 50 mm, and the resistivity is ± 10% of the target resistivity without performing donor killer heat treatment. The manufacturing method of the silicon single crystal material characterized by controlling within the range.
前記チョクラルスキー法によるシリコン単結晶の引き上げで、格子間酸素濃度が6.6〜10×1017atoms/cm(ASTM’79)のものを引き上げることを特徴とする請求項1に記載のシリコン単結晶材料の製造方法。 The silicon single crystal is pulled by the Czochralski method, and a silicon single crystal having an interstitial oxygen concentration of 6.6 to 10 × 10 17 atoms / cm 3 (ASTM'79) is pulled. A method for producing a silicon single crystal material. 前記チョクラルスキー法によるシリコン単結晶の引き上げで、格子間酸素濃度が10〜13×1017atoms/cm(ASTM’79)のものを引き上げ、前記シリコン単結晶の切り出しは、直胴部下端から直胴の長さ比で上方に20%の領域から切り出すことを特徴とする請求項1に記載のシリコン単結晶材料の製造方法。 By pulling up the silicon single crystal by the Czochralski method, a silicon single crystal having an interstitial oxygen concentration of 10-13 × 10 17 atoms / cm 3 (ASTM'79) is pulled up, 2. The method for producing a silicon single crystal material according to claim 1, wherein a length ratio of the straight body is cut out from a region of 20% upward from the first portion. スパッタリングのターゲット材として用いるシリコン単結晶材料であって、
チョクラルスキー法により引き上げられた格子間酸素濃度が6.6〜10×1017atoms/cm(ASTM’79)のシリコン単結晶を厚さ5〜50mmに切り出したものであり、ドナーキラー熱処理が施されていないものであり、抵抗率が10〜50Ωcmの範囲内のものであることを特徴とするシリコン単結晶材料。
A silicon single crystal material used as a sputtering target material,
A silicon single crystal having an interstitial oxygen concentration of 6.6 to 10 × 10 17 atoms / cm 3 (ASTM'79) pulled up by the Czochralski method is cut out to a thickness of 5 to 50 mm, and a donor killer heat treatment is performed. A silicon single crystal material having a resistivity in a range of 10 to 50 Ωcm.
スパッタリングのターゲット材として用いるシリコン単結晶材料であって、
チョクラルスキー法により引き上げられた格子間酸素濃度が10〜13×1017atoms/cm(ASTM’79)のシリコン単結晶の直胴部下端から直胴の長さ比で上方に20%の領域を厚さ5〜50mmに切り出したものであり、ドナーキラー熱処理が施されていないものであり、抵抗率が10〜50Ωcmの範囲内のものであることを特徴とするシリコン単結晶材料。
A silicon single crystal material used as a sputtering target material,
The interstitial oxygen concentration pulled up by the Czochralski method is 10 to 13 × 10 17 atoms / cm 3 (ASTM'79). A silicon single crystal material characterized in that a region is cut to a thickness of 5 to 50 mm, has not been subjected to donor killer heat treatment, and has a resistivity in the range of 10 to 50 Ωcm.
プラズマエッチング用電極として用いるシリコン単結晶材料であって、
チョクラルスキー法により引き上げられた格子間酸素濃度が6.6〜10×1017atoms/cm(ASTM’79)のシリコン単結晶を厚さ5〜50mmに切り出したものであり、ドナーキラー熱処理が施されていないものであり、抵抗率が10〜50Ωcmの範囲内のものであることを特徴とするシリコン単結晶材料。
A silicon single crystal material used as an electrode for plasma etching,
A silicon single crystal having an interstitial oxygen concentration of 6.6 to 10 × 10 17 atoms / cm 3 (ASTM'79) pulled up by the Czochralski method is cut out to a thickness of 5 to 50 mm, and a donor killer heat treatment is performed. A silicon single crystal material having a resistivity in a range of 10 to 50 Ωcm.
プラズマエッチング用電極として用いるシリコン単結晶材料であって、
チョクラルスキー法により引き上げられた格子間酸素濃度が10〜13×1017atoms/cm(ASTM’79)のシリコン単結晶の直胴部下端から直胴の長さ比で上方に20%の領域を厚さ5〜50mmに切り出したものであり、ドナーキラー熱処理が施されていないものであり、抵抗率が10〜50Ωcmの範囲内のものであることを特徴とするシリコン単結晶材料。
A silicon single crystal material used as an electrode for plasma etching,
The interstitial oxygen concentration pulled up by the Czochralski method is 10 to 13 × 10 17 atoms / cm 3 (ASTM'79). A silicon single crystal material characterized in that a region is cut to a thickness of 5 to 50 mm, has not been subjected to donor killer heat treatment, and has a resistivity in the range of 10 to 50 Ωcm.
JP2013170917A 2013-08-21 2013-08-21 Method for producing silicon single crystal material Active JP6167752B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013170917A JP6167752B2 (en) 2013-08-21 2013-08-21 Method for producing silicon single crystal material
PCT/JP2014/003737 WO2015025463A1 (en) 2013-08-21 2014-07-15 Method for producing silicon single crystal material, and silicon single crystal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013170917A JP6167752B2 (en) 2013-08-21 2013-08-21 Method for producing silicon single crystal material

Publications (2)

Publication Number Publication Date
JP2015040142A true JP2015040142A (en) 2015-03-02
JP6167752B2 JP6167752B2 (en) 2017-07-26

Family

ID=52483261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013170917A Active JP6167752B2 (en) 2013-08-21 2013-08-21 Method for producing silicon single crystal material

Country Status (2)

Country Link
JP (1) JP6167752B2 (en)
WO (1) WO2015025463A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206420A (en) * 2016-05-20 2017-11-24 株式会社Sumco Producing method of silicon single crystal, and silicon single crystal
JP2018127652A (en) * 2017-02-06 2018-08-16 Jx金属株式会社 Single crystal silicon sputtering target

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268616A (en) * 1994-03-31 1995-10-17 Tdk Corp Production of silicon target for sputtering
JPH10265976A (en) * 1997-03-28 1998-10-06 Hitachi Chem Co Ltd Production of plasma etching electrode
JP2001060553A (en) * 1999-06-18 2001-03-06 Seiko Epson Corp Manufacture of silicon thin film
JP2001223204A (en) * 2000-02-08 2001-08-17 Shin Etsu Chem Co Ltd Electrode plate for plasma etching device
JP2003051449A (en) * 2001-05-21 2003-02-21 Sharp Corp System and method for fabricating silicon target
JP2007191350A (en) * 2006-01-19 2007-08-02 Sumco Corp Silicon single crystal wafer for igbt and its producing method
JP2008159773A (en) * 2006-12-22 2008-07-10 Mitsubishi Materials Corp Composite silicon electrode having small resistivity in in-plane variations and its manufacturing method
WO2009028658A1 (en) * 2007-08-29 2009-03-05 Sumco Corporation Silicon single crystal wafer for igbt, method for manufacturing silicon single crystal wafer for igbt and method for assuring resistivity of silicon single crystal wafer for igbt
JP2010265143A (en) * 2009-05-15 2010-11-25 Sumco Corp Method for producing silicon single crystal, and method for producing silicon wafer
JP2012076980A (en) * 2010-10-06 2012-04-19 Sumco Corp Method for manufacturing silicon wafer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268616A (en) * 1994-03-31 1995-10-17 Tdk Corp Production of silicon target for sputtering
JPH10265976A (en) * 1997-03-28 1998-10-06 Hitachi Chem Co Ltd Production of plasma etching electrode
JP2001060553A (en) * 1999-06-18 2001-03-06 Seiko Epson Corp Manufacture of silicon thin film
JP2001223204A (en) * 2000-02-08 2001-08-17 Shin Etsu Chem Co Ltd Electrode plate for plasma etching device
JP2003051449A (en) * 2001-05-21 2003-02-21 Sharp Corp System and method for fabricating silicon target
JP2007191350A (en) * 2006-01-19 2007-08-02 Sumco Corp Silicon single crystal wafer for igbt and its producing method
JP2008159773A (en) * 2006-12-22 2008-07-10 Mitsubishi Materials Corp Composite silicon electrode having small resistivity in in-plane variations and its manufacturing method
WO2009028658A1 (en) * 2007-08-29 2009-03-05 Sumco Corporation Silicon single crystal wafer for igbt, method for manufacturing silicon single crystal wafer for igbt and method for assuring resistivity of silicon single crystal wafer for igbt
JP2010265143A (en) * 2009-05-15 2010-11-25 Sumco Corp Method for producing silicon single crystal, and method for producing silicon wafer
JP2012076980A (en) * 2010-10-06 2012-04-19 Sumco Corp Method for manufacturing silicon wafer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206420A (en) * 2016-05-20 2017-11-24 株式会社Sumco Producing method of silicon single crystal, and silicon single crystal
US10490398B2 (en) 2016-05-20 2019-11-26 Sumco Corporation Manufacturing method of monocrystalline silicon and monocrystalline silicon
JP2018127652A (en) * 2017-02-06 2018-08-16 Jx金属株式会社 Single crystal silicon sputtering target

Also Published As

Publication number Publication date
WO2015025463A1 (en) 2015-02-26
JP6167752B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
US10400353B2 (en) Method for controlling resistivity and N-type silicon single crystal
WO2010021272A1 (en) Processes for production of silicon ingot, silicon wafer and epitaxial wafer, and silicon ingot
WO2006117939A1 (en) Method for producing silicon wafer
JP6299543B2 (en) Resistivity control method and additional dopant injection device
JP2007207875A (en) Silicon wafer and manufacturing method thereof
JP2015196616A (en) REMOVAL METHOD OF WORK-AFFECTED LAYER OF SiC SEED CRYSTAL, SiC SEED CRYSTAL, AND PRODUCTION METHOD OF SiC SUBSTRATE
TWI345838B (en) High frequency diode and method for producing same
JPWO2018198606A1 (en) Method for manufacturing n-type silicon single crystal, ingot of n-type silicon single crystal, silicon wafer, and epitaxial silicon wafer
JP5283543B2 (en) Method for growing silicon single crystal
JP5373423B2 (en) Silicon single crystal and manufacturing method thereof
JP2012246218A (en) Silicon single crystal wafer, and method for producing silicon single crystal
JP4567262B2 (en) Strengthened n-type silicon material for epitaxial wafer substrate and method of manufacturing the same
US20210040642A1 (en) Method for producing silicon single crystal
JP6167752B2 (en) Method for producing silicon single crystal material
JP5372105B2 (en) N-type silicon single crystal and manufacturing method thereof
TWI691624B (en) Method for manufacturing n-type silicon single crystal
JP2018058710A (en) Production method of silicon single crystal, and silicon single crystal
JP6119642B2 (en) Manufacturing method of semiconductor single crystal
JP2005206391A (en) Method for guaranteeing resistivity of silicon single crystal substrate, method for manufacturing silicon single crystal substrate, and silicon single crystal substrate
JP5489064B2 (en) Method for growing silicon single crystal
JP6447960B2 (en) Manufacturing method of silicon epitaxial wafer
JP6304125B2 (en) A method for controlling resistivity in the axial direction of silicon single crystal
JP5668786B2 (en) Method for growing silicon single crystal and method for producing silicon wafer
JP2021109807A (en) Method for manufacturing silicon single crystal
JP6196353B2 (en) Method for forming single crystal silicon ingot and wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6167752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250