JP5794528B2 - Seismic isolation structure - Google Patents

Seismic isolation structure Download PDF

Info

Publication number
JP5794528B2
JP5794528B2 JP2011177431A JP2011177431A JP5794528B2 JP 5794528 B2 JP5794528 B2 JP 5794528B2 JP 2011177431 A JP2011177431 A JP 2011177431A JP 2011177431 A JP2011177431 A JP 2011177431A JP 5794528 B2 JP5794528 B2 JP 5794528B2
Authority
JP
Japan
Prior art keywords
main body
seismic isolation
core
body portion
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011177431A
Other languages
Japanese (ja)
Other versions
JP2013040479A (en
Inventor
慎太朗 堂本
慎太朗 堂本
浩史 田村
浩史 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2011177431A priority Critical patent/JP5794528B2/en
Publication of JP2013040479A publication Critical patent/JP2013040479A/en
Application granted granted Critical
Publication of JP5794528B2 publication Critical patent/JP5794528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は高層ないし超高層建物を対象とする免制震構造(免震構造と制震構造とを併用した免震・制震併用構造)に関する。   The present invention relates to a seismic isolation structure for a high-rise building or a super-high-rise building (a seismic isolation / seismic control combined structure using both a base isolation structure and a vibration control structure).

周知のように、免震構造は建物を積層ゴム等の免震装置により免震支持することにより地面と建物とを縁切りして地震エネルギーの建物への入力を低減するものであり、制震構造は建物内に制震装置(ダンパー)を設置して地震エネルギーを吸入し振動応答を低減させるものである。   As is well known, the seismic isolation structure is designed to reduce the input of seismic energy to the building by separating the ground and the building by supporting the building with a seismic isolation device such as laminated rubber. Is to install a vibration control device (damper) in the building to absorb the seismic energy and reduce the vibration response.

また、特許文献1に示すように免震構造と制震構造を併用して免震機能と制震機能の双方を発揮する免震・制震併用構造(つまり免制震構造)についての提案もなされている。   In addition, as shown in Patent Document 1, there is also a proposal for a seismic isolation / seismic combined structure (that is, a seismic isolation structure) that uses both the seismic isolation structure and the damping structure to exhibit both the seismic isolation function and the damping function. Has been made.

特開平11−241524号公報Japanese Patent Laid-Open No. 11-241524

従来一般の免震構造や免制震構造では、免震装置を建物の基礎部(基礎免震の場合)あるいは下層部における中間階(中間階免震の場合)に設置しているため、地震エネルギーを必ずしも効率的に吸収できない。
すなわち、一般的には層間せん断変形角は下層階や上層階よりも中層階において大きくなるのであるが、従来の免震構造では下層階に設置した免震装置のみで地震時の建物全体の地震エネルギーを吸収しているため、中層階から上層階での層間せん断変形角の分布に見合った効率的なエネルギー吸収はできないものである。
In conventional seismic isolation structures and seismic isolation structures, seismic isolation devices are installed on the base of the building (in the case of basic seismic isolation) or the middle floor in the lower part (in the case of intermediate floor seismic isolation). It cannot always absorb energy efficiently.
In other words, the interlaminar shear deformation angle is generally larger in the middle floor than in the lower and upper floors, but in conventional seismic isolation structures, the seismic effect of the entire building at the time of the earthquake is limited to the seismic isolation device installed on the lower floor Since energy is absorbed, efficient energy absorption corresponding to the distribution of the interlaminar shear deformation angle from the middle floor to the upper floor cannot be performed.

また、従来の免震構造では転倒モーメントによる引き抜き力が免震装置に作用するので免震装置にはそれに対する耐力を必要とするし、万一の転倒を防止するためのフェールセイフ機構も必要とされ、建物全体の浮き上がりや変形を抑制するために柱・梁を充分に増強する必要もある。   In addition, in the conventional seismic isolation structure, the pull-out force due to the overturning moment acts on the seismic isolation device, so the seismic isolation device needs to be resistant to it, and a fail-safe mechanism is also required to prevent accidental falls. In addition, it is necessary to sufficiently strengthen the columns and beams in order to suppress the floating and deformation of the entire building.

さらに、近年の高層ないし超高層建物の構造としては、巨大地震時における建物の変位を可及的に小さくするばかりでなく、後揺れを短時間で収束させて建物を速やかに静止させ得るものであることも強く望まれている。   In addition, the structure of high-rise or super-high-rise buildings in recent years is not only to reduce the displacement of buildings during a huge earthquake as much as possible, but also to allow the building to stop quickly by converging after shaking in a short time. There is also a strong desire to be.

上記事情に鑑み、本発明は優れた免震効果と制震効果を発揮して地震エネルギーを有効に吸収し、巨大地震時においても変位と後揺れとを十分に抑制可能な有効適切な免制震構造を提供することを目的とする。   In view of the above circumstances, the present invention effectively absorbs seismic energy by exhibiting excellent seismic isolation and seismic control effects, and is effective and appropriate seizure that can sufficiently suppress displacement and post-shock even during a huge earthquake. The purpose is to provide seismic structures.

本発明は高層ないし超高層の建物を対象とする免制震構造であって、当該建物をチューブ架構による平面視環状の本体部と該本体部とは独立にその中心位置に構築するコア部とにより構成して、それら本体部とコア部との間に水平方向の相対振動を許容するためのクリアランスを確保し、前記本体部を基礎構造体上に底部免震装置により免震支持して設置し、前記コア部を前記本体部よりも相対的に高剛性として前記基礎構造体に剛結して自立状態で設置するとともに、該コア部の頂部と前記本体部との間に頂部免震装置を介装し、前記本体部の高さ方向中間部と前記コア部との間に中間部制震装置としての可変剛性ダンパーを上下方向に間隔をおいて多段に介装し、前記本体部の底部と前記基礎構造体との間および前記本体部の頂部と前記コア部との間に、それらの間で生じる水平方向の相対変位を検知する変位センサーをそれぞれ設置して、前記変位センサーの検知結果に基づいて前記中間部制震装置としての可変剛性ダンパーの剛性を制御可能に構成してなることを特徴とする。   The present invention is a seismic isolation structure for a high-rise or super-high-rise building, the main body portion in a plan view with a tube frame and the core portion that is constructed at the center position independently of the main body portion. To secure clearance to allow horizontal relative vibration between the main body part and the core part, and the main body part is installed on the foundation structure with seismic isolation support by the bottom seismic isolation device The core portion is relatively rigid than the main body portion and is rigidly connected to the foundation structure and installed in a self-supporting state, and a top seismic isolation device is provided between the top portion of the core portion and the main body portion. A variable stiffness damper as an intermediate part damping device is interposed between the core part in the height direction intermediate part and the core part in multiple stages at intervals in the vertical direction, Between the bottom and the base structure and the top of the body and the Displacement sensors that detect the relative displacement in the horizontal direction generated between them are installed between the two parts, and the rigidity of the variable rigidity damper as the intermediate part damping device based on the detection result of the displacement sensor Is configured to be controllable.

本発明によれば、本体部全体を底部免震装置により免震支持して設置しているので本体部に対して通常の免震構造と同様に優れた免震効果が得られるばかりでなく、本体部とは独立に構築したコア部の頂部と本体部との間に設置した頂部免震装置により本体部を上部からも免震支持しているので、本体部とコア部の双方の転倒や曲げ変形を有効に抑制可能である。
また、本体部とコア部との間の水平方向の相対振動をクリアランスの範囲内で許容したうえでそれらの間に中間部制震装置を多段に設けているので、地震時や強風時には中間部制震装置が効率的に作動して地震エネルギーを有効に吸収し優れた制震効果が得られる。
しかも、中間部制震装置として可変剛性ダンパーを用いて、変位センサーにより検知される本体部の振動状況に応じて可変剛性ダンパーの剛性を最適制御することにより、本体部の中間部をそれら中間部制震装置を介してコア部により支持して変位を有効に拘束し後揺れを速やかに収束させることができる。
According to the present invention, since the entire main body is seismically isolated and supported by the bottom seismic isolation device, not only an excellent seismic isolation effect can be obtained for the main body as in a normal seismic isolation structure, Since the main body part is isolated from the top by the top seismic isolation device installed between the top part of the core part and the main body part built independently of the main body part, both the main body part and the core part Bending deformation can be effectively suppressed.
In addition, since the horizontal relative vibration between the main body and the core is allowed within the clearance range, the intermediate part damping device is provided in multiple stages between them. The seismic control device operates efficiently and effectively absorbs seismic energy, and an excellent seismic control effect is obtained.
In addition, by using a variable stiffness damper as an intermediate vibration control device, optimally controlling the rigidity of the variable stiffness damper according to the vibration status of the main body detected by the displacement sensor, the intermediate portion of the main body can be adjusted to the intermediate portion. It is supported by the core part via the vibration control device, and the displacement is effectively restrained, and the after shaking can be quickly converged.

本発明の免制震構造の基本構成を示す模式図である。It is a schematic diagram which shows the basic composition of the seismic isolation structure of this invention. 本発明の実施形態である免制震構造による建物の具体例を示す立断面図である。It is an elevation sectional view showing the example of the building by the seismic isolation structure which is the embodiment of the present invention. 同、底部の平面図である。It is a top view of a bottom part same as the above. 同、頂部の平面図である。It is a top view of the same as the above. 同、中間部の平面図である。It is a top view of an intermediate part. 同、他の具体例を示す図である。It is a figure which shows another specific example same as the above. 同、さらに他の具体例を示す図である。It is a figure which shows another specific example same as the above. 本発明の免制震構造の他の基本構成を示す模式図である。It is a schematic diagram which shows the other basic composition of the seismic isolation structure of this invention.

本発明の免制震構造の基本構成を図1を参照して説明する。
図1は本発明の免制震構造による高層ないし超高層の建物の立断面を模式的に示すもので、符号1は基礎底盤、1aは杭、2は基礎底盤1に剛結して自立状態で構築したコア部、3はコア部2を取り囲んでその周囲に構築した平面視環状の本体部である。
The basic configuration of the seismic isolation structure of the present invention will be described with reference to FIG.
FIG. 1 schematically shows a vertical section of a high-rise or super-high-rise building with the seismic isolation structure of the present invention. Reference numeral 1 is a foundation bottom, 1a is a pile, 2 is rigidly connected to the foundation bottom 1, and is self-supporting. The core part 3 constructed in (1) is an annular main body part surrounding the core part 2 and constructed around it.

コア部2は、コアウォールやトラス構造体により構築された高剛性の構造体であって、その頂部には本体部3の上方に張り出すハットトラス等の高剛性の頂部構造体2aが一体に設けられている。コア部2の内部はエレベータや階段等の共用諸設備の設置スペースとして利用され、あるいはタワーパーキングの設置スペースとしても利用可能である。   The core portion 2 is a high-rigidity structure constructed by a core wall or truss structure, and a high-rigidity top structure 2a such as a hat truss protruding above the main body 3 is integrally formed on the top portion. Is provided. The interior of the core part 2 can be used as an installation space for shared facilities such as elevators and stairs, or can be used as an installation space for tower parking.

本体部3は構造的にはコア部2とは独立に構築されてこの建物の主たる居住スペースとされるものであって、外周チューブ架構と内周チューブ架構とが各階の梁により連結されることによってコア部2を取り囲む環状のチューブ構造によるものとされている。
この本体部3は構造的にはコア部2に比較して相対的に低剛性とされ(換言すると、コア部2は本体部3に比較してより高剛性とされる)、したがって本体部3とコア部2とは異なる振動特性を呈するものであって地震時にはそれらの間で水平方向の相対振動が生じるようになっており、その相対振動を許容するためのクリアランス4がコア部2と本体部3との間に全周にわたって確保されている。
また、コア部2は基礎底盤1上に剛結された状態で自立状態で設置されているのに対し、本体部3はその全体が基礎底盤1上に積層ゴム等の底部免震装置5により免震支持されて設置され、また本体部3の頂部とコア部2の頂部構造体2aとの間にも同じく積層ゴム等の頂部免震装置6が介装されている。
The main body 3 is structurally constructed independently of the core 2 and is the main living space of this building, and the outer tube frame and the inner tube frame are connected by beams on each floor. Thus, the annular tube structure surrounding the core portion 2 is used.
The main body 3 is structurally relatively low in rigidity compared to the core 2 (in other words, the core 2 is higher in rigidity than the main body 3). And the core part 2 exhibit different vibration characteristics. In the event of an earthquake, horizontal relative vibration occurs between them, and a clearance 4 for allowing the relative vibration is provided between the core part 2 and the main body. It is secured over the entire circumference between the part 3.
The core part 2 is installed in a self-supporting state in a state of being rigidly connected to the foundation bottom board 1, while the main body part 3 is entirely placed on the foundation bottom board 1 by a bottom seismic isolation device 5 such as laminated rubber. A seismic isolation support is provided, and a top seismic isolation device 6 such as laminated rubber is also interposed between the top of the main body 3 and the top structure 2 a of the core 2.

これにより、本体部3はその上下が頂部免震装置6と底部免震装置5により免震支持されたものとなっていて、地震時には本体部3の全体がコア部2に対して水平方向にスライドするような水平変位や、本体部3が上下の支持点の間で図示例のように側方に湾曲するような曲げ変形が生じ、それによる水平振動が上記のクリアランス4の範囲内で許容されるようになっている。   As a result, the upper and lower parts of the main body part 3 are supported by the base isolation device 6 and the base isolation device 5, and the entire main body part 3 is in a horizontal direction with respect to the core part 2 in the event of an earthquake. Horizontal displacement such as sliding, or bending deformation in which the main body 3 bends laterally as shown in the figure between the upper and lower support points, and horizontal vibration due to this is allowed within the above clearance 4 range. It has come to be.

さらに、本体部3の高さ方向の中間部にはコア部2との間にダンパーとして機能する複数の中間部制震装置7が多段(図1では6段)に介装されていて、本体部3とコア部2との間で上記のような水平方向の相対振動が生じた際にはそれら中間部制震装置7が作動して地震エネルギーを効率的に吸収するものとされている。   Furthermore, a plurality of intermediate part damping devices 7 functioning as dampers are interposed between the core part 2 and the intermediate part in the height direction of the main body part 3 in multiple stages (six stages in FIG. 1). When the relative vibration in the horizontal direction as described above occurs between the part 3 and the core part 2, the intermediate part damping device 7 is activated to efficiently absorb the seismic energy.

上記の中間部制震装置7としては、ダンパーとしての剛性を調整可能な可変剛性ダンパー、具体的にはたとえば公知の可変摩擦ダンパーや可変減衰ダンパー、各種のアクチュエータが採用されていて、地震時にはそれら中間部制震装置7の剛性を適正に制御することが可能とされている。
そして、そのような制御を行うために、本体部3の底部と基礎底盤1との間および本体部3の頂部とコア部2の頂部構造体2aとの間には、それぞれ変位センサー8,9が設置されていて、それら変位センサー8,9により検知される本体部3の振動状況に応じて上記の各中間部制震装置7の剛性が刻々と最適に制御されるようになっている。
The intermediate part damping device 7 employs a variable stiffness damper capable of adjusting the rigidity as a damper, specifically, for example, a known variable friction damper, a variable damping damper, and various actuators. It is possible to appropriately control the rigidity of the intermediate vibration control device 7.
And in order to perform such control, between the bottom part of the main-body part 3 and the foundation bottom board 1, and between the top part of the main-body part 3, and the top structure 2a of the core part 2, displacement sensor 8, 9 is each respectively. Is installed, and the rigidity of each of the intermediate vibration control devices 7 is optimally controlled every moment according to the vibration state of the main body 3 detected by the displacement sensors 8 and 9.

すなわち、変位センサー8,9は地震時における本体部3の底部と頂部の水平変位(基礎底盤1およびコア部2に対する相対変位)をリアルタイムで検知して、その検知結果を制御装置(図示略)に出力するようになっており、それに基づいて制御装置が所定の中間部制震装置7の剛性を最適に調整するように制御することにより、地震時における本体部3の揺れを有効に抑制しかつ後揺れを速やかに収束せしめるようになっている。
具体的には、上記の制御装置にはこの建物全体の地震動数学モデルが予め入力されていて、変位センサー8,9からの入力信号により検知される本体部3の揺れの方向と強さに応じて本体部3全体の振動状況を刻々と演算処理し、それに基づき各中間部制震装置7に制御信号を出力することにより、それぞれの中間部制震装置7をそれぞれに作用する変位に対して反対方向に最適な摩擦力や反力を発生させるようにそれぞれの剛性を最適に調整し、以て本体部3全体の振動を最も効果的に抑制するように構成されている。
これにより、たとえば巨大地震発生により中間部制震装置7に大きな変位が生じる際には、各中間部制震装置7の剛性を小さくしてそれらを確実に作動せしめて振動エネルギーを十分に吸収し、振動が収束段階となったら所定の中間部制震装置7の剛性を段階的に高めていって本体部3の変位を拘束するといった制御を行うことにより、本体部3の振動を速やかに低減させて後揺れが長く続くことを防止することが可能である。
That is, the displacement sensors 8 and 9 detect the horizontal displacement (relative displacement with respect to the base bottom plate 1 and the core portion 2) of the bottom and top of the main body 3 at the time of an earthquake in real time, and the detection result is a control device (not shown). Based on this, the control device performs control so as to optimally adjust the rigidity of the predetermined intermediate part vibration control device 7, thereby effectively suppressing the shaking of the main body 3 at the time of the earthquake. At the same time, the swaying is quickly converged.
Specifically, a mathematical model of seismic ground motion of the entire building is input in advance to the above-described control device, and according to the direction and intensity of shaking of the main body 3 detected by input signals from the displacement sensors 8 and 9. By calculating the vibration status of the entire main body 3 every moment and outputting a control signal to each intermediate vibration control device 7 based on it, the displacement of each intermediate vibration control device 7 can be detected. Each rigidity is optimally adjusted so as to generate an optimal frictional force and reaction force in the opposite direction, and thus the vibration of the entire main body 3 is most effectively suppressed.
Thus, for example, when a large displacement occurs in the intermediate vibration control device 7 due to the occurrence of a huge earthquake, the rigidity of each intermediate vibration control device 7 is reduced and they are operated reliably to sufficiently absorb vibration energy. When the vibration reaches the convergence stage, the vibration of the main body 3 is quickly reduced by controlling the rigidity of the predetermined intermediate vibration control device 7 stepwise to restrain the displacement of the main body 3. It is possible to prevent long-lasting shaking from continuing for a long time.

以上で説明した本実施形態の免制震構造によれば、基本的には通常の免震構造と同様に本体部3の全体が底部免震装置5により免震支持されているので、本体部3に対して優れた免震効果が得られる。
また、本体部3とは独立に構築したコア部2の頂部から頂部免震装置6を介して本体部3の頂部も免震支持することによって本体部3を上方からも押さえ込むような構造であり、さらに本体部3の中間部も多段の中間部制震装置7(可変剛性ダンパー)を介してコア部2により支持可能であるので、本体部3およびコア部2の双方に作用する転倒モーメントは底部免震装置5、頂部免震装置6、中間部制震装置7を介して相互に伝達されてそれらが相互に支持し合ってそれらの全体が自ずと転倒し難いものとなり、したがって建物全体が充分に安定な構造となって、底部免震装置5に対する引き抜き耐力や転倒防止のためのフェイルセーフ機構を省略ないし軽減することも可能である。
According to the seismic isolation structure of the present embodiment described above, the main body 3 is basically supported by the bottom seismic isolation device 5 as in the normal seismic isolation structure. Excellent seismic isolation effect for 3 is obtained.
Moreover, it is a structure which presses down the main-body part 3 also from the top by supporting the top part of the main-body part 3 from the top part of the core part 2 constructed | assembled independently from the main-body part 3 via the top-part seismic isolation device 6. Furthermore, since the intermediate part of the main body part 3 can also be supported by the core part 2 via the multistage intermediate part damping device 7 (variable rigidity damper), the overturning moment acting on both the main body part 3 and the core part 2 is They are transmitted to each other via the bottom seismic isolation device 5, the top seismic isolation device 6, and the middle seismic isolation device 7, and they support each other so that they are not easily overturned. Therefore, it is possible to omit or reduce the pull-out strength against the bottom seismic isolation device 5 and the fail-safe mechanism for preventing overturning.

また、本体部3はクリアランス4の範囲内でコア部2に対して水平方向の相対振動が生じるが、その相対振動によって中間部制震装置7が作動して地震エネルギーを効率的に吸収し、本体部3への地震入力が低減されて優れた制震効果が得られる。
この場合、中間部制震装置7は層間せん断変形角の大きい中層階の範囲に集約して設置しているので、それら中間部制震装置7は下層階や上層階に設置される場合に比べて効率的に作動して地震エネルギーを充分に吸収でき、その結果、本体部3への地震力を最小限としてその躯体の所要断面を充分に軽減することができる。
しかも、中間部制震装置7として可変剛性ダンパーを用いてそれらの剛性を変位センサー8,9により検知される本体部3の振動状況に応じて刻々と最適制御することにより、本体部3の変位を十分に抑制できるし後揺れを速やかに収束させることができる。
In addition, the main body part 3 generates relative vibration in the horizontal direction with respect to the core part 2 within the clearance 4, but the intermediate part vibration control device 7 is activated by the relative vibration to efficiently absorb the earthquake energy, The seismic input to the main body 3 is reduced, and an excellent seismic control effect is obtained.
In this case, since the middle part damping device 7 is concentrated and installed in the range of the middle floor where the interlaminar shear deformation angle is large, the middle part damping device 7 is compared with the case where the middle part damping device 7 is installed on the lower floor or the upper floor. Therefore, the seismic energy can be sufficiently absorbed, and as a result, the required cross section of the housing can be sufficiently reduced by minimizing the seismic force on the main body 3.
In addition, by using a variable stiffness damper as the intermediate vibration control device 7, the displacement of the main body 3 is optimally controlled every moment according to the vibration state of the main body 3 detected by the displacement sensors 8 and 9. Can be sufficiently suppressed, and the after shaking can be quickly converged.

なお、地震時にはコア部2が逆さ振り子のように振動するような曲げ変形が生じることも想定されるが、そのようなコア部2の曲げ変形は本体部3から頂部免震装置6を介して垂直方向上方の反力を受けることにより充分に拘束されることになる。   In addition, it is assumed that bending deformation that causes the core portion 2 to vibrate like an inverted pendulum occurs during an earthquake, but such bending deformation of the core portion 2 is caused from the main body portion 3 via the top seismic isolation device 6. It is sufficiently restrained by receiving the reaction force in the vertical direction.

図2〜図5は本発明の免制震構造による建物の具体的な設計例を示す。
これは、本体部3を外周チューブ架構10と内周チューブ架構11とを各階の繋ぎ梁12により連結したダブルチューブ架構により構成し、内周チューブ架構11の内側に全周にわたる回廊13を設け、その内側にコア部2との間にクリアランス4を確保したものである。
また、コア部2は高剛性のコアウォールあるいはトラス構造体により構成し、その頂部に一体に設ける頂部構造体2aを本体部3の上方に張り出す高剛性の大断面ハットトラスとしたものである。
2 to 5 show specific design examples of buildings by the seismic isolation structure of the present invention.
The main body 3 is composed of a double tube frame in which an outer tube frame 10 and an inner tube frame 11 are connected by a connecting beam 12 on each floor, and a corridor 13 is provided over the entire circumference inside the inner tube frame 11. A clearance 4 is secured between the core portion 2 and the inside.
The core portion 2 is composed of a high-rigidity core wall or truss structure, and is a high-rigidity large-section hat truss that projects a top structure 2a provided integrally at the top of the core portion 3 above the body portion 3. .

そして、本体部3の底部(外周チューブ架構10と内周チューブ架構11の底部)と基礎底盤1との間に図3に示すように底部免震装置5を介装して本体部3を基礎底盤1上に免震支持するとともに、本体部3の頂部(外周チューブ架構10と内周チューブ架構11の頂部)とコア部2の頂部構造体2aとの間に図4に示すように頂部構造体6を介装している。
また、本体部3の中間部には複数階おき(図示例では5階おき)に中間部制震装置7としての可変剛性ダンパーを設置している。その中間部制震装置7は、図5(b)に示すように内周チューブ架構11とコア部2の各四隅部に対して水平2方向を向くように2本ずつ(したがって各段に8台ずつ)設置されている。
さらに、図2に示すように、本体部3の底部と基礎底盤1との間には変位センサー8が設置され、本体部3の頂部とコア部2の頂部構造体2aとの間には変位センサー9が設置されている。
Then, as shown in FIG. 3, the base part 3 is installed between the bottom part of the main body part 3 (the bottom part of the outer tube structure 10 and the inner tube structure 11) and the base bottom plate 1 with the bottom seismic isolation device 5 interposed therebetween. As shown in FIG. 4, the structure is supported between the top of the main body 3 (the top of the outer peripheral tube frame 10 and the inner peripheral tube frame 11) and the top structure 2 a of the core 2. The body 6 is interposed.
In addition, variable stiffness dampers as intermediate part damping devices 7 are installed in the middle part of the main body part 3 every plurality of floors (every fifth floor in the illustrated example). As shown in FIG. 5 (b), two intermediate vibration control devices 7 are provided so as to face two horizontal directions with respect to each of the four corners of the inner peripheral tube frame 11 and the core portion 2 (therefore, 8 in each stage). One by one).
Further, as shown in FIG. 2, a displacement sensor 8 is installed between the bottom of the main body 3 and the base bottom 1, and the displacement is between the top of the main body 3 and the top structure 2 a of the core 2. A sensor 9 is installed.

図6は他の設計例を示す。これはコア部2の頂部構造体2aの本体部3の上方への張り出し長さを小さくして、頂部免震装置6を内周チューブ架構11の頂部との間にのみ設置し、そこに変位センサー9を設置したものである。この場合は上記設計例の場合よりも少数の頂部免震装置6で本体部3を上方から支持することになるが、頂部免震装置6の仕様を適切に設定することで同等の効果が得られる。   FIG. 6 shows another design example. This is to reduce the length of the top structure 2a of the core portion 2 projecting upward from the main body 3 and install the top seismic isolation device 6 only between the top portion of the inner peripheral tube frame 11 and displace it there. A sensor 9 is installed. In this case, the main body part 3 is supported from above by a smaller number of the top seismic isolation devices 6 than in the case of the above design example, but an equivalent effect can be obtained by appropriately setting the specifications of the top seismic isolation device 6. It is done.

図7はさらに他の設計例を示す。これはコア部2が建物の頂部までは達しておらずその上部をボイド空間16としたものであり、コア部2の頂部に設けた設置台17と内周チューブ架構11の内側の四隅部に張り出して設けた設置台18との間に頂部免震装置6を介装し、そこに変位センサー9を設置したものであって、これによっても同等の効果が得られる。   FIG. 7 shows still another design example. This is because the core part 2 does not reach the top of the building but the upper part is a void space 16, and the installation table 17 provided on the top of the core part 2 and the four corners inside the inner peripheral tube frame 11 are provided. The top seismic isolation device 6 is interposed between the overhanging installation base 18 and the displacement sensor 9 is installed there. This also provides the same effect.

なお、本発明は上記各設計例のような基礎免震の形態とすることに限らず、図8に示すように上記各設計例における本体部3を低層部建物20上に設置して中間階免震の形態とすることも可能である。   The present invention is not limited to the form of basic seismic isolation as in each of the above design examples, but as shown in FIG. 8, the main body 3 in each of the above design examples is installed on a low-rise building 20 and an intermediate floor is installed. It is also possible to use a form of seismic isolation.

1 基礎底盤(基礎構造体)
1a 杭
2 コア部
2a 頂部構造体
3 本体部
4 クリアランス
5 底部免震装置
6 頂部免震装置
7 中間部制震装置(可変剛性ダンパー)
8,9 変位センサー
10 外周チューブ架構
11 内周チューブ架構
12 繋ぎ梁
13 回廊
16 ボイド空間
17,18 設置台
20 低層部建物
1 Foundation floor (foundation structure)
DESCRIPTION OF SYMBOLS 1a Pile 2 Core part 2a Top structure 3 Main part 4 Clearance 5 Bottom seismic isolation device 6 Top seismic isolation device 7 Middle part damping device (variable rigidity damper)
8, 9 Displacement sensor 10 Outer tube structure 11 Inner tube structure 12 Connecting beam 13 Corridor 16 Void space 17, 18 Installation base 20 Low-rise building

Claims (1)

高層ないし超高層の建物を対象とする免制震構造であって、
当該建物をチューブ架構による平面視環状の本体部と該本体部とは独立にその中心位置に構築するコア部とにより構成して、それら本体部とコア部との間に水平方向の相対振動を許容するためのクリアランスを確保し、
前記本体部を基礎構造体上に底部免震装置により免震支持して設置し、
前記コア部を前記本体部よりも相対的に高剛性として前記基礎構造体に剛結して自立状態で設置するとともに、該コア部の頂部と前記本体部との間に頂部免震装置を介装し、
前記本体部の高さ方向中間部と前記コア部との間に中間部制震装置としての可変剛性ダンパーを上下方向に間隔をおいて多段に介装し、
前記本体部の底部と前記基礎構造体との間、および前記本体部の頂部と前記コア部との間に、それらの間で生じる水平方向の相対変位を検知する変位センサーをそれぞれ設置して、前記変位センサーの検知結果に基づいて前記中間部制震装置としての可変剛性ダンパーの剛性を制御可能に構成してなることを特徴とする免制震構造。
A seismic isolation structure for high-rise or super-high-rise buildings,
The building is composed of a tube-shaped main body portion in a plan view and a core portion that is constructed at the center of the main body portion independently of the main body portion, and the horizontal relative vibration is generated between the main body portion and the core portion. Ensure clearance to allow,
The main body is installed on the foundation structure with seismic isolation support by a bottom seismic isolation device,
The core part is relatively rigid than the main body part and is rigidly connected to the foundation structure and installed in a self-supporting state, and a top seismic isolation device is interposed between the top part of the core part and the main body part. Dress
Between the intermediate portion in the height direction of the main body portion and the core portion, a variable rigidity damper as an intermediate portion damping device is interposed in multiple stages at intervals in the vertical direction,
Displacement sensors that detect relative displacement in the horizontal direction generated between the bottom portion of the main body portion and the foundation structure and between the top portion of the main body portion and the core portion, respectively, A seismic isolation structure characterized in that the rigidity of the variable stiffness damper as the intermediate part damping device can be controlled based on the detection result of the displacement sensor.
JP2011177431A 2011-08-15 2011-08-15 Seismic isolation structure Active JP5794528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011177431A JP5794528B2 (en) 2011-08-15 2011-08-15 Seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011177431A JP5794528B2 (en) 2011-08-15 2011-08-15 Seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2013040479A JP2013040479A (en) 2013-02-28
JP5794528B2 true JP5794528B2 (en) 2015-10-14

Family

ID=47889098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011177431A Active JP5794528B2 (en) 2011-08-15 2011-08-15 Seismic isolation structure

Country Status (1)

Country Link
JP (1) JP5794528B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499833A (en) * 2019-08-20 2019-11-26 燕山大学 A kind of energy-consumption damper stage by stage

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106401254B (en) * 2016-09-14 2018-11-06 东南大学 A kind of Self-resetting steel-frame structure of buckling-restrained core board energy consumption
JP7286307B2 (en) 2018-12-12 2023-06-05 清水建設株式会社 Seismic isolation structure
JP2020094388A (en) * 2018-12-12 2020-06-18 清水建設株式会社 Architectural structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2882888B2 (en) * 1991-03-14 1999-04-12 三菱重工業株式会社 Variable history damping system
JP3467642B2 (en) * 1999-06-29 2003-11-17 学校法人慶應義塾 Seismic isolation system
JP2011069068A (en) * 2009-09-24 2011-04-07 Shimizu Corp Base isolating and seismic response control structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499833A (en) * 2019-08-20 2019-11-26 燕山大学 A kind of energy-consumption damper stage by stage

Also Published As

Publication number Publication date
JP2013040479A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
US20120167490A1 (en) Structural protection system for buildings
JP2009541626A5 (en)
JP2011069068A (en) Base isolating and seismic response control structure
JP5567094B2 (en) Long-period building
JP5794528B2 (en) Seismic isolation structure
JP2009007916A (en) Vibration damping structure and its specification setting method
JP5894140B2 (en) Boiler support structure
JP2010203150A (en) Seismic response control frame
JP5352270B2 (en) Seismic isolation structure and building with seismic isolation structure
JP2014169604A (en) Vibration control structure for large-span frame building
JP5000392B2 (en) Crane seismic isolation device
JP5586566B2 (en) Damping structure
JP2011169026A (en) Floor structure
JP7037320B2 (en) Vibration control building
JP2011038294A (en) Additional mass seismic response control building
JP5290786B2 (en) Damping structure
JP2010242450A (en) Vibration control method, vibration control structure, and aseismatic reinforcing method
JP6298402B2 (en) Partial seismic isolation structure
JP2004225347A (en) Seismic control structure of structure
JP7286904B2 (en) building
JPH09112063A (en) Base isolation method of structure and base isolation structure
JP2004278002A (en) Unit building with base-isolating device
JP2011069149A (en) Seismic isolation system
JP5316885B2 (en) Building seismic control structure
JP5348860B2 (en) Damping structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150804

R150 Certificate of patent or registration of utility model

Ref document number: 5794528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150