JP2007218391A - High pressure air spring type base isolation device - Google Patents

High pressure air spring type base isolation device Download PDF

Info

Publication number
JP2007218391A
JP2007218391A JP2006042235A JP2006042235A JP2007218391A JP 2007218391 A JP2007218391 A JP 2007218391A JP 2006042235 A JP2006042235 A JP 2006042235A JP 2006042235 A JP2006042235 A JP 2006042235A JP 2007218391 A JP2007218391 A JP 2007218391A
Authority
JP
Japan
Prior art keywords
diaphragms
air spring
seismic isolation
cylinder member
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006042235A
Other languages
Japanese (ja)
Inventor
Kenji Takahashi
健司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2006042235A priority Critical patent/JP2007218391A/en
Publication of JP2007218391A publication Critical patent/JP2007218391A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a size of an air spring without deteriorating a support function or a base isolation function, and to improve safety by detecting a malfunction of the air spring before a loss of function is reached. <P>SOLUTION: In a structure of the high pressure air spring type base isolation device, an inner cylinder member 14 and an outer cylinder member 10 are combined so as to relatively move in an axial direction, and a gap part between the inner cylinder member and the outer cylinder member is partitioned by a rolling seal mechanism 22 to define a high pressure air chamber. In a structure of the rolling seal mechanism, a plurality of diaphragms 30, 32 are lapped, and they are attached by deviating positions of fold back deformation parts of the diaphragms. Internal pressures between the diaphragms become higher stepwise. A pressure detection system detecting a gas pressure between the diaphragms is formed by providing spacers comprised of protruding patterns integrally formed on surfaces of the rubber diaphragms, and forming gas passages by the spacers. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ローリングシール機構を備えた高圧空気ばね方式の免震装置に関し、更に詳しく述べると、複数枚のダイヤフラムを重ね、それらダイヤフラム同士の間の内圧を段階的に高圧にしたローリングシール機構を採用することにより、支持荷重の増大を可能とした高圧空気ばね式免震装置に関するものである。   The present invention relates to a high-pressure air spring type seismic isolation device having a rolling seal mechanism, and more specifically, a rolling seal mechanism in which a plurality of diaphragms are stacked and the internal pressure between the diaphragms is increased stepwise. The present invention relates to a high-pressure air spring type seismic isolation device that can increase the supporting load by adopting it.

各種の構造物あるいは機器を上下方向に免震、防振する際に、空気ばねは有効に機能する。最近、原子炉建屋などのような大荷重の構造物の免震支持にも、空気ばねを使用した3次元免震装置が開発されている。   The air spring functions effectively when isolating and isolating various structures or equipment in the vertical direction. Recently, a three-dimensional seismic isolation device using an air spring has been developed for seismic isolation support of a heavy load structure such as a reactor building.

この種の3次元免震装置としては、積層ゴムからなる水平免震手段と空気ばねからなる垂直免震手段とを直列に連結した構造がある(例えば特許文献1参照)。上方に位置する水平免震手段は水平方向の揺れを緩和する機能を果たし、下方に位置する垂直免震手段は上下方向の揺れを緩和する機能を果たす。ここで垂直免震手段に使用されている空気ばねは、内筒部材と外筒部材とが軸方向に相対的に移動自在に組み合わされ、内筒部材と外筒部材との間隙部がローリングシール機構で仕切られて高圧空気室を画成する構造である。   As this type of three-dimensional seismic isolation device, there is a structure in which horizontal seismic isolation means made of laminated rubber and vertical seismic isolation means made of air springs are connected in series (for example, see Patent Document 1). The upper horizontal seismic isolation means functions to alleviate horizontal shaking, and the lower vertical seismic isolation means functions to alleviate vertical shaking. Here, the air spring used for the vertical seismic isolation means is such that the inner cylinder member and the outer cylinder member are combined so as to be relatively movable in the axial direction, and the gap between the inner cylinder member and the outer cylinder member is a rolling seal. This structure is partitioned by a mechanism to define a high-pressure air chamber.

具体的に、例えば重量約27万トンの原子炉建屋を3次元免震するシステムの設計例では、原子炉建屋と基礎(地盤)との間に272体の免震装置を分散配設する。それら272体の免震装置のうち112体は油圧ロッキング抑制装置とし、160体は空気ばねを利用した免震装置とする。1体の免震装置の支持荷重(静定時)は1000トンである。この荷重を支えるためには、従来構造では、内圧1.6Mpaで内筒部材の直径が3m近い空気ばねを必要とする。   Specifically, in a design example of a system for three-dimensional seismic isolation of a reactor building having a weight of about 270,000 tons, for example, 272 seismic isolation devices are distributed and arranged between the reactor building and the foundation (ground). Of these 272 seismic isolation devices, 112 are hydraulic rocking suppression devices and 160 are seismic isolation devices using air springs. The support load of one seismic isolation device (at the time of settling) is 1000 tons. In order to support this load, the conventional structure requires an air spring having an internal pressure of 1.6 MPa and an inner cylinder member having a diameter of approximately 3 m.

このような従来技術では、支持荷重が大きくなると、空気ばねの直径が大きくなり空間占有率が高くなるため、配置設計が困難になる問題があった。また、空気ばねが大型化することに伴い、メンテナンスのためのアクセスにも支障をきたす恐れがあった。更に、空気ばねの損傷は直接支持機能喪失に繋がるため、空気ばねのフェイルセーフ性の向上が求められているが、従来技術ではそれに対する有効な対策は未だ開発されていない。
特開2004−68453号公報
In such a conventional technique, when the supporting load is increased, the diameter of the air spring is increased and the space occupation ratio is increased. Further, as the size of the air spring is increased, there is a risk that access for maintenance may be hindered. Furthermore, since damage to the air spring directly leads to loss of the support function, there is a need to improve the fail-safe property of the air spring, but no effective countermeasure has been developed in the prior art.
JP 2004-68453 A

本発明が解決しようとする課題は、支持機能や免震機能を低下することなく空気ばねのサイズを小さくすることである。また本発明が解決しようとする他の課題は、機能喪失に至る前に空気ばねの異常を検出できるようにし、安全性を向上させることである。   The problem to be solved by the present invention is to reduce the size of the air spring without deteriorating the support function or the seismic isolation function. Another problem to be solved by the present invention is to make it possible to detect an abnormality of the air spring before the loss of function, thereby improving safety.

本発明は、内筒部材と外筒部材とが軸方向に相対的に移動自在に組み合わされ、内筒部材と外筒部材との間隙部がローリングシール機構で仕切られて高圧空気室を画成する構造の高圧空気ばね式免震装置において、前記ローリングシール機構は、複数枚のダイヤフラムを重ね且つ各ダイヤフラムの折り返し変形部の位置をずらして取り付けた構造をなし、それらダイヤフラム同士の間の内圧が段階的に高圧になっていることを特徴とする高圧空気ばね式免震装置である。ここで、オリフィスによって内筒空気室と外筒空気室とが連通する構成が好ましい。最も簡単な構成はダイヤフラムを2重にすることであるが、ダイヤフラムを3重以上の多重構造にすることもできる。   In the present invention, an inner cylinder member and an outer cylinder member are combined so as to be relatively movable in the axial direction, and a gap between the inner cylinder member and the outer cylinder member is partitioned by a rolling seal mechanism to define a high-pressure air chamber. In the high-pressure air spring type seismic isolation device having the structure described above, the rolling seal mechanism has a structure in which a plurality of diaphragms are overlapped and the positions of the folded deformation portions of the diaphragms are shifted, and the internal pressure between the diaphragms is reduced. This is a high pressure air spring type seismic isolation device characterized by increasing pressure gradually. Here, a configuration in which the inner cylinder air chamber and the outer cylinder air chamber communicate with each other by an orifice is preferable. The simplest configuration is to double the diaphragm, but it is also possible to make the diaphragm into a multiple structure of three or more.

また本発明では、前記ダイヤフラム同士の間にスペーサが介在し、それによってガス流路が形成されており、ダイヤフラム同士の間のガス圧力を検出する圧力検出系を接続する。前記ダイヤフラム同士の間に介在するスペーサとしては、ゴム製のダイヤフラムの表面に一体的に形成されている凸パターンが好ましい。ダイヤフラム同士の間には不活性ガスを充填してもよい。   In the present invention, a spacer is interposed between the diaphragms, whereby a gas flow path is formed, and a pressure detection system for detecting a gas pressure between the diaphragms is connected. The spacer interposed between the diaphragms is preferably a convex pattern integrally formed on the surface of the rubber diaphragm. An inert gas may be filled between the diaphragms.

このような高圧空気ばね式免震装置を用い、それに対して直列に積層ゴムからなる水平免震手段を設置すると、3次元免震装置を構成することができる。   If such a high-pressure air spring type seismic isolation device is used and a horizontal seismic isolation means made of laminated rubber is installed in series thereto, a three-dimensional seismic isolation device can be constructed.

本発明の高圧空気ばね式免震装置は、複数枚のダイヤフラムを重ね且つ各ダイヤフラムの折り返し変形部の位置をずらして取り付け、それらダイヤフラム同士の間の内圧を段階的に高圧にしたローリングシール機構を装備したことにより、ダイヤフラムの耐圧限界により決まっていた空気ばね内圧の限界を、それに左右されない高圧力に設定することが可能となり、その分だけ従来品よりも直径を小さくすることが可能となる。あるいは、従来品と同じ直径の場合には、支持荷重を増大させることができる。   The high-pressure air spring type seismic isolation device of the present invention has a rolling seal mechanism in which a plurality of diaphragms are stacked and attached by shifting the position of the folded deformation portion of each diaphragm, and the internal pressure between these diaphragms is increased stepwise. By being equipped, it becomes possible to set the limit of the air spring internal pressure determined by the pressure limit of the diaphragm to a high pressure that is not affected by it, and the diameter can be made smaller than that of the conventional product. Or in the case of the same diameter as a conventional product, a support load can be increased.

また本発明の高圧空気ばね式免震装置は、複数枚のダイヤフラムを重ねた構成なので、ダイヤフラム間の圧力を検知することにより、ダイヤフラムからの漏洩を検知することができ、それによって機能喪失前に補修が可能となり、安全性が向上する。更にダイヤフラム間に不活性ガスを充填すると、外側ダイヤフラムが損傷しても難燃性を持たせることができる。   Moreover, since the high pressure air spring type seismic isolation device of the present invention has a configuration in which a plurality of diaphragms are stacked, it is possible to detect leakage from the diaphragms by detecting the pressure between the diaphragms, and thereby before function loss. Repair is possible and safety is improved. Furthermore, if an inert gas is filled between the diaphragms, even if the outer diaphragm is damaged, flame retardancy can be imparted.

本発明に係る高圧空気ばね式免震装置の一実施例を図1に示す。この実施例は、高圧空気ばね式免震装置に対して直列に積層ゴムからなる水平免震手段を設置した3次元免震装置の例である。Aは全体構成を示しており、Bは要部の拡大図、Cはc−c位置での拡大断面図である。   An embodiment of the high-pressure air spring type seismic isolation device according to the present invention is shown in FIG. This embodiment is an example of a three-dimensional seismic isolation device in which horizontal seismic isolation means made of laminated rubber is installed in series with a high-pressure air spring type seismic isolation device. A shows the overall configuration, B is an enlarged view of the main part, and C is an enlarged cross-sectional view at the cc position.

外筒部材10は基礎12に対して固定されており、該外筒部材10の中に内筒部材14が遊嵌し、該内筒部材14が外筒部材10に対して上下方向へ移動自在となっている。内筒空気室16と外筒空気室18は、内筒部材14の底部に設けたオリフィス20を通して繋がっている。そして、内筒部材14と外筒部材10との環状の間隙部がローリングシール機構(折り返し形状のダイヤフラム)22で仕切られて、内筒空気室16と外筒空気室18の全体からなる高圧空気室を画成し、内筒部材14が上下動する際にも気密が維持されるような構造である。この例では、内筒部材14の上部に積層ゴムからなる水平免震手段24が設置され、その上に建屋などの支持構造物26が載置される。   The outer cylinder member 10 is fixed to the base 12, the inner cylinder member 14 is loosely fitted in the outer cylinder member 10, and the inner cylinder member 14 is movable up and down with respect to the outer cylinder member 10. It has become. The inner cylinder air chamber 16 and the outer cylinder air chamber 18 are connected through an orifice 20 provided at the bottom of the inner cylinder member 14. The annular gap between the inner cylinder member 14 and the outer cylinder member 10 is partitioned by a rolling seal mechanism (folded-shaped diaphragm) 22, and high pressure air consisting of the inner cylinder air chamber 16 and the outer cylinder air chamber 18 as a whole. The chamber is defined so that airtightness is maintained even when the inner cylinder member 14 moves up and down. In this example, a horizontal seismic isolation means 24 made of laminated rubber is installed on the upper part of the inner cylinder member 14, and a support structure 26 such as a building is placed thereon.

本実施例ではローリングシール機構22は、2枚のゴム製のダイヤフラム(内側ダイヤフラム30と外側ダイヤフラム32を重ねた構成であり、両ダイヤフラム30,32は、それらの折り返し変形部30a,32aの位置をずらした状態とし、それぞれ両端で留め具34によって内筒部材14と外筒部材10に取り付けられる。これらの取り付け部は、空気ばね内圧により常時押し付けられて気密性を保っている。重ねた2枚のダイヤフラム30,32の間は中圧域pであり、高圧空気室の圧力のほぼ半分の圧力(中間圧力)にガスを充填しておく。   In this embodiment, the rolling seal mechanism 22 has a structure in which two rubber diaphragms (an inner diaphragm 30 and an outer diaphragm 32 are overlapped), and both diaphragms 30 and 32 are positioned at their folded deformation portions 30a and 32a. In this state, they are attached to the inner cylinder member 14 and the outer cylinder member 10 by the fasteners 34 at both ends, respectively, and these attachment portions are constantly pressed by the air spring internal pressure to maintain airtightness. Between the diaphragms 30 and 32 is an intermediate pressure region p, and gas is filled to a pressure (intermediate pressure) that is approximately half the pressure of the high-pressure air chamber.

地震動により支持構造物(建屋)26が上下に動くと、内筒部材14も上下に動く。このときオリフィス20は、内筒空気室16と外筒空気室18との間での空気の流れに抵抗を与え、地震時の垂直方向の振動エネルギーを吸収する機能を果たす。2重のダイヤフラム30,32は中圧空間を保ったまま、内筒部材14の半分のストロークで上下方向に移動することになる。従って、外側ダイヤフラム32と内側ダイヤフラム30には、それぞれの差圧がかかることになる。   When the support structure (building) 26 moves up and down due to the earthquake motion, the inner cylinder member 14 also moves up and down. At this time, the orifice 20 provides resistance to the air flow between the inner cylinder air chamber 16 and the outer cylinder air chamber 18 and functions to absorb vertical vibration energy during an earthquake. The double diaphragms 30 and 32 move in the vertical direction with a half stroke of the inner cylinder member 14 while maintaining the intermediate pressure space. Therefore, differential pressure is applied to the outer diaphragm 32 and the inner diaphragm 30.

2重のダイアフラム30,32は、折り返し部以外でも完全に密着せずに、スペーサが介在し、それによってガス流路が形成される構成とする。ここでは内側ダイヤフラム30の外表面に一体的に上下方向につながる線状の凸パターン30bを形成し、それがスペーサとなって凹溝の部分で内部のガスが流通しガス圧力を伝達できる構造となっている。そして、ダイヤフラム同士の間の中圧域pのガス圧力を検出するために、圧力検出系(配管40及び圧力検出計42など)を設置する。   The double diaphragms 30 and 32 are configured such that a spacer is interposed and a gas flow path is formed by the spacers without being completely adhered to other than the folded portion. Here, a linear convex pattern 30b connected integrally in the vertical direction is formed on the outer surface of the inner diaphragm 30, and this serves as a spacer so that the internal gas can flow and transmit the gas pressure in the concave groove portion. It has become. And in order to detect the gas pressure of the intermediate pressure range p between diaphragms, a pressure detection system (the piping 40, the pressure detector 42, etc.) is installed.

このような構成で、圧力検出計42によって両ダイヤフラム30,32の間の中圧域pのガス圧を監視することで、ダイヤフラムの漏洩を検知することができる。なお、中圧域pへは窒素など不活性ガスを入れると、難燃性をもたせることができる。   With such a configuration, it is possible to detect leakage of the diaphragm by monitoring the gas pressure in the intermediate pressure region p between the diaphragms 30 and 32 by the pressure detector 42. In addition, if an inert gas such as nitrogen is introduced into the intermediate pressure region p, flame retardancy can be imparted.

本実施例のように、ダイヤフラムを2重にすることで、空気ばねの内圧を2倍にすることが可能となった。例えば、ダイヤフラムの定格耐圧が1.6Mpaのゴム膜材料を使用した2重ダイヤフラム構造のローリングシール機構を組み込んだ場合、2倍の3.2Mpaの空気ばねを構成でき、従来圧の空気ばねの直径を0.7倍(1/√2)に減らすことができる。例えば、従来構造で内筒部材の直径が3m近い空気ばねが、2m程度に小径化できることになる。   As in this embodiment, the internal pressure of the air spring can be doubled by double the diaphragm. For example, when a rolling seal mechanism with a double diaphragm structure using a rubber membrane material with a rated pressure resistance of the diaphragm of 1.6 Mpa is incorporated, a double 3.2 Mpa air spring can be configured, and the diameter of the air spring with the conventional pressure Can be reduced to 0.7 times (1 / √2). For example, an air spring having a diameter of approximately 3 m in the inner cylindrical member in the conventional structure can be reduced to about 2 m.

なお、ダイヤフラムを重ねる枚数は2枚に限られるものではなく、3枚以上重ねることも可能である。その場合、各ダイヤフラムの折り返し変形部の位置を順次ずらして取り付け、それらダイヤフラム同士の間の各ガス空間を外側から内側に向けて段階的に高圧にする。ダイヤフラムを重ねた枚数分だけ、空気ばねの内圧を高圧化でき、空気ばねの直径を(1/√n:nはダイヤフラムの枚数)まで小さくすることができる。これにより、これまでダイヤフラムの耐圧限界により決まっていた空気ばね内圧の限界を、これに左右されない高圧力に設定することが可能となる。   The number of diaphragms to be stacked is not limited to two, and three or more sheets can be stacked. In that case, the positions of the folding deformation portions of the diaphragms are attached while being sequentially shifted, and the gas spaces between the diaphragms are gradually increased in pressure from the outside toward the inside. The internal pressure of the air spring can be increased by the number of diaphragms stacked, and the diameter of the air spring can be reduced to (1 / √n: n is the number of diaphragms). As a result, the limit of the air spring internal pressure, which has been determined by the diaphragm pressure limit so far, can be set to a high pressure that does not depend on the limit.

ダイヤフラムが1枚の従来構造では、ダイヤフラムの漏洩が直ちに空気ばねの機能損傷に繋がったが、本発明のようにダイヤフラムを複数枚重ねると、一度に機能損傷することはなくなる。また、ダイヤフラム間のガス空間の圧力を検出することにより、ローリングシール機構の機能損傷を防止することが可能となる。   In the conventional structure with one diaphragm, the leakage of the diaphragm immediately led to the functional damage of the air spring. However, when a plurality of diaphragms are stacked as in the present invention, the functional damage does not occur at one time. Further, by detecting the pressure in the gas space between the diaphragms, it is possible to prevent functional damage of the rolling seal mechanism.

図1に示す上記の実施例は、本発明の高圧空気ばね式免震装置を、積層ゴムからなる水平免震手段と組み合わせた3次元免震装置であるが、高圧空気ばね式免震装置単独での利用も可能である。本発明は、各種設備・装置の免震・防振に有用である。支持構造物が原子炉建屋のような大型構造物の場合には、本発明を利用した3次元免震装置の他に、構造物の周囲に油圧機構によるロッキング抑制装置を配設することで、上下・水平両方向の揺れを免震するとともに、ロッキングを抑えることができる。   The above embodiment shown in FIG. 1 is a three-dimensional seismic isolation device in which the high pressure air spring type seismic isolation device of the present invention is combined with horizontal seismic isolation means made of laminated rubber. It is also possible to use it. The present invention is useful for seismic isolation and vibration isolation of various facilities and devices. When the support structure is a large structure such as a reactor building, in addition to the three-dimensional seismic isolation device using the present invention, by arranging a rocking suppression device by a hydraulic mechanism around the structure, In addition to isolating vibrations in both vertical and horizontal directions, rocking can be suppressed.

本発明に係る高圧空気ばね式免震装置の一実施例を示す説明図。Explanatory drawing which shows one Example of the high pressure air spring type seismic isolation apparatus which concerns on this invention.

符号の説明Explanation of symbols

10 外筒部材
12 基礎
14 内筒部材
16 内筒空気室
18 外筒空気室
20 オリフィス
22 ローリングシール機構
24 水平免震手段
26 支持構造物
30 内側ダイヤフラム
32 外側ダイヤフラム
DESCRIPTION OF SYMBOLS 10 Outer cylinder member 12 Foundation 14 Inner cylinder member 16 Inner cylinder air chamber 18 Outer cylinder air chamber 20 Orifice 22 Rolling seal mechanism 24 Horizontal seismic isolation means 26 Support structure 30 Inner diaphragm 32 Outer diaphragm

Claims (5)

内筒部材と外筒部材とが軸方向に相対的に移動自在に組み合わされ、内筒部材と外筒部材との間隙部がローリングシール機構で仕切られて高圧空気室を画成する構造の高圧空気ばね式免震装置において、
前記ローリングシール機構は、複数枚のダイヤフラムを重ね且つ各ダイヤフラムの折り返し変形部の位置をずらして取り付けた構造をなし、それらダイヤフラム同士の間の内圧が段階的に高圧になっていることを特徴とする高圧空気ばね式免震装置。
A high pressure structure in which the inner cylinder member and the outer cylinder member are combined so as to be relatively movable in the axial direction, and the gap between the inner cylinder member and the outer cylinder member is partitioned by a rolling seal mechanism to define a high-pressure air chamber. In the air spring type seismic isolation device,
The rolling seal mechanism has a structure in which a plurality of diaphragms are stacked and attached with the positions of the folded-back deformation portions of the diaphragms shifted, and the internal pressure between the diaphragms is gradually increased. High pressure air spring type seismic isolation device.
前記ダイヤフラム同士の間にスペーサが介在し、それによってガス流路が形成されており、ダイヤフラム同士の間のガス圧力を検出する圧力検出系を備えている請求項1記載の高圧空気ばね式免震装置。   2. The high-pressure air spring type seismic isolation system according to claim 1, wherein a spacer is interposed between the diaphragms to thereby form a gas flow path, and a pressure detection system for detecting a gas pressure between the diaphragms is provided. apparatus. 前記ダイヤフラム同士の間に介在するスペーサは、ゴム製のダイヤフラムの表面に一体的に形成されている凸パターンである請求項1又は2記載の高圧空気ばね式免震装置。   The high-pressure air spring type seismic isolation device according to claim 1 or 2, wherein the spacer interposed between the diaphragms is a convex pattern integrally formed on a surface of a rubber diaphragm. 前記ダイヤフラム同士の間に不活性ガスが充填されている請求項1乃至3のいずれかに記載の高圧空気ばね式免震装置。   The high-pressure air spring type seismic isolation device according to any one of claims 1 to 3, wherein an inert gas is filled between the diaphragms. 請求項1乃至4のいずれかに記載の高圧空気ばね式免震装置を用い、それに対して直列に積層ゴムからなる水平免震手段を設置した3次元免震装置。
A three-dimensional seismic isolation device using the high-pressure air spring type seismic isolation device according to any one of claims 1 to 4 and provided with horizontal seismic isolation means made of laminated rubber in series.
JP2006042235A 2006-02-20 2006-02-20 High pressure air spring type base isolation device Pending JP2007218391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006042235A JP2007218391A (en) 2006-02-20 2006-02-20 High pressure air spring type base isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006042235A JP2007218391A (en) 2006-02-20 2006-02-20 High pressure air spring type base isolation device

Publications (1)

Publication Number Publication Date
JP2007218391A true JP2007218391A (en) 2007-08-30

Family

ID=38495911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006042235A Pending JP2007218391A (en) 2006-02-20 2006-02-20 High pressure air spring type base isolation device

Country Status (1)

Country Link
JP (1) JP2007218391A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243664A (en) * 2008-03-31 2009-10-22 Fuji Latex Kk Damper device
KR100953819B1 (en) 2010-01-12 2010-04-21 조수현 Oil pressure type vibration proof device
JP2010255768A (en) * 2009-04-27 2010-11-11 Ihi Corp Three-dimensional base isolation device
JP2011144894A (en) * 2010-01-15 2011-07-28 Bridgestone Corp Pneumatic spring and base isolation device
KR101362928B1 (en) * 2012-12-05 2014-02-18 (주)엔에스브이 Air-spring vibration isolator
JP2016173130A (en) * 2015-03-17 2016-09-29 東洋ゴム工業株式会社 Axle spring with fireproof cover
JP2016173129A (en) * 2015-03-17 2016-09-29 東洋ゴム工業株式会社 Air spring with fireproof cover

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563334A (en) * 1979-06-21 1981-01-14 Hitachi Cable Ltd Flexible sleeve for hydraulic apparatus
JPS56135368A (en) * 1980-03-22 1981-10-22 Tokyu Car Corp Air spring device for car
JPS59226724A (en) * 1983-05-18 1984-12-19 コンテイネンタル・グミ−ウエルケ・アクチエンゲゼルシヤフト Roll bellows for car air spring
JPH05263855A (en) * 1991-12-23 1993-10-12 Newport Corp System vibration isolator and its system
JPH05296278A (en) * 1992-04-17 1993-11-09 Bridgestone Corp Air spring equipped with height adjusting mechanism
JP2002013314A (en) * 2000-06-30 2002-01-18 Ohbayashi Corp Base isolation device
JP2002021924A (en) * 2000-06-30 2002-01-23 Ohbayashi Corp Base isolation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563334A (en) * 1979-06-21 1981-01-14 Hitachi Cable Ltd Flexible sleeve for hydraulic apparatus
JPS56135368A (en) * 1980-03-22 1981-10-22 Tokyu Car Corp Air spring device for car
JPS59226724A (en) * 1983-05-18 1984-12-19 コンテイネンタル・グミ−ウエルケ・アクチエンゲゼルシヤフト Roll bellows for car air spring
JPH05263855A (en) * 1991-12-23 1993-10-12 Newport Corp System vibration isolator and its system
JPH05296278A (en) * 1992-04-17 1993-11-09 Bridgestone Corp Air spring equipped with height adjusting mechanism
JP2002013314A (en) * 2000-06-30 2002-01-18 Ohbayashi Corp Base isolation device
JP2002021924A (en) * 2000-06-30 2002-01-23 Ohbayashi Corp Base isolation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243664A (en) * 2008-03-31 2009-10-22 Fuji Latex Kk Damper device
JP2010255768A (en) * 2009-04-27 2010-11-11 Ihi Corp Three-dimensional base isolation device
KR100953819B1 (en) 2010-01-12 2010-04-21 조수현 Oil pressure type vibration proof device
JP2011144894A (en) * 2010-01-15 2011-07-28 Bridgestone Corp Pneumatic spring and base isolation device
KR101362928B1 (en) * 2012-12-05 2014-02-18 (주)엔에스브이 Air-spring vibration isolator
JP2016173130A (en) * 2015-03-17 2016-09-29 東洋ゴム工業株式会社 Axle spring with fireproof cover
JP2016173129A (en) * 2015-03-17 2016-09-29 東洋ゴム工業株式会社 Air spring with fireproof cover

Similar Documents

Publication Publication Date Title
JP2007218391A (en) High pressure air spring type base isolation device
CN103188904B (en) The pressure compensator of seabed installation
TWI582294B (en) Seismic isolation mechanism
US9188139B2 (en) Accumulator
JP2008121328A (en) Three-dimensional base isolation device
WO2011099402A1 (en) Fluid pressure cylinder
JP3769326B2 (en) Active vibration isolator
JP3324251B2 (en) Seismic isolation device
JP2007205543A (en) Vibration cancellation device
JP2008115960A (en) Air spring structure
JP2009204049A (en) Air spring device
JP3829592B2 (en) Isolation device
JP2002130370A (en) Seismic isolator
JP2015169317A (en) Vibration reduction device and base isolation structure
JP2008002606A (en) Three-dimensional base isolation device, base isolation method, rolling seal member, and seal method
JP2016211722A (en) Gas spring device and its attenuation force control method
JP4706312B2 (en) Seismic isolation device, seismic isolation system
JP4392387B2 (en) Seismic isolation system
JP2005321105A (en) Base isolation device
JP2010255768A (en) Three-dimensional base isolation device
JP5878285B2 (en) Air spring type pressure vessel structure
JP2006342933A (en) Rocking preventing device for base-isolation system
JP2018179203A (en) Vibration controller
KR101330314B1 (en) Apparatus for sealing pipe
JP3758473B2 (en) Isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Effective date: 20100217

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110413