JP2010262996A - Rare earth permanent magnet and method of manufacturing the same - Google Patents

Rare earth permanent magnet and method of manufacturing the same Download PDF

Info

Publication number
JP2010262996A
JP2010262996A JP2009110993A JP2009110993A JP2010262996A JP 2010262996 A JP2010262996 A JP 2010262996A JP 2009110993 A JP2009110993 A JP 2009110993A JP 2009110993 A JP2009110993 A JP 2009110993A JP 2010262996 A JP2010262996 A JP 2010262996A
Authority
JP
Japan
Prior art keywords
rare earth
heat treatment
resin
impregnating agent
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009110993A
Other languages
Japanese (ja)
Other versions
JP5412172B2 (en
Inventor
Yuran Senzaki
由蘭 先崎
Shinji Miyazaki
真二 宮崎
Toshihiro Takagusu
利啓 高楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kagaku Yakin Co Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Nippon Kagaku Yakin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Nippon Kagaku Yakin Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009110993A priority Critical patent/JP5412172B2/en
Publication of JP2010262996A publication Critical patent/JP2010262996A/en
Application granted granted Critical
Publication of JP5412172B2 publication Critical patent/JP5412172B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth permanent magnet that has superior magnetic characteristics because of a high volume ratio of magnet powder and also has superior characteristics with respect to strength and weather resistance, and a method of manufacturing the same. <P>SOLUTION: The method of manufacturing the rare earth permanent magnet includes at least: a compact forming process of forming a compact of 75 to 95% in volume ratio of rare earth-based quenched alloy powder to the whole by subjecting the rare earth-based quenched alloy powder to cold compression without using a resin binder; a resin impregnant impregnation process of impregnating the formed compact with a resin impregnant; a first heat treatment process of carrying out a heat treatment on the compact impregnated with the impregnant at 60 to 100°C; and a second heat treatment process of carrying out a heat treatment by raising the temperature up to 100 to 200°C at a temperature raising speed of ≤10°C/min after turning over the compact. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁石粉末の体積比率が高いことで磁気特性に優れるとともに、強度や耐候性の面においても優れた特性を有する希土類系永久磁石およびその製造方法に関する。   The present invention relates to a rare earth permanent magnet having excellent magnetic properties due to a high volume ratio of magnet powder and also having excellent properties in terms of strength and weather resistance, and a method for producing the same.

Nd−Fe−B系永久磁石に代表されるR−Fe−B系永久磁石やSm−Fe−N系永久磁石に代表されるR−Fe−N系永久磁石などの希土類系永久磁石は、資源的に豊富で安価な材料が用いられ、かつ、高い磁気特性を有していることから、特にR−Fe−B系永久磁石は今日様々な分野で使用されている。希土類系永久磁石の種類は、磁石粉末を成形して焼結することで製造される焼結磁石と、磁石粉末を樹脂バインダで結合して成形することで製造されるボンド磁石の2種類が主流であるが、近年、磁石粉末を樹脂バインダを用いずに結合させた磁石、いわゆるバインダレス磁石が注目されており、例えば特許文献1では、全体に占める磁石粉末の体積比率が70%〜95%のバインダレス磁石が提案されている。バインダレス磁石は、樹脂バインダを用いていないため、磁石粉末の体積比率を高めることができることから(ボンド磁石は樹脂バインダを用いるので磁石粉末の体積比率は最大で83%とされている)、磁気特性の向上を図ることができるといった利点や、耐候性被膜としての金属めっき被膜を磁石表面に形成しやすいといった利点がある。しかしながら、バインダレス磁石を製造するためには、磁石粉末を例えば500MPa以上の超高圧下で冷間圧縮成形した後、例えば500℃以上の高温での熱処理を行う必要があるため、熱処理によって磁気特性が低下する恐れがある。   Rare earth permanent magnets such as R—Fe—B permanent magnets represented by Nd—Fe—B permanent magnets and R—Fe—N permanent magnets represented by Sm—Fe—N permanent magnets are In particular, R-Fe-B based permanent magnets are used in various fields today because they use abundant and inexpensive materials and have high magnetic properties. There are two main types of rare earth permanent magnets: sintered magnets manufactured by molding and sintering magnet powder, and bonded magnets manufactured by combining and molding magnet powder with a resin binder. However, in recent years, a magnet in which magnet powder is bonded without using a resin binder, so-called binderless magnet, has been attracting attention. For example, in Patent Document 1, the volume ratio of magnet powder occupying the whole is 70% to 95%. Binderless magnets have been proposed. Since the binderless magnet does not use a resin binder, the volume ratio of the magnet powder can be increased (since the bond magnet uses a resin binder, the volume ratio of the magnet powder is 83% at maximum). There are advantages that the characteristics can be improved and that a metal plating film as a weather-resistant film can be easily formed on the magnet surface. However, in order to manufacture a binderless magnet, it is necessary to heat-treat the magnet powder at a high temperature of, for example, 500 ° C. or higher after cold compression molding under an ultra-high pressure of, for example, 500 MPa or more. May decrease.

国際公開第2007/018123号パンフレットInternational Publication No. 2007/018123 Pamphlet

そこで本発明は、製造工程中に500℃以上といった高温での熱処理を行わないことで磁気特性の低下を抑制することにより、高い磁気特性を保持するとともに、強度や耐候性の面においても優れた特性を有する希土類系永久磁石およびその製造方法を提供することを目的とする。   Therefore, the present invention maintains high magnetic properties and is excellent in terms of strength and weather resistance by suppressing a decrease in magnetic properties by not performing heat treatment at a high temperature of 500 ° C. or higher during the manufacturing process. An object of the present invention is to provide a rare earth permanent magnet having characteristics and a method for producing the same.

本発明者は、上記の点に鑑みて鋭意研究を重ねた結果、磁石粉末を超高圧下で冷間圧縮成形することで得られる圧縮成形体に樹脂含浸剤を含浸させた後、樹脂含浸剤を硬化させるための熱処理方法の最適化を図ることで、高温での熱処理を行うことなく、磁気特性に優れるとともに、強度や耐候性の面においても優れた特性を有する希土類系永久磁石を製造することができることを見出した。   As a result of intensive research in view of the above points, the present inventor impregnated a resin impregnating agent into a compression molded product obtained by cold compression molding of magnet powder under ultra high pressure, and then resin impregnating agent. By optimizing the heat treatment method for curing the rare earth permanent magnets with excellent magnetic properties and excellent strength and weather resistance without heat treatment at high temperature I found that I can do it.

上記の知見に基づいて完成された本発明の希土類系永久磁石の製造方法は、請求項1記載の通り、樹脂バインダを用いずに希土類系急冷合金粉末を冷間圧縮成形することにより、全体に占める希土類系急冷合金粉末の体積比率が75%〜95%の圧縮成形体を形成する圧縮成形体形成工程と、形成された圧縮成形体に対して樹脂含浸剤を含浸させる樹脂含浸剤含浸工程と、樹脂含浸剤を含浸させた圧縮成形体に対して60℃〜100℃で熱処理を行う第1熱処理工程と、圧縮成形体を上下反転させてから10℃/分以下の昇温速度で100℃〜200℃の範囲の温度まで昇温して熱処理を行う第2熱処理工程を少なくとも含んでなることを特徴とする。
また、請求項2記載の製造方法は、請求項1記載の製造方法において、樹脂含浸剤として25℃における粘度が20cps以下の熱硬化樹脂系含浸剤を用いることを特徴とする。
また、請求項3記載の製造方法は、請求項2記載の製造方法において、熱硬化樹脂系含浸剤がアクリル樹脂系含浸剤であることを特徴とする。
また、請求項4記載の製造方法は、請求項1乃至3のいずれかに記載の製造方法において、第1熱処理工程における室温から熱処理温度までの昇温速度を5℃/分〜15℃/分とすることを特徴とする。
また、本発明の希土類系永久磁石は、請求項5記載の通り、構成成分として少なくとも希土類系急冷合金粉末と樹脂を含み、全体に占める希土類系急冷合金粉末の体積比率が75%〜95%であり、かつ、空隙率が3%〜9%であることを特徴とする。
The manufacturing method of the rare earth permanent magnet of the present invention completed based on the above knowledge is as described in claim 1 by performing cold compression molding of rare earth quenching alloy powder without using a resin binder. A compression molded body forming step of forming a compression molded body in which the volume ratio of the rare earth-based rapidly quenched alloy powder is 75% to 95%, and a resin impregnating agent impregnation step of impregnating the formed compression molded body with a resin impregnating agent; A first heat treatment step of heat-treating the compression-molded body impregnated with the resin impregnating agent at 60 ° C. to 100 ° C. and 100 ° C. at a temperature increase rate of 10 ° C./min or less after the compression-molded body is turned upside down. It is characterized by comprising at least a second heat treatment step for carrying out heat treatment by raising the temperature to a temperature in the range of ˜200 ° C.
The manufacturing method according to claim 2 is characterized in that, in the manufacturing method according to claim 1, a thermosetting resin-based impregnating agent having a viscosity at 25 ° C. of 20 cps or less is used as the resin impregnating agent.
The manufacturing method according to claim 3 is the manufacturing method according to claim 2, wherein the thermosetting resin-based impregnating agent is an acrylic resin-based impregnating agent.
The manufacturing method according to claim 4 is the manufacturing method according to any one of claims 1 to 3, wherein the rate of temperature increase from room temperature to the heat treatment temperature in the first heat treatment step is 5 ° C / min to 15 ° C / min. It is characterized by.
In addition, the rare earth permanent magnet of the present invention includes at least a rare earth quenching alloy powder and a resin as constituents, and the volume ratio of the rare earth quenching alloy powder in the whole is 75% to 95%. And the porosity is 3% to 9%.

本発明によれば、磁石粉末の体積比率が高いことで磁気特性に優れるとともに、強度や耐候性の面においても優れた特性を有する希土類系永久磁石およびその製造方法を提供することができる。   According to the present invention, it is possible to provide a rare earth-based permanent magnet that has excellent magnetic characteristics due to a high volume ratio of the magnet powder, and also has excellent characteristics in terms of strength and weather resistance, and a method for manufacturing the same.

本発明の希土類系永久磁石の製造方法は、樹脂バインダを用いずに希土類系急冷合金粉末を冷間圧縮成形することにより、全体に占める希土類系急冷合金粉末の体積比率が75%〜95%の圧縮成形体を形成する圧縮成形体形成工程と、形成された圧縮成形体に対して樹脂含浸剤を含浸させる樹脂含浸剤含浸工程と、樹脂含浸剤を含浸させた圧縮成形体に対して60℃〜100℃で熱処理を行う第1熱処理工程と、圧縮成形体を上下反転させてから10℃/分以下の昇温速度で100℃〜200℃の範囲の温度まで昇温して熱処理を行う第2熱処理工程を少なくとも含んでなることを特徴とするものである。以下、本発明の希土類系永久磁石の製造方法を、工程ごとに順を追って説明する。   In the method for producing a rare earth permanent magnet of the present invention, the volume ratio of the rare earth quenched alloy powder in the whole is 75% to 95% by cold compression molding the rare earth quenched alloy powder without using a resin binder. A compression molded body forming step for forming a compression molded body, a resin impregnating agent impregnation step for impregnating the formed compression molded body with a resin impregnant, and a compression molded body impregnated with a resin impregnating agent at 60 ° C. A first heat treatment step in which heat treatment is performed at ˜100 ° C., and a heat treatment is performed by raising the temperature to a temperature in the range of 100 ° C. to 200 ° C. at a temperature rise rate of 10 ° C./min or less after the compression molded body is turned upside down. It is characterized by comprising at least two heat treatment steps. Hereinafter, the method for producing a rare earth based permanent magnet of the present invention will be described step by step.

(1)樹脂バインダを用いずに希土類系急冷合金粉末を冷間圧縮成形することにより、全体に占める希土類系急冷合金粉末の体積比率が75%〜95%の圧縮成形体を形成する圧縮成形体形成工程
本発明において使用することができる希土類系急冷合金粉末は、希土類系永久磁石を製造するために採用することができる磁石粉末であれば特段制限されるものではなく、例えば所定の組成を有する合金の溶湯をメルトスピニング法やストリップキャスト法などのロール急冷法によって急冷した後、粉砕工程を経て製造することができるものが挙げられる。また、希土類系急冷合金粉末は、このようなロール急冷法を用いる代わりに、合金の溶湯をアトマイズ法によって急冷しても製造することができる。希土類系急冷合金粉末の平均粒径は300μm以下であることが望ましく、30μm〜250μmであることがより望ましく、50μm〜200μmであることがさらに望ましい。また、圧縮成形後における粒子間の隙間空間を減少させ、磁石体の密度を高めるという観点からは、粒度分布が2つのピークを有することが望ましい。好適な希土類系急冷合金粉末としては、例えば、特許第3583116号公報や国際公開第2006/064794号パンフレットに記載のTi含有ナノコンポジット磁石粉末が挙げられる。この粉末は、形状が扁平でない(個々の粒子のアスペクト比が1に近い)ため、冷間圧縮成形を行っても割れにくく、新生破面の発生による耐候性の低下を起こしにくい点において望ましい。
希土類系急冷合金粉末の冷間圧縮成形は、自体公知の方法によって行えばよく、例えば超高圧粉末プレス装置を用い、750MPa〜2500MPaの超高圧下の冷間(例えば100℃以下)で行えばよい(必要であれば特許文献1を参照のこと)。この方法によれば、全体に占める希土類系急冷合金粉末の体積比率が75%〜95%の圧縮成形体を容易に形成することができる。希土類系急冷合金粉末の体積比率は高いほど磁気特性が高くなるので、80%以上が望ましく、83%以上がより望ましく、85%以上がさらに望ましい。なお、希土類系急冷合金粉末の超高圧下での冷間圧縮成形時における金型の損傷を低減するためには、ステアリン酸カルシウムなどの滑剤を希土類系急冷合金粉末に混合することが望ましい。
(1) A compression-molded body that forms a compression-molded body in which the volume ratio of the rare-earth quenching alloy powder accounts for 75% to 95% by cold-molding the rare-earth quenching alloy powder without using a resin binder. Formation Step The rare earth-based rapidly quenched alloy powder that can be used in the present invention is not particularly limited as long as it is a magnet powder that can be used to produce a rare-earth permanent magnet, and has a predetermined composition, for example. One that can be manufactured through a pulverization step after quenching a molten alloy by a roll quenching method such as a melt spinning method or a strip casting method. Further, the rare earth-based rapidly quenched alloy powder can be produced by rapidly cooling a molten alloy by an atomizing method instead of using such a roll quenching method. The average particle size of the rare earth quenched alloy powder is desirably 300 μm or less, more desirably 30 μm to 250 μm, and further desirably 50 μm to 200 μm. Moreover, it is desirable that the particle size distribution has two peaks from the viewpoint of reducing the space between the particles after compression molding and increasing the density of the magnet body. Suitable rare earth-based rapidly quenched alloy powders include, for example, Ti-containing nanocomposite magnet powders described in Japanese Patent No. 3583116 and International Publication No. 2006/064794. Since this powder is not flat (the aspect ratio of each particle is close to 1), it is desirable in that it is difficult to crack even when cold compression molding is performed, and it is difficult to cause a decrease in weather resistance due to the occurrence of a new fracture surface.
The cold compression molding of the rare earth-based rapidly quenched alloy powder may be performed by a method known per se, for example, using an ultra-high pressure powder press apparatus and cold under an ultra-high pressure of 750 MPa to 2500 MPa (for example, 100 ° C. or less). (See Patent Document 1 if necessary). According to this method, it is possible to easily form a compression molded body in which the volume ratio of the rare earth-based quenched alloy powder occupying the whole is 75% to 95%. The higher the volume ratio of the rare earth quenched alloy powder, the higher the magnetic properties, so 80% or more is desirable, 83% or more is more desirable, and 85% or more is even more desirable. In order to reduce damage to the mold during cold compression molding of the rare earth quenched alloy powder under ultra high pressure, it is desirable to mix a lubricant such as calcium stearate with the rare earth quenched alloy powder.

(2)形成された圧縮成形体に対して樹脂含浸剤を含浸させる樹脂含浸剤含浸工程
圧縮成形体形成工程に引き続いて行うこの工程は、形成された圧縮成形体が有する空隙に樹脂含浸剤を含浸させる工程である。使用する樹脂含浸剤は特段制限されるものではないが、好適には有機溶媒や水などの溶剤の体積比率が5%以下で、25℃における粘度が20cps以下の熱硬化樹脂系含浸剤が挙げられる。樹脂含浸剤の溶剤の含量が少ないほど望ましいのは、溶剤の含量が多いと続いて行う樹脂含浸剤を硬化させるための熱処理時に溶剤が揮発することで樹脂含浸剤の体積が目減りし、圧縮成形体が有する空隙を十分に樹脂含浸剤で埋めることができず、その結果、所望の強度を有する磁石を製造することができない恐れがあるからである。また、樹脂含浸剤の粘度が25℃において20cps以下が望ましいのは、圧縮成形体の空隙体積は最大で25%であるので、樹脂含浸剤の粘度が高いと空隙に含浸させることが困難になるからである(但し樹脂含浸剤の粘度が低すぎると圧縮成形体の空隙から容易に流出してしまうのでその下限値は25℃において3cpsであることが望ましい)。好適な熱硬化樹脂含浸剤としては、ラジカル反応によって硬化することで硬化時の顕著な収縮や膨張が認められないことから磁石寸法に悪影響を及ぼすことがなく、また、低粘性であるアクリル樹脂系含浸剤が挙げられる。アクリル樹脂系含浸剤は市販されているので汎用性が高い点においても好適である(例えば中央発明研究所社製の商品名:スーパーシールP−401など)。なお、圧縮成形体に対する樹脂含浸剤の含浸方法は、自体公知の減圧法によって行うことができる。また、樹脂含浸剤を圧縮成形体に対して含浸させた後は水洗いなどの操作を行うことなく次の工程に進むことが望ましい。水洗いなどの操作は圧縮成形体の腐食を招く恐れがあるからである。
(2) Resin impregnating step for impregnating the formed compression-molded body with a resin impregnating agent This step, which is performed subsequent to the compression-molding body forming step, is performed by placing a resin impregnating agent in the voids of the formed compression-molded body. This is a step of impregnation. The resin impregnating agent to be used is not particularly limited, but preferably a thermosetting resin-based impregnating agent having a volume ratio of a solvent such as an organic solvent or water of 5% or less and a viscosity at 25 ° C. of 20 cps or less. It is done. The lower the solvent content of the resin impregnating agent, the more desirable is that when the solvent content is high, the volume of the resin impregnating agent is reduced by the volatilization of the solvent during the subsequent heat treatment for curing the resin impregnating agent, and compression molding. This is because the voids of the body cannot be sufficiently filled with the resin impregnating agent, and as a result, a magnet having a desired strength may not be manufactured. Further, the viscosity of the resin impregnating agent is preferably 20 cps or less at 25 ° C., because the void volume of the compression molded body is 25% at the maximum, and if the viscosity of the resin impregnating agent is high, it becomes difficult to impregnate the voids. (However, if the viscosity of the resin impregnating agent is too low, the resin impregnates easily from the voids of the compression molded body, so the lower limit is preferably 3 cps at 25 ° C.). A suitable thermosetting resin impregnating agent is an acrylic resin system that does not adversely affect the magnet dimensions because it does not cause significant shrinkage or expansion during curing by curing by a radical reaction, and has a low viscosity. An impregnating agent is mentioned. Acrylic resin-based impregnating agents are commercially available, and are also suitable in terms of high versatility (for example, trade name: Super Seal P-401 manufactured by Chuo Inventor Co., Ltd.). In addition, the impregnation method of the resin impregnating agent to the compression molded body can be performed by a known pressure reduction method. Moreover, after impregnating the resin impregnating agent into the compression molded body, it is desirable to proceed to the next step without performing an operation such as washing with water. This is because operations such as washing with water may cause corrosion of the compression molded body.

(3)樹脂含浸剤を含浸させた圧縮成形体に対して60℃〜100℃で熱処理を行う第1熱処理工程
この工程は、2段階で行う圧縮成形体の空隙に含浸させた樹脂含浸剤を硬化させるための工程の第1の工程である。樹脂含浸剤の硬化を2段階で行う理由は、樹脂含浸剤の粘度が低いと、圧縮成形体の空隙に含浸された樹脂含浸剤が硬化が完結するまでに重力によって上部から下部に流動し、樹脂含浸剤の存在比率が上部よりも下部の方が高くなることから、このままの状態で1段階で硬化を完結させてしまうと、圧縮成形体の空隙への樹脂含浸剤の充填ムラが発生したり、硬化が完結するまでに圧縮成形体の空隙に含浸された樹脂含浸剤が圧縮成形体の下面から流出し、その状態で樹脂含浸剤が硬化してしまうことによって取り扱いに不都合が生じたりしてしまうからである。このような現象を回避するため、第1熱処理工程では樹脂含浸剤の硬化が完結しない程度の低い熱処理温度で樹脂含浸剤のいわば仮硬化を行う。室温から熱処理温度までは5℃/分〜15℃/分の昇温速度で昇温し、熱処理時間は10分間〜1時間とすることが望ましい。熱処理温度が低すぎたり昇温速度が遅すぎたり熱処理時間が短すぎたりすると、圧縮成形体の空隙に含浸された樹脂含浸剤の粘度が硬化の進行によってほどよく上昇せず、空隙に含浸された樹脂含浸剤が硬化が完結するまでに圧縮成形体の下面から流出してしまう恐れがある。一方、熱処理温度が高すぎたり昇温速度が速すぎたり熱処理時間が長すぎたりすると、樹脂含浸剤の存在比率が上部よりも下部の方が高いままの状態で樹脂含浸剤の硬化が必要以上に進行し(最悪の場合には硬化が完結してしまい)、樹脂含浸剤の硬化を1段階で行った場合と同様の事態を招く恐れがある。
(3) A first heat treatment step in which a compression molded body impregnated with a resin impregnating agent is heat-treated at 60 ° C. to 100 ° C. In this step, the resin impregnating agent impregnated in the voids of the compression molded body is performed in two stages. It is the 1st process of the process for making it harden. The reason why the resin impregnating agent is cured in two stages is that if the viscosity of the resin impregnating agent is low, the resin impregnating agent impregnated in the voids of the compression molded body flows from the upper part to the lower part by gravity until the curing is completed, Since the resin impregnating agent ratio is higher in the lower part than in the upper part, if curing is completed in one stage in this state, uneven filling of the resin impregnating agent into the voids of the compression molded product occurs. Or the resin impregnating agent impregnated in the voids of the compression molded product before the curing is completed flows out from the lower surface of the compression molded product, and the resin impregnating agent is cured in this state, which may cause inconvenience in handling. Because it will end up. In order to avoid such a phenomenon, in the first heat treatment step, the resin impregnating agent is temporarily cured at a low heat treatment temperature at which the resin impregnating agent is not completely cured. It is desirable that the temperature is raised from room temperature to the heat treatment temperature at a rate of 5 ° C./min to 15 ° C./min, and the heat treatment time is 10 minutes to 1 hour. If the heat treatment temperature is too low, the temperature rise rate is too slow, or the heat treatment time is too short, the viscosity of the resin impregnating agent impregnated in the voids of the compression molded product will not rise moderately as the curing progresses, and the voids are impregnated. The resin impregnating agent may flow out from the lower surface of the compression molded body until the curing is completed. On the other hand, if the heat treatment temperature is too high, the temperature rise rate is too fast, or the heat treatment time is too long, the resin impregnating agent will be harder than necessary in the state where the resin impregnating agent ratio is higher in the lower part than in the upper part. (In the worst case, the curing is completed), there is a risk of causing the same situation as when the resin impregnating agent is cured in one stage.

(4)圧縮成形体を上下反転させてから10℃/分以下の昇温速度で100℃〜200℃の範囲の温度まで昇温して熱処理を行う第2熱処理工程
次に、第1熱処理工程によって熱処理を行った圧縮成形体を上下反転させることで、上部に多く存在する硬化が完結していない樹脂含浸剤を重力によって下部に流動させ、圧縮成形体の内部における樹脂含浸剤の存在比率を均一なものとしてから、第1熱処理工程における熱処理温度よりも高い温度で熱処理を行うことで硬化を完結させる。第1熱処理工程における熱処理温度から第2熱処理工程における熱処理温度までの昇温速度を10℃/分以下と規定するのは、高温度域での昇温速度が速すぎると樹脂含浸剤の発泡や突沸が起こることで硬化不良や磁石寸法に悪影響を及ぼす恐れがあるからである。なお、第1熱処理工程における熱処理温度から第2熱処理工程における熱処理温度までの昇温速度は2℃/分以上であることが望ましい。昇温速度が遅すぎると処理時間が長くなって製造効率の低下や製造コストの増大を招く恐れがある。また、熱処理時間は30分間〜2時間とすることが望ましい。熱処理温度が低すぎたり熱処理時間が短すぎたりすると、樹脂含浸剤の硬化を完結させることができない恐れがある。一方、熱処理温度が高すぎたり熱処理時間が長すぎたりすると、圧縮成形体(磁石)の磁気特性が低下したり樹脂含浸剤が耐熱できずに劣化したりする恐れがある。
(4) Second heat treatment step in which the compression molded body is turned upside down and heated to a temperature in the range of 100 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min or less. Next, a first heat treatment step By flipping the compression molded body that has been heat-treated upside down, the resin impregnating agent that is present in the upper part and not completely cured is caused to flow to the lower part due to gravity, and the abundance ratio of the resin impregnating agent in the compression molded body is increased. After being uniform, curing is completed by performing heat treatment at a temperature higher than the heat treatment temperature in the first heat treatment step. The rate of temperature rise from the heat treatment temperature in the first heat treatment step to the heat treatment temperature in the second heat treatment step is defined as 10 ° C./min or less because if the temperature rise rate in the high temperature range is too fast, This is because bumping may adversely affect the curing failure and the magnet size. Note that the rate of temperature increase from the heat treatment temperature in the first heat treatment step to the heat treatment temperature in the second heat treatment step is desirably 2 ° C./min or more. If the rate of temperature increase is too slow, the processing time may become longer, leading to a decrease in manufacturing efficiency and an increase in manufacturing cost. The heat treatment time is preferably 30 minutes to 2 hours. If the heat treatment temperature is too low or the heat treatment time is too short, curing of the resin impregnating agent may not be completed. On the other hand, if the heat treatment temperature is too high or the heat treatment time is too long, the magnetic properties of the compression molded body (magnet) may be deteriorated, or the resin impregnating agent may not be heat resistant and may deteriorate.

以上の工程によって製造された希土類系永久磁石は、高温での熱処理を行っていないことから製造工程中における磁気特性の低下がないので高い磁気特性を保持しているとともに、空隙に樹脂含浸剤が充填されていることで、強度や耐候性の面においても優れた特性を有する。この希土類系永久磁石は、典型的には全体に占める磁石粉末の体積比率が75%〜95%であり空隙率が3%〜9%である(残余は樹脂含浸剤由来の樹脂や添加した場合には滑剤など)。従って、従来の圧縮成形によるボンド磁石の磁石粉末の体積比率(75%〜80%)と空隙率(9%〜15%)に比較して、前者は同等もしくはそれ以上であり後者は小さい。また、従来の射出成形によるボンド磁石の磁石粉末の体積比率(60%〜70%)と空隙率(1%〜5%)に比較して、前者は大きく後者は同程度である。即ち、この希土類系永久磁石は、従来の圧縮成形や射出成形によるボンド磁石とは異なる磁石粉末の体積比率と空隙率を有しており、前者が大きく、かつ、後者が小さいことで、磁気特性と強度や耐候性のいずれの面においても優れた特性を有する。   The rare earth-based permanent magnet manufactured by the above process does not undergo a heat treatment at a high temperature, so that there is no deterioration in the magnetic characteristics during the manufacturing process, so that high magnetic characteristics are maintained, and a resin impregnating agent is present in the voids. By being filled, it has excellent characteristics in terms of strength and weather resistance. This rare earth-based permanent magnet typically has a volume ratio of 75% to 95% of the magnet powder occupying the whole and a porosity of 3% to 9% (the remainder is a resin-impregnated resin or when added) For example, a lubricant. Therefore, compared with the volume ratio (75% to 80%) and the void ratio (9% to 15%) of the magnet powder of the conventional bonded magnet by compression molding, the former is equivalent or more, and the latter is small. Moreover, the former is large compared with the volume ratio (60% to 70%) and the void ratio (1% to 5%) of the bonded magnet powder by conventional injection molding, and the latter is comparable. That is, this rare earth-based permanent magnet has a magnetic powder volume ratio and porosity that are different from those of conventional compression-molded and injection-molded bonded magnets. The former is large and the latter is small. And excellent properties in both strength and weather resistance.

なお、希土類系永久磁石の耐候性の向上を図るためにその表面に耐候性被膜を形成してもよい。耐候性被膜の種類は特段制限されるものではないが、均一な被膜形成が容易であること、被膜形成時に空隙に含浸された樹脂含浸剤の劣化を引き起こしたりしないこと、磁石を他の部材と接着させる際に高い接着強度を有することなどの要素を考慮すれば、耐候性被膜としては樹脂塗装被膜が好適である。   In order to improve the weather resistance of the rare earth permanent magnet, a weather resistant film may be formed on the surface thereof. The type of weather-resistant film is not particularly limited, but it is easy to form a uniform film, does not cause deterioration of the resin impregnating agent impregnated in the voids during film formation, and the magnet to other members Considering factors such as having high adhesive strength when bonding, a resin-coated film is suitable as the weather-resistant film.

以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。なお、以下の実施例は、下記の3種類の希土類系急冷合金粉末を使用して行った。
(ア)磁石粉末A:α−Fe系ナノコンポジット磁石粉末(硬磁性のNdFe14B相に加え、軟磁性相としてα−Fe相を配したもの。表1に記載の組成を有する日立金属社製の商品名:SPRAX)
(イ)磁石粉末B:Fe−B系ナノコンポジット磁石粉末(硬磁性のNdFe14B相に加え、軟磁性相としてFe−B相を配したもの。表1に記載の組成を有する日立金属社製の商品名:SPRAX)
(ウ)磁石粉末C:NdFe14B相の単相からなる希土類鉄ホウ素系等方性磁石粉末(表1に記載の組成(カタログ値)を有するマグネクエンチ社製の商品名:MQP13−9)
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is limited to this and is not interpreted. In the following examples, the following three types of rare earth-based rapidly quenched alloy powders were used.
(A) Magnet powder A: α-Fe nanocomposite magnet powder (in addition to hard magnetic Nd 2 Fe 14 B phase, α-Fe phase as a soft magnetic phase. Hitachi having the composition shown in Table 1 (Product name: SPRAX)
(B) Magnet powder B: Fe-B nanocomposite magnet powder (Hard magnetic Nd 2 Fe 14 B phase plus Fe-B phase as soft magnetic phase. Hitachi having the composition shown in Table 1 (Product name: SPRAX)
(C) Magnet powder C: rare earth iron boron-based isotropic magnet powder consisting of a single phase of Nd 2 Fe 14 B phase (trade name: MQP13- manufactured by Magnequench having the composition (catalog value) described in Table 1) 9)

(実施例1)
磁石粉末Aに滑剤としてステアリン酸カルシウムを0.1重量%添加して均一に混合した後、超高圧粉末プレス装置を用いて1900MPaの超高圧下の冷間(20℃)で圧縮成形を行い、全体に占める磁石粉末の体積比率が83.5%である、内径:7.7mm×外径:12.8mm×高さ:4.8mmのリング状圧縮成形体を得た(表2参照)。アクリル樹脂系含浸剤である中央発明研究所社製の商品名:スーパーシールP−401(溶剤不含有、25℃での粘度は5〜15cps)に、有機過酸化物からなる重合開始剤(中央発明研究所社製の商品名:スーパーシールP−401用硬化剤)を添加した後、ここに網パレットの上に静置したリング状圧縮成形体をチャンバー内で浸漬し、チャンバー内の圧力を10Pa以下に減圧して1時間放置することで圧縮成形体に対して含浸剤を含浸させた。その後、含浸剤を含浸させた圧縮成形体を水洗することなく保持網の上に移し変え、処理室内に収容した後、静置した状態で室温から80℃まで10℃/分の昇温速度で昇温し、80℃に保持して50分間の第1熱処理を行った。次に、圧縮成形体を上下反転させ、80℃から120℃まで5℃/分の昇温速度で昇温し、120℃に保持して65分間の第2熱処理を行い、含浸剤の硬化を完結させることで希土類系永久磁石を得た。
得られた希土類系永久磁石の空隙率(アルキメデス法による測定)、磁気特性、圧環強度(今田製作所社製の引張圧縮試験機による測定)、温度80℃×湿度90%の環境下での耐候性試験の結果を表3に示す。表3から明らかなように、上記の方法によって得られた希土類系永久磁石は、空隙率が小さく、磁気特性、強度、耐候性のいずれの面においても優れた特性を有することがわかった。
Example 1
After adding 0.1% by weight of calcium stearate as a lubricant to magnetic powder A and mixing it uniformly, compression molding is performed under an ultra-high pressure of 1900 MPa in cold (20 ° C.) using an ultra-high pressure powder press. A ring-shaped compression molded body having an inner diameter of 7.7 mm, an outer diameter of 12.8 mm, and a height of 4.8 mm, in which the volume ratio of the magnet powder occupying 83.5% was obtained (see Table 2). Product name: Super Seal P-401 (Solvent-free, viscosity at 25 ° C. is 5 to 15 cps) manufactured by Chuo Inventor Co., Ltd., which is an acrylic resin-based impregnant, and a polymerization initiator (central) (Invention Research Institute, Inc., trade name: Curing agent for Super Seal P-401) was added, and the ring-shaped compression-molded product placed on the mesh pallet was immersed in the chamber, and the pressure in the chamber was adjusted. The compression molded body was impregnated with an impregnation agent by reducing the pressure to 10 Pa or less and allowing it to stand for 1 hour. Thereafter, the compression molded body impregnated with the impregnating agent is transferred onto a holding net without being washed with water, accommodated in a processing chamber, and then allowed to stand from room temperature to 80 ° C. at a heating rate of 10 ° C./min. The temperature was raised and maintained at 80 ° C., and a first heat treatment was performed for 50 minutes. Next, the compression-molded body is turned upside down, heated from 80 ° C. to 120 ° C. at a heating rate of 5 ° C./min, maintained at 120 ° C., and subjected to a second heat treatment for 65 minutes to cure the impregnating agent. A rare earth permanent magnet was obtained by completing.
Porosity (measured by Archimedes method), magnetic properties, crushing strength (measured by a tensile and compression tester manufactured by Imada Seisakusho), weather resistance in an environment of temperature 80 ° C. and humidity 90% The results of the test are shown in Table 3. As can be seen from Table 3, the rare earth permanent magnet obtained by the above method has a low porosity and has excellent properties in all aspects of magnetic properties, strength, and weather resistance.

(実施例2)
磁石粉末Bを使用して実施例1と同様の方法で希土類系永久磁石を得た。得られた希土類系永久磁石は、実施例1で得られた希土類系永久磁石と同様、空隙率が小さく、磁気特性、強度、耐候性のいずれの面においても優れた特性を有することがわかった(表2,表3)。
(Example 2)
Using magnet powder B, a rare earth permanent magnet was obtained in the same manner as in Example 1. The obtained rare earth-based permanent magnet was found to have a low porosity and excellent properties in all aspects of magnetic properties, strength, and weather resistance, similar to the rare earth-based permanent magnet obtained in Example 1. (Table 2, Table 3).

(実施例3)
磁石粉末Cを使用して実施例1と同様の方法で希土類系永久磁石を得た。得られた希土類系永久磁石は、実施例1で得られた希土類系永久磁石と同様、空隙率が小さく、磁気特性、強度、耐候性のいずれの面においても優れた特性を有することがわかった(表2,表3)。
(Example 3)
Using magnet powder C, a rare earth permanent magnet was obtained in the same manner as in Example 1. The obtained rare earth-based permanent magnet was found to have a low porosity and excellent properties in all aspects of magnetic properties, strength, and weather resistance, similar to the rare earth-based permanent magnet obtained in Example 1. (Table 2, Table 3).

(実施例4)
成形圧力を780MPaとすること以外は実施例1と同様の方法で希土類系永久磁石を得た。圧縮成形体の磁石粉末の体積比率が77.0%と実施例1における圧縮成形体の磁石粉末の体積比率よりも低いことから、含浸剤を含浸させるための作業時に僅かばかりの割れや欠けが認められたが、実用上問題となる程度には至らず、得られた希土類系永久磁石は、実施例1で得られた希土類系永久磁石と同様、空隙率が小さく、磁気特性、強度、耐候性のいずれの面においても優れた特性を有することがわかった(表2,表3)。
Example 4
A rare earth permanent magnet was obtained in the same manner as in Example 1 except that the molding pressure was 780 MPa. Since the volume ratio of the magnet powder of the compression-molded body is 77.0%, which is lower than the volume ratio of the magnet powder of the compression-molded body in Example 1, there are only a few cracks and chips during the work for impregnating the impregnating agent. Although it was recognized, it did not reach a practically problematic level, and the obtained rare earth permanent magnet had a low porosity, magnetic properties, strength, and weather resistance, similar to the rare earth permanent magnet obtained in Example 1. It has been found that it has excellent characteristics in all aspects of the properties (Tables 2 and 3).

(比較例1)
含浸剤を含浸させた圧縮成形体を水洗することなく保持網の上に移し変え、120℃の処理室に収容し、静置した状態で45分間の熱処理を行うこと以外は実施例1と同様の方法で希土類系永久磁石を得ようとしたが、熱処理中に圧縮成形体の下面から含浸剤が流出し、その状態で含浸剤が硬化してしまったことで圧縮成形体と保持網が接着してしまい、両者を分離することができなかった(表2,表3)。
(Comparative Example 1)
The compressed molded body impregnated with the impregnating agent is transferred onto a holding net without being washed with water, accommodated in a treatment chamber at 120 ° C., and subjected to heat treatment for 45 minutes in a stationary state, as in Example 1. In this way, we tried to obtain a rare earth permanent magnet, but the impregnating agent flowed out from the lower surface of the compression molded body during the heat treatment, and the impregnating agent was cured in that state, so the compression molded body and the holding net were bonded. As a result, the two could not be separated (Tables 2 and 3).

(比較例2)
含浸剤を含浸させた圧縮成形体を水洗することなく保持網の上に移し変え、120℃の処理室に収容し、静置した状態で45分間の熱処理を行うこと以外は実施例4と同様の方法で希土類系永久磁石を得ようとしたが、熱処理中に圧縮成形体の下面から含浸剤が流出し、その状態で含浸剤が硬化してしまったことで圧縮成形体と保持網が接着してしまい、両者を分離することができなかった(表2,表3)。
(Comparative Example 2)
The compressed molded body impregnated with the impregnating agent is transferred onto a holding net without washing with water, accommodated in a treatment chamber at 120 ° C., and subjected to a heat treatment for 45 minutes in a stationary state, as in Example 4. In this way, we tried to obtain a rare earth permanent magnet, but the impregnating agent flowed out from the lower surface of the compression molded body during the heat treatment, and the impregnating agent was cured in that state, so the compression molded body and the holding net were bonded. As a result, the two could not be separated (Tables 2 and 3).

(比較例3)
実施例1における圧縮成形体の磁石としての使用可能性を検討したところ、磁気特性には優れるものの、所望する圧環強度を有しておらず、強度の面で問題があることがわかった(表2,表3)。
(Comparative Example 3)
When the possibility of using the compression molded body as a magnet in Example 1 was examined, it was found that although it had excellent magnetic properties, it did not have the desired crushing strength and had a problem in terms of strength (Table). 2, Table 3).

(比較例4)
圧縮成形体に対して500℃で10分間の熱処理を行った後に含浸剤を含浸させること以外は実施例1と同様の方法で希土類系永久磁石を得た。得られた希土類系永久磁石は、強度と耐候性の面で優れた特性を有していたが、高温で熱処理を行ったことによってその磁気特性は実施例1で得られた希土類系永久磁石の磁気特性よりも低いものであった(表2,表3)。
(Comparative Example 4)
A rare earth-based permanent magnet was obtained in the same manner as in Example 1 except that the compression molded body was heat treated at 500 ° C. for 10 minutes and then impregnated with the impregnating agent. The obtained rare earth-based permanent magnet had excellent characteristics in terms of strength and weather resistance. However, the magnetic characteristics of the rare earth-based permanent magnet obtained in Example 1 were obtained by performing heat treatment at a high temperature. The magnetic properties were lower (Tables 2 and 3).

(比較例5)
成形圧力を590MPaとすることで磁石粉末の体積比率が73.0%の圧縮成形体を形成して実施例1と同様の方法で希土類系永久磁石を得ようとしたが、圧縮性が不十分であることに起因して金型から取り出す際に成形体が砕けてしまった(表2,表3)。
(Comparative Example 5)
A compression molded body having a volume ratio of magnet powder of 73.0% was formed by setting the molding pressure to 590 MPa, and an attempt was made to obtain a rare earth permanent magnet by the same method as in Example 1, but the compressibility was insufficient. Due to this, the molded body was crushed when taken out from the mold (Tables 2 and 3).

(比較例6)
磁石粉末Aにエポキシ樹脂を2.0重量%加えて混練し、更に滑剤としてステアリン酸カルシウムを0.1重量%添加して均一に混合した後、プレス装置にて980MPaの成形圧力で成形し、180℃で3時間の硬化熱処理を行うことで、圧縮成形ボンド磁石を得た。得られたボンド磁石の全体に占める磁石粉末の体積比率は76%、空隙率は12%であった。
(Comparative Example 6)
After adding 2.0% by weight of epoxy resin to magnet powder A and kneading, and further adding 0.1% by weight of calcium stearate as a lubricant and mixing them uniformly, the powder is molded with a pressing device at a molding pressure of 980 MPa, 180 A compression-bonded bonded magnet was obtained by performing a curing heat treatment at 3 ° C. for 3 hours. The volume ratio of the magnet powder occupying the entire bonded magnet was 76%, and the porosity was 12%.

(比較例7)
磁石粉末Aに12ナイロンを5.0重量%、滑剤としてエチレンビスステアリン酸アミドを0.5重量%加え、230℃にて加熱混練し、射出成形機にて250℃で300MPaの成形圧力で成形し、射出成形ボンド磁石を得た。得られたボンド磁石の全体に占める磁石粉末の体積比率は61%、空隙率は1%であった。
(Comparative Example 7)
Add 12 wt% nylon 12 to magnet powder A and 0.5 wt% ethylenebisstearic acid amide as a lubricant, heat knead at 230 ° C, and mold at 250 ° C and 300 MPa molding pressure with an injection molding machine. Thus, an injection molded bonded magnet was obtained. The volume ratio of the magnet powder occupying the entire bonded magnet was 61%, and the porosity was 1%.

本発明は、磁石粉末の体積比率が高いことで磁気特性に優れるとともに、強度や耐候性の面においても優れた特性を有する希土類系永久磁石およびその製造方法を提供することができる点において産業上の利用可能性を有する。


Industrial Applicability The present invention is industrially advantageous in that it can provide a rare earth-based permanent magnet having a high volume ratio of magnet powder and excellent magnetic properties and strength and weather resistance, and a method for producing the same. Have the availability of.


Claims (5)

樹脂バインダを用いずに希土類系急冷合金粉末を冷間圧縮成形することにより、全体に占める希土類系急冷合金粉末の体積比率が75%〜95%の圧縮成形体を形成する圧縮成形体形成工程と、形成された圧縮成形体に対して樹脂含浸剤を含浸させる樹脂含浸剤含浸工程と、樹脂含浸剤を含浸させた圧縮成形体に対して60℃〜100℃で熱処理を行う第1熱処理工程と、圧縮成形体を上下反転させてから10℃/分以下の昇温速度で100℃〜200℃の範囲の温度まで昇温して熱処理を行う第2熱処理工程を少なくとも含んでなることを特徴とする希土類系永久磁石の製造方法。   A compression molded body forming step of forming a compression molded body having a volume ratio of 75% to 95% of the rare earth quenching alloy powder in the whole by cold compression molding of the rare earth quenched alloy powder without using a resin binder; A resin impregnating agent impregnation step for impregnating the formed compression molded article with a resin impregnating agent; and a first heat treatment step for performing heat treatment at 60 ° C. to 100 ° C. on the compression molding article impregnated with the resin impregnating agent Characterized in that it comprises at least a second heat treatment step in which the compression molded body is turned upside down and heated to a temperature in the range of 100 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./min or less. A method for manufacturing a rare earth permanent magnet. 樹脂含浸剤として25℃における粘度が20cps以下の熱硬化樹脂系含浸剤を用いることを特徴とする請求項1記載の製造方法。   The method according to claim 1, wherein a thermosetting resin-based impregnating agent having a viscosity at 25 ° C of 20 cps or less is used as the resin impregnating agent. 熱硬化樹脂系含浸剤がアクリル樹脂系含浸剤であることを特徴とする請求項2記載の製造方法。   3. The production method according to claim 2, wherein the thermosetting resin-based impregnating agent is an acrylic resin-based impregnating agent. 第1熱処理工程における室温から熱処理温度までの昇温速度を5℃/分〜15℃/分とすることを特徴とする請求項1乃至3のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein a rate of temperature rise from room temperature to a heat treatment temperature in the first heat treatment step is set to 5 ° C / min to 15 ° C / min. 構成成分として少なくとも希土類系急冷合金粉末と樹脂を含み、全体に占める希土類系急冷合金粉末の体積比率が75%〜95%であり、かつ、空隙率が3%〜9%であることを特徴とする希土類系永久磁石。


It includes at least a rare earth quenched alloy powder and a resin as constituent components, the volume ratio of the rare earth quenched alloy powder occupying the whole is 75% to 95%, and the porosity is 3% to 9%. Rare earth permanent magnet.


JP2009110993A 2009-04-30 2009-04-30 Rare earth permanent magnet and method for producing the same Expired - Fee Related JP5412172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110993A JP5412172B2 (en) 2009-04-30 2009-04-30 Rare earth permanent magnet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110993A JP5412172B2 (en) 2009-04-30 2009-04-30 Rare earth permanent magnet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010262996A true JP2010262996A (en) 2010-11-18
JP5412172B2 JP5412172B2 (en) 2014-02-12

Family

ID=43360868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110993A Expired - Fee Related JP5412172B2 (en) 2009-04-30 2009-04-30 Rare earth permanent magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5412172B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093416A (en) * 2012-11-02 2014-05-19 Soken Medical:Kk Method of manufacturing magnetic member
KR20150090839A (en) * 2014-01-29 2015-08-06 알프스 그린 디바이스 가부시키가이샤 Electronic component and electronic apparatus

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121999A (en) * 1978-03-14 1979-09-21 Toshiba Corp Manufacture of permanent magnet
JPS61188481A (en) * 1985-02-14 1986-08-22 Dia Furotsuku Kk Resin impregnating agent composition having excellent heat resistance
JPH03108702A (en) * 1989-06-27 1991-05-08 Kanegafuchi Chem Ind Co Ltd Magnet and manufacture thereof
JPH04236702A (en) * 1991-01-19 1992-08-25 Astecirie Corp Ltd Manufacture of metallic compact body using refined iron powder of converter dust
JPH08167513A (en) * 1994-12-15 1996-06-25 Sumitomo Metal Ind Ltd Bonded permanent magnet
JPH08293411A (en) * 1995-04-25 1996-11-05 Canon Electron Inc Bond magnet
JPH0922828A (en) * 1995-07-04 1997-01-21 Sumitomo Metal Ind Ltd Manufacture of bond type permanent magnet
JPH1167514A (en) * 1997-08-19 1999-03-09 Sumitomo Metal Ind Ltd Manufacture of bonded permanent magnet and its raw material powder
JP2001102207A (en) * 1999-09-30 2001-04-13 Tdk Corp Method for production of dust core
JP2001143916A (en) * 1999-11-12 2001-05-25 Matsushita Electric Ind Co Ltd Method for recovering and recycling magnetic powder from rare earth bond magnet
JP2001267192A (en) * 2000-03-16 2001-09-28 Matsushita Electric Ind Co Ltd Winding device for strip with leads
JP2002260943A (en) * 2001-03-06 2002-09-13 Sumitomo Metal Mining Co Ltd Rare earth bond magnet and its manufacturing method
JP2002299142A (en) * 2001-03-30 2002-10-11 Seiko Epson Corp Method of manufacturing bonded magnet and the bonded magnet

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121999A (en) * 1978-03-14 1979-09-21 Toshiba Corp Manufacture of permanent magnet
JPS61188481A (en) * 1985-02-14 1986-08-22 Dia Furotsuku Kk Resin impregnating agent composition having excellent heat resistance
JPH03108702A (en) * 1989-06-27 1991-05-08 Kanegafuchi Chem Ind Co Ltd Magnet and manufacture thereof
JPH04236702A (en) * 1991-01-19 1992-08-25 Astecirie Corp Ltd Manufacture of metallic compact body using refined iron powder of converter dust
JPH08167513A (en) * 1994-12-15 1996-06-25 Sumitomo Metal Ind Ltd Bonded permanent magnet
JPH08293411A (en) * 1995-04-25 1996-11-05 Canon Electron Inc Bond magnet
JPH0922828A (en) * 1995-07-04 1997-01-21 Sumitomo Metal Ind Ltd Manufacture of bond type permanent magnet
JPH1167514A (en) * 1997-08-19 1999-03-09 Sumitomo Metal Ind Ltd Manufacture of bonded permanent magnet and its raw material powder
JP2001102207A (en) * 1999-09-30 2001-04-13 Tdk Corp Method for production of dust core
JP2001143916A (en) * 1999-11-12 2001-05-25 Matsushita Electric Ind Co Ltd Method for recovering and recycling magnetic powder from rare earth bond magnet
JP2001267192A (en) * 2000-03-16 2001-09-28 Matsushita Electric Ind Co Ltd Winding device for strip with leads
JP2002260943A (en) * 2001-03-06 2002-09-13 Sumitomo Metal Mining Co Ltd Rare earth bond magnet and its manufacturing method
JP2002299142A (en) * 2001-03-30 2002-10-11 Seiko Epson Corp Method of manufacturing bonded magnet and the bonded magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093416A (en) * 2012-11-02 2014-05-19 Soken Medical:Kk Method of manufacturing magnetic member
KR20150090839A (en) * 2014-01-29 2015-08-06 알프스 그린 디바이스 가부시키가이샤 Electronic component and electronic apparatus
KR101656602B1 (en) 2014-01-29 2016-09-09 알프스 그린 디바이스 가부시키가이샤 Electronic component and electronic apparatus

Also Published As

Publication number Publication date
JP5412172B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP4835758B2 (en) Rare earth magnet manufacturing method
US20140043125A1 (en) Method for producing fully dense rare earth-iron-based bonded magnet
JP5884820B2 (en) Rare earth bonded magnet manufacturing method
CN1822252A (en) Temperature pressure binding permanent magnet material and its preparing method
JP5412172B2 (en) Rare earth permanent magnet and method for producing the same
KR101261099B1 (en) method for manufacturing rare earth sintering magnets
KR102454806B1 (en) Anisotropic bonded magnet and preparation method thereof
JP5039877B2 (en) Manufacturing method of rare earth metal bond magnet
US20080298995A1 (en) Method of manufacturing rare-earth bond magnet
US20160379755A1 (en) Manufacturing method for magnet and magnet
JP2012209484A (en) Bond magnet and method of manufacturing the same
JPH0547528A (en) Manufacturing method of anisotropical rare earth bonded magnet
JP3675452B2 (en) Method for manufacturing bonded magnet
JPWO2016035670A1 (en) Radial anisotropic sintered ring magnet and manufacturing method thereof
JP2012199462A (en) Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet
CN103667918A (en) Preparation method for adhesive rare earth permanent magnet alloy
JP6393737B2 (en) Rare earth bonded magnet
US20170011828A1 (en) Manufacturing Method for Magnet and Magnet
JP7252768B2 (en) Method for manufacturing rare earth bonded magnet
JP2011216641A (en) Method of manufacturing rare earth bond magnet
JPH0645167A (en) Manufacture of isotropic bond magnet
JP4543713B2 (en) Method for producing R-TM-B permanent magnet using sludge
CN103658635B (en) A kind of forming technology of bonded rare earth permanent magnetic alloy
JP2010114333A (en) Method for manufacturing bond magnet
WO2024181326A1 (en) Production method for field element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Ref document number: 5412172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees