JP2010255767A - Three-dimensional base isolation device - Google Patents

Three-dimensional base isolation device Download PDF

Info

Publication number
JP2010255767A
JP2010255767A JP2009107547A JP2009107547A JP2010255767A JP 2010255767 A JP2010255767 A JP 2010255767A JP 2009107547 A JP2009107547 A JP 2009107547A JP 2009107547 A JP2009107547 A JP 2009107547A JP 2010255767 A JP2010255767 A JP 2010255767A
Authority
JP
Japan
Prior art keywords
hydraulic cylinder
bending
laminated rubber
bending support
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009107547A
Other languages
Japanese (ja)
Other versions
JP5233824B2 (en
Inventor
Takahiro Shimada
貴弘 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009107547A priority Critical patent/JP5233824B2/en
Publication of JP2010255767A publication Critical patent/JP2010255767A/en
Application granted granted Critical
Publication of JP5233824B2 publication Critical patent/JP5233824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional base isolation device which prevents bending moment from acting on a liquid pressure cylinder, makes it hard for laminated rubber to cause shear buckling, and improves base-isolation performance. <P>SOLUTION: A plurality of liquid pressure cylinders 3 are arranged for a piece of the laminated rubber 1 so as to become symmetrical with respect to the axis O as the center. A vertical load support liquid chamber 3c, which is connected to an accumulator 2, and an upper liquid chamber 3e for bending support and a lower liquid chamber 3f for bending support, which are divided by a piston 3d, are formed in each liquid pressure cylinder 3. The upper liquid chamber 3e for bending support of the liquid pressure cylinder 3 and the lower liquid chamber 3f for bending support of another liquid pressure cylinder 3 corresponding to the liquid pressure cylinder 3 are connected by a communication passage 7a. The lower liquid chamber 3f for bending support of the liquid pressure cylinder 3 and the upper liquid chamber 3e for bending support of another liquid pressure cylinder 3 corresponding to the liquid pressure cylinder 3 are connected by a communication passage 7b. Thereby each liquid pressure cylinder 3 is structured to operate in the same phase. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、三次元免震装置に関するものである。   The present invention relates to a three-dimensional seismic isolation device.

従来より、ビルや重量建造物等の免震対象物を、地震の振動や衝撃から保護して支持するために、種々のバネを用いた三次元免震装置が提案されている。   Conventionally, three-dimensional seismic isolation devices using various springs have been proposed in order to protect and support seismic isolation objects such as buildings and heavy buildings from earthquake vibrations and shocks.

図6は従来の三次元免震装置の一例を示す側断面図であって、該三次元免震装置は、水平方向の免震機能を有する積層ゴム1と、アキュムレータ2が接続され鉛直方向の免震機能を有する液圧シリンダ3とを球面軸受4を介して上下に積み重ねてなる免震ユニット5を、基礎Bと免震対象物Hとの間における複数所要箇所に配設してなる構成を有している。   FIG. 6 is a side sectional view showing an example of a conventional three-dimensional seismic isolation device. The three-dimensional seismic isolation device includes a laminated rubber 1 having a horizontal seismic isolation function and an accumulator 2 connected in a vertical direction. A structure in which a seismic isolation unit 5 in which hydraulic cylinders 3 having a seismic isolation function are stacked up and down via a spherical bearing 4 is disposed at a plurality of required locations between the foundation B and the seismic isolation object H. have.

前記液圧シリンダ3は、液圧シリンダ本体3aと、該液圧シリンダ本体3aの内部に鉛直方向へ摺動自在に嵌入され且つ上端部が液圧シリンダ本体3a外部へ張り出すピストンロッド3bとを有する一方、前記アキュムレータ2は、アキュムレータ本体2aと、該アキュムレータ本体2aの内部に鉛直方向へ摺動自在に嵌入されたピストン2bとを有し、該ピストン2bで仕切られたアキュムレータ本体2aの下部空間2cと、前記液圧シリンダ本体3a内部のピストンロッド3b下面側に形成される鉛直荷重支持用液室3cとを連通管6にて接続し、該連通管6にて接続されるアキュムレータ本体2aの下部空間2c及び液圧シリンダ本体3aの鉛直荷重支持用液室3c内に油等の液体を充填すると共に、前記ピストン2bで仕切られたアキュムレータ本体2aの上部空間2d内に窒素ガス等の不活性ガスを充填するようにしてある。   The hydraulic cylinder 3 includes a hydraulic cylinder main body 3a and a piston rod 3b that is slidably fitted in the vertical direction inside the hydraulic cylinder main body 3a and has an upper end projecting outside the hydraulic cylinder main body 3a. On the other hand, the accumulator 2 has an accumulator body 2a and a piston 2b fitted into the accumulator body 2a so as to be slidable in the vertical direction, and is a lower space of the accumulator body 2a partitioned by the piston 2b. 2c and a vertical load supporting liquid chamber 3c formed on the lower surface side of the piston rod 3b inside the hydraulic cylinder main body 3a are connected by a communication pipe 6, and the accumulator main body 2a connected by the communication pipe 6 is connected. The lower space 2c and the fluid chamber 3c for supporting the vertical load of the hydraulic cylinder body 3a are filled with a liquid such as oil, and the fluid is partitioned by the piston 2b. The Yumureta body 2a upper space 2d of are to be filled with an inert gas such as nitrogen gas.

ここで、前述の如く、積層ゴム1と液圧シリンダ3とを球面軸受4を介して上下に積み重ねて免震ユニット5を構成しているのは、液圧シリンダ3に対し、いわゆる「こじり力」(曲げモーメント)が作用しないようにするためである。   Here, as described above, the laminated rubber 1 and the hydraulic cylinder 3 are stacked one above the other via the spherical bearing 4 to constitute the seismic isolation unit 5. This is to prevent the “bending moment” from acting.

尚、積層ゴムと液圧シリンダとを備えた三次元免震装置と関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。   For example, Patent Document 1 shows a general technical level related to a three-dimensional seismic isolation device including a laminated rubber and a hydraulic cylinder.

特開2008−291918号公報JP 2008-291918 A

ところで、前記積層ゴム1は、それ単独で考えた場合、本来、図7(a)に示される如く球面軸受4を設けることによって片端の回転が拘束されていない、いわゆる片端回転フリーとするのではなく、図7(b)に示される如く両端固定として曲げ(回転)が拘束された状態で使用することが望ましい。   By the way, when the laminated rubber 1 is considered by itself, the rotation of one end is not restricted by providing the spherical bearing 4 as shown in FIG. Instead, as shown in FIG. 7 (b), it is desirable to use both ends fixed with bending (rotation) constrained.

この理由は、図7(b)に示される如く前記積層ゴム1を両端固定として曲げ(回転)が拘束された状態で使用した場合、該積層ゴム1の安定限界水平変位(座屈発生時水平変位)は、図7(c)中、仮想線で示されるようになるのに対し、図7(a)に示される如く球面軸受4を設けて前記積層ゴム1を片端回転フリーとした場合、該積層ゴム1の安定限界水平変位は、図7(c)中、実線で示されるようになり、例えば、鉛直荷重がP=20[ton]である場合、両端固定では安定限界水平変位がおよそ1250[mm]であるのに対し、片端回転フリーでは安定限界水平変位がおよそ1000[mm]に低下してしまい、同じ鉛直荷重でも小さい水平変位で座屈が発生してしまうためである。   This is because, as shown in FIG. 7B, when the laminated rubber 1 is used with both ends fixed and the bending (rotation) is constrained, the stability limit horizontal displacement of the laminated rubber 1 (horizontal when buckling occurs) 7 (c), as shown by the phantom line, the spherical rubber 4 is provided as shown in FIG. 7 (a) to make the laminated rubber 1 free to rotate at one end. The stability limit horizontal displacement of the laminated rubber 1 is as shown by a solid line in FIG. 7C. For example, when the vertical load is P = 20 [ton], the stability limit horizontal displacement is approximately when the both ends are fixed. In contrast to 1250 [mm], the stability limit horizontal displacement is reduced to about 1000 [mm] when one-end rotation is free, and buckling occurs with a small horizontal displacement even with the same vertical load.

又、図7(b)に示される如く前記積層ゴム1を両端固定として曲げ(回転)が拘束された状態で使用した場合、該積層ゴム1の水平剛性(水平荷重をF、水平変位をδとすると、F/δ[ton/m])は、図7(d)中、仮想線で示されるようになるのに対し、図7(a)に示される如く球面軸受4を設けて前記積層ゴム1を片端回転フリーとした場合、該積層ゴム1の水平剛性は、図7(d)中、実線で示されるようになり、鉛直荷重が増加するに従って水平剛性が低下する割合が、両端固定より片端回転フリーの方が大きくなり、片端回転フリーの場合、前記積層ゴム1が剪断座屈を起こしやすくなることがわかる。   Further, as shown in FIG. 7B, when the laminated rubber 1 is used with both ends fixed and the bending (rotation) is constrained, the horizontal rigidity of the laminated rubber 1 (the horizontal load is F and the horizontal displacement is δ). Then, F / δ [ton / m]) is indicated by an imaginary line in FIG. 7D, whereas a spherical bearing 4 is provided as shown in FIG. When the rubber 1 is rotated free at one end, the horizontal rigidity of the laminated rubber 1 is as shown by a solid line in FIG. 7 (d), and the rate at which the horizontal rigidity decreases as the vertical load increases is fixed at both ends. It can be seen that the one-end rotation free becomes larger, and in the case of the one-end rotation free, the laminated rubber 1 is likely to cause shear buckling.

即ち、図8(a)に示される如く、前記積層ゴム1と液圧シリンダ3とを球面軸受4を介して上下に積み重ねて免震ユニット5を構成すれば、液圧シリンダ3に対し曲げモーメントが作用しない反面、前記積層ゴム1に曲げモーメントが作用してしまい、該積層ゴム1が剪断座屈を起こしやすくなる不具合が生ずる一方、仮に、球面軸受4を介さずに、図8(b)に示される如く、前記積層ゴム1と液圧シリンダ3とを直接接続すると、該積層ゴム1にとっては有利となる反面、前記液圧シリンダ3が曲げモーメントを負担しなければならなくなって摺動抵抗が増し、免震性能が低下してしまう問題が発生することとなる。   That is, as shown in FIG. 8A, if the laminated rubber 1 and the hydraulic cylinder 3 are stacked up and down via the spherical bearing 4 to form the seismic isolation unit 5, the bending moment with respect to the hydraulic cylinder 3 is achieved. On the other hand, a bending moment is applied to the laminated rubber 1 and the laminated rubber 1 is liable to cause shear buckling. On the other hand, if the spherical rubber 4 is not interposed, FIG. If the laminated rubber 1 and the hydraulic cylinder 3 are directly connected to each other as shown in FIG. 4, it is advantageous for the laminated rubber 1, but the hydraulic cylinder 3 has to bear a bending moment and slide resistance. As a result, there will be a problem that the seismic isolation performance decreases.

本発明は、斯かる実情に鑑み、液圧シリンダに対し曲げモーメントが作用することを防止でき且つ積層ゴムが剪断座屈を起こしにくくすることができ、免震性能向上を図り得る三次元免震装置を提供しようとするものである。   In view of such circumstances, the present invention is capable of preventing a bending moment from acting on a hydraulic cylinder, making it difficult for a laminated rubber to cause shear buckling, and improving a base isolation performance. The device is to be provided.

本発明は、水平方向の免震機能を有する積層ゴムと、アキュムレータが接続され鉛直方向の免震機能を有する液圧シリンダとを球面軸受を介して上下に積み重ねてなる免震ユニットを備えた三次元免震装置において、
前記免震ユニットを構成する一個の積層ゴムに対し、該積層ゴムの軸線を中心に対称となるよう複数の液圧シリンダを配設し、
前記各液圧シリンダには、前記アキュムレータに接続される鉛直荷重支持用液室と、ピストンにて上下に仕切られる曲げ支持用上液室及び曲げ支持用下液室とを形成し、
前記液圧シリンダの曲げ支持用上液室と、該液圧シリンダに対応する別の液圧シリンダの曲げ支持用下液室とを連通路によって接続すると共に、前記液圧シリンダの曲げ支持用下液室と、該液圧シリンダに対応する別の液圧シリンダの曲げ支持用上液室とを連通路によって接続することにより、前記各液圧シリンダを同位相で動作させるよう構成したことを特徴とする三次元免震装置にかかるものである。
The present invention is a tertiary equipped with a seismic isolation unit in which a laminated rubber having a horizontal seismic isolation function and a hydraulic cylinder having an accumulator connected thereto and having a vertical seismic isolation function are stacked vertically via a spherical bearing. In the former seismic isolation device,
For one laminated rubber constituting the seismic isolation unit, a plurality of hydraulic cylinders are arranged so as to be symmetric about the axis of the laminated rubber,
In each of the hydraulic cylinders, a vertical load supporting liquid chamber connected to the accumulator, a bending supporting upper liquid chamber and a bending supporting lower liquid chamber partitioned vertically by a piston are formed.
The upper hydraulic chamber for bending support of the hydraulic cylinder and the lower hydraulic chamber for bending support of another hydraulic cylinder corresponding to the hydraulic cylinder are connected by a communication path, and the lower bending chamber of the hydraulic cylinder is supported for bending. By connecting the fluid chamber and the upper fluid chamber for bending support of another fluid pressure cylinder corresponding to the fluid pressure cylinder by a communication path, the fluid pressure cylinders are configured to operate in the same phase. It is applied to the three-dimensional seismic isolation device.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

地震等の発生時に、曲げモーメントが免震ユニットの液圧シリンダに伝わると、積層ゴムの軸線を中心に対称となるよう配設された一方の液圧シリンダには上方への荷重が作用すると共に、対応する他方の液圧シリンダには下方への荷重が作用するが、これらの液圧シリンダは連通路による接続によって同位相の動作しか許容されていないので、回転変形が発生しない。   When a bending moment is transmitted to the hydraulic cylinder of the seismic isolation unit in the event of an earthquake or the like, an upward load acts on one of the hydraulic cylinders arranged symmetrically about the axis of the laminated rubber. A downward load is applied to the corresponding other hydraulic cylinder, but these hydraulic cylinders are only allowed to operate in the same phase by the connection through the communication path, so that no rotational deformation occurs.

この結果、積層ゴムは、液圧シリンダとの間に球面軸受が介在されているものの、あたかも両端固定として曲げ(回転)が拘束されているような状態で使用される形となり、前記積層ゴムが剪断座屈を起こしにくくなる。   As a result, the laminated rubber has a spherical bearing between the hydraulic cylinder and is used in a state in which bending (rotation) is constrained as fixed at both ends. It becomes difficult to cause shear buckling.

又、前記積層ゴムと複数の液圧シリンダとは球面軸受を介して接続されており、該各液圧シリンダが曲げモーメントを負担しなくて済むため、摺動抵抗が増す心配はなく、免震性能が低下してしまう問題が発生することもない。   The laminated rubber and the plurality of hydraulic cylinders are connected via spherical bearings, and each hydraulic cylinder need not bear a bending moment. There is no problem that the performance deteriorates.

前記三次元免震装置においては、前記積層ゴムの軸線を中心とする正方形以上の偶数正多角形の頂点となる位置に液圧シリンダを配設し、互いに対角に位置する一方の液圧シリンダの曲げ支持用上液室と他方の液圧シリンダの曲げ支持用下液室とを連通路によって接続すると共に、一方の液圧シリンダの曲げ支持用下液室と他方の液圧シリンダの曲げ支持用上液室とを連通路によって接続することができる。   In the three-dimensional seismic isolation device, a hydraulic cylinder is disposed at a position that is the apex of an even regular polygon that is equal to or larger than a square centered on the axis of the laminated rubber, and one hydraulic cylinder that is located diagonally to each other. The upper liquid chamber for bending support and the lower liquid chamber for bending support of the other hydraulic cylinder are connected by a communication path, and the lower liquid chamber for bending support of one hydraulic cylinder and the bending support of the other hydraulic cylinder are supported. The upper liquid chamber can be connected by a communication path.

又、前記三次元免震装置においては、前記積層ゴムの軸線を中心とする正三形以上の正多角形の頂点となる位置に液圧シリンダを配設し、所望の液圧シリンダの曲げ支持用上液室と一方の側に隣接する液圧シリンダの曲げ支持用下液室とを連通路によって順次接続し、最終的に前記所望の液圧シリンダの他方の側に隣接する液圧シリンダの曲げ支持用上液室と前記所望の液圧シリンダの曲げ支持用下液室とを連通路によって接続することもできる。   Further, in the three-dimensional seismic isolation device, a hydraulic cylinder is disposed at the apex of a regular polygon of three or more regular shapes centered on the axis of the laminated rubber, for bending support of a desired hydraulic cylinder. The upper liquid chamber and the lower liquid chamber for bending support of the hydraulic cylinder adjacent to one side are sequentially connected by a communication path, and finally the bending of the hydraulic cylinder adjacent to the other side of the desired hydraulic cylinder is made. The upper liquid chamber for support and the lower liquid chamber for bending support of the desired hydraulic cylinder can be connected by a communication path.

本発明の三次元免震装置によれば、液圧シリンダに対し曲げモーメントが作用することを防止でき且つ積層ゴムが剪断座屈を起こしにくくすることができ、免震性能向上を図り得るという優れた効果を奏し得る。   According to the three-dimensional seismic isolation device of the present invention, it is possible to prevent the bending moment from acting on the hydraulic cylinder and to make the laminated rubber difficult to cause shear buckling, and to improve seismic isolation performance. The effects can be achieved.

本発明の第一実施例を示す概要構成図であって、(a)は側断面図((b)のIa−Ia断面相当図)、(b)は平断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows the 1st Example of this invention, Comprising: (a) is side sectional drawing (Ia-Ia cross-section equivalent figure of (b)), (b) is a plane sectional drawing. 本発明の第二実施例を示す概要構成図であって、(a)は側断面図((b)のIIa−IIa断面相当図)、(b)は平断面図である。It is a schematic block diagram which shows the 2nd Example of this invention, Comprising: (a) is a sectional side view (corresponding to IIa-IIa cross section of (b)), (b) is a plane sectional view. 本発明の第三実施例を示す概要構成図であって、(a)は側断面図((b)のIIIa−IIIa断面相当図)、(b)は平断面図である。It is a schematic block diagram which shows the 3rd Example of this invention, Comprising: (a) is a sectional side view (IIIa-IIIa equivalent view of (b)), (b) is a plane sectional view. 本発明の第四実施例を示す概要構成図であって、(a)は側断面図((b)のIVa−IVa断面相当図)、(b)は平断面図である。It is a schematic block diagram which shows 4th Example of this invention, Comprising: (a) is a sectional side view (IVa-IVa cross-section equivalent figure of (b)), (b) is a plane sectional view. 本発明の第五実施例を示す概要構成図であって、(a)は側断面図((b)のVa−Va断面相当図)、(b)は平断面図である。It is a schematic block diagram which shows the 5th Example of this invention, Comprising: (a) is a sectional side view (corresponding to Va-Va section of (b)), (b) is a plane sectional view. 従来の三次元免震装置の一例を示す側断面図である。It is a sectional side view which shows an example of the conventional three-dimensional seismic isolation apparatus. 従来の三次元免震装置の一例における積層ゴムの固定条件の相違(球面軸受の有無)による状態変化を示す図であって、(a)は片端回転フリーとした場合(球面軸受が有る場合)の積層ゴムの変形を示す概念図、(b)は両端固定とした場合(球面軸受が無い場合)の積層ゴムの変形を示す概念図、(c)は片端回転フリーとした場合の積層ゴムの安定限界水平変位が両端固定とした場合より低下することを示す線図、(d)は片端回転フリーとした場合の積層ゴムの水平剛性が両端固定とした場合より低下することを示す線図である。It is a figure which shows the state change by the difference in the fixing conditions of laminated rubber (the presence or absence of a spherical bearing) in an example of the conventional three-dimensional seismic isolation device, and (a) is when one end rotation is free (when there is a spherical bearing) (B) is a conceptual diagram showing the deformation of the laminated rubber when both ends are fixed (when there is no spherical bearing), (c) is the laminated rubber when one end rotation is free A diagram showing that the stability limit horizontal displacement is lower than when both ends are fixed, and (d) is a diagram showing that the horizontal rigidity of the laminated rubber is lower than when both ends are fixed. is there. 従来の三次元免震装置の一例における積層ゴムの固定条件の相違(球面軸受の有無)による状態変化を示す図であって、(a)は片端回転フリーとした場合の積層ゴムの変形と該積層ゴムに作用する曲げモーメントとを示す概念図、(b)は両端固定とした場合の積層ゴムの変形と液圧シリンダに作用する曲げモーメントとを示す概念図である。It is a figure which shows the state change by the difference (fixed presence or absence of a spherical bearing) of the lamination | stacking rubber | gum fixed conditions in an example of the conventional three-dimensional seismic isolation apparatus, Comprising: (a) The conceptual diagram which shows the bending moment which acts on laminated rubber, (b) is a conceptual diagram which shows the deformation | transformation of laminated rubber at the time of fixing both ends, and the bending moment which acts on a hydraulic cylinder.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1(a),(b)は本発明の第一実施例であって、図中、図6と同一の符号を付した部分は同一物を表わしており、基本的な構成は図6に示す従来のものと同様であるが、本第一実施例の特徴とするところは、図1(a),(b)に示す如く、免震ユニット5を構成する一個の積層ゴム1に対し、該積層ゴム1の軸線Oを中心に対称となるよう複数の液圧シリンダ3を配設し、各液圧シリンダ3には、アキュムレータ2に接続される鉛直荷重支持用液室3cと、ピストン3dにて上下に仕切られる曲げ支持用上液室3e及び曲げ支持用下液室3fとを形成し、前記液圧シリンダ3の曲げ支持用上液室3eと、該液圧シリンダ3に対応する別の液圧シリンダ3の曲げ支持用下液室3fとを連通路7aによって接続すると共に、前記液圧シリンダ3の曲げ支持用下液室3fと、該液圧シリンダ3に対応する別の液圧シリンダ3の曲げ支持用上液室3eとを連通路7bによって接続することにより、前記各液圧シリンダ3を同位相で動作させるよう構成した点にある。   1 (a) and 1 (b) show a first embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 6 denote the same components, and the basic configuration is shown in FIG. Although it is the same as that of the conventional one shown, the feature of the first embodiment is that, as shown in FIGS. 1 (a) and 1 (b), for one laminated rubber 1 constituting the seismic isolation unit 5, A plurality of hydraulic cylinders 3 are arranged so as to be symmetric about the axis O of the laminated rubber 1, and each hydraulic cylinder 3 includes a vertical load supporting liquid chamber 3c connected to the accumulator 2, and a piston 3d. The bending support upper liquid chamber 3e and the bending support lower liquid chamber 3f are formed in the upper and lower portions of the hydraulic cylinder 3, and the bending support upper liquid chamber 3e and the hydraulic cylinder 3 are separated from each other. The lower hydraulic chamber 3f for bending support of the hydraulic cylinder 3 is connected by a communication passage 7a, and the hydraulic cylinder 3 is connected to the lower liquid chamber 3f for bending support and the upper liquid chamber 3e for bending support of another hydraulic cylinder 3 corresponding to the hydraulic cylinder 3 through the communication path 7b. Are configured to operate in the same phase.

本第一実施例の場合、前記積層ゴム1の軸線Oを中心とする正方形の頂点となる位置に四個の液圧シリンダ3を配設し、互いに対角に位置する一方の液圧シリンダ3の曲げ支持用上液室3eと他方の液圧シリンダ3の曲げ支持用下液室3fとを連通路7aによって接続すると共に、一方の液圧シリンダ3の曲げ支持用下液室3fと他方の液圧シリンダ3の曲げ支持用上液室3eとを連通路7bによって接続するようにしてある。   In the case of the first embodiment, four hydraulic cylinders 3 are arranged at positions that are the apexes of a square centered on the axis O of the laminated rubber 1, and one hydraulic cylinder 3 that is located diagonally to each other. The upper liquid chamber 3e for bending support and the lower liquid chamber 3f for bending support of the other hydraulic cylinder 3 are connected by a communication path 7a, and the lower liquid chamber 3f for bending support of one hydraulic cylinder 3 and the other liquid chamber 3f of the other hydraulic cylinder 3 are connected. The upper liquid chamber 3e for bending support of the hydraulic cylinder 3 is connected by a communication path 7b.

尚、前記四個の液圧シリンダ3は、共通となる一個の液圧シリンダ本体3aを利用し、該一個の液圧シリンダ本体3aに四本のピストンロッド3bを配設するようにしてある。   The four hydraulic cylinders 3 use one common hydraulic cylinder body 3a, and four piston rods 3b are arranged on the single hydraulic cylinder body 3a.

又、前記四本のピストンロッド3b下面側に形成される四個の鉛直荷重支持用液室3cは、連通路8によって連通させるようにしてある。   Further, the four vertical load supporting liquid chambers 3c formed on the lower surface side of the four piston rods 3b are communicated with each other through the communication passage 8.

次に、上記第一実施例の作用を説明する。   Next, the operation of the first embodiment will be described.

地震等の発生時に、曲げモーメントが免震ユニット5の各液圧シリンダ3に伝わると、積層ゴム1の軸線Oを中心に対称となるよう互いに対角に配設された一方の液圧シリンダ3には上方への荷重が作用すると共に、対応する他方の液圧シリンダ3には下方への荷重が作用するが、これらの液圧シリンダ3は連通路7a,7bによる接続によって同位相の動作しか許容されていないので、回転変形が発生しない。   When a bending moment is transmitted to each hydraulic cylinder 3 of the seismic isolation unit 5 in the event of an earthquake or the like, one hydraulic cylinder 3 disposed diagonally with respect to the axis O of the laminated rubber 1 is symmetrical. An upward load acts on the other hydraulic cylinder 3 and a downward load acts on the corresponding other hydraulic cylinder 3, but these hydraulic cylinders 3 can only operate in phase due to the connection through the communication paths 7a and 7b. Since it is not allowed, no rotational deformation occurs.

この結果、積層ゴム1は、液圧シリンダ3との間に球面軸受4が介在されているものの、あたかも両端固定として曲げ(回転)が拘束されているような状態で使用される形となり、前記積層ゴム1が剪断座屈を起こしにくくなる。因みに、第一実施例における積層ゴム1の安定限界水平変位(座屈発生時水平変位)は、図7(b)に示される如く前記積層ゴム1を両端固定として曲げ(回転)が拘束された状態で使用した場合と同様に、図7(c)中、仮想線で示されるようになる一方、第一実施例における積層ゴム1の水平剛性は、図7(b)に示される如く前記積層ゴム1を両端固定として曲げ(回転)が拘束された状態で使用した場合と同様に、図7(d)中、仮想線で示されるようになる。   As a result, the laminated rubber 1 is used in a state in which bending (rotation) is constrained as being fixed at both ends, although the spherical bearing 4 is interposed between the laminated rubber 1 and the hydraulic cylinder 3. The laminated rubber 1 is less likely to cause shear buckling. Incidentally, the stability limit horizontal displacement (horizontal displacement at the time of occurrence of buckling) of the laminated rubber 1 in the first embodiment is restrained from bending (rotating) with the laminated rubber 1 fixed at both ends as shown in FIG. 7B. As shown in FIG. 7 (c), the horizontal rigidity of the laminated rubber 1 in the first embodiment is the same as that shown in FIG. 7 (b). Similar to the case where the rubber 1 is used with both ends fixed and the bending (rotation) is constrained, it is indicated by a virtual line in FIG.

又、前記積層ゴム1と複数(四個)の液圧シリンダ3とは球面軸受4を介して接続されており、該各液圧シリンダ3が曲げモーメントを負担しなくて済むため、摺動抵抗が増す心配はなく、免震性能が低下してしまう問題が発生することもない。   The laminated rubber 1 and a plurality of (four) hydraulic cylinders 3 are connected via spherical bearings 4, and each hydraulic cylinder 3 does not have to bear a bending moment, so that sliding resistance is eliminated. There is no worry that the seismic isolation performance will deteriorate.

こうして、液圧シリンダ3に対し曲げモーメントが作用することを防止でき且つ積層ゴム1が剪断座屈を起こしにくくすることができ、免震性能向上を図り得る。   In this way, it is possible to prevent the bending moment from acting on the hydraulic cylinder 3 and to make the laminated rubber 1 less likely to cause shear buckling, thereby improving seismic isolation performance.

図2(a),(b)は本発明の第二実施例であって、図中、図1(a),(b)と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1(a),(b)に示す第一実施例と同様であるが、本第二実施例の特徴とするところは、図2(a),(b)に示す如く、前記積層ゴム1の軸線Oを中心とする正六角形の頂点となる位置に六個の液圧シリンダ3を配設し、互いに対角に位置する一方の液圧シリンダ3の曲げ支持用上液室3eと他方の液圧シリンダ3の曲げ支持用下液室3fとを連通路7aによって接続すると共に、一方の液圧シリンダ3の曲げ支持用下液室3fと他方の液圧シリンダ3の曲げ支持用上液室3eとを連通路7bによって接続するようにした点にある。   2 (a) and 2 (b) show a second embodiment of the present invention. In the figure, the same reference numerals as those in FIGS. 1 (a) and 1 (b) denote the same items. The general configuration is the same as that of the first embodiment shown in FIGS. 1A and 1B, but the feature of the second embodiment is as shown in FIGS. 2A and 2B. Six hydraulic cylinders 3 are arranged at the apex of a regular hexagon centering on the axis O of the laminated rubber 1, and the upper liquid chamber for bending support of one hydraulic cylinder 3 located diagonally to each other. 3e and the lower liquid chamber 3f for bending support of the other hydraulic cylinder 3 are connected by a communication path 7a, and the lower liquid chamber 3f for bending support of one hydraulic cylinder 3 and the bending support of the other hydraulic cylinder 3 are supported. The upper liquid chamber 3e is connected by the communication path 7b.

上記第二実施例の如く、六個の液圧シリンダ3を配設しても、地震等の発生時に、曲げモーメントが免震ユニット5の各液圧シリンダ3に伝わると、積層ゴム1の軸線Oを中心に対称となるよう互いに対角に配設された一方の液圧シリンダ3には上方への荷重が作用すると共に、対応する他方の液圧シリンダ3には下方への荷重が作用するが、これらの液圧シリンダ3は連通路7a,7bによる接続によって同位相の動作しか許容されていないので、回転変形が発生せず、この結果、積層ゴム1は、液圧シリンダ3との間に球面軸受4が介在されているものの、あたかも両端固定として曲げ(回転)が拘束されているような状態で使用される形となり、前記積層ゴム1が剪断座屈を起こしにくくなり、又、前記積層ゴム1と複数(六個)の液圧シリンダ3とは球面軸受4を介して接続されており、該各液圧シリンダ3が曲げモーメントを負担しなくて済むため、摺動抵抗が増す心配はなく、免震性能が低下してしまう問題が発生することもない。因みに、第二実施例における積層ゴム1の安定限界水平変位(座屈発生時水平変位)は、図7(b)に示される如く前記積層ゴム1を両端固定として曲げ(回転)が拘束された状態で使用した場合と同様に、図7(c)中、仮想線で示されるようになる一方、第二実施例における積層ゴム1の水平剛性は、図7(b)に示される如く前記積層ゴム1を両端固定として曲げ(回転)が拘束された状態で使用した場合と同様に、図7(d)中、仮想線で示されるようになる。   Even if six hydraulic cylinders 3 are arranged as in the second embodiment, if the bending moment is transmitted to each hydraulic cylinder 3 of the seismic isolation unit 5 when an earthquake or the like occurs, the axis of the laminated rubber 1 An upward load acts on one of the hydraulic cylinders 3 arranged diagonally so as to be symmetric with respect to O, and a downward load acts on the corresponding other hydraulic cylinder 3. However, since these hydraulic cylinders 3 are only allowed to operate in the same phase by the connection through the communication passages 7 a and 7 b, no rotational deformation occurs. As a result, the laminated rubber 1 is connected to the hydraulic cylinder 3. Although the spherical bearing 4 is interposed between the two, the laminated rubber 1 is less likely to cause shear buckling, as if it is used in a state in which bending (rotation) is constrained as fixed at both ends. Laminated rubber 1 and multiple (six) liquids The cylinder 3 is connected via a spherical bearing 4, and the hydraulic cylinders 3 do not have to bear a bending moment. Therefore, there is no concern about an increase in sliding resistance, and the seismic isolation performance deteriorates. Does not occur. Incidentally, the stability limit horizontal displacement (horizontal displacement at the time of occurrence of buckling) of the laminated rubber 1 in the second embodiment is restrained from bending (rotating) with the laminated rubber 1 fixed at both ends as shown in FIG. As shown in FIG. 7 (c), the horizontal rigidity of the laminated rubber 1 in the second embodiment is the same as that shown in FIG. 7 (b). Similar to the case where the rubber 1 is used with both ends fixed and the bending (rotation) is constrained, it is indicated by a virtual line in FIG.

こうして、第二実施例においても、第一実施例と同様、液圧シリンダ3に対し曲げモーメントが作用することを防止でき且つ積層ゴム1が剪断座屈を起こしにくくすることができ、免震性能向上を図り得る。   Thus, also in the second embodiment, as in the first embodiment, it is possible to prevent the bending moment from acting on the hydraulic cylinder 3, and to make the laminated rubber 1 less likely to cause shear buckling, and the seismic isolation performance. Improvements can be made.

図3(a),(b)は本発明の第三実施例であって、図中、図2(a),(b)と同一の符号を付した部分は同一物を表わしており、基本的な構成は図2(a),(b)に示す第二実施例と同様であるが、本第三実施例の特徴とするところは、図3(a),(b)に示す如く、積層ゴム1の軸線O延長上における中心部分に、球面軸受4を介して鉛直方向荷重支持専用の液圧シリンダ3を配置し、該鉛直方向荷重支持専用の液圧シリンダ3の周囲に、六個の液圧シリンダ3を配設し、互いに対角に位置する一方の液圧シリンダ3の曲げ支持用上液室3eと他方の液圧シリンダ3の曲げ支持用下液室3fとを、液圧シリンダ本体3aの外側に設けられる配管で形成した連通路7aによって接続すると共に、一方の液圧シリンダ3の曲げ支持用下液室3fと他方の液圧シリンダ3の曲げ支持用上液室3eとを、液圧シリンダ本体3aの外側に設けられる配管で形成した連通路7bによって接続するようにした点にある。   3 (a) and 3 (b) show a third embodiment of the present invention. In the figure, the same reference numerals as those in FIGS. 2 (a) and 2 (b) denote the same components. The general configuration is the same as that of the second embodiment shown in FIGS. 2A and 2B, but the feature of the third embodiment is as shown in FIGS. 3A and 3B. In the central portion of the laminated rubber 1 on the extension of the axis O, a hydraulic cylinder 3 dedicated to supporting a vertical load is disposed via a spherical bearing 4, and six hydraulic cylinders 3 dedicated to supporting the vertical load are disposed around the hydraulic cylinder 3. The upper hydraulic chamber 3e for bending support of one hydraulic cylinder 3 and the lower liquid chamber 3f for bending support of the other hydraulic cylinder 3 are hydraulically arranged. It is connected by a communication path 7a formed by piping provided outside the cylinder body 3a, and is used for bending support of one hydraulic cylinder 3. A chamber 3f and the other bending support for the upper liquid chamber 3e of the hydraulic cylinder 3 is in that so as to connect the communication path 7b formed by a pipe which is provided on the outside of the hydraulic cylinder body 3a.

上記第三実施例の如く構成すると、鉛直方向荷重は主に、積層ゴム1の軸線O延長上における中心部分に配置された鉛直方向荷重支持専用の液圧シリンダ3によって支持されており、この状態で、地震等の発生時に、曲げモーメントが前記免震ユニット5の各液圧シリンダ3に伝わると、積層ゴム1の軸線Oを中心に対称となるよう互いに対角に配設された一方の液圧シリンダ3には上方への荷重が作用すると共に、対応する他方の液圧シリンダ3には下方への荷重が作用するが、これらの液圧シリンダ3は、液圧シリンダ本体3aの外側に設けられる配管で形成した連通路7a,7bによる接続によって同位相の動作しか許容されていないので、回転変形が発生せず、この結果、積層ゴム1は、液圧シリンダ3との間に球面軸受4が介在されているものの、あたかも両端固定として曲げ(回転)が拘束されているような状態で使用される形となり、前記積層ゴム1が剪断座屈を起こしにくくなり、又、前記積層ゴム1と鉛直方向荷重支持専用の液圧シリンダ3及び複数(六個)の液圧シリンダ3とは球面軸受4を介して接続されており、該各液圧シリンダ3が曲げモーメントを負担しなくて済むため、摺動抵抗が増す心配はなく、免震性能が低下してしまう問題が発生することもない。因みに、第三実施例における積層ゴム1の安定限界水平変位(座屈発生時水平変位)は、図7(b)に示される如く前記積層ゴム1を両端固定として曲げ(回転)が拘束された状態で使用した場合と同様に、図7(c)中、仮想線で示されるようになる一方、第三実施例における積層ゴム1の水平剛性は、図7(b)に示される如く前記積層ゴム1を両端固定として曲げ(回転)が拘束された状態で使用した場合と同様に、図7(d)中、仮想線で示されるようになる。   When configured as in the third embodiment, the vertical load is mainly supported by the hydraulic cylinder 3 dedicated to supporting the vertical load disposed in the center portion on the extension of the axis O of the laminated rubber 1. Thus, when a bending moment is transmitted to each hydraulic cylinder 3 of the seismic isolation unit 5 in the event of an earthquake or the like, one of the liquids arranged diagonally to be symmetrical about the axis O of the laminated rubber 1 An upward load is applied to the pressure cylinder 3 and a downward load is applied to the corresponding other hydraulic cylinder 3. These hydraulic cylinders 3 are provided outside the hydraulic cylinder body 3a. Since only the operation in the same phase is allowed by the connection by the communication passages 7 a and 7 b formed by the pipe formed, no rotational deformation occurs, and as a result, the laminated rubber 1 has a spherical bearing 4 between the hydraulic cylinder 3. Intervened However, the laminated rubber 1 is used in a state in which bending (rotation) is constrained as being fixed at both ends, and the laminated rubber 1 is less prone to shear buckling, and the laminated rubber 1 and the vertical load The supporting hydraulic cylinders 3 and a plurality (six) of hydraulic cylinders 3 are connected via spherical bearings 4, and each hydraulic cylinder 3 does not have to bear a bending moment, so that sliding There is no worry that the resistance will increase, and there will be no problem that the seismic isolation performance will deteriorate. Incidentally, the stability limit horizontal displacement (horizontal displacement at the time of occurrence of buckling) of the laminated rubber 1 in the third embodiment is restrained from bending (rotating) with the laminated rubber 1 fixed at both ends as shown in FIG. 7B. As shown in FIG. 7 (c), the horizontal rigidity of the laminated rubber 1 in the third embodiment is the same as that shown in FIG. 7 (b). Similar to the case where the rubber 1 is used with both ends fixed and the bending (rotation) is constrained, it is indicated by a virtual line in FIG.

こうして、第三実施例においても、第二実施例と同様、液圧シリンダ3に対し曲げモーメントが作用することを防止でき且つ積層ゴム1が剪断座屈を起こしにくくすることができ、免震性能向上を図り得る。   Thus, in the third embodiment as well, as in the second embodiment, it is possible to prevent the bending moment from acting on the hydraulic cylinder 3, and to make the laminated rubber 1 less likely to cause shear buckling, and the seismic isolation performance. Improvements can be made.

図4(a),(b)は本発明の第四実施例であって、図中、図1(a),(b)と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1(a),(b)に示す第一実施例と同様であるが、本第四実施例の特徴とするところは、図4(a),(b)に示す如く、積層ゴム1の軸線Oを中心とする正方形の頂点となる位置に配設した四個の液圧シリンダ3それぞれにアキュムレータ2を連通管6を介して接続するようにした点にある。   4 (a) and 4 (b) show a fourth embodiment of the present invention. In the figure, the parts denoted by the same reference numerals as those in FIGS. 1 (a) and 1 (b) represent the same items. The general configuration is the same as that of the first embodiment shown in FIGS. 1A and 1B, but the feature of the fourth embodiment is as shown in FIGS. 4A and 4B. The accumulator 2 is connected to each of the four hydraulic cylinders 3 disposed at the apexes of the square centering on the axis O of the laminated rubber 1 through the communication pipe 6.

上記第四実施例の如く構成すると、地震等の発生時に、曲げモーメントが前記免震ユニット5の各液圧シリンダ3に伝わると、積層ゴム1の軸線Oを中心に対称となるよう互いに対角に配設された一方の液圧シリンダ3には上方への荷重が作用すると共に、対応する他方の液圧シリンダ3には下方への荷重が作用するが、これらの液圧シリンダ3は、連通路7a,7bによる接続によって同位相の動作しか許容されていないので、回転変形が発生せず、この結果、積層ゴム1は、液圧シリンダ3との間に球面軸受4が介在されているものの、あたかも両端固定として曲げ(回転)が拘束されているような状態で使用される形となり、前記積層ゴム1が剪断座屈を起こしにくくなり、又、前記積層ゴム1と複数(四個)の液圧シリンダ3とは球面軸受4を介して接続されており、該各液圧シリンダ3が曲げモーメントを負担しなくて済むため、摺動抵抗が増す心配はなく、免震性能が低下してしまう問題が発生することもない。因みに、第四実施例における積層ゴム1の安定限界水平変位(座屈発生時水平変位)は、図7(b)に示される如く前記積層ゴム1を両端固定として曲げ(回転)が拘束された状態で使用した場合と同様に、図7(c)中、仮想線で示されるようになる一方、第四実施例における積層ゴム1の水平剛性は、図7(b)に示される如く前記積層ゴム1を両端固定として曲げ(回転)が拘束された状態で使用した場合と同様に、図7(d)中、仮想線で示されるようになる。   When configured as in the fourth embodiment, when a bending moment is transmitted to each hydraulic cylinder 3 of the seismic isolation unit 5 in the event of an earthquake or the like, they are diagonal to each other so as to be symmetrical about the axis O of the laminated rubber 1. An upward load acts on one of the hydraulic cylinders 3 disposed at the same time, and a downward load acts on the corresponding other hydraulic cylinder 3, but these hydraulic cylinders 3 are connected to each other. Since only the operation in the same phase is allowed by the connection by the passages 7a and 7b, no rotational deformation occurs. As a result, the laminated rubber 1 has the spherical bearing 4 interposed between the laminated cylinder 1 and the hydraulic cylinder 3. The laminated rubber 1 is used in a state in which bending (rotation) is constrained as fixed at both ends, and the laminated rubber 1 is less likely to cause shear buckling, and a plurality (four) of the laminated rubber 1 are used. Hydraulic cylinder 3 is a sphere Since it is connected via the bearing 4 and each hydraulic cylinder 3 does not have to bear a bending moment, there is no concern about an increase in sliding resistance, and there is a problem that the seismic isolation performance deteriorates. Absent. Incidentally, the stability limit horizontal displacement (horizontal displacement at the time of occurrence of buckling) of the laminated rubber 1 in the fourth embodiment is restrained from bending (rotating) with the laminated rubber 1 fixed at both ends as shown in FIG. 7B. As shown in FIG. 7 (c), the horizontal rigidity of the laminated rubber 1 in the fourth embodiment is the same as that shown in FIG. 7 (b). Similar to the case where the rubber 1 is used with both ends fixed and the bending (rotation) is constrained, it is indicated by a virtual line in FIG.

更に又、前記アキュムレータ2は、その数が増加するものの、それぞれを小さくすることが可能となり、製作もしやすくなると共に、免震ユニット5の設置箇所周辺に別の配管や機器等が存在するような場合、それらとの干渉を避ける上でも有効となる。   Furthermore, although the number of the accumulators 2 increases, it is possible to reduce the number of the accumulators 2 and to make the accumulator 2 easier to manufacture, and there is another piping or equipment around the place where the seismic isolation unit 5 is installed. In this case, it is also effective in avoiding interference with them.

こうして、第四実施例においても、第一実施例と同様、液圧シリンダ3に対し曲げモーメントが作用することを防止でき且つ積層ゴム1が剪断座屈を起こしにくくすることができ、免震性能向上を図り得る。   Thus, also in the fourth embodiment, as in the first embodiment, it is possible to prevent the bending moment from acting on the hydraulic cylinder 3, and to make the laminated rubber 1 less likely to cause shear buckling, and the seismic isolation performance. Improvements can be made.

尚、上記第一実施例〜第四実施例の場合、積層ゴム1の軸線Oを中心とする正方形の頂点となる位置に四個の液圧シリンダ3を配設したり、或いは積層ゴム1の軸線Oを中心とする正六角形の頂点となる位置に六個の液圧シリンダ3を配設する代わりに、積層ゴム1の軸線Oを中心とする正方形以上の偶数正多角形(正八角形や正十角形、或いはそれ以上)の頂点となる位置に複数の液圧シリンダ3を配設することも可能である。   In the case of the first embodiment to the fourth embodiment, four hydraulic cylinders 3 are disposed at the position of the square apex centered on the axis O of the laminated rubber 1, or the laminated rubber 1 Instead of six hydraulic cylinders 3 being arranged at the apex of a regular hexagon centered on the axis O, an even regular polygon (regular octagon or regular square) centered on the axis O of the laminated rubber 1 is used. It is also possible to arrange a plurality of hydraulic cylinders 3 at positions that are the vertices of a decagon or higher.

図5(a),(b)は本発明の第五実施例であって、図中、図3(a),(b)と同一の符号を付した部分は同一物を表わしており、基本的な構成は図3(a),(b)に示す第三実施例と同様であるが、本第五実施例の特徴とするところは、図5(a),(b)に示す如く、積層ゴム1の軸線O延長上における中心部分に、球面軸受4を介して鉛直方向荷重支持専用の液圧シリンダ3を配置し、該鉛直方向荷重支持専用の液圧シリンダ3の周囲に、六個の液圧シリンダ3を配設し、所望の液圧シリンダ3の曲げ支持用上液室3eと一方の側(図5(b)においては時計回り方向の側)に隣接する液圧シリンダ3の曲げ支持用下液室3fとを、液圧シリンダ本体3aの外側に設けられる配管で形成した連通路7によって順次接続し、最終的に前記所望の液圧シリンダ3の他方の側(図5(b)においては反時計回り方向の側)に隣接する液圧シリンダ3の曲げ支持用上液室3eと前記所望の液圧シリンダ3の曲げ支持用下液室3fとを、液圧シリンダ本体3aの外側に設けられる配管で形成した連通路7によって接続するようにした点にある。   FIGS. 5 (a) and 5 (b) show a fifth embodiment of the present invention. In the figure, the same reference numerals as those in FIGS. 3 (a) and 3 (b) denote the same items. The general configuration is the same as that of the third embodiment shown in FIGS. 3A and 3B, but the feature of the fifth embodiment is as shown in FIGS. 5A and 5B. In the central portion of the laminated rubber 1 on the extension of the axis O, a hydraulic cylinder 3 dedicated to supporting a vertical load is disposed via a spherical bearing 4, and six hydraulic cylinders 3 dedicated to supporting the vertical load are disposed around the hydraulic cylinder 3. Of the hydraulic cylinder 3 adjacent to the upper liquid chamber 3e for bending support of the desired hydraulic cylinder 3 and one side (the clockwise direction in FIG. 5B). The bending support lower liquid chamber 3f is sequentially connected by a communication path 7 formed by piping provided outside the hydraulic cylinder body 3a, and finally The upper fluid chamber 3e for bending support of the hydraulic cylinder 3 adjacent to the other side of the desired hydraulic cylinder 3 (the counterclockwise direction in FIG. 5B) and the desired hydraulic cylinder 3 The bending support lower liquid chamber 3f is connected by a communication passage 7 formed by a pipe provided outside the hydraulic cylinder body 3a.

上記第五実施例の如く構成すると、鉛直方向荷重は主に、積層ゴム1の軸線O延長上における中心部分に配置された鉛直方向荷重支持専用の液圧シリンダ3によって支持されており、この状態で、地震等の発生時に、曲げモーメントが前記免震ユニット5の各液圧シリンダ3に伝わると、積層ゴム1の軸線Oを中心に対称となるよう互いに対角に配設された一方の液圧シリンダ3には上方への荷重が作用すると共に、対応する他方の液圧シリンダ3には下方への荷重が作用するが、所望の液圧シリンダ3の曲げ支持用上液室3eと一方の側(図5(b)においては時計回り方向の側)に隣接する液圧シリンダ3の曲げ支持用下液室3fとを、液圧シリンダ本体3aの外側に設けられる配管で形成した連通路7によって順次接続し、最終的に前記所望の液圧シリンダ3の他方の側(図5(b)においては反時計回り方向の側)に隣接する液圧シリンダ3の曲げ支持用上液室3eと前記所望の液圧シリンダ3の曲げ支持用下液室3fとを、液圧シリンダ本体3aの外側に設けられる配管で形成した連通路7によって接続するようにしたことにより、鉛直方向荷重支持専用の液圧シリンダ3の周囲に配設された六個の液圧シリンダ3は、同位相の動作しか許容されていないので、回転変形が発生せず、この結果、積層ゴム1は、液圧シリンダ3との間に球面軸受4が介在されているものの、あたかも両端固定として曲げ(回転)が拘束されているような状態で使用される形となり、前記積層ゴム1が剪断座屈を起こしにくくなり、又、前記積層ゴム1と鉛直方向荷重支持専用の液圧シリンダ3及び複数(六個)の液圧シリンダ3とは球面軸受4を介して接続されており、該各液圧シリンダ3が曲げモーメントを負担しなくて済むため、摺動抵抗が増す心配はなく、免震性能が低下してしまう問題が発生することもない。因みに、第五実施例における積層ゴム1の安定限界水平変位(座屈発生時水平変位)は、図7(b)に示される如く前記積層ゴム1を両端固定として曲げ(回転)が拘束された状態で使用した場合と同様に、図7(c)中、仮想線で示されるようになる一方、第五実施例における積層ゴム1の水平剛性は、図7(b)に示される如く前記積層ゴム1を両端固定として曲げ(回転)が拘束された状態で使用した場合と同様に、図7(d)中、仮想線で示されるようになる。   When configured as in the fifth embodiment, the vertical load is mainly supported by the hydraulic cylinder 3 dedicated to supporting the vertical load disposed in the center portion on the extension of the axis O of the laminated rubber 1, and in this state. Thus, when a bending moment is transmitted to each hydraulic cylinder 3 of the seismic isolation unit 5 in the event of an earthquake or the like, one of the liquids arranged diagonally to be symmetrical about the axis O of the laminated rubber 1 An upward load is applied to the pressure cylinder 3 and a downward load is applied to the corresponding other hydraulic cylinder 3, but the upper fluid chamber 3e for supporting the bending of the desired hydraulic cylinder 3 and one of the hydraulic cylinders 3e. A communication passage 7 formed by a pipe provided outside the hydraulic cylinder body 3a and the lower liquid chamber 3f for bending support of the hydraulic cylinder 3 adjacent to the side (the clockwise direction in FIG. 5B). Connected in sequence by and finally before The upper hydraulic chamber 3e for bending support of the hydraulic cylinder 3 adjacent to the other side of the desired hydraulic cylinder 3 (the counterclockwise direction in FIG. 5B) and the bending of the desired hydraulic cylinder 3 Since the supporting lower liquid chamber 3f is connected by a communication path 7 formed by piping provided outside the hydraulic cylinder body 3a, it is arranged around the hydraulic cylinder 3 dedicated to supporting the vertical load. Since the six hydraulic cylinders 3 are allowed to operate only in the same phase, rotational deformation does not occur. As a result, the laminated rubber 1 has a spherical bearing 4 interposed between the laminated cylinders 1 and 3. However, the laminated rubber 1 is less likely to cause shear buckling as if the bending (rotation) is restricted as both ends are fixed, and the laminated rubber 1 and the laminated rubber 1 are not vertically bent. Hydraulic pressure cylinder dedicated to load support 3 and a plurality (six) of hydraulic cylinders 3 are connected via a spherical bearing 4, and each of the hydraulic cylinders 3 does not have to bear a bending moment, so there is no fear of increasing sliding resistance. There is no problem that the seismic isolation performance deteriorates. Incidentally, the stability limit horizontal displacement (horizontal displacement at the time of occurrence of buckling) of the laminated rubber 1 in the fifth embodiment was restrained from bending (rotating) with the laminated rubber 1 fixed at both ends as shown in FIG. 7B. As shown in FIG. 7 (c), the horizontal rigidity of the laminated rubber 1 in the fifth embodiment is the same as that shown in FIG. 7 (b). Similar to the case where the rubber 1 is used with both ends fixed and the bending (rotation) is constrained, it is indicated by a virtual line in FIG.

尚、上記第五実施例の場合、積層ゴム1の軸線Oを中心とする正六角形の頂点となる位置に六個の液圧シリンダ3を配設する代わりに、積層ゴム1の軸線Oを中心とする正三角形、或いはそれ以上の正多角形(正方形や正五角形、或いはそれ以上)の頂点となる位置に複数の液圧シリンダ3を配設することも可能である。   In the case of the fifth embodiment, instead of arranging the six hydraulic cylinders 3 at the positions of the regular hexagons centered on the axis O of the laminated rubber 1, the axis O of the laminated rubber 1 is centered. It is also possible to arrange a plurality of hydraulic cylinders 3 at positions that are the vertices of a regular triangle or a regular polygon (square, regular pentagon, or more).

こうして、第五実施例においても、第三実施例と同様、液圧シリンダ3に対し曲げモーメントが作用することを防止でき且つ積層ゴム1が剪断座屈を起こしにくくすることができ、免震性能向上を図り得る。   Thus, in the fifth embodiment as well, as in the third embodiment, it is possible to prevent the bending moment from acting on the hydraulic cylinder 3, and to make the laminated rubber 1 less likely to cause shear buckling, and the seismic isolation performance. Improvements can be made.

尚、本発明の三次元免震装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the three-dimensional seismic isolation device of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

1 積層ゴム
2 アキュムレータ
3 液圧シリンダ
3c 鉛直荷重支持用液室
3d ピストン
3e 曲げ支持用上液室
3f 曲げ支持用下液室
4 球面軸受
5 免震ユニット
7 連通路
7a 連通路
7b 連通路
B 基礎
H 免震対象物
O 軸線
DESCRIPTION OF SYMBOLS 1 Laminated rubber 2 Accumulator 3 Hydraulic cylinder 3c Liquid chamber for vertical load support 3d Piston 3e Upper liquid chamber for bending support 3f Lower liquid chamber for bending support 4 Spherical bearing 5 Seismic isolation unit 7 Communication path 7a Communication path 7b Communication path B Foundation H Seismic isolation object O Axis

Claims (3)

水平方向の免震機能を有する積層ゴムと、アキュムレータが接続され鉛直方向の免震機能を有する液圧シリンダとを球面軸受を介して上下に積み重ねてなる免震ユニットを備えた三次元免震装置において、
前記免震ユニットを構成する一個の積層ゴムに対し、該積層ゴムの軸線を中心に対称となるよう複数の液圧シリンダを配設し、
前記各液圧シリンダには、前記アキュムレータに接続される鉛直荷重支持用液室と、ピストンにて上下に仕切られる曲げ支持用上液室及び曲げ支持用下液室とを形成し、
前記液圧シリンダの曲げ支持用上液室と、該液圧シリンダに対応する別の液圧シリンダの曲げ支持用下液室とを連通路によって接続すると共に、前記液圧シリンダの曲げ支持用下液室と、該液圧シリンダに対応する別の液圧シリンダの曲げ支持用上液室とを連通路によって接続することにより、前記各液圧シリンダを同位相で動作させるよう構成したことを特徴とする三次元免震装置。
A three-dimensional seismic isolation device having a base isolation unit in which a laminated rubber having a horizontal isolation function and a hydraulic cylinder connected to an accumulator and having a vertical isolation function are stacked vertically via spherical bearings. In
For one laminated rubber constituting the seismic isolation unit, a plurality of hydraulic cylinders are arranged so as to be symmetric about the axis of the laminated rubber,
In each of the hydraulic cylinders, a vertical load supporting liquid chamber connected to the accumulator, a bending supporting upper liquid chamber and a bending supporting lower liquid chamber partitioned vertically by a piston are formed.
The upper hydraulic chamber for bending support of the hydraulic cylinder and the lower hydraulic chamber for bending support of another hydraulic cylinder corresponding to the hydraulic cylinder are connected by a communication path, and the lower bending chamber of the hydraulic cylinder is supported for bending. By connecting the fluid chamber and the upper fluid chamber for bending support of another fluid pressure cylinder corresponding to the fluid pressure cylinder by a communication path, the fluid pressure cylinders are configured to operate in the same phase. A three-dimensional seismic isolation device.
前記積層ゴムの軸線を中心とする正方形以上の偶数正多角形の頂点となる位置に液圧シリンダを配設し、互いに対角に位置する一方の液圧シリンダの曲げ支持用上液室と他方の液圧シリンダの曲げ支持用下液室とを連通路によって接続すると共に、一方の液圧シリンダの曲げ支持用下液室と他方の液圧シリンダの曲げ支持用上液室とを連通路によって接続した請求項1記載の三次元免震装置。   A hydraulic cylinder is arranged at the apex of an even regular polygon that is equal to or more than a square centered on the axis of the laminated rubber, and the upper liquid chamber for bending support and the other of the one hydraulic cylinder located diagonally to each other The lower hydraulic chamber for bending support of one hydraulic cylinder is connected by a communication path, and the lower liquid chamber for bending support of one hydraulic cylinder and the upper liquid chamber for bending support of the other hydraulic cylinder are connected by a communication path. The three-dimensional seismic isolation device according to claim 1 connected. 前記積層ゴムの軸線を中心とする正三形以上の正多角形の頂点となる位置に液圧シリンダを配設し、所望の液圧シリンダの曲げ支持用上液室と一方の側に隣接する液圧シリンダの曲げ支持用下液室とを連通路によって順次接続し、最終的に前記所望の液圧シリンダの他方の側に隣接する液圧シリンダの曲げ支持用上液室と前記所望の液圧シリンダの曲げ支持用下液室とを連通路によって接続した請求項1記載の三次元免震装置。   A hydraulic cylinder is disposed at the apex of a regular polygon of a regular trigonal shape or more centered on the axis of the laminated rubber, and a liquid fluid adjacent to one side of the upper fluid chamber for bending support of the desired hydraulic cylinder. The lower fluid chamber for bending support of the pressure cylinder is sequentially connected by a communication path, and finally the upper fluid chamber for bending support of the hydraulic cylinder adjacent to the other side of the desired hydraulic cylinder and the desired hydraulic pressure The three-dimensional seismic isolation device according to claim 1, wherein the lower liquid chamber for bending support of the cylinder is connected by a communication path.
JP2009107547A 2009-04-27 2009-04-27 3D seismic isolation device Active JP5233824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107547A JP5233824B2 (en) 2009-04-27 2009-04-27 3D seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107547A JP5233824B2 (en) 2009-04-27 2009-04-27 3D seismic isolation device

Publications (2)

Publication Number Publication Date
JP2010255767A true JP2010255767A (en) 2010-11-11
JP5233824B2 JP5233824B2 (en) 2013-07-10

Family

ID=43316904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107547A Active JP5233824B2 (en) 2009-04-27 2009-04-27 3D seismic isolation device

Country Status (1)

Country Link
JP (1) JP5233824B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107577766A (en) * 2017-09-04 2018-01-12 苏州英诺迈医学创新服务有限公司 A kind of loading method and device of webpage 3D targets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177370A (en) * 1995-12-27 1997-07-08 Bridgestone Corp Vibration isolation structure
JPH116541A (en) * 1997-06-16 1999-01-12 Kayaba Ind Co Ltd Vibration isolation device
JP2002106632A (en) * 2000-09-28 2002-04-10 Mitsubishi Heavy Ind Ltd Base isolation device and base isolation structure
JP2002139099A (en) * 2000-11-01 2002-05-17 Ohbayashi Corp Rocking prevention device for object to be base-isolated
JP2008291918A (en) * 2007-05-24 2008-12-04 Shimizu Corp Three-dimensional base isolation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177370A (en) * 1995-12-27 1997-07-08 Bridgestone Corp Vibration isolation structure
JPH116541A (en) * 1997-06-16 1999-01-12 Kayaba Ind Co Ltd Vibration isolation device
JP2002106632A (en) * 2000-09-28 2002-04-10 Mitsubishi Heavy Ind Ltd Base isolation device and base isolation structure
JP2002139099A (en) * 2000-11-01 2002-05-17 Ohbayashi Corp Rocking prevention device for object to be base-isolated
JP2008291918A (en) * 2007-05-24 2008-12-04 Shimizu Corp Three-dimensional base isolation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107577766A (en) * 2017-09-04 2018-01-12 苏州英诺迈医学创新服务有限公司 A kind of loading method and device of webpage 3D targets
CN107577766B (en) * 2017-09-04 2020-09-15 苏州英诺迈医学创新服务有限公司 Webpage 3D target loading method and device

Also Published As

Publication number Publication date
JP5233824B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP7065465B2 (en) Maritime platform structural system with self-returning pipe jacket based on built-in swing post
JP4936161B2 (en) 3D seismic isolation device
CN111827503B (en) Three-dimensional shock isolation (vibration) system for building
JP6590205B2 (en) 3D seismic isolation device
JP5233824B2 (en) 3D seismic isolation device
CN113266104A (en) Composite energy dissipation extension arm for preventing external instability of amplification device
CN102514849B (en) Method and structure for preventing elephant-foot buckling of large oil storage tank
JP6482373B2 (en) Seismic isolation structure
JP2007218391A (en) High pressure air spring type base isolation device
JP6075953B2 (en) Seismic isolation structure
JP2007085023A (en) Tower-like structure
CN211548177U (en) Buckling restrained brace for building engineering
JP3038343B2 (en) Damping device and mounting method
JP5233825B2 (en) 3D seismic isolation device
JP2011122602A (en) Multi-stage base isolation device
JP2002130370A (en) Seismic isolator
JP2008291918A (en) Three-dimensional base isolation system
CN212453153U (en) Vertical shock insulation layer capable of resisting swing and uneven settlement and three-dimensional shock insulation system
JP2011149215A (en) Three-dimensional base isolation device
JP2019002728A (en) Support structure of reactor pressure vessel pedestal and nuclear power plant
JP6691751B2 (en) Liquefaction seismic isolation structure
JP5146754B2 (en) Damping structure
CN111945553B (en) Modified high-damping composite material rubber support
JP3661752B2 (en) Pile seismic isolation structure
JP5946678B2 (en) Water storage space forming block

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R151 Written notification of patent or utility model registration

Ref document number: 5233824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250