JP2010263012A - 太陽電池セルの製造方法 - Google Patents

太陽電池セルの製造方法 Download PDF

Info

Publication number
JP2010263012A
JP2010263012A JP2009111335A JP2009111335A JP2010263012A JP 2010263012 A JP2010263012 A JP 2010263012A JP 2009111335 A JP2009111335 A JP 2009111335A JP 2009111335 A JP2009111335 A JP 2009111335A JP 2010263012 A JP2010263012 A JP 2010263012A
Authority
JP
Japan
Prior art keywords
antireflection film
manufacturing
electrode
surface side
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009111335A
Other languages
English (en)
Inventor
Michiaki Takenaka
通暁 武中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009111335A priority Critical patent/JP2010263012A/ja
Publication of JP2010263012A publication Critical patent/JP2010263012A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】光電変換効率に優れた太陽電池セルを安価に歩留まり良く作製することができる太陽電池セルの製造方法を得ること。
【解決手段】半導体基板の一面側に受光面側電極を有する太陽電池セルの製造方法であって、第1導電型の前記半導体基板の一面側に、第2導電型の不純物元素が拡散された不純物拡散層を形成する第1工程と、前記不純物拡散層上に反射防止膜を形成する第2工程と、前記反射防止膜の少なくとも表面を親水性に改質する第3工程と、前記改質された反射防止膜の表面を水洗浄する第4工程と、前記反射防止膜上に油性の電極材料ペーストにより前記受光面側電極のパターンを印刷する第5工程と、前記受光面側電極のパターンを焼成することにより、前記反射防止膜を貫通して前記不純物拡散層に電気的に接続する前記受光面側電極を形成する第6工程と、を含む。
【選択図】図2

Description

本発明は、シリコン基板を用いた太陽電池セルの製造方法に関するものである。
太陽電池セルは、少なくとも、太陽光の光エネルギーを電気エネルギーに変換するPN接合が形成された基板と、受光面側の基板上に設けられて太陽光の反射を抑制する反射防止膜と、反射防止膜上に設けられて電気エネルギーを外部へ出力する集電電極を有する。この集電電極は、通常、不透明材料を用いてスクリーン印刷により形成されるため、太陽電池セルの受光面積を縮小して光起電流を低下させ、光電変換効率低下の要因となる。このような問題を解決する方法として、例えばスクリーン印刷により集電電極を形成する際に、銀やガラスフリットを含んでなる印刷ペーストの配合や粘度を制御して、幅広の電極になりにくい印刷ペーストを用いる方法がある。
しかし、このような印刷ペーストを用いたスクリーン印刷により集電電極を形成した場合は、その粘度の高さから印刷のかすれという問題が発生する。これに対して、基板表面に撥水材を塗布して撥水層を形成し、この撥水層により印刷ペーストの広がりを抑制して幅狭の凸状の集電電極を形成する方法が開示されている(たとえば、特許文献1参照)。
特開2001−326370号公報
しかしながら、上記従来の技術によれば、太陽電池セルの破損や、前工程の反射防止膜の形成工程までに基板表面に付着して光電変換効率の低下の原因となるパーティクルを除去するために、洗浄工程として酸性ウェットエッチング工程やアルカリ性ウェットエッチング工程が必要になる。しかし、前述のウェットエッチング工程の実施は、製造コストを増加させる。そこで、洗浄工程を省略する、または、水で洗浄するなどの方法が考えられるが、この場合は基板洗浄が十分ではなく、工程内不良が増加するという問題がある。
本発明は、上記に鑑みてなされたものであって、光電変換効率に優れた太陽電池セルを安価に歩留まり良く作製することができる太陽電池セルの製造方法を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池セルの製造方法は、半導体基板の一面側に受光面側電極を有する太陽電池セルの製造方法であって、第1導電型の前記半導体基板の一面側に、第2導電型の不純物元素が拡散された不純物拡散層を形成する第1工程と、前記不純物拡散層上に反射防止膜を形成する第2工程と、前記反射防止膜の少なくとも表面を親水性に改質する第3工程と、前記改質された反射防止膜の表面を水洗浄する第4工程と、前記反射防止膜上に油性の電極材料ペーストにより前記受光面側電極のパターンを印刷する第5工程と、前記受光面側電極のパターンを焼成することにより、前記反射防止膜を貫通して前記不純物拡散層に電気的に接続する前記受光面側電極を形成する第6工程と、を含むことを特徴とする。
本発明によれば、反射防止膜の表面を親水化することにより、該反射防止膜の表面における水の循環性を向上させて水洗浄による反射防止膜の表面のパーティクルの除去率を改善するとともに反射防止膜の表面における油性の電極材料ペーストの広がりを抑制できる。これにより、パーティクル起因の工程内不良率を低下させるとともに、幅狭の受光面側電極を形成して受光面積を広く確保し、光電変換効率に優れた太陽電池セルを安価に歩留まり良く作製することができる、という効果を奏する。
図1−1は、本発明の実施の形態にかかる太陽電池セルの構成を説明するための断面図である。 図1−2は、本発明の実施の形態にかかる太陽電池セルの構成を説明するための上面図である。 図1−3は、本発明の実施の形態にかかる太陽電池セルの構成を説明するための下面図である。 図2は、本発明の実施の形態にかかる太陽電池セルの製造工程を説明するためのフローチャートである。 図3−1は、本発明の実施の形態にかかる太陽電池セル1の製造工程を説明するための断面図である。 図3−2は、本発明の実施の形態にかかる太陽電池セル1の製造工程を説明するための断面図である。 図3−3は、本発明の実施の形態にかかる太陽電池セル1の製造工程を説明するための断面図である。 図3−4は、本発明の実施の形態にかかる太陽電池セル1の製造工程を説明するための断面図である。 図3−5は、本発明の実施の形態にかかる太陽電池セル1の製造工程を説明するための断面図である。 図3−6は、本発明の実施の形態にかかる太陽電池セル1の製造工程を説明するための断面図である。 図3−7は、本発明の実施の形態にかかる太陽電池セル1の製造工程を説明するための断面図である。 図3−8は、本発明の実施の形態にかかる太陽電池セル1の製造工程を説明するための断面図である。 図4は、本発明の実施の形態にかかる太陽電池セルの他の製造工程を説明するためのフローチャートである。 図5は、本発明の実施の形態にかかる太陽電池セル1の他の製造工程を説明するためのフローチャートである。 図6は、太陽電池セルの製造条件による評価結果を示した図である。
以下に、本発明にかかる太陽電池セルの製造方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態.
図1−1〜図1−3は、本発明の実施の形態にかかる太陽電池セル1の構成を説明するための図であり、図1−1は、太陽電池セル1の断面図、図1−2は、受光面側からみた太陽電池セル1の上面図、図1−3は、受光面と反対側からみた太陽電池セル1の下面図である。図1−1は、図1−3のA−A方向における断面図である。
本実施の形態にかかる太陽電池セル1においては、p型多結晶シリコンからなる半導体基板2の受光面側にリン拡散によってn型不純物拡散層3が形成されて、pn接合を有する半導体基板11が形成されているとともに、n型不純物拡散層3上にシリコン窒化膜(SiN膜)よりなる反射防止膜4が形成されている。なお、半導体基板2としてはp型多結晶のシリコン基板に限定されず、p型単結晶のシリコン基板やn型の多結晶のシリコン基板、n型の単結晶シリコン基板を用いてもよい。
また、半導体基板11(n型不純物拡散層3)の受光面側の表面には、テクスチャー構造として微小凹凸が形成されている。微小凹凸は、受光面において外部からの光を吸収する面積を増加し、受光面における反射率を抑え、光を閉じ込める構造となっている。
反射防止膜4は、シリコン窒化膜(SiN膜)からなり、その表層部に親水性を有する親水性層4aを有する。この親水性層4aは、半導体基板11の受光面側の面(おもて面)に形成された反射防止膜4の表層部が親水化されたものである。なお、ここでは、反射防止膜4の表層部に親水性層4aを有する場合について示しているが、反射防止膜4の全体が親水化された親水性層4aとされていてもよい。
また、半導体基板11の受光面側には、長尺細長の表銀グリッド電極5が複数並べて設けられ、この表銀グリッド電極5と導通する表銀バス電極6が該表銀グリッド電極5と略直交するように設けられており、それぞれ底面部においてn型不純物拡散層3に電気的に接続している。表銀グリッド電極5および表銀バス電極6は銀材料により構成されている。そして、表銀グリッド電極5と表銀バス電極6とにより第1電極である受光面側電極12が構成される。
一方、半導体基板11の裏面(受光面と反対側の面)には、全体にわたってアルミニウム材料からなる裏面電極7が設けられ、また表銀バス電極6と略同一方向に延在して銀材料からなる裏面集電電極8が設けられている。そして、裏面電極7と裏面集電電極8とにより第2電極である裏面側電極13が構成される。
シリコン太陽電池セルの集電電極材料には、通常、銀ペーストが用いられ、例えば、鉛ボロンガラスが添加されている。このガラスはフリット状のもので、例えば、鉛(Pb)5〜30wt%、ボロン(B)5〜10wt%、シリコン(Si)5〜15wt%、酸素(O)30〜60wt%の組成から成り、さらに、亜鉛(Zn)やカドミウム(Cd)なども数wt%程度混合される場合もある。このような鉛ボロンガラスは、数百℃(例えば、800℃)の加熱で溶解し、その際にシリコンを侵食する性質を有している。また一般に、結晶系シリコン太陽電池セルの製造方法においては、このガラスフリットの特性を利用して、シリコン基板と銀ペーストとの電気的接触を得る方法が用いられている。
このように構成された太陽電池セル1では、太陽光が太陽電池セル1の受光面側から半導体基板11のpn接合面(半導体基板2とn型不純物拡散層3との接合面)に照射されると、ホールと電子が生成する。pn接合部の電界によって、生成した電子はn型不純物拡散層3に向かって移動し、ホールは半導体基板2に向かって移動する。これにより、n型不純物拡散層3に電子が過剰となり、半導体基板2にホールが過剰となる結果、光起電力が発生する。この光起電力はpn接合を順方向にバイアスする向きに生じ、n型不純物拡散層3に接続した受光面側電極12がマイナス極となり、半導体基板2に接続した裏面側電極13がプラス極となって、図示しない外部回路に電流が流れる。
以上のように構成された本実施の形態にかかる太陽電池セル1は、反射防止膜4の表層部に親水性を有する親水性層4aを有するため、半導体基板11の表面における水の循環性が改善されており、半導体基板11(反射防止膜4)の表面に残存しているパーティクル(反応生成物)の量が低減されている。これにより、光電変換効率の低下の原因となる半導体基板11(反射防止膜4)に付着したパーティクルの少ない、光電変換効率に優れた太陽電池セルが実現されている。
また、本実施の形態にかかる太陽電池セル1は、半導体基板11(反射防止膜4)の表面に残存したパーティクル(反応生成物)が少ないため、これに起因した工程内不良の発生が抑制されており、製造歩留まりに優れた太陽電池セルが実現されている。
また、本実施の形態にかかる太陽電池セル1は、反射防止膜4の表層部に親水性を有する親水性層4aを有するため、受光面側電極12の形成において反射防止膜4上に電極材料ペーストをスクリーン印刷により印刷する際の電極材料ペーストのにじみや広がりが抑制されて、受光面側電極12、特に表銀グリッド電極5の細線化が実現されている。すなわち、受光面側電極12が受光面を遮る面積が低減され、受光面側電極12に起因した受光面積の縮小が抑制された、光電変換効率に優れた太陽電池セルが実現されている。これにより、本実施の形態にかかる太陽電池セル1では、半導体基板11での発電に寄与する実質的な受光面の面積を大きく確保し、太陽電池セル1から得られる電流の量を増加させて、出力特性の向上が図られている。
したがって、本実施の形態にかかる太陽電池セル1によれば、パーティクル起因の工程内不良率が低く、光電変換効率および製造歩留まりに優れた太陽電池セルが実現されている。
以下、本実施の形態にかかる太陽電池セル1の製造方法について図面に沿って説明する。図2は、本発明の実施の形態にかかる太陽電池セル1の製造工程を説明するためのフローチャートである。図3−1〜図3−8は、本発明の実施の形態にかかる太陽電池セル1の製造工程を説明するための断面図である。
まず、半導体基板2として例えばp型多結晶シリコン基板を用意し、該p型多結晶シリコン基板をフッ化水素や純水で洗浄する。その後、このp型多結晶シリコン基板に対して、該p型多結晶シリコン基板の表面に微小凹凸を形成して表面にテクスチャー構造を形成する(ステップS10、図3−1)。テクスチャー形成としては、例えばp型多結晶シリコン基板を、水酸化ナトリウム水溶液等のアルカリ水溶液によるエッチングを行う。
つぎに、半導体基板2にpn接合を形成する。表面にテクスチャー構造を形成したp型多結晶シリコン基板に対して、熱拡散によりオキシ塩化リン(POCl)を拡散させる(ステップS20、図3−2)。この拡散工程では、p型多結晶シリコン基板を例えばオキシ塩化リン(POCl)ガス中で気相拡散法により高温で熱拡散させてp型多結晶シリコン基板の表面層にリン(P)が拡散したn型不純物拡散層3を形成することでpn接合を形成する。
ここで、n型不純物拡散層3の形成直後の表面にはガラスを主成分とするリンガラス層が形成されているため、該リンガラス層をフッ酸溶液等を用いて除去する。
拡散工程後、光電変換効率改善のために、p型多結晶シリコン基板の受光面側の一面に反射防止膜4を形成する(ステップS30、図3−3)。反射防止膜4の膜厚および屈折率は、光反射を最も抑制する値に設定する。反射防止膜4の形成には、例えばプラズマCVD法を使用し、シランとアンモニアの混合ガスを用いて反射防止膜4として窒化シリコン膜を形成する。また、反射防止膜4の形成方法は、プラズマCVD法の他に蒸着法、熱CVD法などを用いてもよい。なお、反射防止膜4として、屈折率の異なる2層以上の膜を積層してもよい。
このプラズマCVD法ではパーティクル(反応生成物)の基板への堆積が顕著であり、その後の基板搬送や電極形成工程において、基板表面の傷や微小クラックの原因となる。そして、このような基板表面にある傷や微小クラックは、曲率因子(フィルファクター:F.F)低下による光電変換効率の低下や、太陽電池セルの割れや欠けなどの破損の原因となる。
このようなパーティクルの除去には、アルカリ溶液を用いたウェットエッチングが有効である。しかし、単結晶シリコン基板や多結晶シリコン基板を用いた太陽電池セルの場合は、通常、光起電流の向上を目的としてステップS10に記したようなテクスチャー構造を形成している。このため、アルカリ溶液を用いたウェットエッチングを実施すると基板の表面形状がウェットエッチングにより変化し、光電変換効率が低下するという問題がある。
そこで、本実施の形態では、反射防止膜4の表面の親水化を行う。すなわち、反射防止膜4の表面にUV(Ultra Violet Rays)照射を実施することによって、反射防止膜4の表面を親水性に改質し、反射防止膜4の表層部に親水性を有する親水性層4aを形成する(ステップS40、図3−4)。なお、ここでは、反射防止膜4の表層部に親水性層4aを形成する場合について示しているが、反射防止膜4の全体を親水化して親水性層4aとしてもよい。
そして、水を用いた洗浄(水洗浄)によりp型多結晶シリコン基板の表面を洗浄して、反射防止膜4の形成時に半導体基板11(反射防止膜4)の表面に付着したパーティクル(反応生成物)を除去する(ステップS50)。このとき、前述のように反射防止膜4の表面に親水性層4aが形成されているため、p型多結晶シリコン基板の表面への水の循環性が良好となり、水洗浄により容易に反射防止膜4の表面のパーティクルの除去が可能になる。
つぎに、リン(P)の拡散によりp型多結晶シリコン基板の裏面に形成されたn型不純物拡散層3を除去する。これにより、第1導電型層であるp型多結晶シリコンからなる半導体基板2と、該半導体基板2の受光面側に形成された第2導電型層であるn型不純物拡散層3と、によりpn接合が構成された半導体基板11が得られる(図3−5)。
ついで、スクリーン印刷により電極を形成する。まず、裏面側電極13を作成する(焼成前)。すなわち、p型多結晶シリコン基板の裏面側にスクリーン印刷によって、裏面電極7の形状に電極材料ペーストであるアルミニウムペースト7aを塗布し、さらに裏面集電電極8の形状に電極材料ペーストである銀ペースト8aを塗布し、乾燥させる(ステップS60、図3−6)。
つぎに、受光面側電極12を作製する(焼成前)。すなわち、p型多結晶シリコン基板の受光面である反射防止膜4上に、表銀グリッド電極5と表銀バス電極6との形状に、上述したガラスフリットおよび油性のバインダーを含む電極材料ペーストである銀ペースト12aをスクリーン印刷によって塗布した後、銀ペーストを乾燥させる(ステップS70、図3−7)。ここで、反射防止膜4の表層部には、親水性層4aが形成されているため、銀ペーストをスクリーン印刷により印刷した際に油性の銀ペーストが反射防止膜4の表面に広がりにくく、反射防止膜4上における銀ペーストのにじみや広がりが抑制される。これにより、幅狭の受光面側電極12のパターン、特に幅狭の表銀グリッド電極5のパターンを銀ペーストにより容易に形成することができる。
その後、ペーストを焼成することで、受光面側電極12としての表銀グリッド電極5および表銀バス電極6と、裏面側電極13としての裏面電極7および裏面集電電極8が得られる(ステップS80、図3−8)。
以上のような工程を実施することにより、図1−1〜図1−3に示す本実施の形態にかかる太陽電池セル1を作製することができる。なお、電極材料であるペーストの半導体基板11への配置の順番を、受光面側と裏面側とで入れ替えてもよい。
また、上記においては、反射防止膜4の表面の親水化処理を、反射防止膜4の表面にUV照射を実施することによって実施する場合について説明したが、反射防止膜4の表面の親水化処理はこれに限定されるものではない。反射防止膜4の表面の親水化処理は、例えば図4に示すように、反射防止膜4の表面に酸素プラズマ照射を実施することにより行うことも可能である(ステップS140)。図4は、本発明の実施の形態にかかる太陽電池セル1の他の製造工程を説明するためのフローチャートである。この場合においても、反射防止膜4の表面にUV照射を行った場合と同様に反射防止膜4の表面に親水性層4aを形成することができ、上述した効果を得ることができる。
また、反射防止膜4の表面の親水化処理は、例えば図5に示すように、反射防止膜4の表面に四フッ化メタン(CF)、六フッ化エタン(C)、パーフルオロシクロブタン(C)などのフッ素系ガスを用いたフッ素系プラズマ照射を実施することにより行うことも可能である(ステップS240)。図5は、本発明の実施の形態にかかる太陽電池セル1の他の製造工程を説明するためのフローチャートである。この場合においても、反射防止膜4の表面にUV照射を行った場合と同様に反射防止膜4の表面に親水性層4aを形成することができ、上述した効果を得ることができる。
図6は、サンプル太陽電池セルの製造条件による評価結果を示した図である。図6では、4つのサンプル太陽電池セルについて、反射防止膜の表層における親水性層の有無による、水洗浄によるパーティクルの除去効率(水洗浄によるパーティクル残存量により比較)、パーティクルに起因した製造工程内における不良の発生率(パーティクル起因の工程内不良率)、および、電極寸法比率(表銀グリッド電極の高さと幅との比率で比較)の評価結果を示している。
本実施の形態にかかる太陽電池セルの製造方法を適用したサンプルとして、反射防止膜の表層に親水性層を形成したサンプル1〜サンプル3を作製した。サンプル1では、反射防止膜4へUV照射を実施して親水性層を形成した。サンプル2では、反射防止膜4へ酸素プラズマを実施して親水性層を形成した。サンプル3では、反射防止膜4へフッ素系プラズマ照射を実施して親水性層を形成した。
また、比較対照となる従来例として、反射防止膜の表層に親水性層を備えないサンプル4を作製した。サンプル1〜サンプル4において異なる点は、親水性層の有無および親水性層の形成方法のみである。
図6から分かるように、本実施の形態にかかる太陽電池セルの製造方法を適用して作製した親水性層を備えたサンプル1〜サンプル3の太陽電池セルは、水洗浄によるパーティクル残存量が、サンプル4の太陽電池セルと比較して略1/2倍となっている。すなわち、サンプル1〜サンプル3の太陽電池セルは、サンプル4の太陽電池セルと比較して水洗浄によるパーティクルの除去効率が約2倍となっている。
また、図6から分かるように、本実施の形態にかかる太陽電池セルの製造方法を適用して作製した親水性層を備えたサンプル1〜サンプル3の太陽電池セルは、パーティクルに起因した製造工程内における不良の発生率がサンプル4の太陽電池セルと比較して40%〜50%程度減少している。
また、図6から分かるように、本実施の形態にかかる太陽電池セルの製造方法を適用して作製した親水性層を備えたサンプル1〜サンプル3の太陽電池セルは、サンプル4の太陽電池セルと比較して電極幅が略20%狭化している。
以上のことより、本実施の形態にかかる太陽電池セルの製造方法を適用して親水性層を形成することにより、F.Fを改善するとともに、特別な電極材料を用いることなく電極幅を20%狭化することが可能になり、さらに製造歩留まりを向上させることができる、と言える。
上述したように、本実施の形態にかかる太陽電池セルの製造方法においては、反射防止膜4の表層部に親水性を有する親水性層4aを形成するため、半導体基板11(反射防止膜4)の表面における水の循環性が改善される。そして、親水性層4a形成後において、半導体基板11の表面に付着した光電変換効率の低下の原因となる反射防止膜4形成時のパーティクル(反応生成物)の除去が水洗浄のみで容易に可能となる。これにより、破損等の原因となるパーティクルの除去に際して、酸やアルカリといった薬液を使用した高価な酸性ウェットエッチング工程やアルカリ性ウェットエッチング工程が不要であり、水だけでパーティクルを除去可能になるため、製造コストを削減することができる。また、酸やアルカリといった薬液の使用を削減できるため、設備や生産工程の環境負荷を低減できる。
また、半導体基板11(反射防止膜4)の表面における水の循環性が向上するため、半導体基板11(反射防止膜4)の表面に付着したパーティクル(反応生成物)を水洗浄のみでも確実に除去することができ、半導体基板11(反射防止膜4)の表面に残存したパーティクル(反応生成物)に起因した工程内不良の発生を抑制して、製造歩留まりを向上させることができる。
また、本実施の形態にかかる太陽電池セルの製造方法においては、反射防止膜4の表層部に親水性を有する親水性層4aを形成するため、反射防止膜4上に電極材料ペーストをスクリーン印刷により直接塗布しても、該電極材料ペーストのにじみや広がりが抑制され、細幅の受光面側電極12、特に幅狭の表銀グリッド電極5を作製することができる。すなわち、受光面側電極12により受光面を遮る面積が低減され、受光面側電極12に起因した受光面積の縮小が抑制された、光電変換効率に優れた太陽電池セルを作製することができる。これにより、本実施の形態にかかる太陽電池セル1の製造方法によれば、半導体基板11での発電に寄与する実質的な受光面の面積を大きく確保し、太陽電池セル1から得られる電流の量を増加させて、出力特性の向上を図ることができる。これにより、従来と同等の出力を得るための半導体基板11の薄板化、減量化が可能である。
したがって、本実施の形態にかかる太陽電池セルの製造方法によれば、パーティクル起因の工程内不良率を低下させるとともに、幅狭の受光面側電極12を形成して受光面積を広く確保し、光電変換効率に優れた太陽電池セルを安価に歩留まり良く作製することができる。また、光電変換効率の向上が可能であるため、光電変換を行う半導体層の薄板化が可能であり、太陽電池セルの小型化、軽量化、材料の減量化が可能である。また、撥水層のような新たな部材を追加しないため、生産工程の負荷が軽減され、また製品の分解、材料の分別が容易である。
以上のように、本発明にかかる太陽電池セルの製造方法は、光電変換効率に優れた太陽電池セルを安価に歩留まり良く作製する場合に有用である。
1 太陽電池セル
2 半導体基板
3 n型不純物拡散層
4 反射防止膜
4a 親水性層
5 表銀グリッド電極
6 表銀バス電極
7 裏面電極
7a アルミニウムペースト
8 裏面集電電極
8a 銀ペースト
11 半導体基板
12 受光面側電極
12a 銀ペースト
13 裏面側電極

Claims (6)

  1. 半導体基板の一面側に受光面側電極を有する太陽電池セルの製造方法であって、
    第1導電型の前記半導体基板の一面側に、第2導電型の不純物元素が拡散された不純物拡散層を形成する第1工程と、
    前記不純物拡散層上に反射防止膜を形成する第2工程と、
    前記反射防止膜の少なくとも表面を親水性に改質する第3工程と、
    前記改質された反射防止膜の表面を水洗浄する第4工程と、
    前記反射防止膜上に油性の電極材料ペーストにより前記受光面側電極のパターンを印刷する第5工程と、
    前記受光面側電極のパターンを焼成することにより、前記反射防止膜を貫通して前記不純物拡散層に電気的に接続する前記受光面側電極を形成する第6工程と、
    を含むことを特徴とする太陽電池セルの製造方法。
  2. 前記反射防止膜が、シリコン窒化膜からなること、
    を特徴とする請求項1に記載の太陽電池セルの製造方法。
  3. 前記第2工程では、前記反射防止膜の表面にUV照射を実施することにより前記反射防止膜の表面を親水性に改質すること、
    を特徴とする請求項2に記載の太陽電池セルの製造方法。
  4. 前記第2工程では、前記反射防止膜の表面に酸素プラズマ照射を実施することにより前記反射防止膜の表面を親水性に改質すること、
    を特徴とする請求項2に記載の太陽電池セルの製造方法。
  5. 前記第2工程では、前記反射防止膜の表面にフッ素系プラズマ照射を実施することにより前記反射防止膜の表面を親水性に改質すること、
    を特徴とする請求項2に記載の太陽電池セルの製造方法。
  6. 前記受光面側電極が、グリッド電極であること、
    を特徴とする請求項1に記載の太陽電池セルの製造方法。
JP2009111335A 2009-04-30 2009-04-30 太陽電池セルの製造方法 Pending JP2010263012A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009111335A JP2010263012A (ja) 2009-04-30 2009-04-30 太陽電池セルの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111335A JP2010263012A (ja) 2009-04-30 2009-04-30 太陽電池セルの製造方法

Publications (1)

Publication Number Publication Date
JP2010263012A true JP2010263012A (ja) 2010-11-18

Family

ID=43360880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111335A Pending JP2010263012A (ja) 2009-04-30 2009-04-30 太陽電池セルの製造方法

Country Status (1)

Country Link
JP (1) JP2010263012A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120141071A1 (en) * 2010-12-07 2012-06-07 Tyco Electronics Corporation Optical connector
JP2014167979A (ja) * 2013-02-28 2014-09-11 Mitsubishi Electric Corp 太陽電池セルの製造方法
JP2020155684A (ja) * 2019-03-22 2020-09-24 株式会社カネカ 太陽電池ストリング、太陽電池モジュール、太陽電池セルの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120141071A1 (en) * 2010-12-07 2012-06-07 Tyco Electronics Corporation Optical connector
JP2014167979A (ja) * 2013-02-28 2014-09-11 Mitsubishi Electric Corp 太陽電池セルの製造方法
JP2020155684A (ja) * 2019-03-22 2020-09-24 株式会社カネカ 太陽電池ストリング、太陽電池モジュール、太陽電池セルの製造方法

Similar Documents

Publication Publication Date Title
US8569614B2 (en) Solar cell and method of manufacturing the same
KR101225978B1 (ko) 태양전지 및 그 제조방법
JP4980494B2 (ja) 太陽電池セルおよびその製造方法
JP5220197B2 (ja) 太陽電池セルおよびその製造方法
JP2008010746A (ja) 太陽電池、および太陽電池の製造方法
WO2010064303A1 (ja) 太陽電池セルの製造方法
JP5813204B2 (ja) 太陽電池の製造方法
US9171975B2 (en) Solar cell element and process for production thereof
KR20200005533A (ko) 광전 변환 효율 향상 가능한 perc 태양전지 및 그 제조방법
KR20130092494A (ko) 태양 전지의 제조 방법 및 태양 전지
JP2016122749A (ja) 太陽電池素子および太陽電池モジュール
JP4937233B2 (ja) 太陽電池用基板の粗面化方法および太陽電池セルの製造方法
JP2014011246A (ja) 太陽電池素子および太陽電池モジュール
JP6207414B2 (ja) 光起電力素子およびその製造方法
KR101442011B1 (ko) 태양전지 및 그 제조방법
JP6141342B2 (ja) 裏面接合型太陽電池
JP5817046B2 (ja) 背面接触式結晶シリコン太陽電池セルの製造方法
JP2010263012A (ja) 太陽電池セルの製造方法
CN108682701B (zh) 太阳能电池及其制作工艺
JP2013110406A (ja) 光電変換素子の製造方法及び光電変換素子
KR101198438B1 (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법
KR101198430B1 (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법
JP2010021424A (ja) 太陽電池用拡散層の製造方法および太陽電池セルの製造方法
JP2015109364A (ja) 太陽電池の製造方法
KR101181625B1 (ko) 국부화 에미터 태양전지 및 그 제조 방법