JP2008121328A - Three-dimensional base isolation device - Google Patents

Three-dimensional base isolation device Download PDF

Info

Publication number
JP2008121328A
JP2008121328A JP2006307667A JP2006307667A JP2008121328A JP 2008121328 A JP2008121328 A JP 2008121328A JP 2006307667 A JP2006307667 A JP 2006307667A JP 2006307667 A JP2006307667 A JP 2006307667A JP 2008121328 A JP2008121328 A JP 2008121328A
Authority
JP
Japan
Prior art keywords
seismic isolation
vertical
horizontal
air spring
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006307667A
Other languages
Japanese (ja)
Other versions
JP4936161B2 (en
Inventor
Ryoichiro Matsumoto
良一郎 松本
Junji Suhara
淳二 須原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2006307667A priority Critical patent/JP4936161B2/en
Publication of JP2008121328A publication Critical patent/JP2008121328A/en
Application granted granted Critical
Publication of JP4936161B2 publication Critical patent/JP4936161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the imbalance between supporting forces in the horizontal direction and the vertical direction of a three-dimensional base isolation device. <P>SOLUTION: Single laminated rubber 3 or a sliding support, or an elastic sliding support as a horizontal base isolation mechanism and a plurality of air springs 4 as a vertical base isolation mechanism are integrated with each other through the medium of a frame 5 having high rigidity. The air spring has a vibration damping function by an auxiliary tank 4b and an orifice 4c, and the three-dimensional base isolation device is provided with a vertical vibration damping mechanism 6 used for damping the vibration in the vertical direction of the air spring. Then the three-dimensional base isolation device is provided with a horizontal deformation restraint mechanism 7 which restraints deformation of the air spring in the horizontal direction while permitting vibration of the air spring in the vertical direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、建屋の水平方向と鉛直方向の双方の振動に対する免震効果を得る3次元免震装置に関する。   The present invention relates to a three-dimensional seismic isolation device that obtains a seismic isolation effect for both horizontal and vertical vibrations of a building.

この種の3次元免震装置としては、たとえば特許文献1〜3に示すように、水平免震機構としての積層ゴムと鉛直免震機構としての空気バネとを上下方向に直列に連結して一体化した構造のものが一般的である。
特に特許文献3に示される3次元免震装置は鉛直免震機構としてローリングシール型の空気バネを用いたものであって、ダイヤフラムにより画成される空気室にオリフィスを介して補助タンクを連通させた構成により振動時におけるオリフィスでの空気流通抵抗によって鉛直方向の減衰効果を得るものであり、たとえば原子力発電所等の大規模な建屋全体を免震支持するものとして好適である。
特開平8−177969号公報 特開平9−302984号公報 特開2005−16633号公報
As this type of three-dimensional seismic isolation device, for example, as shown in Patent Documents 1 to 3, a laminated rubber as a horizontal seismic isolation mechanism and an air spring as a vertical seismic isolation mechanism are connected in series in the vertical direction and integrated. A generalized structure is generally used.
In particular, the three-dimensional seismic isolation device disclosed in Patent Document 3 uses a rolling seal type air spring as a vertical seismic isolation mechanism, and an auxiliary tank communicates with an air chamber defined by a diaphragm via an orifice. With this configuration, a vertical damping effect is obtained by the air flow resistance at the orifice during vibration, and it is suitable, for example, as a base that supports a large-scale building such as a nuclear power plant.
JP-A-8-177969 JP-A-9-302984 JP 2005-16633 A

しかし、一般に空気バネの単位面積当たりの支持能力は積層ゴムの1/10以下と低いことから、それらを単に直列に組み合わせている従来一般の3次元免震装置では水平免震機構としての積層ゴムと鉛直免震機構としての空気バネの支持能力に大きな差が生じることが不可避であって装置規模がアンバランスであるという問題がある。
そのようなアンバランスを改善するためには空気バネの使用圧力を充分に高めるか、あるいは空気バネを充分に大型化することが必要であるが、高圧化によることでは高圧ガス規制を受けることから自ずと限界があり、大型化によることでは設置スペースの確保や施工性の点で難があり、またいずれにしてもそのような特殊仕様の空気バネは汎用のものに比べて格段に高価となるので大幅なコスト増は不可避である。
以上のことから、この種の3次元免震装置における水平方向と鉛直方向の支持力のアンバランスを解消させ得る有効適切な改善策が望まれていた。
However, since the support capacity per unit area of the air spring is generally as low as 1/10 or less of the laminated rubber, in the conventional general three-dimensional seismic isolation device that simply combines them in series, the laminated rubber as a horizontal seismic isolation mechanism There is a problem that a large difference in the support capacity of the air spring as a vertical seismic isolation mechanism is unavoidable and the device scale is unbalanced.
In order to improve such an imbalance, it is necessary to sufficiently increase the operating pressure of the air spring, or to sufficiently increase the size of the air spring. Naturally, there is a limit, and due to the increase in size, there are difficulties in securing installation space and workability, and in any case, such special specification air springs are much more expensive than general-purpose ones. Significant cost increases are inevitable.
From the above, there has been a demand for an effective and appropriate improvement measure that can eliminate the imbalance between the horizontal and vertical bearing forces in this type of three-dimensional seismic isolation device.

請求項1記載の発明は、水平免震機構と鉛直免震機構とが上下方向に直列に配置され、上部構造としての建屋とそれを支持する下部構造との間に介装されて建屋の水平方向および鉛直方向の振動に対する免震効果を得る構成の3次元免震装置であって、水平免震機構と鉛直免震機構の間に高剛性のフレームが配置されて該フレームを介して水平免震機構と鉛直免震機構とが一体化され、前記水平免震機構はフレームの中心位置に固定された単一の積層ゴムまたはすべり支承もしくは弾性すべり支承からなり、前記鉛直免震機構はフレームの中心位置の周囲に均等配置された複数の空気バネからなることを特徴とするものである。   According to the first aspect of the present invention, the horizontal seismic isolation mechanism and the vertical seismic isolation mechanism are arranged in series in the vertical direction, and are interposed between the building as the upper structure and the lower structure that supports it, so that the horizontal of the building A three-dimensional seismic isolation device configured to obtain a seismic isolation effect against vibration in the vertical direction and the vertical direction, and a high-rigidity frame is disposed between the horizontal seismic isolation mechanism and the vertical seismic isolation mechanism, and the horizontal The seismic mechanism and the vertical seismic isolation mechanism are integrated, and the horizontal seismic isolation mechanism is composed of a single laminated rubber or a sliding bearing or an elastic sliding bearing fixed at the center position of the frame. It consists of a plurality of air springs equally arranged around the center position.

請求項2記載の発明は、請求項1記載の発明の3次元免震装置において、鉛直免震機構としての空気バネには空気室が画成されているとともに該空気室には補助タンクが付設され、それら空気室と補助タンクとはオリフィスを介して連通されていることを特徴とする。   According to a second aspect of the present invention, in the three-dimensional seismic isolation device of the first aspect, an air chamber is defined in the air spring as a vertical seismic isolation mechanism, and an auxiliary tank is attached to the air chamber. The air chamber and the auxiliary tank communicate with each other through an orifice.

請求項3記載の発明は、請求項1または2記載の発明の3次元免震装置において、鉛直免震機構としての空気バネの鉛直方向の振動を減衰させる鉛直振動減衰機構が空気バネと並列に設けられ、該鉛直振動減衰機構の一端部がフレームに連結されていることを特徴とする。   According to a third aspect of the present invention, in the three-dimensional seismic isolation device according to the first or second aspect, the vertical vibration damping mechanism for damping the vertical vibration of the air spring as the vertical seismic isolation mechanism is in parallel with the air spring. Provided, and one end of the vertical vibration damping mechanism is connected to a frame.

請求項4記載の発明は、請求項1〜3のいずれかに記載の発明の3次元免震装置において、鉛直免震機構としての空気バネの鉛直方向の振動を許容しつつ水平方向の変形を拘束する水平変形拘束機構が空気バネと並列に設けられ、該水平変形拘束機構の一端部がフレームに対して鉛直方向に変位可能かつ水平方向に変位不能に係合せしめられていることを特徴とする。   According to a fourth aspect of the present invention, in the three-dimensional seismic isolation device according to any one of the first to third aspects, the horizontal deformation is allowed while allowing the vertical vibration of the air spring as the vertical seismic isolation mechanism. A horizontal deformation restraining mechanism for restraining is provided in parallel with the air spring, and one end of the horizontal deformation restraining mechanism is engaged with the frame so as to be displaceable in the vertical direction but not in the horizontal direction. To do.

請求項1記載の発明によれば、鉛直免震機構として複数の空気バネを用いて、それら複数の空気バネと、水平免震機構としての単一の積層ゴムあるいはすべり支承や弾性すべり支承と組み合わせた構成としたことから、個々の空気バネによる支持力が不充分であっても複数の空気バネの全体で充分な支持力を確保できるし、それら空気バネの個数の増減により鉛直方向の支持力を自由にかつ幅広く設定することが可能であり、したがって鉛直免震機構の支持力を水平免震機構の支持力と適正にバランスさせることが可能である。その結果、従来一般のこの種の3次元免震装置において問題とされていた積層ゴムと空気バネとの支持力のアンバランスを容易に解消できるし、そのために高圧あるいは大型の特殊仕様の空気バネを用いるような必要もなく、ローコストで充分な改善効果が得られる。   According to the first aspect of the present invention, a plurality of air springs are used as a vertical seismic isolation mechanism, and the plurality of air springs are combined with a single laminated rubber or a sliding bearing or an elastic sliding bearing as a horizontal seismic isolation mechanism. Therefore, even if the support force by each air spring is insufficient, sufficient support force can be secured for the plurality of air springs as a whole, and the vertical support force can be increased by increasing or decreasing the number of air springs. Can be set freely and widely, and accordingly, the supporting force of the vertical seismic isolation mechanism can be appropriately balanced with the supporting force of the horizontal seismic isolation mechanism. As a result, it is possible to easily eliminate the imbalance between the support force of the laminated rubber and the air spring, which has been a problem in this type of general three-dimensional seismic isolation device. Therefore, a sufficient improvement effect can be obtained at low cost.

請求項2記載の発明によれば、空気バネが補助タンクとオリフィスとによる振動減衰機能を有するものであるので、空気バネ自身で鉛直方向の振動減衰機能が自ずとかつ充分に得られる。   According to the second aspect of the invention, since the air spring has a vibration damping function by the auxiliary tank and the orifice, the vibration damping function in the vertical direction is naturally and sufficiently obtained by the air spring itself.

請求項3記載の発明によれば、空気バネと並列に鉛直振動減衰機構を備えるので、空気バネ自身による振動減衰機能が充分でない場合にも鉛直方向の振動減衰効果が充分に得られる。   According to the third aspect of the present invention, since the vertical vibration damping mechanism is provided in parallel with the air spring, the vibration damping effect in the vertical direction can be sufficiently obtained even when the vibration damping function by the air spring itself is not sufficient.

請求項4記載の発明によれば、空気バネの水平変形を拘束する水平変形拘束機構を備えるので、空気バネに無用な水平力が作用することを防止できて空気バネによる鉛直免震効果を確実に得られ、また空気バネの座屈や損傷を確実に防止することができる。   According to the invention described in claim 4, since the horizontal deformation restraining mechanism for restraining the horizontal deformation of the air spring is provided, it is possible to prevent unnecessary horizontal force from acting on the air spring and to ensure the vertical seismic isolation effect by the air spring. In addition, it is possible to reliably prevent buckling and damage of the air spring.

図1〜図2は本発明の実施形態である3次元免震装置を示すものである。これは、上部構造としての建屋1の底面と、それを支持する下部構造としての基礎2の上面との間に介装されて建屋1全体を免震支持することにより、建屋1の水平方向と鉛直方向の双方の振動に対する免震効果を得るためのものである。   1 to 2 show a three-dimensional seismic isolation device according to an embodiment of the present invention. This is interposed between the bottom surface of the building 1 as the upper structure and the upper surface of the foundation 2 as the lower structure that supports it, so that the entire building 1 is supported by seismic isolation. This is to obtain a seismic isolation effect for both vertical vibrations.

本実施形態の3次元免震装置は、従来一般のこの種の3次元免震装置と同様に、水平免震機構としての積層ゴム3と、鉛直免震機構としての空気バネ4とを組み合わせたことを基本とするが、従来においては単一の積層ゴムと単一の空気バネとを単に直結した構成であることが通常であるのに対し、本実施形態では高剛性のフレーム5を挟んでその上下に単一の積層ゴム3と複数(図示例では4つ)の空気バネ4を配置してそれら積層ゴム3および空気バネ4をそれぞれフレーム5に対して固定することによって、フレーム5を介して積層ゴム3と各空気バネ4とを一体化したものとしている。   The three-dimensional seismic isolation device of the present embodiment combines a laminated rubber 3 as a horizontal seismic isolation mechanism and an air spring 4 as a vertical seismic isolation mechanism in the same manner as a conventional general three-dimensional seismic isolation device. However, in the present embodiment, a configuration in which a single laminated rubber and a single air spring are simply directly connected is generally used, whereas in the present embodiment, a highly rigid frame 5 is sandwiched. A single laminated rubber 3 and a plurality (four in the illustrated example) of air springs 4 are arranged on the upper and lower sides thereof, and the laminated rubber 3 and the air springs 4 are fixed to the frame 5, respectively. Thus, the laminated rubber 3 and the air springs 4 are integrated.

本実施形態におけるフレーム5は、図1(a)に示すように小断面のH形鋼等の鋼材5aを十字形に交差させるとともにその上下に補強鋼板5bを一体に溶接してなるもので、全体として四隅部が隅切りされた略正方形状の盤状をなし、積層ゴム3および各空気バネ4とともに建屋1を支持するに充分な剛性を有するものとされている。   As shown in FIG. 1 (a), the frame 5 in this embodiment is formed by crossing a steel material 5a such as a H-section steel having a small cross section in a cross shape and integrally welding reinforcing steel plates 5b on the upper and lower sides thereof. As a whole, it has a substantially square disk shape with four corners cut off, and has sufficient rigidity to support the building 1 together with the laminated rubber 3 and the air springs 4.

そして、図1(b)に示すように、そのフレーム5の上面中央位置つまり双方の鋼材5aの交差部の位置に上記の積層ゴム3が配置されてそのベースプレートがフレーム5に対してアンカーボルト等により固定されており、積層ゴム3のトッププレートが建屋1の底面に対して固定されるようになっている。   Then, as shown in FIG. 1B, the laminated rubber 3 is disposed at the center of the upper surface of the frame 5, that is, at the position where the both steel members 5a intersect, and the base plate is anchor bolts or the like with respect to the frame 5. The top plate of the laminated rubber 3 is fixed to the bottom surface of the building 1.

また、フレーム5の下面側には、各鋼材5aの端部の位置にそれぞれ上記の空気バネ4が配置されている。各空気バネ4は、図1(b)に示すように、内部空間が空気室として画成されているゴムベローズ4aと、そのゴムベローズ4aの下部に一体に連結された補助タンク4bから構成されていて、ゴムベローズ4aの上部がフレーム5の下面に固定されており、補助タンク4bの下部が基礎2に対してアンカーボルト等により固定されるようになっている。   Further, the air springs 4 are arranged on the lower surface side of the frame 5 at the positions of the end portions of the respective steel materials 5a. As shown in FIG. 1B, each air spring 4 is composed of a rubber bellows 4a having an internal space defined as an air chamber, and an auxiliary tank 4b integrally connected to a lower portion of the rubber bellows 4a. The upper part of the rubber bellows 4a is fixed to the lower surface of the frame 5, and the lower part of the auxiliary tank 4b is fixed to the foundation 2 with anchor bolts or the like.

空気バネ4を構成しているゴムベローズ4aの空気室と補助タンク4bの内部空間とはオリフィス4cを介して連通しており、ゴムベローズ4aが鉛直方向に振動して弾性変形した際にはその内部空間である空気室と補助タンク4bの間でオリフィス4cを通して空気が流通し、その際に生じる流通抵抗によってゴムベローズ4aの振動が速やかに減衰させられるものとなっている。つまり、この空気バネ4はそれ自身が振動減衰機能を有するものであって、鉛直方向の免震効果のみならず優れた減衰効果も併せて発揮し得るものである。   The air chamber of the rubber bellows 4a constituting the air spring 4 and the internal space of the auxiliary tank 4b communicate with each other through the orifice 4c, and when the rubber bellows 4a vibrates in the vertical direction and elastically deforms, Air flows through the orifice 4c between the air chamber, which is an internal space, and the auxiliary tank 4b, and the vibration of the rubber bellows 4a is quickly damped by the flow resistance generated at that time. That is, the air spring 4 itself has a vibration damping function and can exhibit not only a vertical seismic isolation effect but also an excellent damping effect.

また、フレーム5の下面側の中心位置にはオイルダンパー等の鉛直振動減衰機構6が空気バネ4と並列に設置され、その上端部がフレーム5に対して連結されており、下端部は基礎2に対して連結されるようになっている。その鉛直振動減衰機構6は、空気バネ4自身が有する上記のような振動減衰機能では不充分な場合に所望の減衰量を確保するべく補助的に付加すれば良く、空気バネ4自身で充分な振動減衰機能が確保できる場合は省略して差し支えない、勿論、必要とされる減衰性能によっては鉛直振動減衰機構6としてオイルダンパーに限らず適宜の形式のダンパーを採用しても良く、その設置数も任意である。   In addition, a vertical vibration damping mechanism 6 such as an oil damper is installed in parallel with the air spring 4 at the center position on the lower surface side of the frame 5, its upper end is connected to the frame 5, and its lower end is the foundation 2. To be connected to. The vertical vibration damping mechanism 6 may be supplementarily added to secure a desired amount of damping when the above-described vibration damping function of the air spring 4 itself is insufficient, and the air spring 4 itself is sufficient. If the vibration damping function can be ensured, it can be omitted. Of course, depending on the required damping performance, the vertical vibration damping mechanism 6 is not limited to the oil damper, and an appropriate type of damper may be adopted. Is also optional.

さらに、フレーム5の下面側には、その中心位置の周囲に複数(図示例では4つ)の水平変形拘束機構7が空気バネ4と並列に設けられている。これら水平変形拘束機構7は、基礎2に対するフレーム5の鉛直方向の相対変位は許容しつつ水平方向の相対変位を拘束し、以て、空気バネ4を支障なく作動させて鉛直方向の免震効果を確保しつつ、空気バネ4に無用な水平力を作用させないように設置されたものである。
つまり、このような水平変形拘束機構7がない場合には、建屋1が水平方向に振動した際にはその水平力が積層ゴム3、フレーム5を介して空気バネ4にそのまま伝達されてしまうことから、空気バネ4に無用な水平力が作用して横方向に無用な変形を生じ、本来の鉛直方向への免震効果に悪影響を及ぼすばかりでなく、ゴムベローズ4aが座屈したり損傷を受けることも懸念されることから、水平変形拘束機構7の設置によってそのような事態を回避するようにしたものである。
Further, on the lower surface side of the frame 5, a plurality (four in the illustrated example) of horizontal deformation restraining mechanisms 7 are provided in parallel with the air spring 4 around the center position. These horizontal deformation restraining mechanisms 7 restrain the relative displacement in the horizontal direction while allowing the relative displacement in the vertical direction of the frame 5 with respect to the foundation 2, so that the air spring 4 can be operated without hindrance and the vertical seismic isolation effect. It is installed so that unnecessary horizontal force does not act on the air spring 4 while ensuring the above.
That is, in the absence of such a horizontal deformation restraining mechanism 7, when the building 1 vibrates in the horizontal direction, the horizontal force is directly transmitted to the air spring 4 via the laminated rubber 3 and the frame 5. Therefore, unnecessary horizontal force acts on the air spring 4 to cause unnecessary deformation in the lateral direction, which not only adversely affects the seismic isolation effect in the original vertical direction, but also the rubber bellows 4a is buckled or damaged. Therefore, such a situation is avoided by installing the horizontal deformation restraining mechanism 7.

具体的には、本実施形態における水平変形拘束機構7は、高剛性の鋼棒からなる支柱7aがベース部材7bにより基礎2上に立設され、その支柱7aの上端部に円筒状のスリーブ部材7cが鉛直方向に摺動自在に装着されるようになっており、スリーブ部材7cの内側には支柱7aに対する摺動抵抗を軽減するためのリング状のベアリング7dが取り付けられた構成とされている。そして、スリーブ部材7cをフレーム5の中心位置の周囲(鋼材5aの交差部の周囲)に固定して支柱7aに装着することにより、支柱7aに対するフレーム5の鉛直方向の相対変位は支障なく許容されるが、フレーム5の水平方向の相対変位は支柱7aによって確実に拘束され、これにより空気バネ4を支障なく作動させつつ空気バネ4に無用な水平力が作用することを確実に防止できるものとなっている。   Specifically, in the horizontal deformation restraining mechanism 7 in the present embodiment, a column 7a made of a high-rigidity steel rod is erected on the foundation 2 by a base member 7b, and a cylindrical sleeve member is formed at the upper end of the column 7a. 7c is slidably mounted in the vertical direction, and a ring-shaped bearing 7d for reducing sliding resistance with respect to the column 7a is attached to the inside of the sleeve member 7c. . Then, by fixing the sleeve member 7c around the center position of the frame 5 (around the crossing portion of the steel material 5a) and mounting the sleeve member 7c on the column 7a, the vertical displacement of the frame 5 relative to the column 7a is allowed without any problem. However, the relative displacement in the horizontal direction of the frame 5 is reliably restrained by the support column 7a, which can reliably prevent unnecessary horizontal force from acting on the air spring 4 while operating the air spring 4 without hindrance. It has become.

以上の構成に基づき、本実施形態の3次元免震装置によれば、水平免震機構としての積層ゴム3と鉛直免震機構としての空気バネ4とにより水平振動と上下振動の双方に対して優れた免震効果が得られ、大規模な建屋全体を免震支持する3次元免震装置として有効なものである。   Based on the above configuration, according to the three-dimensional seismic isolation device of the present embodiment, the laminated rubber 3 as the horizontal seismic isolation mechanism and the air spring 4 as the vertical seismic isolation mechanism against both horizontal vibration and vertical vibration. Excellent seismic isolation effect is obtained, and it is effective as a three-dimensional seismic isolation device that supports seismic isolation of the entire large-scale building.

そして、特に本実施形態の3次元免震装置は、鉛直免震機構として複数の空気バネ4を用いて、それら複数の空気バネ4と水平免震機構としての単一の積層ゴム3とを組み合わせた構成としたことから、個々の空気バネ4の支持力が充分でない場合であっても複数の空気バネ4の全体で充分な支持力を確保できるし、空気バネ4の個数の増減により支持荷重を自由にかつ幅広く設定することが可能であり、したがって空気バネ4全体の支持力を単一の積層ゴム3の支持力と適正にバランスさせることが可能である。
その結果、従来一般のこの種の3次元免震装置において問題とされていた積層ゴムと空気バネとの支持力のアンバランスを容易に解消できるし、そのために高圧あるいは大型の特殊仕様の空気バネを用いるような必要もないから、個々の空気バネ4としては小型の汎用製品を用いることで充分であり、さしたるコストアップとなることなく3次元免震装置全体として所望の支持能力を確保することが可能となる。
In particular, the three-dimensional seismic isolation device of this embodiment uses a plurality of air springs 4 as a vertical seismic isolation mechanism, and combines the plurality of air springs 4 with a single laminated rubber 3 as a horizontal seismic isolation mechanism. Therefore, even if the supporting force of the individual air springs 4 is not sufficient, a sufficient supporting force can be secured by the whole of the plurality of air springs 4 and the supporting load can be increased by increasing or decreasing the number of the air springs 4. Can be set freely and widely, so that the support force of the entire air spring 4 can be appropriately balanced with the support force of the single laminated rubber 3.
As a result, it is possible to easily eliminate the imbalance between the support force of the laminated rubber and the air spring, which has been a problem in this type of general three-dimensional seismic isolation device. Therefore, it is sufficient to use small general-purpose products as the individual air springs 4, and to ensure the desired support capacity for the entire three-dimensional seismic isolation device without any significant cost increase. Is possible.

以上で本発明の一実施形態について説明したが、上記実施形態はあくまで好適な一例であって本発明は上記実施形態に限定されるものでは勿論なく、たとえば以下に列挙するような様々な設計的変形や応用が可能である。   Although one embodiment of the present invention has been described above, the above embodiment is merely a preferred example, and the present invention is not limited to the above embodiment, and various design examples such as those listed below are included. Variations and applications are possible.

上記実施形態は4つの空気バネ4を用いた場合の例であるが、空気バネ4の数は当然に任意であって、この3次元免震装置全体に要求される支持力と、使用する個々の空気バネ4の支持力とから適正数を設定すれば良い。但し、いずれにしても3次元免震装置全体に対して偏心モーメントが生じることは好ましくなく、したがって空気バネ4の配置はフレーム5中心に対して点対称となるようにその周囲に可及的に均等配置することとし、かつその全体としての重心位置と積層ゴム3の重心位置とを可及的に合致させるような配置とすべきである。
勿論、フレーム5の具体的な構成や形状、寸法は、このフレーム5に要求される剛性はもとより、積層ゴム3や空気バネ4の寸法、特に空気バネ4の設置数やその配置等に対応させて適宜設計すれば良い。
The above embodiment is an example in which four air springs 4 are used, but the number of air springs 4 is naturally arbitrary, and the supporting force required for the entire three-dimensional seismic isolation device and the individual used. An appropriate number may be set based on the support force of the air spring 4. However, in any case, it is not preferable that an eccentric moment is generated in the entire three-dimensional seismic isolation device. Therefore, the arrangement of the air springs 4 is as much as possible around the center of the frame 5 so as to be point-symmetric. It should be arranged evenly and so that the position of the center of gravity as a whole matches the position of the center of gravity of the laminated rubber 3 as much as possible.
Of course, the specific configuration, shape, and dimensions of the frame 5 correspond not only to the rigidity required for the frame 5, but also to the dimensions of the laminated rubber 3 and the air spring 4, especially the number and arrangement of the air springs 4. And design as appropriate.

上記実施形態では鉛直免震機構としての空気バネ4としてゴムベローズ4aによるベローズ型のものを用いたが、空気バネ4の形式は特に限定すべきものではなく、たとえば特許文献3に示されるようなローリングシール型の空気バネをはじめとして各種形式の空気バネを任意に採用可能である。
また、空気バネ4としては上記実施形態のように補助タンク4bとオリフィス4cとによる振動減衰機能を有するものが好ましいが、上述したように空気バネ3と並列に鉛直振動減衰機構6を付加することを前提とする場合、あるいは建屋1と基礎2との間に適宜の減衰機構を別途設けるような場合には、必ずしもそのような形式の空気バネとする必要はない。
In the above embodiment, the bellows type by the rubber bellows 4a is used as the air spring 4 as the vertical seismic isolation mechanism. However, the type of the air spring 4 is not particularly limited. For example, the rolling as shown in Patent Document 3 is used. Various types of air springs including a seal-type air spring can be arbitrarily employed.
The air spring 4 preferably has a vibration damping function by the auxiliary tank 4b and the orifice 4c as in the above embodiment, but the vertical vibration damping mechanism 6 is added in parallel with the air spring 3 as described above. In the case where it is assumed that a proper damping mechanism is separately provided between the building 1 and the foundation 2, it is not always necessary to use such an air spring.

同様に、水平免震機構としての積層ゴム3は、たとえば鉛プラグを組み込んだものや高減衰ゴムを用いたもののようにそれ自身で減衰機能を有するものが好適に採用可能であるが、水平方向の減衰機構を別途設置する場合にはその必要もない。
さらに、水平免震機構としては上記実施形態のように積層ゴム3を用いることが最も一般的であり現実的ではあるが、軽量な建物等に適用する場合には積層ゴム3に代えてより簡略な水平免震機構としてすべり支承や弾性すべり支承を採用することも妨げるものではない。いずれにしてもそれら水平免震機構の支持力と、複数の空気バネによる鉛直免震機構全体の支持力を可及的にバランスさせることが好ましい。
Similarly, as the laminated rubber 3 as the horizontal seismic isolation mechanism, a rubber having its own damping function such as one incorporating a lead plug or one using a high damping rubber can be suitably employed. This is not necessary when a separate damping mechanism is installed.
Further, as the horizontal seismic isolation mechanism, it is most common and practical to use the laminated rubber 3 as in the above embodiment, but when applied to a lightweight building or the like, it is more simplified instead of the laminated rubber 3. Adopting a sliding bearing or an elastic sliding bearing as a horizontal seismic isolation mechanism is not an obstacle. In any case, it is preferable to balance as much as possible the supporting force of the horizontal seismic isolation mechanism and the supporting force of the entire vertical seismic isolation mechanism by a plurality of air springs.

上記実施形態のように空気バネ4の水平変形を拘束するための水平変形拘束機構7を設置することが好ましいが、その具体的な構成は任意であるし、建屋1の水平変位が他の手段によって自ずと拘束されるような場合には省略しても良い。   Although it is preferable to install the horizontal deformation restraining mechanism 7 for restraining the horizontal deformation of the air spring 4 as in the above embodiment, the specific configuration thereof is arbitrary, and the horizontal displacement of the building 1 is other means. May be omitted in the case of being restrained by itself.

上記実施形態では、フレーム5の上部に積層ゴム3を配置し、下部に複数の空気バネ4を配置したが、その天地は逆にしても構造的には同様に挙動し同様に機能する。つまり、フレーム5の上部に複数の空気バネ4を配置し、下部に単一の積層ゴム3(あるいはすべり支承ないし弾性すべり支承)を配置しても良い。なお、その場合において上記実施形態のような鉛直振動減衰機構6や水平変形拘束機構7を設ける場合には、当然にそれらも空気バネ4と並列にしてフレーム5と建屋1との間に設置することになるが、その場合にはいずれも天地を逆にしてそれらの一端部(この場合は下端部)をフレーム5に連結あるいは係合し他端部(同、上端部)を建屋1に対して固定すれば良い。
さらに、本発明の3次元免震装置は、上記実施形態のように基礎免震として基礎2と建屋1との間に設置するみならず、中間免震として建屋1の中間階に設置することも可能である。
In the above embodiment, the laminated rubber 3 is disposed on the upper portion of the frame 5 and the plurality of air springs 4 are disposed on the lower portion. However, even if the top and bottom are reversed, they behave similarly and function similarly. That is, a plurality of air springs 4 may be disposed on the upper portion of the frame 5 and a single laminated rubber 3 (or a sliding bearing or an elastic sliding bearing) may be disposed on the lower portion. In this case, when the vertical vibration damping mechanism 6 and the horizontal deformation restraining mechanism 7 as in the above embodiment are provided, they are naturally installed between the frame 5 and the building 1 in parallel with the air spring 4. In that case, in either case, the top and bottom are reversed and their one end (in this case, the lower end) is connected to or engaged with the frame 5 and the other end (the same upper end) is connected to the building 1. And fix it.
Furthermore, the three-dimensional seismic isolation device of the present invention is not only installed between the foundation 2 and the building 1 as a basic isolation as in the above embodiment, but also installed on the intermediate floor of the building 1 as an intermediate isolation. Is also possible.

本発明の実施形態である3次元免震装置を示す平面図および側面図である。It is the top view and side view which show the three-dimensional seismic isolation apparatus which is embodiment of this invention. 同、水平変形拘束機構を示す図である。It is a figure which shows a horizontal deformation | transformation restraint mechanism similarly.

符号の説明Explanation of symbols

1 建屋(上部構造)
2 基礎(下部構造)
3 積層ゴム(水平免震機構)
4 空気バネ(鉛直免震機構)
4a ゴムベローズ
4b 補助タンク
4c オリフィス
5 フレーム
5a 鋼材
5b 補強鋼板
6 鉛直振動減衰機構
7 水平変形拘束機構
7a 支柱
7b ベース部材
7c スリーブ部材
7d ベアリング
1 building (superstructure)
2 Foundation (substructure)
3 Laminated rubber (horizontal seismic isolation mechanism)
4 Air spring (vertical seismic isolation mechanism)
4a Rubber bellows 4b Auxiliary tank 4c Orifice 5 Frame 5a Steel material 5b Reinforced steel plate 6 Vertical vibration damping mechanism 7 Horizontal deformation restraint mechanism 7a Post 7b Base member 7c Sleeve member 7d Bearing

Claims (4)

水平免震機構と鉛直免震機構とが上下方向に直列に配置され、上部構造としての建屋とそれを支持する下部構造との間に介装されて建屋の水平方向および鉛直方向の振動に対する免震効果を得る構成の3次元免震装置であって、
水平免震機構と鉛直免震機構の間に高剛性のフレームが配置されて該フレームを介して
水平免震機構と鉛直免震機構とが一体化され、
前記水平免震機構はフレームの中心位置に固定された単一の積層ゴムまたはすべり支承もしくは弾性すべり支承からなり、
前記鉛直免震機構はフレームの中心位置の周囲に均等配置された複数の空気バネからなることを特徴とする3次元免震装置。
A horizontal seismic isolation mechanism and a vertical seismic isolation mechanism are arranged in series in the vertical direction, and are interposed between the building as the upper structure and the lower structure that supports it. A three-dimensional seismic isolation device configured to obtain a seismic effect,
A highly rigid frame is arranged between the horizontal seismic isolation mechanism and the vertical seismic isolation mechanism, and the horizontal seismic isolation mechanism and the vertical seismic isolation mechanism are integrated through the frame,
The horizontal seismic isolation mechanism consists of a single laminated rubber, a sliding bearing or an elastic sliding bearing fixed at the center position of the frame,
The three-dimensional seismic isolation device characterized in that the vertical seismic isolation mechanism is composed of a plurality of air springs arranged uniformly around the center position of the frame.
請求項1記載の3次元免震装置であって、
鉛直免震機構としての空気バネには空気室が画成されているとともに該空気室には補助タンクが付設され、それら空気室と補助タンクとはオリフィスを介して連通されていることを特徴とする3次元免震装置。
The three-dimensional seismic isolation device according to claim 1,
The air spring as a vertical seismic isolation mechanism has an air chamber and an auxiliary tank attached to the air chamber, and the air chamber and the auxiliary tank communicate with each other through an orifice. 3D seismic isolation device.
請求項1または2記載の3次元免震装置であって、
鉛直免震機構としての空気バネの鉛直方向の振動を減衰させる鉛直振動減衰機構が空気バネと並列に設けられ、該鉛直振動減衰機構の一端部がフレームに連結されていることを特徴とする3次元免震装置。
The three-dimensional seismic isolation device according to claim 1 or 2,
A vertical vibration damping mechanism for attenuating vertical vibrations of an air spring as a vertical seismic isolation mechanism is provided in parallel with the air spring, and one end of the vertical vibration damping mechanism is connected to a frame. Dimensional seismic isolation device.
請求項1〜3のいずれかに記載の3次元免震装置であって、
鉛直免震機構としての空気バネの鉛直方向の振動を許容しつつ水平方向の変形を拘束する水平変形拘束機構が空気バネと並列に設けられ、該水平変形機構の一端部がフレームに対して鉛直方向に変位可能かつ水平方向に変位不能に係合せしめられていることを特徴とする3次元免震装置。
The three-dimensional seismic isolation device according to any one of claims 1 to 3,
A horizontal deformation restraining mechanism that restrains horizontal deformation while allowing vertical vibration of the air spring as a vertical seismic isolation mechanism is provided in parallel with the air spring, and one end of the horizontal deformation mechanism is perpendicular to the frame. A three-dimensional seismic isolation device that is engaged in such a manner that it can be displaced in the direction and cannot be displaced in the horizontal direction.
JP2006307667A 2006-11-14 2006-11-14 3D seismic isolation device Active JP4936161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006307667A JP4936161B2 (en) 2006-11-14 2006-11-14 3D seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307667A JP4936161B2 (en) 2006-11-14 2006-11-14 3D seismic isolation device

Publications (2)

Publication Number Publication Date
JP2008121328A true JP2008121328A (en) 2008-05-29
JP4936161B2 JP4936161B2 (en) 2012-05-23

Family

ID=39506379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307667A Active JP4936161B2 (en) 2006-11-14 2006-11-14 3D seismic isolation device

Country Status (1)

Country Link
JP (1) JP4936161B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149215A (en) * 2010-01-22 2011-08-04 Shimizu Corp Three-dimensional base isolation device
KR101239167B1 (en) * 2011-04-04 2013-03-05 국방과학연구소 Supporting Apparatus for Vibration Test using Air Spring
JP2014196812A (en) * 2013-03-29 2014-10-16 中部電力株式会社 Base-isolating device
CN104267756A (en) * 2014-09-19 2015-01-07 中国电子工程设计院 Horizontal overlength precision equipment micro-vibration control system
CN105179589A (en) * 2015-08-05 2015-12-23 东南大学 Vibration isolator with adjustable three-dimensional rigidity
CN105257752A (en) * 2015-09-24 2016-01-20 西南科技大学 Tuning track type three-dimensional shock isolation device
JP2017512271A (en) * 2014-01-24 2017-05-18 ジラルディーニ・ソシエタ・ア・レスポンサビリタ・リミタータGirardini S.R.L. Dissipator
CN108463084A (en) * 2018-03-30 2018-08-28 成都市大通路桥机械有限公司 A kind of important cabinet track earthquake isolating equipment
CN108636747A (en) * 2018-06-05 2018-10-12 辽宁科技大学 A kind of pneumatic type combination straight-line oscillation device and its working method
CN108643672A (en) * 2018-06-04 2018-10-12 华北理工大学 Three-dimensional shock damping and insulation device and construction method of installation
CN113211164A (en) * 2021-04-21 2021-08-06 西安工业大学 Vibration reduction feedback system of interferometry system and detection method thereof
CN113417964A (en) * 2021-05-25 2021-09-21 航天材料及工艺研究所 Novel multistage buffering vibration isolation mechanism
CN113639005A (en) * 2021-08-13 2021-11-12 山海伺(北京)科技有限公司 Three-dimensional shock isolation device and implementation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416167B (en) * 2017-07-13 2020-04-14 江苏科技大学 Boats and ships host computer damping base

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282655A (en) * 1985-10-04 1987-04-16 Toshiba Corp Manufacture of electrolyte plate for molten carbonate fuel cell
JPH06294240A (en) * 1993-04-08 1994-10-21 Kajima Corp Three-dimensional base isolation device and installation and recovery method thereof
JP2005016633A (en) * 2003-06-26 2005-01-20 Japan Atom Power Co Ltd:The Three-dimensional base isolation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282655A (en) * 1985-10-04 1987-04-16 Toshiba Corp Manufacture of electrolyte plate for molten carbonate fuel cell
JPH06294240A (en) * 1993-04-08 1994-10-21 Kajima Corp Three-dimensional base isolation device and installation and recovery method thereof
JP2005016633A (en) * 2003-06-26 2005-01-20 Japan Atom Power Co Ltd:The Three-dimensional base isolation device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149215A (en) * 2010-01-22 2011-08-04 Shimizu Corp Three-dimensional base isolation device
KR101239167B1 (en) * 2011-04-04 2013-03-05 국방과학연구소 Supporting Apparatus for Vibration Test using Air Spring
JP2014196812A (en) * 2013-03-29 2014-10-16 中部電力株式会社 Base-isolating device
US10590670B2 (en) 2014-01-24 2020-03-17 Marco Ferrari Dissipator
JP2017512271A (en) * 2014-01-24 2017-05-18 ジラルディーニ・ソシエタ・ア・レスポンサビリタ・リミタータGirardini S.R.L. Dissipator
CN104267756A (en) * 2014-09-19 2015-01-07 中国电子工程设计院 Horizontal overlength precision equipment micro-vibration control system
CN104267756B (en) * 2014-09-19 2017-03-22 中国电子工程设计院 Horizontal overlength precision equipment micro-vibration control system
CN105179589A (en) * 2015-08-05 2015-12-23 东南大学 Vibration isolator with adjustable three-dimensional rigidity
CN105257752A (en) * 2015-09-24 2016-01-20 西南科技大学 Tuning track type three-dimensional shock isolation device
CN108463084A (en) * 2018-03-30 2018-08-28 成都市大通路桥机械有限公司 A kind of important cabinet track earthquake isolating equipment
CN108643672A (en) * 2018-06-04 2018-10-12 华北理工大学 Three-dimensional shock damping and insulation device and construction method of installation
CN108636747A (en) * 2018-06-05 2018-10-12 辽宁科技大学 A kind of pneumatic type combination straight-line oscillation device and its working method
CN108636747B (en) * 2018-06-05 2023-06-13 辽宁科技大学 Pneumatic combined linear vibration device and working method thereof
CN113211164A (en) * 2021-04-21 2021-08-06 西安工业大学 Vibration reduction feedback system of interferometry system and detection method thereof
CN113417964A (en) * 2021-05-25 2021-09-21 航天材料及工艺研究所 Novel multistage buffering vibration isolation mechanism
CN113417964B (en) * 2021-05-25 2022-07-05 航天材料及工艺研究所 Novel multistage buffering vibration isolation mechanism
CN113639005A (en) * 2021-08-13 2021-11-12 山海伺(北京)科技有限公司 Three-dimensional shock isolation device and implementation method thereof

Also Published As

Publication number Publication date
JP4936161B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4936161B2 (en) 3D seismic isolation device
US11339849B2 (en) Three-dimensional isolator with adaptive stiffness property
JP5189213B1 (en) Vibration control device
JP2009007916A (en) Vibration damping structure and its specification setting method
US20160265243A1 (en) Boiler support structure
JP2011099544A (en) Base isolation device
JP5794528B2 (en) Seismic isolation structure
JP2019015310A (en) Vibration damping device for structure
JP5192731B2 (en) 3D seismic isolation system
JP2012036612A (en) Three-dimensional base isolation system
JP2010133492A (en) Three-dimensional isolation system
WO2019020991A1 (en) Building, integrated damping unit, and method of damping
JP5666807B2 (en) 3D seismic isolation device
JP2019190539A (en) Passive type anti-vibration device of building
JP6338563B2 (en) Tower structure
JP2007085023A (en) Tower-like structure
JP5609000B2 (en) Damping method, damping structure, and seismic reinforcement method
JP2002130370A (en) Seismic isolator
JP3157352U (en) Elliptical leaf spring unit, elliptical multi-stage leaf spring device, vertical vibration damping device, horizontal uniaxial vibration damping device, and upper and lower floor seismic isolation device
JP2011038617A (en) Pantograph type base isolation system
JP2018080804A (en) Vibration control mechanism and ceiling structure
JP5917291B2 (en) Mass damper type damping device
JP2010185260A (en) Vibration controlled building and method for controlling vibration of building
JP2011099538A (en) Vertical base isolation system
JP7059489B2 (en) building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150