JP5233825B2 - 3D seismic isolation device - Google Patents

3D seismic isolation device Download PDF

Info

Publication number
JP5233825B2
JP5233825B2 JP2009107548A JP2009107548A JP5233825B2 JP 5233825 B2 JP5233825 B2 JP 5233825B2 JP 2009107548 A JP2009107548 A JP 2009107548A JP 2009107548 A JP2009107548 A JP 2009107548A JP 5233825 B2 JP5233825 B2 JP 5233825B2
Authority
JP
Japan
Prior art keywords
piston body
liquid chamber
air chamber
chamber
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009107548A
Other languages
Japanese (ja)
Other versions
JP2010255768A (en
Inventor
貴弘 島田
章仁 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009107548A priority Critical patent/JP5233825B2/en
Publication of JP2010255768A publication Critical patent/JP2010255768A/en
Application granted granted Critical
Publication of JP5233825B2 publication Critical patent/JP5233825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、三次元免震装置に関するものである。   The present invention relates to a three-dimensional seismic isolation device.

従来より、ビルや重量建造物等の免震対象物を、地震の振動や衝撃から保護して支持するために、種々のバネを用いた三次元免震装置が提案されている。   Conventionally, three-dimensional seismic isolation devices using various springs have been proposed in order to protect and support seismic isolation objects such as buildings and heavy buildings from earthquake vibrations and shocks.

図5は従来の三次元免震装置の一例を示す側断面図であって、該三次元免震装置は、水平方向の免震機能を有する積層ゴム1と、アキュムレータ2が接続されて鉛直方向の免震機能を有する液圧シリンダ3とを上下に備え、基礎Bと免震対象物Hとの間に配設されている。   FIG. 5 is a side sectional view showing an example of a conventional three-dimensional seismic isolation device. The three-dimensional seismic isolation device includes a laminated rubber 1 having a horizontal seismic isolation function and an accumulator 2 connected in a vertical direction. Are provided between the foundation B and the seismic isolation object H.

前記液圧シリンダ3は、内部空間3aを形成した液圧シリンダ本体3bと、該液圧シリンダ本体3bの内部空間3aに鉛直方向へ上下動自在に配置され且つ上端部が液圧シリンダ本体3b外部へ張り出すピストンロッド3cとを有している。一方、前記アキュムレータ2は、内部空間2aを形成したアキュムレータ本体2bと、該アキュムレータ本体2bの内部空間2aに鉛直方向へ摺動自在に嵌入された内部ピストン体2cとを有し、該内部ピストン体2cで仕切られたアキュムレータ本体2bの下部空間2dと、前記液圧シリンダ本体3b内部のピストンロッド3c下面側に形成される液室3dとを連通管4にて接続している。ここで該アキュムレータ本体2bの下部空間2d及び液圧シリンダ本体3bの液室3d内には油等の液体を充填していると共に、前記内部ピストン体2cで仕切られたアキュムレータ本体2bの上部空間2e内には窒素ガス等の不活性ガスを充填している。   The hydraulic cylinder 3 includes a hydraulic cylinder body 3b that forms an internal space 3a, and an internal space 3a of the hydraulic cylinder body 3b that is vertically movable and has an upper end that is external to the hydraulic cylinder body 3b. And a piston rod 3c that projects to the outside. On the other hand, the accumulator 2 has an accumulator body 2b that forms an internal space 2a, and an internal piston body 2c that is slidably fitted in the internal space 2a of the accumulator body 2b in the vertical direction. A lower space 2d of the accumulator main body 2b partitioned by 2c and a liquid chamber 3d formed on the lower surface side of the piston rod 3c inside the hydraulic cylinder main body 3b are connected by a communication pipe 4. Here, the lower space 2d of the accumulator main body 2b and the liquid chamber 3d of the hydraulic cylinder main body 3b are filled with liquid such as oil, and the upper space 2e of the accumulator main body 2b partitioned by the internal piston body 2c. The interior is filled with an inert gas such as nitrogen gas.

尚、積層ゴムと液圧シリンダとを備えた三次元免震装置と関連する一般的技術水準を示すものとしては、例えば、特許文献1、2がある。   Patent Documents 1 and 2 include, for example, general technical levels related to a three-dimensional seismic isolation device including a laminated rubber and a hydraulic cylinder.

特開2003−213962号公報JP 2003-213862 A 特開平11−230258号公報Japanese Patent Laid-Open No. 11-230258

しかしながら、このような三次元免震装置は、液圧シリンダ3の外部にアキュムレータ2及び連通管4等を配置するため、液圧シリンダ3とは別に多くのスペースが必要になるという問題があった。又、液圧シリンダ3の液圧はアキュムレータ2によって高圧であるため、連通管4や接続手段の設計が容易ではなく、製造コストが増加するという問題があった。   However, such a three-dimensional seismic isolation device has a problem that a large space is required separately from the hydraulic cylinder 3 because the accumulator 2 and the communication pipe 4 are disposed outside the hydraulic cylinder 3. . Further, since the hydraulic pressure of the hydraulic cylinder 3 is high by the accumulator 2, there is a problem that the design of the communication pipe 4 and the connecting means is not easy and the manufacturing cost increases.

本発明は、斯かる実情に鑑み、省スペース化及び低コスト化を図り得る三次元免震装置を提供しようとするものである。   In view of such circumstances, the present invention intends to provide a three-dimensional seismic isolation device capable of saving space and reducing costs.

本発明は、水平方向の免震機能を有する積層ゴムと、鉛直方向の免震機能を有する液圧シリンダとを上下方向に配置する三次元免震装置であって、
前記液圧シリンダは、内部に第一液室を形成したシリンダ本体を備えると共に、前記シリンダ本体の前記第一液室内にピストン体を上下動可能に配置し、
前記ピストン体は、前記第一液室に通じる内部空間を有すると共に、該内部空間に内部ピストン体を上下動可能に配置し、該内部ピストン体により、前記内部空間を、前記第一液室まで同内径で通じる第二液室と、気体を封入する気室とに区分けするように構成し、
前記ピストン体に、前記気室を第一気室と第二気室とに区分する仕切部を設け、該仕切部に、前記第一気室と前記第二気室を気体が流通し且つ気体の流量を制限する絞り部を備えたことを特徴とする3次元免震装置、にかかるものである。
The present invention is a three-dimensional seismic isolation device in which a laminated rubber having a seismic isolation function in the horizontal direction and a hydraulic cylinder having a seismic isolation function in the vertical direction are arranged in the vertical direction,
The hydraulic cylinder includes a cylinder body having a first liquid chamber formed therein, and a piston body is disposed in the first liquid chamber of the cylinder body so as to be movable up and down.
The piston body, which has an internal space communicating with the first liquid chamber, the inner piston member vertically movably disposed in said interior space, the internal piston body, said internal space, to said first fluid chamber It is configured to be divided into a second liquid chamber communicating with the same inner diameter and an air chamber enclosing gas,
It said piston body, a partition portion for partitioning the air chamber into a first air chamber and the second air chamber is provided, on the partition switching unit, the first air chamber and the second gas chamber and circulation gas and gas The present invention relates to a three-dimensional seismic isolation device, characterized in that it is provided with a throttle part that restricts the flow rate of the gas.

本発明の三次元免震装置によれば、ピストン体の内部空間を、内部ピストン体により、第一液室内に通じる第二液室と、気体を封入する気室とに区分けするので、液圧シリンダの内部にアキュムレータの構成を得ることができ、よって液圧シリンダの外部にアキュムレータ及び連通管を配置することを不要にして省スペース化を図ることができる。又、液圧シリンダの液圧が高圧であっても、液圧シリンダ内にアキュムレータの構成を備えるので、連通管や接続手段を不要にして設計を容易にし、低コスト化を図ることができるという優れた効果を奏し得る。   According to the three-dimensional seismic isolation device of the present invention, the internal space of the piston body is divided by the internal piston body into a second liquid chamber that communicates with the first liquid chamber and an air chamber that encloses gas. The structure of the accumulator can be obtained inside the cylinder, so that it is not necessary to arrange the accumulator and the communication pipe outside the hydraulic cylinder, and space can be saved. In addition, even if the hydraulic pressure of the hydraulic cylinder is high, the accumulator configuration is provided in the hydraulic cylinder, so that communication pipes and connection means are not required, and the design can be facilitated and the cost can be reduced. An excellent effect can be achieved.

本発明の第一参考例の概要を示す側断面図である。It is a sectional side view which shows the outline | summary of the 1st reference example of this invention. 本発明の第二参考例の概要を示す側断面図である。It is a sectional side view which shows the outline | summary of the 2nd reference example of this invention. 振動が絞りにより減衰する作用を示すグラフである。It is a graph which shows the effect | action which a vibration attenuate | damps with a diaphragm. 本発明の第実施例の概要を示す平断面図である。It is a plane sectional view showing the outline of the first example of the present invention. 従来の三次元免震装置の一例を示す側断面図である。It is a sectional side view which shows an example of the conventional three-dimensional seismic isolation apparatus.

以下、本発明を実施する形態の第一参考例を添付図面を参照して説明する。 Hereinafter, the first reference example forms of implementing the present invention will be described with reference to the accompanying drawings.

図1は本発明の第一参考例であって、図中、図5と同一の符号を付した部分は同一物を表しており、第一参考例の三次元免震装置は、水平方向の免震機能を有する上側の積層ゴム1と、鉛直方向の免震機能を有する下側の液圧シリンダ5とを上下に配置している。ここで積層ゴム1と液圧シリンダ5とは、図1に示す如く液圧シリンダ5を下側に配置し且つ積層ゴム1を上側に配置しても良いし、液圧シリンダ5を上側に配置し且つ積層ゴム1を下側に配置しても良い。 FIG. 1 is a first reference example of the present invention. In the drawing, the same reference numerals as those in FIG. 5 denote the same parts, and the three-dimensional seismic isolation device of the first reference example has a horizontal direction. An upper laminated rubber 1 having a seismic isolation function and a lower hydraulic cylinder 5 having a vertical seismic isolation function are arranged vertically. Here, the laminated rubber 1 and the hydraulic cylinder 5 may be arranged such that the hydraulic cylinder 5 is arranged on the lower side and the laminated rubber 1 is arranged on the upper side as shown in FIG. 1, or the hydraulic cylinder 5 is arranged on the upper side. In addition, the laminated rubber 1 may be disposed on the lower side.

液圧シリンダ5は、内部に第一液室6を形成したシリンダ本体7を備えていると共に、シリンダ本体7の第一液室6には、ピストン体8を鉛直方向へ上下動自在に配置し且つピストン体8の上端部がシリンダ本体7外部へ張り出すようにしている。又、シリンダ本体7の第一液室6には潤滑油等の作動液(液体)を充填し、シリンダ本体7の内周面7aとピストン体8の外周面8aとの間には、第一液室6の作動液が外部に漏れないようにOリング等のシール部材(図示せず)を配している。   The hydraulic cylinder 5 includes a cylinder body 7 having a first liquid chamber 6 formed therein, and a piston body 8 is disposed in the first liquid chamber 6 of the cylinder body 7 so as to be vertically movable in the vertical direction. Further, the upper end portion of the piston body 8 protrudes outside the cylinder body 7. In addition, the first liquid chamber 6 of the cylinder body 7 is filled with a working fluid (liquid) such as lubricating oil, and the first liquid chamber 6 is provided between the inner peripheral surface 7 a of the cylinder body 7 and the outer peripheral surface 8 a of the piston body 8. A seal member (not shown) such as an O-ring is arranged so that the hydraulic fluid in the liquid chamber 6 does not leak outside.

一方、ピストン体8は、第一液室6に通じる内部空間9を有すると共に、ピストン体8の内部空間9に円盤状の内部ピストン体10を上下動可能に配置し、当該内部ピストン体10により、内部空間9を、第一液室6に通じる下方側の第二液室11と、上方側の気室12とに区分けしている。又、ピストン体8の第二液室11は、下面を第一液室6に開放し、作動油が第二液室11と第一液室6を流通し得るようにしている。更に気室12には、内部にNガス等の不活性ガスの気体が封入されている。ここでピストン体8の内周面8bの下端には、内部ピストン体10が第一液室6に落下しないように突起状の落下防止部(図示せず)を備えることが好ましい。 On the other hand, the piston body 8 has an internal space 9 that communicates with the first liquid chamber 6, and a disk-shaped internal piston body 10 is disposed in the internal space 9 of the piston body 8 so as to be movable up and down. The internal space 9 is divided into a lower second liquid chamber 11 communicating with the first liquid chamber 6 and an upper air chamber 12. The second liquid chamber 11 of the piston body 8 has a lower surface opened to the first liquid chamber 6 so that hydraulic oil can flow between the second liquid chamber 11 and the first liquid chamber 6. Further, the gas chamber 12 is filled with an inert gas such as N 2 gas. Here, it is preferable that a lower end of the inner peripheral surface 8 b of the piston body 8 is provided with a protruding drop prevention portion (not shown) so that the inner piston body 10 does not fall into the first liquid chamber 6.

次に、上記第一参考例の作用を説明する。 Next, the operation of the first reference example will be described.

地震等の発生時には、水平方向の荷重を積層ゴム1で吸収すると共に、鉛直方向の荷重を液圧シリンダ5で吸収する。この時、液圧シリンダ5は、ピストン体8が上下方向に振動して荷重を吸収すると共に、内部ピストン体10が第一液室6及び第二液室11の作動液の圧を気室12の気体に伝達し、気室12の気体の体積弾性によって圧力の瞬間的な変動を緩和する。   When an earthquake or the like occurs, the load in the horizontal direction is absorbed by the laminated rubber 1 and the load in the vertical direction is absorbed by the hydraulic cylinder 5. At this time, in the hydraulic cylinder 5, the piston body 8 vibrates in the vertical direction and absorbs the load, and the internal piston body 10 controls the pressure of the hydraulic fluid in the first liquid chamber 6 and the second liquid chamber 11 in the air chamber 12. The instantaneous fluctuation of pressure is relieved by the volume elasticity of the gas in the air chamber 12.

而して、このように第一参考例によれば、液圧シリンダ5のピストン体8内に、内部ピストン体10、第二液室11、気室12を備えてアキュムレータの構成を得ることができ、よって液圧シリンダ5の外部にアキュムレータ及び連通管等を配置することを不要にして省スペース化を図ることができる。ここで、液圧シリンダ5のピストン体8は、内部にアキュムレータの構成を備えることにより、従来の液圧シリンダ3の大きさに比較してアキュムレータの構成を内蔵する分だけ若干大型化するが、液圧シリンダ5の耐面圧(単位受圧面積あたりの力)よりも、積層ゴム1の耐面圧のほうが大きいので、積層ゴム1の占有面積を超えるほどには大型化せず、装置の設置に影響を与えることがない。 Thus, according to the first reference example, the internal piston body 10, the second liquid chamber 11, and the air chamber 12 are provided in the piston body 8 of the hydraulic cylinder 5 to obtain an accumulator configuration. Therefore, it is not necessary to arrange an accumulator, a communication pipe, and the like outside the hydraulic cylinder 5, thereby saving space. Here, the piston body 8 of the hydraulic cylinder 5 has a structure of an accumulator inside, so that it is slightly larger than the size of the conventional hydraulic cylinder 3 by the amount of the built-in structure of the accumulator. Since the surface pressure resistance of the laminated rubber 1 is greater than the surface pressure resistance (force per unit pressure-receiving area) of the hydraulic cylinder 5, it does not become large enough to exceed the area occupied by the laminated rubber 1, and the apparatus is installed. Will not be affected.

又、液圧シリンダ5の液圧が高圧であっても、液圧シリンダ5の内部にアキュムレータの構成を備えるので、連通管や接続手段等を不要にして設計を容易にし、低コスト化を図ることができる。更にピストン体8の外周面8aには、シール部材(図示せず)の位置まで第一液室6の作動油が存在するので、ピストン体8の外周面8aに作用する圧と、ピストン体8の内周面8bに作用する圧とが等しくなり、圧力差の影響を低減してピストン体8の外周部8cの厚みを薄くすることができ、よって低コスト化を図ることができる。   Even if the hydraulic pressure of the hydraulic cylinder 5 is high, the structure of the accumulator is provided inside the hydraulic cylinder 5, so that communication pipes and connecting means are not required and the design is facilitated and the cost is reduced. be able to. Furthermore, since the hydraulic fluid of the first liquid chamber 6 exists on the outer peripheral surface 8a of the piston body 8 up to the position of the seal member (not shown), the pressure acting on the outer peripheral surface 8a of the piston body 8 and the piston body 8 The pressure acting on the inner peripheral surface 8b becomes equal, and the influence of the pressure difference can be reduced to reduce the thickness of the outer peripheral portion 8c of the piston body 8, thereby reducing the cost.

図2、図3は本発明の第二参考例であって、第二参考例の三次元免震装置は、第一参考例のピストン体8の構成を変更したものであり、図中、図1と同一の符号を付した部分は同一物を表わしている。 2 and 3 show a second reference example of the present invention, and the three-dimensional seismic isolation device of the second reference example is obtained by changing the configuration of the piston body 8 of the first reference example. Parts denoted by the same reference numerals as 1 represent the same items.

第二参考例のピストン体13は、第一液室6に通じる内部空間14を有すると共に、ピストン体13の内部空間14に円盤状の内部ピストン体15を上下動可能に配置し、当該内部ピストン体15により、内部空間14を、第一液室6に通じる下方側の第二液室16と、上方側の気室17とに区分けしている。又、ピストン体13は、第二液室11の下端に下面部18を備え、下面部18の中央には、所定径の絞り部19を形成して作動油が第一液室6と第二液室11を流通し得るようにしている。更に気室12にはN2ガス等の不活性ガスの気体が封入されている。更に又シリンダ本体7の内周面7aとピストン体13の外周面13aとの間には、第一液室6の作動液が外部に漏れないようにOリング等のシール部材(図示せず)を配している。 The piston body 13 of the second reference example has an internal space 14 that communicates with the first liquid chamber 6, and a disk-like internal piston body 15 is disposed in the internal space 14 of the piston body 13 so as to be movable up and down. The body 15 divides the internal space 14 into a lower second liquid chamber 16 communicating with the first liquid chamber 6 and an upper air chamber 17. Further, the piston body 13 includes a lower surface portion 18 at the lower end of the second liquid chamber 11, and a throttle portion 19 having a predetermined diameter is formed at the center of the lower surface portion 18 so that the hydraulic oil is connected to the first liquid chamber 6 and the second liquid chamber 6. The liquid chamber 11 can be circulated. Further, the gas chamber 12 is filled with an inert gas such as N 2 gas. Further, a seal member (not shown) such as an O-ring is provided between the inner peripheral surface 7a of the cylinder body 7 and the outer peripheral surface 13a of the piston body 13 so that the hydraulic fluid in the first liquid chamber 6 does not leak outside. Is arranged.

次に、上記第二参考例の作用を説明する。 Next, the operation of the second reference example will be described.

地震等の発生時には、第一参考例と同様に水平方向の荷重を積層ゴム1で吸収すると共に、鉛直方向の荷重を液圧シリンダ5で吸収する。この時、液圧シリンダ5は、ピストン体13が上下方向に振動して荷重を吸収すると共に、内部ピストン体15が第一液室6及び第二液室16の作動液の圧を気室12の気体に伝達し、気室12の気体の体積弾性によって圧力の瞬間的な変動を緩和する。 When an earthquake or the like occurs, the load in the horizontal direction is absorbed by the laminated rubber 1 and the load in the vertical direction is absorbed by the hydraulic cylinder 5 as in the first reference example. At this time, in the hydraulic cylinder 5, the piston body 13 oscillates in the vertical direction to absorb the load, and the internal piston body 15 controls the pressure of the working fluid in the first liquid chamber 6 and the second liquid chamber 16 in the air chamber 12. The instantaneous fluctuation of pressure is relieved by the volume elasticity of the gas in the air chamber 12.

更にピストン体13の絞り部19には、第一液室6から第二液室16へ又は第二液室16から第一液室6へ作動油が流通し、同時に絞り部19により作動油の流量が制限されて圧力損失を生じ、振動の減衰を早める。ここで振動の減衰する早さは、図3のグラフで示す如く絞り部19によって決定されており、鉛直方向の振動は減衰を伴って吸収される。   Furthermore, hydraulic oil flows through the throttle portion 19 of the piston body 13 from the first liquid chamber 6 to the second liquid chamber 16 or from the second liquid chamber 16 to the first liquid chamber 6. The flow rate is limited, resulting in pressure loss and faster vibration damping. Here, the speed at which the vibration is attenuated is determined by the diaphragm 19 as shown in the graph of FIG. 3, and the vibration in the vertical direction is absorbed with attenuation.

而して、このように第二参考例によれば、第一参考例と同様な作用効果を得ることができる。又、ピストン体13に、第一液室6と第二液室16とを液体が流通し且つ液体の流量を制限する絞り部19を備えると、省スペース化に影響を与えることがなく、振動の減衰を早め、地震等の振動や荷重に好適に対応することができる。 Thus, according to the second reference example as described above, the same operational effects as those of the first reference example can be obtained. Further, if the piston body 13 is provided with a throttle portion 19 that allows the liquid to flow through the first liquid chamber 6 and the second liquid chamber 16 and restricts the flow rate of the liquid, the vibration can be reduced without affecting the space saving. Can be suitably dealt with by vibrations and loads such as earthquakes.

図4は本発明の第実施例であって、第実施例の三次元免震装置は、第一参考例のピストン体8の構成を更に変更した物であり、図中、図1と同一の符号を付した部分は同一物を表わしている。 FIG. 4 is a first embodiment of the present invention, and the three-dimensional seismic isolation device of the first embodiment is a further modification of the configuration of the piston body 8 of the first reference example. Parts with the same reference numerals represent the same thing.

実施例のピストン体20は、第一液室6に通じる内部空間21を有すると共に、ピストン体20の内部空間21に円盤状の内部ピストン体22を上下動可能に配置し、当該内部ピストン体22により、内部空間21を、第一液室6に通じる下方側の第二液室23と、上方側の気室24とに区分けしている。又、ピストン体20は、気室24にN2ガス等の不活性ガスの気体が充填されると共に、仕切部25を有して気室24を第一気室24aと第二気室24bとに区分けしている。更に気室24の仕切部25の中央には、所定径の絞り部26を形成して気体が第一気室24aと第二気室24bとを流通し得るようにしている。更に又、シリンダ本体7の内周面7aとピストン体20の外周面20aとの間には、第一液室6の作動液が外部に漏れないようにOリング等のシール部材(図示せず)を配している。 The piston body 20 of the first embodiment has an internal space 21 that communicates with the first liquid chamber 6, and a disk-shaped internal piston body 22 is disposed in the internal space 21 of the piston body 20 so as to be movable up and down. The body 22 divides the internal space 21 into a lower second liquid chamber 23 communicating with the first liquid chamber 6 and an upper air chamber 24. Further, the piston body 20 is filled with an inert gas such as N2 gas in the air chamber 24 and has a partition part 25 to make the air chamber 24 into a first air chamber 24a and a second air chamber 24b. It is divided. Further, a narrowed portion 26 having a predetermined diameter is formed in the center of the partition portion 25 of the air chamber 24 so that gas can flow between the first air chamber 24a and the second air chamber 24b. Furthermore, a seal member (not shown) such as an O-ring is provided between the inner peripheral surface 7a of the cylinder body 7 and the outer peripheral surface 20a of the piston body 20 so that the hydraulic fluid in the first liquid chamber 6 does not leak outside. ).

次に、上記第実施例の作用を説明する。 Next, the operation of the first embodiment will be described.

地震等の発生時には、第一参考例と同様に水平方向の荷重を積層ゴム1で吸収すると共に、鉛直方向の荷重を液圧シリンダ5で吸収する。この時、液圧シリンダ5は、ピストン体20が上下方向に振動して荷重を吸収すると共に、内部ピストン体22が第一液室6及び第二液室23の作動液の圧を気室24の気体に伝達し、気室24の気体の体積弾性によって圧力の瞬間的な変動を緩和する。 When an earthquake or the like occurs, the load in the horizontal direction is absorbed by the laminated rubber 1 and the load in the vertical direction is absorbed by the hydraulic cylinder 5 as in the first reference example. At this time, in the hydraulic cylinder 5, the piston body 20 vibrates in the vertical direction to absorb the load, and the internal piston body 22 controls the pressure of the working fluid in the first liquid chamber 6 and the second liquid chamber 23 in the air chamber 24. The momentary fluctuation in pressure is mitigated by the bulk elasticity of the gas in the air chamber 24.

更にピストン体20の絞り部には、第一気室24aから第二気室24bへ又は第二気室24bから第一気室24aへ気体が流通し、同時に絞り部26により気体の流量が制限されて圧力損失を生じ、振動の減衰を早める。   Further, gas flows from the first air chamber 24a to the second air chamber 24b or from the second air chamber 24b to the first air chamber 24a in the throttle portion of the piston body 20, and at the same time, the gas flow rate is restricted by the throttle portion 26. This causes pressure loss and accelerates vibration damping.

而して、このように第実施例によれば、第一参考例と同様な作用効果を得ることができる。又、ピストン体20に、気室24を第一気室24aと第二気室24bとに区分する仕切部25を設け、仕切部25に、第一気室24aと第二気室24bとを気体が流通し且つ気体の流量を制限する絞り部26を備えると、省スペース化に影響を与えることがなく、振動の減衰を早め、地震等の振動や荷重に好適に対応することができる。 Thus, according to the first embodiment as described above, it is possible to obtain the same operational effects as those of the first reference example. Further, the piston body 20 is provided with a partition part 25 for dividing the air chamber 24 into a first air chamber 24a and a second air chamber 24b, and the first air chamber 24a and the second air chamber 24b are provided in the partition part 25. When the throttle part 26 that allows gas to flow and restricts the flow rate of the gas is provided, the space saving is not affected, and the damping of the vibration can be accelerated and the vibration and the load such as an earthquake can be suitably dealt with.

尚、本発明の三次元免震装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the three-dimensional seismic isolation device of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

1 積層ゴム
5 液圧シリンダ
6 第一液室
7 シリンダ本体
8 ピストン体
9 内部空間
10 内部ピストン体
11 第二液室
12 気室
13 ピストン体
14 内部空間
15 内部ピストン体
16 第二液室
17 気室
19 絞り部
20 ピストン体
21 内部空間
22 内部ピストン体
23 第二液室
24 気室
24a 第一気室
24b 第二気室
25 仕切部
26 絞り部
DESCRIPTION OF SYMBOLS 1 Laminated rubber 5 Hydraulic cylinder 6 1st liquid chamber 7 Cylinder body 8 Piston body 9 Internal space 10 Internal piston body 11 Second liquid chamber 12 Air chamber 13 Piston body 14 Internal space 15 Internal piston body 16 Second liquid chamber 17 Air Chamber 19 Restriction portion 20 Piston body 21 Internal space 22 Internal piston body 23 Second liquid chamber 24 Air chamber 24a First air chamber 24b Second air chamber 25 Partition portion 26 Restriction portion

Claims (1)

水平方向の免震機能を有する積層ゴムと、鉛直方向の免震機能を有する液圧シリンダとを上下方向に配置する三次元免震装置であって、
前記液圧シリンダは、内部に第一液室を形成したシリンダ本体を備えると共に、前記シリンダ本体の前記第一液室内にピストン体を上下動可能に配置し、
前記ピストン体は、前記第一液室に通じる内部空間を有すると共に、該内部空間に内部ピストン体を上下動可能に配置し、該内部ピストン体により、前記内部空間を、前記第一液室まで同内径で通じる第二液室と、気体を封入する気室とに区分けするように構成し、
前記ピストン体に、前記気室を第一気室と第二気室とに区分する仕切部を設け、該仕切部に、前記第一気室と前記第二気室を気体が流通し且つ気体の流量を制限する絞り部を備えたことを特徴とする3次元免震装置。
A three-dimensional seismic isolation device that vertically arranges a laminated rubber having a seismic isolation function in the horizontal direction and a hydraulic cylinder having a seismic isolation function in the vertical direction,
The hydraulic cylinder includes a cylinder body having a first liquid chamber formed therein, and a piston body is disposed in the first liquid chamber of the cylinder body so as to be movable up and down.
The piston body, which has an internal space communicating with the first liquid chamber, the inner piston member vertically movably disposed in said interior space, the internal piston body, said internal space, to said first fluid chamber It is configured to be divided into a second liquid chamber communicating with the same inner diameter and an air chamber enclosing gas,
It said piston body, a partition portion for partitioning the air chamber into a first air chamber and the second air chamber is provided, on the partition switching unit, the first air chamber and the second gas chamber and circulation gas and gas A three-dimensional seismic isolation device, characterized by having a restrictor that restricts the flow rate.
JP2009107548A 2009-04-27 2009-04-27 3D seismic isolation device Active JP5233825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107548A JP5233825B2 (en) 2009-04-27 2009-04-27 3D seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107548A JP5233825B2 (en) 2009-04-27 2009-04-27 3D seismic isolation device

Publications (2)

Publication Number Publication Date
JP2010255768A JP2010255768A (en) 2010-11-11
JP5233825B2 true JP5233825B2 (en) 2013-07-10

Family

ID=43316905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107548A Active JP5233825B2 (en) 2009-04-27 2009-04-27 3D seismic isolation device

Country Status (1)

Country Link
JP (1) JP5233825B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822820B2 (en) * 2012-12-19 2015-11-24 浜田 義明 Structure foundation
JP6624433B2 (en) * 2015-11-20 2019-12-25 清水建設株式会社 3D seismic isolation device
CN107084223B (en) * 2017-05-25 2022-11-22 天津大学 Variable-rigidity hydraulic three-dimensional shock isolation device and method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937071A (en) * 1972-08-18 1974-04-06
JPS4937070A (en) * 1972-08-19 1974-04-06
DE2245590A1 (en) * 1972-09-16 1974-03-21 Fichtel & Sachs Ag HYDROPNEUMATIC IMPACT DAMPER WITH SPRING COMPARTMENT IN THE PISTON ROD BORE
JPS5622034Y2 (en) * 1977-01-06 1981-05-25
JPS59153741U (en) * 1983-03-31 1984-10-15 スズキ株式会社 shock absorber
JPH1163098A (en) * 1997-08-12 1999-03-05 Mitsuboshi Belting Ltd Base isolation apparatus
JP4066490B2 (en) * 1998-02-12 2008-03-26 株式会社Ihi Hydraulic support device
JP2004523714A (en) * 2001-04-03 2004-08-05 ヴォコ フランツ−ヨーゼフ ヴォルフ ウント コンパニー ゲゼルシャフト ミット ベシュレンクテル ハフツング Modular vibration resistant system
JP2003147993A (en) * 2001-11-19 2003-05-21 Taisei Corp Base isolator
JP4267236B2 (en) * 2002-01-16 2009-05-27 日本原子力発電株式会社 Seismic isolation device using hydraulic cylinder
JP2005016633A (en) * 2003-06-26 2005-01-20 Japan Atom Power Co Ltd:The Three-dimensional base isolation device
JP2006250180A (en) * 2005-03-08 2006-09-21 Bridgestone Corp Vibration control device
JP2007218391A (en) * 2006-02-20 2007-08-30 Japan Atomic Energy Agency High pressure air spring type base isolation device

Also Published As

Publication number Publication date
JP2010255768A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP2022111116A (en) Systems and methods for managing noise in compact high-speed and high-force hydraulic actuators
KR100927954B1 (en) Spring damper mount
JP5233825B2 (en) 3D seismic isolation device
JP6263032B2 (en) damper
JP5192731B2 (en) 3D seismic isolation system
JP6383656B2 (en) Vibration measuring instrument and fluid cylinder device
JP2018003853A (en) Base isolation damper
JP2888118B2 (en) Damping device
KR100952775B1 (en) Air Damping Engine Mount
JP2002349629A (en) Hydraulic buffer
JP2011047421A (en) Damping device
JP2015169317A (en) Vibration reduction device and base isolation structure
JP5280923B2 (en) Vibration isolator
JP2015203452A (en) Vibration reduction device and base isolation structure
JP2888117B2 (en) Damping device
KR102098661B1 (en) Damping Device
JP6853688B2 (en) Building collision prevention device
JP2011149215A (en) Three-dimensional base isolation device
JP5649482B2 (en) Fluid pressure buffer
JP6388441B2 (en) Vibration isolator
JP6720570B2 (en) Damper
JP2015010650A (en) Oil damper, and damper system
JP2011099538A (en) Vertical base isolation system
KR101833803B1 (en) Integrated vibration control system for vibration-sensitive equipment used in manufacturing of flat panel display or semiconductor device
JP6622637B2 (en) damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R151 Written notification of patent or utility model registration

Ref document number: 5233825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250