JP2010263770A - 振動型駆動装置の制御装置 - Google Patents

振動型駆動装置の制御装置 Download PDF

Info

Publication number
JP2010263770A
JP2010263770A JP2010026728A JP2010026728A JP2010263770A JP 2010263770 A JP2010263770 A JP 2010263770A JP 2010026728 A JP2010026728 A JP 2010026728A JP 2010026728 A JP2010026728 A JP 2010026728A JP 2010263770 A JP2010263770 A JP 2010263770A
Authority
JP
Japan
Prior art keywords
vibration
signal
vibrator
driven
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010026728A
Other languages
English (en)
Other versions
JP5737845B2 (ja
Inventor
Shinya Kudo
真也 工藤
Shinji Yamamoto
新治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010026728A priority Critical patent/JP5737845B2/ja
Priority to CN201080015259.3A priority patent/CN102379082B/zh
Priority to PCT/JP2010/002587 priority patent/WO2010116751A1/en
Priority to US13/259,075 priority patent/US8274196B2/en
Publication of JP2010263770A publication Critical patent/JP2010263770A/ja
Application granted granted Critical
Publication of JP5737845B2 publication Critical patent/JP5737845B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • H02N2/062Small signal circuits; Means for controlling position or derived quantities, e.g. for removing hysteresis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0015Driving devices, e.g. vibrators using only bending modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

【課題】 振動子と被駆動体の相対位置を検出する際に、光学式のリニア型エンコーダ等の別の装置を用いる必要があった。
【解決手段】 本発明の制御装置は、振動子の振動状態を示す信号と、被駆動体に設けられ前記被駆動体の振動を検出する被駆動体側振動検出部から出力される信号と、を用いて前記振動子と前記被駆動体側振動検出部との相対位置を検出する。
【選択図】 図1

Description

本発明は、振動型駆動装置の制御装置に関するものである。特に振動型駆動装置の振動子と被駆動体との相対位置を検出する制御装置に関する。
従来から、所定の質点に楕円運動を生じさせ被駆動体を駆動するタイプの振動型駆動装置に関する様々な提案がなされている。振動型駆動装置の基本的な構成としては、特許文献1に示すような構成が知られている。図12は、特許文献1に記載の振動型駆動装置の構成を示す外観斜視図である。図12(a)に示すように、この振動型駆動装置の振動子は、矩形の板状に形成された金属材料から成る弾性体4を備え、弾性体4の裏面には電気−機械エネルギー変換素子である圧電素子5が接合されている。弾性体4の上面の所定位置には、複数の突起部6が設けられている。
この構成によれば、圧電素子5に交流電圧を印加することにより、弾性体4の長辺方向における2次の屈曲振動と、弾性体4の短辺方向における1次の屈曲振動とが同時に発生し、突起部6に楕円運動が励起される。そして、突起部6に被駆動体7を加圧接触させることにより、被駆動体7を突起部6の楕円運動によって直線的に駆動することができるようになっている。つまり、突起部6がこの振動子の駆動部として作用する。
図12(b)に示すように、圧電素子5は分極処理されており、2つの電極A1、A2を備えている。上記2つの電極A1、A2に同相の交流電圧V1,V2を印加することにより、上記矩形の弾性体4において長辺方向と平行な方向に延びた2本の節を有する1次の屈曲振動を励振する。これが第1の振動モードとなる。また、2つの電極A1、A2に逆相の交流電圧V1,V2を印加することにより、矩形の弾性体4の短辺方向と平行な方向に延びた3本の節を有する2次の屈曲振動を励振する。これが第2の振動モードとなる。そして、上記第1の振動モードと第2の振動モードの組み合わせにより突起部6に楕円運動を励振し、このとき、突起部6に被駆動体を加圧接触させると、被駆動体を直線的に駆動することができるようになっている。
この特許文献1に記載された振動型駆動装置は、圧電素子に印加する2つの交流電圧の周波数又は位相を変化させることによって速度制御を行うことが可能である。
特開2004−320846号
従来の振動型駆動装置において、振動子と被駆動体の相対位置を検出する際に、光学式のリニア型エンコーダを用いて位置を検出していた。光学式のリニア型エンコーダにより位置を検出する際には、スリットや反射により位置検出を行うことが出来るリニアスケールや受光素子等の構成部品が必要である。そのため、振動型駆動装置を組み込む装置側に上記構成部品を組み込むためのスペースも必要となり、小型化が困難であった。本発明はこのような課題に鑑みてなされたものであり、光学式のリニア型エンコーダを用いずに振動子と被駆動体の相対位置検出を行うことができる制御装置を提供することを目的とする。
本発明の制御装置は上記目的を達成するため、
電気−機械エネルギー変換素子と前記電気−機械エネルギー変換素子に接合され突起部が設けられた弾性体とを備え、前記振動子に駆動信号が印加されることで2つの振動モードの振動を励振し、前記2つの振動モードの振動が組み合わさることにより前記突起部に楕円運動を生成する振動子と、端部を有し、前記突起部に接触して前記振動子と相対移動する被駆動体と、を有する振動型駆動装置の制御装置であって、前記振動子の振動状態を示す信号と、前記被駆動体に設けられ前記被駆動体の振動を検出する被駆動体側振動検出部から出力される信号と、を用いて前記振動子と前記被駆動体側振動検出部との相対位置を検出することを特徴とする。
本発明によれば、被駆動体側に振動検出部を設けることで、光学式のリニア型エンコーダ等を用いずに振動子と被駆動体の相対位置を検出することができる。
(a)第1の実施形態に係る振動型駆動装置と制御装置の構成図及び(b)圧電素子の分極領域を示す模式図である 第1の実施形態の振動型駆動装置における電圧波形の一例を示す模式図である。 第2の実施形態に係る振動型駆動装置と制御装置の構成図である。 第2の実施形態の振動型駆動装置における電圧波形の一例を示す模式図である。 第3の実施形態に係る振動型駆動装置と制御装置の構成図である。 第3の実施形態の信号重畳手段23における電圧波形の一例を示す模式図である。 第3の実施形態の振動型駆動装置における電圧波形の一例を示す模式図である。 第4の実施形態に係る振動型駆動装置と制御装置の構成図である。 第4の実施形態の振動型駆動装置における電圧波形の一例を示す模式図である。 第5の実施形態に係る振動型駆動装置と制御装置の構成図である。 第5の実施形態の振動型駆動装置における電圧波形の一例を示す模式図である。 従来の振動型駆動装置の基本的な構成を示す一例を示す外観斜視図である。
[第1の実施形態]
図1(a)は、本発明の第1の実施形態に係る振動型駆動装置と制御装置の構成を示す図である。本発明の第1の実施形態では、図1に示す、振動子の振動状態を示す信号として圧電素子5から出力される信号と、被駆動体側振動検出部8から出力される信号と、を用いて振動子と被駆動体側振動検出部の相対位置を検出する装置について説明する。
<制御装置の構成>
図1(a)に示す振動型駆動装置の制御装置は、振動型駆動装置に駆動信号を印加する駆動信号生成手段21を有し、その出力側には昇圧回路31が接続され昇圧回路により昇圧された信号が圧電素子5に印加されている。昇圧回路は駆動に寄与する周波数帯域において振動型駆動装置が動作可能な電圧まで昇圧する。電気−機械エネルギー変換素子である圧電素子5は、矩形の板状に形成された金属材料から成る弾性体4の裏面に接合されている。圧電素子5が接合された面と反対側の弾性体4の表面には、駆動部としての突起部6が複数設けられており、突起部6に被駆動体7が加圧接触している。
圧電素子5は、図1(b)に示すように、3つの電極A1、A2、S1を備えている。従来例でも述べたように、本発明のような板状の振動子は、2つの振動モードの振動を励起し、2つの振動モードの振動を組み合わせることにより突起部(被駆動体との接触部)に楕円運動を生成する。以下、具体的に2つの振動モードの振動について説明する。上記の電極A1、A2に同相の交流電圧V1,V2を印加すると、上記矩形の弾性体4において長辺方向と平行な方向に延びた2本の節を有する1次の屈曲振動(第1の振動モード)を励振する。つまり、第1の振動モードの振動は、圧電素子5が弾性体4に接合された面と垂直な方向に突起部6を変位させる突き上げモードの振動である。また、電極A1、A2に逆相の交流電圧V1,V2を印加すると、矩形の弾性体4の短辺方向と平行な方向に延びた3本の節を有する2次の屈曲振動(第2の振動モード)を励振する。つまり、第2の振動モードの振動は、圧電素子5が弾性体4に接合された面と平行な方向に前記突起部を変位させる振動を主とする送りモードの振動である。このように、駆動信号生成手段21により生成された所定の周波数の駆動信号を圧電素子5に印加することにより、前記第1の振動モードの振動と前記第2の振動モードの振動とを励振する。この第1の振動モードの振動と第2の振動モードの振動とが組み合わさることにより、突起部6に楕円運動が起きる。そしてこの楕円運動により、被駆動体を振動子に対して直線的に相対移動させることができるようになっている。
本実施形態の被駆動体7の一方の端部には、被駆動体7の振動を検出する被駆動体側振動検出部8が設けられている。突起部6に励起する楕円運動により被駆動体7と突起部6の加圧接触部に振動が印加され、突起部6の振動が被駆動体7を伝播し被駆動体側振動検出部8に到達する。被駆動体側振動検出部8は電気−機械エネルギー変換素子である圧電素子により構成されており、出力側には被駆動体側振動検出回路18が接続されている。被駆動体側振動検出回路18は被駆動体側振動検出部8から出力された信号の中心値(振幅の上限値と下限値の中心)を閾値とする2値の信号に変換し出力側に出力する。被駆動体側振動検出回路18の出力側には位置検出手段17が接続されている。
図1(a)に示す圧電素子5には振動振幅を検出する振動子側振動検出部としての電極である振動振幅検出電極S1が備えられている。振動振幅検出電極S1は第1の振動モードの振動を検出し電圧V3を出力する。振動振幅検出電極S1は圧電素子5に印加する振動を検出する機能を持っている。振動振幅検出電極S1の出力側には図1(a)に示す振動子側振動検出回路19が接続されている。振動子側振動検出回路19は振動振幅検出電極S1から出力された信号の中心値を閾値とする2値の信号に変換し出力側に出力する。振動子側振動検出回路19の出力側には位置検出手段17が接続されている。位置検出手段17は被駆動体側振動検出回路18と振動子側振動検出回路19の信号に基づいて振動子と被駆動体側検出部の相対位置を演算する。位置検出手段17の機能については後述する。
<位置検出手段17の機能>
位置検出手段17の機能について図2を用いて説明する。位置検出手段17は、振動振幅検出電極S1の検出する振動の信号と被駆動体側振動検出部の検出する振動の信号との位相差を検出する機能を持っている。
位相差を検出することにより、振動子と被駆動体側検出部の相対位置(以下、距離Lと呼ぶ)は、材料(被駆動体を形成する材料)を伝播する振動の周期に伝播速度と位相差を乗じ、360度で除した下記計算式(1)で導出できる。
距離L=材料を伝播する振動の周期×材料の伝播速度×位相差/360度 (1)
図2(a)に示す振動振幅検出電極S1の時間―振幅における信号がサイン波形である時、図2(b)に示す被駆動体側振動検出回路19の出力側の時間―振幅における信号は中心値を閾値とする2値の信号に変換し出力された矩形の信号となる。同様に、図2(c)に示す被駆動体側振動検出部8の時間―振幅における信号がサイン波形である時、図2(d)に示す被駆動体側振動検出回路18の出力側の時間―振幅における信号は中心値を閾値とする2値の信号に変換し出力されるため矩形の信号となる。図2(c)に示す検出振動周期Tは図2に示す振動の周期であり、マイコン又はロジック回路で検出できる。
図2(d)に示す遅れ時間P(振動子側振動検出回路から矩形信号が出力される時間と被駆動体側振動検出回路から該矩形信号が出力される時間との時間差)は、振動子側振動検出回路の波形の立ち上がりエッジと被駆動体側振動検出回路の立ち上がりエッジの時間間隔であり、カウンタを用いることにより求めることができる。また、カウンタを用いることにより検出振動周期Tを求めることが出来る。前記遅れ時間Pと前記検出振動周期Tとから位相差を導出する計算式を下記式(2)に示す。
位相差=遅れ時間P/検出振動周期T (2)
つまり、位相差は、カウンタやロジック回路を用いて検出することができる。また、D/Aコンバータを用いて振動振幅検出電極S1と被駆動体側振動検出部8から出力される信号を比較して位相差を求めてもよい。
さらに、被駆動体側振動検出回路からの信号および振動子側振動検出回路からの信号について複数周期の信号同士を比較して位相差を算出し、位相差情報から距離Lを検出することで、より精度が向上する。また、予め測定された、振動子と被駆動体側振動検出部の相対位置と、振動振幅検出電極S1と被駆動体側信号検出部の検出する振動の位相差と、の関係を不図示のメモリから読み出すことで相対位置を検出することもできる。この場合、振動子と被駆動体側検出部の相対位置とは、複数の突起部のうちいずれか1つの端部と被駆動体側振動検出部との距離でもよいし、複数の突起部の中間位置と被駆動体側振動検出部との距離でもよく、任意に定めることができる。
このように、本実施形態では、振動子の振動を検出する振動子側振動検出部から出力される信号と、被駆動体の振動を検出する被駆動体側振動検出部から出力される信号と、を用いて位相差を検出することにより振動子と被駆動体側振動検出部の相対位置を検出することができる。
[第2の実施形態]
第1の実施形態では振動子と被駆動体側振動検出部が相対移動している時に距離Lを検出する形態に関して述べたが、本実施形態では振動子と被駆動体側振動検出部が相対移動せず停止している時に位置を検出する形態について述べる。
本実施形態の振動型駆動装置と制御装置の構成は、図3に示す伝播振動生成手段22と位置検出手段17の機能を除き第1の実施形態と同様であり図3で表わすことができる。図3は、被駆動体を駆動する時間とは別の時間に位置を検出する際のブロック図であり、駆動する時間においては別途駆動するための回路が存在する。
<制御装置の構成>
図3に示す振動型駆動装置の制御装置は、振動型駆動装置に伝播信号を印加する伝播信号生成手段22を有し、その出力側には圧電素子5が接続されている。伝播信号生成手段22から出力する信号は振動子と被駆動体の相対移動に寄与しない周波数の信号である。伝播信号生成手段22により圧電素子5に信号が印加され、突起部6に振動が励振される。突起部6の振動が被駆動体7を伝播し被駆動体側振動検出部8に到達する。被駆動体7の端部には、被駆動体7の振動を検出する被駆動体側振動検出部8が設けられている。被駆動体側振動検出部は電気−機械エネルギー変換素子である圧電素子により構成されており、出力側には被駆動体側振動検出回路18が接続されている。被駆動体側振動検出回路18は、被駆動体側振動検出部8から出力された信号の中心値を閾値とする2値の信号に変換し出力側に出力する。被駆動体側振動検出回路の出力側には位置検出手段17が接続されている。
<位置検出手段17の機能>
位置検出手段17の機能について図4を用いて説明する。位置検出手段17は、振動振幅検出電極S1が振動を検出する時間と、被駆動体側信号検出部が振動を検出する時間と、の時間差(振動の伝播時間TD)を検出する機能を持っている。
図4(a)に示す振動振幅検出電極S1の時間―振幅における信号を出力した際、図4(b)に示す振動子側振動検出回路19の出力側の時間―振幅における信号は中心値を閾値とする2値の信号に変換し出力された矩形の信号となる。同様に、図4(c)に示す被駆動体側振動検出部8の時間―振幅における信号を出力した際、図4(d)に示す被駆動体側振動検出回路18の出力側の時間―振幅における信号は中心値を閾値とする2値の信号に変換し出力されるため矩形の信号となる。
振動振幅検出電極S1が振動を検出する時間と被駆動体側信号検出部が振動を検出する時間の時間差は、図4(c)に示す伝播時間TD(振動子側振動検出回路から矩形信号が出力される時間と被駆動体側振動検出回路から該矩形信号が出力される時間との時間差)に等しい。この伝播時間TDは、振動子側振動検出回路の波形の立ち上がりエッジと被駆動体側振動検出回路の立ち上がりエッジとの時間間隔であり、カウンタを用いることにより求めることができる。振動子側振動検出回路及び被駆動体側振動検出回路は、カウンタやロジック回路で構成されている。距離Lは伝播時間TDに材料の伝播時間を乗じた下記計算式(3)により導出できる。
距離L=伝播時間TD×材料の伝播速度 (3)
このように、本実施形態では、振動子と被駆動体の相対移動に寄与しない周波数の信号を圧電素子に印加し、振動振幅検出電極S1の出力する信号と被駆動体側信号検出部8の出力する信号を用いて、振動振幅検出電極S1が振動を検出した時間と被駆動体側信号検出部8の振動を検出した時間との時間差(伝播時間TD)を検出する。このような時間差を検出することにより、振動型駆動装置が停止状態であっても、振動子と被駆動体側振動検出部の相対位置を検出することができる。
[第3の実施形態]
本実施形態では、振動子と被駆動体の相対移動に寄与する振動とは異なる振動(相対移動に寄与しない振動)を重畳して、距離Lを検出する形態について述べる。
本実施形態の振動型駆動装置の制御装置の構成を図5を用いて説明する。図5に示す信号生成手段20において、駆動信号生成手段21及び伝播信号生成手段22の出力側に信号重畳手段23が接続されている。信号重畳手段23により、駆動信号生成手段21の信号と伝播信号生成手段22の信号とを重畳する。信号重畳手段23の出力側には昇圧回路31が接続され、昇圧回路31により昇圧された信号が圧電素子5に接続されている。ここで伝播信号生成手段22から出力する信号は振動子と被駆動体の相対移動に寄与しない周波数の信号である。
信号重畳手段23の重畳方法について図6を用いて説明する。図6において、駆動信号生成手段21からの信号波形を駆動信号24として示し、伝播信号生成手段22からの信号波形を伝播信号25として示す。重畳信号26とは、駆動信号24と伝播信号25とを重ね合わせた信号であり信号重畳手段23から出力される。
図5に示す被駆動体7の端部には、実施形態1と同様に被駆動体7の振動を検出する被駆動体側振動検出部8が設けられている。被駆動体側振動検出部8は圧電素子により構成されており、出力側には伝播信号帯域通過手段28が接続されている。
伝播信号帯域通過手段28は伝播信号生成手段22の出力する周波数帯域の信号のみを通過させる機能をもっており、ハイパスフィルタやバンドパスフィルタにより構成されている。伝播信号帯域通過手段28の出力側には伝播時間検出手段30が接続されており、伝播時間を検出する。伝播時間検出手段30の出力側には位置検出手段17が接続されている。
位置検出方法について図7を用いて説明する。図7(a)は図5に示す振動振幅検出電極S1の出力信号である。図7(b)は伝播信号帯域通過手段28の内部信号であり、図7(a)に示す振動振幅検出電極S1の出力信号より伝播信号生成手段22の出力する周波数帯域の信号のみを通過させている。図7(c)は伝播信号帯域通過手段28の出力信号であり、図7(b)の信号をコンパレータにより中心値を閾値とする2値の信号に変換している。
図7(d)は図5に示す被駆動体側振動検出部の出力信号である。図7(e)は伝播信号帯域通過手段28の内部信号であり、図7(d)に示す被駆動体側振動検出部の出力信号より伝播信号生成手段22の出力する周波数帯域の信号のみを通過させている。図7(f)は伝播信号帯域通過手段28の出力信号であり、図7(e)の信号を中心値を閾値とする2値の信号に変換している。図5に示す伝播時間検出手段30は図7(c)と図7(f)の信号に基づいて伝播時間TD(相対移動に寄与しない振動の伝播時間)を出力する。
位置検出手段17は伝播時間検出手段30の信号に基づいて位置を演算する。位置検出手段17は、伝播時間TDを検出することにより、第2の実施例と同様に距離Lを導出できる。
このように本実施形態では、振動子と被駆動体の相対移動に寄与しない周波数の信号を、相対移動に寄与する周波数の信号に重畳して被駆動体を相対移動させる。これにより、相対移動に寄与する周波数で駆動している時間と同じ時間に、伝播時間TDを検出することができる。つまり、本実施形態では、振動振幅検出電極S1の出力した信号のうち相対移動に寄与しない振動成分の信号と、被駆動体側振動検出部の出力した信号のうち相対移動に寄与しない振動成分の信号と、を用いて伝播時間TDを検出する。そして、実施形態2と同様に、伝播時間TDから振動子と被駆動体側振動検出部の相対位置を検出することができる。
[第4の実施形態]
実施形態1〜3では振動振幅検出電極S1を用いて振動子の振動を検出し、振動振幅検出電極S1から出力された信号を振動子の振動状態を示す信号として用いていた。本実施形態では、振動振幅検出電極S1を用いず、振動子に印加する信号を直接利用し、振動子の振動状態を示す信号として用いる。そして、振動子に印加する信号と被駆動体側信号検出部から出力される信号とから、距離Lを検出する。本実施形態に係る振動型駆動装置の構成を図8に示す。図1に示す振動子側振動検出回路19を除き第1の実施形態の構成と同様である。
<制御装置の構成>
図8に示す振動型駆動装置の制御装置は、振動型駆動装置に信号を印加する駆動信号生成手段21を有し、その出力側には昇圧回路31が接続され昇圧回路により昇圧された信号が圧電素子5に接続されている。駆動信号生成手段21から出力される信号は振動子と被駆動体の相対移動に寄与する周波数の信号である。駆動信号生成手段21により出力される信号が圧電素子5に印加されて突起部6に振動が印加され被駆動体7を伝播し被駆動体側振動検出部に到達する。また、駆動信号生成手段21の出力側には位置検出手段17が接続されている。位置検出手段17は被駆動体側振動検出回路18が出力する信号と駆動信号生成手段21の印加する信号との位相差を検出する機能を持っている。
図9(a)に示す駆動信号生成手段19の波形は矩形波であり、図8に示す昇圧回路31により昇圧され圧電素子5に接続されている。図9(b)に示す被駆動体側振動検出部8の時間―振幅における信号がサイン波形である時、図9(c)に示す被駆動体側振動検出回路18の出力側の時間―振幅における信号は中心値を閾値とする2値の信号に変換し出力されるため矩形の信号となる。図9(c)に示す検出振動周期Tは図2に示す振動の周期であり、マイコン又はロジック回路で検出できる。
図9(c)に示す遅れ時間P(駆動信号生成手段の印加信号と被駆動体側振動検出回路の出力する矩形信号の時間差)は、駆動信号生成手段の波形の立ち上がりエッジと被駆動体側振動検出回路の立ち上がりエッジの時間間隔であり、カウンタにより求めることができる。距離Lは、第1の実施形態と同様に導出できる。また駆動に寄与する周波数である複数周期の信号同士を比較して位相差を算出し、位相差情報から距離を検出することで、より精度が向上する。
ただし、本実施形態における駆動信号生成手段の信号と比較して、第1の実施形態における、振動振幅検出電極S1から出力される信号は、昇圧回路と圧電素子の介在により位相が遅れる。この位相遅れ分を考慮する場合は、遅れ時間Pから位相遅れ分を減算することでより正確な距離を求めることが可能となる。メリットとして振動子側振動検出回路が不用となり回路を簡素化できる。
以上より、第4の実施形態では振動子の振動状態を示す信号として、第1の実施形態における振動振幅検出電極S1の出力する信号の代わりに駆動信号生成手段の信号を用いて位置の検出を行った。ただし、第2の実施形態および第3の実施形態においても同様に駆動信号生成手段21の信号を用いて振動子と被駆動体側振動検出部の相対位置の検出が可能となる。
[第5の実施形態]
本実施形態の振動型駆動装置の制御装置の構成は、図10を用いて説明する。本実施形態は複数の被駆動体側振動検出部を設けた形態であり、図10に示す被駆動体側振動検出部8bを除き第3の実施形態の構成と同様である。
図10に示す、被駆動体7の両端部には、被駆動体側振動検出部8aと被駆動体側振動検出部8bが設けられている。突起部6の振動により突起部6と加圧接触する被駆動体7に振動が印加され、被駆動体7を伝播し被駆動体側振動検出部8aと被駆動体側振動検出部8bに到達する。図10に示す被駆動体長さLsは被駆動体の長さである。被駆動体側振動検出部は圧電素子により構成されており、出力側には伝播信号帯域通過手段28が接続されている。伝播信号帯域通過手段28は伝播信号生成手段22の出力する周波数帯域の信号のみを通過させる機能をもっており、ハイパスフィルタやバンドパスフィルタにより構成されている。伝播信号帯域通過手段の出力側には伝播時間検出手段30が接続されており、伝播時間を検出する。伝播時間検出手段30の出力側には位置演算手段17が接続されている。
位置検出方法については図11を用いて説明する。図11(a)は図10に示す振動振幅検出電極の出力信号である。図11(b)は伝播信号帯域通過手段28の内部信号であり、図11(a)に示す振動振幅検出電極の出力信号より伝播信号生成手段22の出力する周波数帯域の信号のみを通過させている。図11(c)は伝播信号帯域通過手段28の出力信号であり、図11(b)の信号をコンパレータにより中心値を閾値とする2値の信号に変換している。
図11(d)は図10に示す被駆動体側振動検出部8aの出力信号である。図11(e)は伝播信号帯域通過手段28の内部信号であり、図11(d)に示す被駆動体側振動検出部8aの出力信号より伝播信号生成手段22の出力する周波数帯域の信号のみを通過させている。図11(f)は伝播信号帯域通過手段28の出力信号であり、図11(e)の信号を中心値を閾値とする2値の信号に変換している。図10に示す伝播時間検出手段30は図11(c)と図11(f)の信号に基づいて伝播時間TDaを出力する。
図11(g)は図10に示す被駆動体側振動検出部8bの出力信号である。図11(h)は伝播信号帯域通過手段28の内部信号であり、図11(g)に示す被駆動体側振動検出部8bの出力信号より伝播信号生成手段22の出力する周波数帯域の信号のみを通過させている。図11(i)は伝播信号帯域通過手段28の出力信号であり、図11(h)の信号を中心値を閾値とする2値の信号に変換している。
図10に示す伝播時間検出手段30は図11(c)と図11(i)の信号に基づいて伝播時間TDbを出力する。位置検出手段17は伝播時間検出手段30の信号に基づいて位置を演算する。
<位置検出手段17の機能>
位置検出手段17は、距離Lを伝播時間TDaと伝播時間TDbの比率から導出する。距離Lは伝播時間TDaと伝播時間TDbの比率と被駆動体長さLsの関係式(4)から導出できる。
距離L=(伝播時間TDa/(伝播時間TDa+伝播時間TDb))×被駆動体長さLs(4)
このように、本実施形態では、被駆動体に複数の振動検出部を設けることにより、複数の伝播時間を検出することができ、複数の伝播時間を比較することにより相対位置を検出することができる。また、前述の実施形態においては、材料の伝播速度が距離Lを求める関係式に表れていたが、本実施形態においては伝播時間同士の比率を用いるため材料の伝播速度は距離Lを求める関係式に表れない。よって温度環境下の変動やバラツキ等の影響を受けず精度を向上させることができる。また、本実施形態は、第1、第2、第4の実施形態においても同様に適用でき、複数の被駆動体側振動検出部の出力する複数の信号を用いて振動子と被駆動体側振動検出部の相対位置の検出が可能となる。
S1 振動振幅検出電極
4 弾性体
5 圧電素子
6 突起部
7 被駆動体
8 被駆動体側振動検出部
17 位置演算手段
18 被駆動体側振動検出回路
19 振動子側振動検出回路
20 信号生成手段
21 駆動信号生成手段
22 伝播信号生成手段
23 信号重畳手段
24 駆動信号
25 伝播信号
26 重畳信号
28 伝播信号帯域通過手段
30 伝播時間検出手段
31 昇圧回路

Claims (9)

  1. 電気−機械エネルギー変換素子と前記電気−機械エネルギー変換素子に接合され突起部が設けられた弾性体とを備え、前記振動子に駆動信号が印加されることで2つの振動モードの振動を励振し、前記2つの振動モードの振動が組み合わさることにより前記突起部に楕円運動を生成する振動子と、
    端部を有し、前記突起部に接触して前記振動子と相対移動する被駆動体と、
    を有する振動型駆動装置の制御装置であって、
    前記振動子の振動状態を示す信号と、前記被駆動体に設けられ前記被駆動体の振動を検出する被駆動体側振動検出部から出力される信号と、を用いて前記振動子と前記被駆動体側振動検出部との相対位置を検出することを特徴とする振動型駆動装置の制御装置。
  2. 前記被駆動体側振動検出部で検出する振動は、前記相対移動に寄与する振動であり、
    前記振動子の振動状態を示す信号と、前記被駆動体側振動検出部から出力される前記相対移動に寄与する振動の信号と、を用いて前記相対位置を検出することを特徴とする請求項1に記載の振動型駆動装置の制御装置。
  3. 前記被駆動体側振動検出部で検出する振動は、前記相対移動に寄与しない振動であり、
    前記振動子の振動状態を示す信号と、前記被駆動体側振動検出部から出力される前記相対移動に寄与しない振動の信号と、を用いて前記相対位置を検出することを特徴とする請求項1に記載の振動型駆動装置の制御装置。
  4. 前記振動子には、前記相対移動に寄与する振動に前記相対移動には寄与しない振動が重畳されており、
    前記振動子の振動状態を示す信号と、前記被駆動体側振動検出部から出力される信号のうち前記相対移動に寄与しない振動の信号と、を用いて前記相対位置を検出することを特徴とする請求項1に記載の振動型駆動装置の制御装置。
  5. 前記振動子の振動状態を示す信号は、前記振動子に印加する信号であり、
    前記振動子に印加する信号と、前記被駆動体側振動検出部から出力される信号と、を用いて前記相対位置を検出することを特徴とする請求項1乃至4のいずれか1項に記載の振動型駆動装置の制御装置。
  6. 前記振動子の振動状態を示す信号は、前記振動子に設けられ前記振動子の振動を検出する振動子側振動検出部から出力される信号であり、
    前記振動子側振動検出部から出力される信号と、前記被駆動体側振動検出部から出力される信号と、を用いて前記相対位置を検出することを特徴とする請求項1乃至4のいずれか1項に記載の振動型駆動装置の制御装置。
  7. 前記振動子に印加する信号もしくは前記振動子側振動検出部から出力される信号と、前記被駆動体側振動検出部から出力される信号と、の位相差から前記相対位置を検出することを特徴とする請求項5又は6に記載の振動型駆動装置の制御装置。
  8. 前記振動子に信号を印加する時間もしくは前記振動子側振動検出部が振動を検出する時間と、前記被駆動体側振動検出部の振動を検出する時間と、の時間差から前記相対位置を検出することを特徴とする請求項5又は6に記載の振動型駆動装置の制御装置。
  9. 前記振動子の振動状態を示す信号と、前記被駆動体に設けられた複数の前記被駆動体側振動検出部から出力される複数の信号と、を用いて前記相対位置を検出することを特徴とする請求項1乃至8のいずれか1項に記載の振動型駆動装置の制御装置。
JP2010026728A 2009-04-10 2010-02-09 振動型駆動装置の制御装置 Active JP5737845B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010026728A JP5737845B2 (ja) 2009-04-10 2010-02-09 振動型駆動装置の制御装置
CN201080015259.3A CN102379082B (zh) 2009-04-10 2010-04-08 振动波驱动装置的控制装置
PCT/JP2010/002587 WO2010116751A1 (en) 2009-04-10 2010-04-08 Control apparatus for vibration wave driven apparatus
US13/259,075 US8274196B2 (en) 2009-04-10 2010-04-08 Control apparatus for vibration wave driven apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009096146 2009-04-10
JP2009096146 2009-04-10
JP2010026728A JP5737845B2 (ja) 2009-04-10 2010-02-09 振動型駆動装置の制御装置

Publications (2)

Publication Number Publication Date
JP2010263770A true JP2010263770A (ja) 2010-11-18
JP5737845B2 JP5737845B2 (ja) 2015-06-17

Family

ID=42936043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026728A Active JP5737845B2 (ja) 2009-04-10 2010-02-09 振動型駆動装置の制御装置

Country Status (4)

Country Link
US (1) US8274196B2 (ja)
JP (1) JP5737845B2 (ja)
CN (1) CN102379082B (ja)
WO (1) WO2010116751A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157139A (ja) * 2011-01-25 2012-08-16 Canon Inc 異物除去ユニットおよびそれを備える光学機器
RU2548615C2 (ru) * 2013-05-28 2015-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный архитектурно-строительный университет" (ННГАСУ) Ультразвуковой фазовый преобразователь угла поворота вала
RU2568992C2 (ru) * 2013-06-26 2015-11-20 Федеральное государственное бюджетное учреждение науки Институт проблем машиностроения Российской академии наук (ИПМ РАН) Ультразвуковой фазовый вибропреобразователь

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010997B2 (ja) * 2012-04-18 2016-10-19 セイコーエプソン株式会社 圧電モーター、駆動回路及び駆動方法
EP2926026A1 (en) * 2012-11-28 2015-10-07 LORD Corporation Vibration damping devices, systems, and methods for aircraft
RU2667353C2 (ru) * 2016-05-24 2018-09-18 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный архитектурно-строительный университет" (ННГАСУ) Ультразвуковой фазовый преобразователь угла поворота вала

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078866A (ja) * 1998-08-31 2000-03-14 Star Micronics Co Ltd 超音波モータ
JP2007124156A (ja) * 2005-10-26 2007-05-17 Canon Inc 周波数制御回路、モータ駆動装置、周波数制御方法、モータ駆動装置の制御方法、及び、制御方法をコンピュータに実行させるプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299479A (ja) 1989-05-12 1990-12-11 Nec Corp 振動波モータ
JPH06233560A (ja) * 1993-02-03 1994-08-19 Olympus Optical Co Ltd 超音波アクチュエータ
US5616980A (en) * 1993-07-09 1997-04-01 Nanomotion Ltd. Ceramic motor
JP2002204585A (ja) * 2000-12-28 2002-07-19 Canon Inc 振動型アクチュエータの制御装置
JP5037767B2 (ja) * 2001-09-19 2012-10-03 キヤノン株式会社 振動型アクチュエータの制御装置
JP4261964B2 (ja) 2003-04-11 2009-05-13 キヤノン株式会社 振動型駆動装置および制御システム
US7187104B2 (en) 2003-03-28 2007-03-06 Canon Kabushiki Kaisha Vibration-type driving device, control apparatus for controlling the driving of the vibration-type driving device, and electronic equipment having the vibration-type driving device and the control apparatus
JP2005245055A (ja) * 2004-02-24 2005-09-08 Canon Inc 振動波駆動装置
US7755251B2 (en) * 2007-09-12 2010-07-13 Canon Kabushiki Kaisha Control apparatus and control method for vibration wave driven apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000078866A (ja) * 1998-08-31 2000-03-14 Star Micronics Co Ltd 超音波モータ
JP2007124156A (ja) * 2005-10-26 2007-05-17 Canon Inc 周波数制御回路、モータ駆動装置、周波数制御方法、モータ駆動装置の制御方法、及び、制御方法をコンピュータに実行させるプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157139A (ja) * 2011-01-25 2012-08-16 Canon Inc 異物除去ユニットおよびそれを備える光学機器
RU2548615C2 (ru) * 2013-05-28 2015-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный архитектурно-строительный университет" (ННГАСУ) Ультразвуковой фазовый преобразователь угла поворота вала
RU2568992C2 (ru) * 2013-06-26 2015-11-20 Федеральное государственное бюджетное учреждение науки Институт проблем машиностроения Российской академии наук (ИПМ РАН) Ультразвуковой фазовый вибропреобразователь

Also Published As

Publication number Publication date
US8274196B2 (en) 2012-09-25
US20120025743A1 (en) 2012-02-02
JP5737845B2 (ja) 2015-06-17
CN102379082B (zh) 2015-11-25
CN102379082A (zh) 2012-03-14
WO2010116751A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5737845B2 (ja) 振動型駆動装置の制御装置
JP5506552B2 (ja) 振動型アクチュエータの制御装置及び振動型アクチュエータの制御方法
JP5328259B2 (ja) 振動波駆動装置の制御装置、及び、振動波駆動装置の制御方法
US7317291B2 (en) Frequency control circuit, motor drive apparatus, frequency control method, control method of motor drive apparatus, and program allowing computer to execute control method
JP5384794B2 (ja) 定在波型超音波アクチュエータの駆動方法およびその駆動装置
US20110227511A1 (en) Driving unit of vibration-type actuator
JP2010233316A (ja) 超音波モータ
JP5792951B2 (ja) 振動型アクチュエータの制御装置
JP5285861B2 (ja) 荷重変換用音叉振動装置
JPH07170768A (ja) 超音波モータ
WO2015146566A1 (ja) 振動子駆動回路
JP2006333682A (ja) 超音波モータの駆動信号周波数設定方法及び超音波モータの駆動装置
JP7119927B2 (ja) 物体検知装置
JP2012055111A (ja) 振動型駆動装置の制御装置および振動型駆動装置の出力特性検出方法
JP5153170B2 (ja) 超音波モータの駆動装置およびその方法
JP4593266B2 (ja) 振動子
JP2006250643A (ja) 角速度センサの異常検出装置
JP2007017293A (ja) 定在波測距装置
JP2010204038A (ja) 角速度検出装置
JP5353358B2 (ja) 真空計
JP4830605B2 (ja) 電圧振動型ヨーレートセンサおよびその駆動方法
JP2005245055A5 (ja)
JP2010142094A (ja) 超音波モータ
JP6011330B2 (ja) 駆動装置及びレンズ鏡筒
JPH07213078A (ja) 超音波モータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R151 Written notification of patent or utility model registration

Ref document number: 5737845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151