JP6691751B2 - Liquefaction seismic isolation structure - Google Patents

Liquefaction seismic isolation structure Download PDF

Info

Publication number
JP6691751B2
JP6691751B2 JP2015156214A JP2015156214A JP6691751B2 JP 6691751 B2 JP6691751 B2 JP 6691751B2 JP 2015156214 A JP2015156214 A JP 2015156214A JP 2015156214 A JP2015156214 A JP 2015156214A JP 6691751 B2 JP6691751 B2 JP 6691751B2
Authority
JP
Japan
Prior art keywords
layer
liquefaction
ground
seismic isolation
improvement body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015156214A
Other languages
Japanese (ja)
Other versions
JP2017036537A (en
Inventor
毅芳 福武
毅芳 福武
雅伸 長谷部
雅伸 長谷部
桂 豊
豊 桂
直寛 濁川
直寛 濁川
社本 康広
康広 社本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2015156214A priority Critical patent/JP6691751B2/en
Publication of JP2017036537A publication Critical patent/JP2017036537A/en
Application granted granted Critical
Publication of JP6691751B2 publication Critical patent/JP6691751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Description

本発明は、液状化免震構造に関する。   The present invention relates to a liquefaction seismic isolation structure.

従来、構造物を軟弱地盤上に構築する際の構造物の基礎構造として、地盤の支持力不足よる過大な沈下を防止するために、例えば下記特許文献1に示されるように、コンクリートや鋼管などの基礎杭を、構造物の荷重を軟弱地盤下方の硬質地盤からなる支持地盤で支持する構造とするものが知られている。   Conventionally, as a basic structure of a structure when constructing the structure on soft ground, in order to prevent excessive subsidence due to insufficient bearing capacity of the ground, for example, as shown in Patent Document 1 below, concrete, steel pipe, etc. It is known that the foundation pile of (1) has a structure in which the load of the structure is supported by a supporting ground composed of hard ground below the soft ground.

特開平10−46619号公報JP, 10-46619, A

しかしながら、建物を軟弱地盤上に構築する際には、前述のように基礎杭を堅固な支持地盤まで打設して建物を支持する基礎構造にすることにより支持力を高める施工が行われている。支持地盤に到達するまで基礎杭を打設する場合には、支持地盤が深いと、基礎杭の杭長が長くなり、打設が大掛かりとなるうえ、部材コストも大きくなるという問題があった。
さらに、構造物の荷重を小さくして、地盤に対する接地圧を低減する方法も行われているが、荷重を小さくするには構造部材の制約から前記接地圧の低減にも限界があり、構造的な安定性を確保することができず、その点で改良の余地があった。
However, when building a building on soft ground, as mentioned above, construction is performed to increase the bearing capacity by driving foundation piles up to a solid support ground to form a foundation structure that supports the building. .. When the foundation pile is driven until reaching the support ground, if the support ground is deep, there is a problem that the pile length of the foundation pile becomes long, the placing becomes large, and the member cost also increases.
Furthermore, a method of reducing the load of the structure to reduce the ground contact pressure against the ground is also used, but in order to reduce the load, there is a limit to the reduction of the ground contact pressure due to the restriction of the structural members, It was not possible to secure sufficient stability, and there was room for improvement in that respect.

本発明は、上述する問題点に鑑みてなされたもので、低コストで簡単な施工により、液状化による免震効果と沈下や不同沈下を抑制する効果とをバランスよく発揮することができ、さらに構造的な安定性を確保することができる液状化免震構造を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and by low-cost and simple construction, it is possible to exert a well-balanced effect of seismic isolation due to liquefaction and the effect of suppressing subsidence and differential subsidence. The purpose is to provide a liquefaction seismic isolation structure that can ensure structural stability.

上記目的を達成するため、本発明に係る液状化免震構造は、構造物の免震基礎構造として用いられる液状化免震構造であって、液状化層の上方に前記構造物が設けられ、前記構造物の下方領域における前記液状化層には、上下方向の全体にわたって地盤改良体が形成され、前記地盤改良体は、砂に特殊シリカ系薬剤を浸透させたものが使用され、前記液状化層の上層面から下層面までの層厚全体の高さ寸法で設けられ、地震時に、前記液状化層の繰返し特性と、前記地盤改良体の繰返し軟化特性とを併せた挙動を示すことを特徴としている。 In order to achieve the above object, the liquefaction seismic isolation structure according to the present invention is a liquefaction seismic isolation structure used as a seismic isolation base structure for a structure, and the structure is provided above the liquefaction layer, In the liquefied layer in the lower region of the structure, a ground improvement body is formed over the entire vertical direction, and the ground improvement body is made by infiltrating a special silica-based agent into sand, and the liquefaction is used. It is provided with the height of the entire layer thickness from the upper surface to the lower surface of the layer, and exhibits a behavior that combines the repeated characteristics of the liquefaction layer and the repeated softening characteristics of the ground improvement body during an earthquake. I am trying.

本発明では、液状化層が液状化する際に、剛性が低下してひずみが大きくなって液体状の挙動となることから、構造物の免震の機能を発揮することができる。一方で、液状化層に設けられる地盤改良体は、設定レベル以上の地震が発生することによる繰返しせん断時において、せん断剛性が小さくなって軟化することから、構造物の免震の機能をもたせることができる。つまり、本発明の液状化免震構造では、液状化層の液状化と地盤改良体の軟化とにより免震効果を発揮することができる。
しかも、液状化後には液状化層は沈下するが、液状化層中に形成されている地盤改良体は繰返しせん断後にほとんど体積変化が生じなく、地盤改良体の鉛直方向の変形が抑えられることから、この地盤改良体によって液状化層の液状化でも構造物が下方から支持されることになるため、構造物の沈下や不同沈下を抑制することができる。
このように、本発明では、液状化層が液状化する場合において、低コストで簡単な施工により、沈下や不同沈下を抑制しつつ、優れた免震効果を発揮することができる。
In the present invention, when the liquefied layer is liquefied, the rigidity is reduced and the strain is increased to be a liquid-like behavior, so that the seismic isolation function of the structure can be exhibited. On the other hand, the soil improvement body provided in the liquefaction layer should have the function of seismic isolation because the shear rigidity decreases and softens during repeated shearing due to the occurrence of earthquakes above the set level. You can That is, in the liquefaction seismic isolation structure of the present invention, the seismic isolation effect can be exhibited by the liquefaction of the liquefaction layer and the softening of the ground improvement body.
Moreover, after the liquefaction, the liquefaction layer sinks, but the soil improvement body formed in the liquefaction layer undergoes almost no volume change after repeated shearing, and vertical deformation of the soil improvement body is suppressed. Since the ground improvement body supports the structure from below even when the liquefaction layer is liquefied, it is possible to suppress the subsidence and the non-uniform settling of the structure.
Thus, in the present invention, when the liquefied layer is liquefied, it is possible to exert an excellent seismic isolation effect while suppressing subsidence and differential subsidence by low-cost and simple construction.

また、本発明に係る液状化免震構造は、支持地盤上に、前記液状化層を介して前記構造物が設けられ、前記構造物の周囲に間隔をあけて全周にわたって側壁が設けられ、前記支持地盤および前記側壁によって囲まれた領域に、飽和状態に設定された飽和砂が打設された前記液状化層が形成されていることが好ましい。   Further, the liquefaction seismic isolation structure according to the present invention, on the support ground, the structure is provided via the liquefaction layer, the side wall is provided around the entire periphery of the structure at intervals. It is preferable that the liquefaction layer in which saturated sand set in a saturated state is cast is formed in a region surrounded by the support ground and the side wall.

この場合には、支持地盤および前記側壁によって囲まれた領域に液状化層が設けられており、構造物に浮力が作用するので、構造物の接地圧が小さくなり液状化が生じ易くなる。そして、液状化後には、飽和砂が沈下するが、構造物の下方に形成されている地盤改良体によって構造物が支持されるので、構造物の沈下や不同沈下を抑制することができる。
また、液状化層の液状化後であっても、液状化層の飽和砂が側壁と支持地盤によって囲まれる領域外に流出、移動することがなくなる。そのため、構造物の下方に隙間が生じることがなくなり、構造的な安定性を継続することができる。
In this case, the liquefaction layer is provided in the region surrounded by the support ground and the side wall, and buoyancy acts on the structure, so that the ground pressure of the structure becomes small and liquefaction easily occurs. Then, after the liquefaction, the saturated sand sinks, but since the structure is supported by the ground improvement body formed below the structure, it is possible to suppress the settlement or the differential settlement of the structure.
Further, even after the liquefaction layer is liquefied, the saturated sand in the liquefaction layer does not flow out of the region surrounded by the sidewall and the support ground and move. Therefore, no gap is formed below the structure, and structural stability can be continued.

また、本発明に係る液状化免震構造は、前記地盤改良体は、前記構造物の下方領域における一部に設けられていることが好ましい。   Further, in the liquefaction seismic isolation structure according to the present invention, it is preferable that the ground improvement body is provided in a part of a lower region of the structure.

本発明では、構造物の下方領域において部分的に地盤改良体を設けることで、液状化層による繰返し特性と、地盤改良体による繰返し軟化特性とを併せた挙動が顕著に表れ、優れた免震効果を発揮することができる。   In the present invention, by providing the ground improvement body partially in the lower region of the structure, the behavior that combines the repeated characteristics due to the liquefaction layer and the repeated softening characteristics due to the ground improvement body is remarkably exhibited, and excellent seismic isolation is provided. It can be effective.

本発明の液状化免震構造によれば、低コストで簡単な施工により、液状化による免震効果と沈下や不同沈下を抑制する効果とをバランスよく発揮することができ、さらに構造的な安定性を確保することができる。   According to the liquefaction seismic isolation structure of the present invention, it is possible to exert a well-balanced seismic isolation effect due to liquefaction and the effect of suppressing subsidence or differential subsidence by low cost and simple construction, and further structural stability It is possible to secure the sex.

本発明の第1の実施の形態による液状化免震構造を示す縦断面図である。It is a longitudinal section showing the liquefaction seismic isolation structure according to the first embodiment of the present invention. 図1に示すA−A線断面図であって、複数の柱状改良部の配置状態を示す水平断面図である。FIG. 2 is a cross-sectional view taken along the line AA shown in FIG. 1, and is a horizontal cross-sectional view showing an arrangement state of a plurality of columnar improving portions. 液状化免震構造の効果を示す一例であって、飽和砂の応力とひずみの関係を示す図である。It is an example showing the effect of the liquefaction seismic isolation structure, and is a diagram showing the relationship between the stress and the strain of the saturated sand. 液状化免震構造の効果を示す一例であって、薬液注入による地盤改良体の応力とひずみの関係を示す図である。It is an example which shows the effect of a liquefaction seismic isolation structure, and is a figure which shows the relationship of the stress of a ground improvement body by chemical injection and strain. 第2の実施の形態による液状化免震構造を示す縦断面図である。It is a longitudinal section showing a liquefaction seismic isolation structure according to a second embodiment. 図5に示すB−B線断面図であって、複数の柱状改良部の配置状態を示す水平断面図である。FIG. 6 is a cross-sectional view taken along line BB shown in FIG. 5, and is a horizontal cross-sectional view showing an arrangement state of a plurality of columnar improving portions. 第1変形例による地盤改良体の配置状態を示す水平断面図であって、図2に対応する図である。FIG. 9 is a horizontal cross-sectional view showing an arrangement state of a ground improvement body according to a first modification, and is a view corresponding to FIG. 2. 第2変形例による地盤改良体の配置状態を示す水平断面図であって、図2に対応する図である。It is a horizontal cross-sectional view which shows the arrangement state of the ground improvement body by a 2nd modification, Comprising: It is a figure corresponding to FIG. 第3変形例による地盤改良体の配置状態を示す水平断面図であって、図2に対応する図である。FIG. 9 is a horizontal cross-sectional view showing an arrangement state of a ground improvement body according to a third modified example, and is a view corresponding to FIG. 2.

以下、本発明の実施の形態による液状化免震構造について、図面に基づいて説明する。   Hereinafter, a liquefaction seismic isolation structure according to an embodiment of the present invention will be described with reference to the drawings.

(第1の実施の形態)
図1及び図2に示すように、第1の実施の形態による液状化免震構造1は、構造物10の免震基礎構造として用いられ、構造物10の基礎部分を地盤中に直接、構築する場合に適用される。構造物10は、オフィスや住居等であり、基礎上の構造物の大きさ、形状、用途等に限定されるものではない。
(First embodiment)
As shown in FIGS. 1 and 2, the liquefaction seismic isolation structure 1 according to the first embodiment is used as a seismic isolation foundation structure for a structure 10, and the foundation portion of the structure 10 is directly constructed in the ground. It applies when you do. The structure 10 is an office, a residence, or the like, and is not limited to the size, shape, application, etc. of the structure on the foundation.

本実施の形態の地盤Gは、上層から下層に向けて第1非液状化層G1、飽和砂層G2(液状化層)、第2非液状化層G3、及び支持層G4の4層からなる地盤を対象としている。構造物10の基礎部分は、第1非液状化層G1中に配置されて支持されている。
ここで、飽和砂層G2としては、例えば珪砂等で飽和度が95%以上となる飽和状態のものが想定されている。
The ground G of the present embodiment is composed of four layers of a first non-liquefied layer G1, a saturated sand layer G2 (liquefied layer), a second non-liquefied layer G3, and a support layer G4 from the upper layer toward the lower layer. Is intended for. The base portion of the structure 10 is arranged and supported in the first non-liquefied layer G1.
Here, as the saturated sand layer G2, for example, silica sand or the like is assumed to be in a saturated state in which the degree of saturation is 95% or more.

飽和砂層G2には、構造物10の下方の領域(図2に示す二点鎖線)において、飽和砂層G2の層厚範囲の全体にわたって薬液注入によって地盤改良された地盤改良体2が形成されている。地盤改良体2は、符号2Aで示すような角柱状または円柱状に形成され、この柱状改良部2Aが図2に示す平面視で縦横に間隔をあけて複数設けられている。これら柱状改良部2Aの水平断面の寸法や間隔などの構成については適宜設定可能である。また、柱状改良部2Aの深度方向の寸法(高さ寸法)は、上述したように飽和砂層G2の上層面G2aから下層面G2bまでの層厚全体であることが好ましい。   In the area below the structure 10 (two-dot chain line shown in FIG. 2) in the saturated sand layer G2, the ground improvement body 2 in which the ground is improved by chemical solution injection is formed over the entire layer thickness range of the saturated sand layer G2. .. The ground improvement body 2 is formed in a prismatic shape or a cylindrical shape as indicated by reference numeral 2A, and a plurality of the columnar improvement portions 2A are provided at intervals in the vertical and horizontal directions in the plan view shown in FIG. The configuration of the horizontal cross-section of these columnar improvement portions 2A, such as the size and spacing, can be set as appropriate. Further, the dimension (height dimension) in the depth direction of the columnar improved portion 2A is preferably the entire layer thickness from the upper layer surface G2a to the lower layer surface G2b of the saturated sand layer G2 as described above.

なお、本実施の形態では、構造物10の下面10a下面10aが第1非液状化層G1中に位置し、地盤改良体2(2A)に対して上下方向に離間しているが、これに限定されることはない。つまり、構造物10の下面10aが飽和砂層G2に到達していて地盤改良体2(2A)の上面に接触した状態で設けられていても良い。また第2非液状化層G3は無くてもよい。   In the present embodiment, the lower surface 10a of the structure 10 and the lower surface 10a are located in the first non-liquefied layer G1 and are vertically separated from the ground improvement body 2 (2A). There is no limitation. That is, the lower surface 10a of the structure 10 may reach the saturated sand layer G2 and may be provided in contact with the upper surface of the ground improvement body 2 (2A). The second non-liquefied layer G3 may be omitted.

次に、上述した構成の液状化免震構造の作用について、図1及び図2を用いて説明する。
本実施の形態では、飽和砂層G2が液状化する際に、図3に示すように、剛性が低下し、逆S字を描きながらひずみが大きくなる挙動を示す。そして、この挙動の途中でせん断力が殆どゼロの状態でひずみが大きくなる液体状の挙動となることから、構造物10の免震の機能を発揮することができる。図3は、相対密度が63%の飽和砂の応力とひずみの関係で拘束圧が100kPaのデータを示しており、横軸をせん断ひずみγ(%)とし、縦軸をせん断応力(kPa)としている。
Next, the operation of the liquefaction seismic isolation structure having the above-described configuration will be described with reference to FIGS. 1 and 2.
In the present embodiment, when the saturated sand layer G2 is liquefied, as shown in FIG. 3, the rigidity decreases and the behavior becomes large while drawing an inverted S shape. Then, in the middle of this behavior, the behavior becomes like a liquid in which the strain increases in a state where the shearing force is almost zero, so that the seismic isolation function of the structure 10 can be exhibited. FIG. 3 shows data with a constraint pressure of 100 kPa in relation to the stress and strain of saturated sand with a relative density of 63%. The horizontal axis represents shear strain γ (%) and the vertical axis represents shear stress (kPa). There is.

一方で、飽和砂層G2に設けられる地盤改良体2は、液状化はしないが、図4に示すように、設定レベル以上の地震が生じることによる繰返しせん断時において、せん断剛性が小さくなって軟化する非線形ループを描くことから、構造物10の免震の機能をもたせることができる。図4は、薬液注入による地盤改良体の応力とひずみの関係を示しており、横軸を軸ひずみγ(%)とし、縦軸をせん断応力(kPa)としている。この場合の地盤改良体は、相対密度Dが65%の豊浦砂において、特殊シリカ系薬剤を4%浸透させた地盤改良体を使用し、拘束圧が100kPaのデータを示している。
上述したように、本実施の形態の液状化免震構造1では、所定レベル以上の地震動が入力される中・大規模な地震の場合には、飽和砂層G2の液状化と地盤改良体2の軟化とにより免震効果を発揮することができる。
On the other hand, the ground improvement body 2 provided in the saturated sand layer G2 does not liquefy, but as shown in FIG. 4, the shear rigidity decreases and softens during repeated shearing due to the occurrence of an earthquake of a set level or higher. By drawing a non-linear loop, the structure 10 can have a seismic isolation function. FIG. 4 shows the relationship between the stress and strain of the ground improvement body by the chemical solution injection, where the horizontal axis represents the axial strain γ (%) and the vertical axis represents the shear stress (kPa). As the ground improvement body in this case, a ground improvement body in which 4% of a special silica-based agent is infiltrated in Toyoura sand having a relative density Dr of 65% is used, and the binding pressure is 100 kPa.
As described above, in the liquefaction seismic isolation structure 1 of the present embodiment, in the case of a medium- or large-scale earthquake in which a seismic motion of a predetermined level or more is input, the saturated sand layer G2 is liquefied and the ground improvement body 2 is With softening, seismic isolation effect can be exhibited.

しかも、液状化後には飽和砂層G2は沈下するが、飽和砂層G2中に形成されている地盤改良体2は繰返しせん断後にほとんど体積変化が生じなく、地盤改良体2の鉛直方向の変形が抑えられることから、この地盤改良体2によって飽和砂層G2の液状化でも構造物10が下方から支持されることになるため、構造物10の沈下や不同沈下を抑制することができる。   Moreover, after the liquefaction, the saturated sand layer G2 sinks, but the soil improvement body 2 formed in the saturated sand layer G2 undergoes almost no volume change after repeated shearing, and vertical deformation of the soil improvement body 2 is suppressed. Therefore, even if the saturated sand layer G2 is liquefied by the ground improvement body 2, the structure 10 is supported from below, so that the subsidence and the heterogeneous subsidence of the structure 10 can be suppressed.

また、本実施の形態では、構造物10の下方領域において部分的に柱状改良部2Aを設けることで、飽和砂層G2による繰返し特性と、地盤改良体2による繰返し軟化特性とを併せた挙動(つまり、図3と図4に示す履歴特性)が顕著に表れ、優れた免震効果を発揮することができる。   Further, in the present embodiment, the columnar improvement portion 2A is partially provided in the lower region of the structure 10, so that the behavior that combines the repeated characteristics of the saturated sand layer G2 and the repeated softening characteristics of the ground improvement body 2 (that is, , The hysteresis characteristics shown in FIGS. 3 and 4 are remarkably exhibited, and an excellent seismic isolation effect can be exhibited.

このように本実施の形態の液状化免震構造によれば、低コストで簡単な施工により、液状化による免震効果と沈下や不同沈下を抑制する効果とをバランスよく発揮することができ、さらに構造的な安定性を確保することができる。   Thus, according to the liquefaction seismic isolation structure of the present embodiment, by low cost and simple construction, seismic isolation effect due to liquefaction and the effect of suppressing subsidence or differential subsidence can be exerted in a balanced manner, Furthermore, structural stability can be secured.

(第2の実施の形態)
図5および図6に示すように、第2の実施の形態による液状化免震構造1Aは、支持層6(支持地盤)と、支持層6上に支持される構造物10の周囲に間隔をあけて全周にわたって設けられた側壁3と、支持層6および側壁3によって囲まれた領域(以下、ピット部5という)に飽和砂が打設された飽和砂層4(液状化層)と、を備えている。
ここで、支持層6の上層には、軟弱地盤Gが設けられている。
(Second embodiment)
As shown in FIG. 5 and FIG. 6, the liquefaction seismic isolation structure 1A according to the second embodiment has a space around the support layer 6 (support ground) and the structure 10 supported on the support layer 6. A side wall 3 which is opened over the entire circumference and a saturated sand layer 4 (liquefied layer) in which saturated sand is cast in a region surrounded by the support layer 6 and the side wall 3 (hereinafter referred to as a pit portion 5) are provided. I have it.
Here, on the upper layer of the support layer 6, the soft ground G is provided.

支持層6を形成する固い地盤は、固い粘土、岩盤、密な砂、化学的改良地盤等の支持地盤が対象となる。
構造物10は、支持層6の上面6aとの間に飽和砂層4の一部が介在された状態で配置されている。
The solid ground forming the support layer 6 is a solid ground such as hard clay, rock, dense sand, chemically improved ground, or the like.
The structure 10 is arranged such that a part of the saturated sand layer 4 is interposed between the structure 10 and the upper surface 6 a of the support layer 6.

側壁3は、軟弱地盤Gに対して支持層6に到達するまで打設されたシートパイル、ソイルセメント壁、鉄筋コンクリート(RC)壁等による山留め、或いは擁壁などの止水機能を有するものが採用される。側壁3の種類、構成、強度は、構造物10の荷重、形状、軟弱地盤Gの地盤条件などに応じて、適宜設定される。つまり、地盤Gと飽和砂層4からなる地盤との土圧の差を支持できる構造であることが好ましい。また、側壁3の高さ(ピット部5の深さ)は、ピット部5に設定量の飽和砂層4を打設可能であれば良く、任意に設定することができる。
側壁3は、軟弱地盤Gの土圧を受けもつと共に、地下水がピット部5内に流入することを防止する機能を備えている。具体的にピット部5には、必要に応じて防水シート(図示省略)を埋設する等の止水機能を設けることができる。
The side wall 3 has a water blocking function such as a sheet pile, a soil cement wall, a reinforced concrete (RC) wall or the like piled up to reach the support layer 6 for the soft ground G, or a retaining wall. To be done. The type, configuration, and strength of the side wall 3 are appropriately set according to the load and shape of the structure 10, the ground conditions of the soft ground G, and the like. That is, it is preferable that the structure can support the difference in earth pressure between the ground G and the ground formed of the saturated sand layer 4. Further, the height of the side wall 3 (depth of the pit portion 5) may be arbitrarily set as long as the set amount of the saturated sand layer 4 can be placed in the pit portion 5, and can be arbitrarily set.
The side wall 3 has a function of receiving the earth pressure of the soft ground G and preventing groundwater from flowing into the pit portion 5. Specifically, the pit portion 5 may be provided with a waterproof function such as embedding a waterproof sheet (not shown) as needed.

ピット部5に打設されて形成される飽和砂層4は、例えば珪砂等で粒径を揃えた砂を適用することができ、飽和度が95%以上となる飽和状態に設定され、相対密度が20〜50%の飽和砂(正のダイレイタンシーが起きない砂)が使用されている。
側壁3は、常時は、飽和砂層4が固体の状態を保っているので安定している。常時は、構造物10のフローティング効果による支持力の増加が期待できる構成となっている。また、地震時には、容易に液体化して、比重が約2.0の液体となる。その結果、水に比べて浮力が大きく、構造物直下の飽和砂層4で液状化し易くなり、免震効果を高めることができる。
For the saturated sand layer 4 formed by being cast in the pit portion 5, for example, sand having a uniform particle size such as silica sand can be applied, and the saturation degree is set to 95% or more, and the relative density is set. 20-50% of saturated sand (sand without positive dilatancy) is used.
The side wall 3 is stable because the saturated sand layer 4 always maintains a solid state. At any time, the structure can be expected to increase the supporting force due to the floating effect of the structure 10. Also, in the event of an earthquake, it easily liquefies into a liquid with a specific gravity of about 2.0. As a result, the buoyancy is larger than that of water, and the saturated sand layer 4 immediately below the structure is easily liquefied, and the seismic isolation effect can be enhanced.

飽和砂層4には、構造物10の下方の領域(図6に示す二点鎖線)において、飽和砂層4の層厚範囲の全体にわたって薬液注入によって地盤改良された地盤改良体2が形成されている。地盤改良体2は、符号2Aで示すような角柱状または円柱状に形成され、この柱状改良部2Aが上述した第1の実施の形態と同様に平面視で縦横に間隔をあけて複数設けられている。これら柱状改良部2Aの水平断面の寸法や間隔などの構成については適宜設定可能である。また、柱状改良部2Aの深度方向の寸法(高さ寸法)は、構造物10の下面10aから支持層6の上面6aまでの層厚全体となっている。   In the area below the structure 10 (two-dot chain line shown in FIG. 6) in the saturated sand layer 4, the ground improvement body 2 in which the ground is improved by chemical solution injection is formed over the entire layer thickness range of the saturated sand layer 4. .. The ground improvement body 2 is formed in a prismatic shape or a columnar shape as indicated by reference numeral 2A, and a plurality of the columnar improvement portions 2A are provided at intervals in the vertical and horizontal directions in a plan view as in the first embodiment described above. ing. The configuration of the horizontal cross-section of these columnar improvement portions 2A, such as the size and spacing, can be set as appropriate. The dimension (height dimension) in the depth direction of the columnar improved portion 2A is the entire layer thickness from the lower surface 10a of the structure 10 to the upper surface 6a of the support layer 6.

飽和砂層4は、構造物10の構築後において適宜な管理手段によって高さ管理されることが好ましく、例えばセンサを用いて制御する等、周知の技術を採用することができる。
なお、飽和砂層4の飽和状態の管理方法としては、砂層表面の乾燥をモニタリングする等の方法を採用することができる。
The height of the saturated sand layer 4 is preferably managed by an appropriate management means after the structure 10 is constructed, and well-known techniques such as control using a sensor can be adopted.
As a method of managing the saturated state of the saturated sand layer 4, a method such as monitoring the dryness of the surface of the sand layer can be adopted.

飽和砂層4の高さ(上面位置)は、地下水位と同等か、あるいは飽和砂層4の上面4aよりも上に位置するように設定されている。
なお、飽和砂層4の上面4aが地下水位以下となる場合には、支持層6および側壁3に止水性(非透水性)は不要である。また、地下水位が飽和砂層4の上面4aより低く、かつ飽和砂層4の下面(支持層6の上面6a)より高い場合には、支持層6は止水性が不要であり、側壁3には止水性がなくても良いが、止水性を有する方が好ましい。さらに、飽和砂層4の下面(支持層6の上面6a)が地下水位より高い場合には、支持層6及び側壁3ともに止水性を有する方が好ましい。
The height (upper surface position) of the saturated sand layer 4 is set to be equal to the groundwater level or higher than the upper surface 4a of the saturated sand layer 4.
When the upper surface 4a of the saturated sand layer 4 is below the groundwater level, the support layer 6 and the side wall 3 do not need to be waterproof (non-permeable). When the groundwater level is lower than the upper surface 4a of the saturated sand layer 4 and higher than the lower surface of the saturated sand layer 4 (upper surface 6a of the supporting layer 6), the supporting layer 6 does not need water stopping and the side wall 3 does not need to stop. Although it does not need to be water-based, it is preferable to have water-stopping property. Furthermore, when the lower surface of the saturated sand layer 4 (upper surface 6a of the support layer 6) is higher than the groundwater level, it is preferable that both the support layer 6 and the side wall 3 have water stopping properties.

ピット部5内において構造物10と側壁3との水平方向の離間寸法は、地震により構造物10と側壁3とが水平方向に相対移動が生じた場合に互いに接触しない十分な寸法に決められている。   The distance between the structure 10 and the side wall 3 in the pit 5 in the horizontal direction is determined to be a sufficient size so that the structure 10 and the side wall 3 do not come into contact with each other when the structure 10 and the side wall 3 relatively move in the horizontal direction due to an earthquake. There is.

このように第2の実施の形態では、支持層6および側壁3によって囲まれたピット部5に飽和砂層4が設けられており、構造物10に浮力が作用するので、構造物10の接地圧が小さくなり液状化が生じ易くなる。そして、液状化後には、飽和砂層4が沈下するが、構造物10の下方に形成されている地盤改良体2によって構造物10が支持されるので、構造物10の沈下や不同沈下を抑制することができる。
また、飽和砂層4の液状化後であっても、飽和砂層4の飽和砂がピット部5外に流出、移動することがなくなり、構造物10の下面10aと支持層6との間の隙間に液状化した砂が回り込んでくる。そのため、構造物10の下方に隙間が生じることがなく、地震終了後も構造物10が安定して支持され、構造的な安定性を継続することができる。
As described above, in the second embodiment, the saturated sand layer 4 is provided in the pit portion 5 surrounded by the support layer 6 and the side wall 3, and the buoyancy acts on the structure 10. Therefore, the ground pressure of the structure 10 is reduced. Becomes smaller and liquefaction is more likely to occur. Then, after the liquefaction, the saturated sand layer 4 sinks, but since the structure 10 is supported by the ground improvement body 2 formed below the structure 10, the settlement of the structure 10 and the differential settlement are suppressed. be able to.
Further, even after the liquefaction of the saturated sand layer 4, the saturated sand of the saturated sand layer 4 does not flow out and move to the outside of the pit portion 5, and the gap between the lower surface 10 a of the structure 10 and the support layer 6 is prevented. Liquefied sand comes around. Therefore, no gap is formed below the structure 10, the structure 10 is stably supported even after the earthquake ends, and the structural stability can be continued.

以上、本発明による液状化免震構造の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   Although the embodiments of the liquefaction-based seismic isolation structure according to the present invention have been described above, the present invention is not limited to the above-mentioned embodiments, and can be appropriately modified without departing from the spirit of the present invention.

例えば、本実施の形態では、液状化層に設けられる地盤改良体2として、複数の柱状改良部2Aを平面視で縦横に配置した構成としているが、これに限定されることはなく、他の配置パターンを採用することも可能である。例えば、図7に示す第1変形例のように、構造物10の下方領域(図7の二点鎖線)において、平面視で外周部のみを地盤改良した外周改良部2Bであってもよい。また、図8に示す第2変形例のように、上記第1変形例の外周改良部2Bに加え、その内側に格子状に地盤改良した格子状改良部2Cを形成してもよい。さらに、図9に示す第3変形例のように、構造物10の下方領域(図9の二点鎖線)において、平面視で角部のみをL字状に地盤改良した角部改良部2Dとすることも可能である。さらにまた、地盤改良体は、構造物10の下方領域において平面視で部分的に配置することに限らず、図示しないが前記下方領域の全面にわたって設けられていても勿論かまわない。   For example, in the present embodiment, as the ground improvement body 2 provided in the liquefaction layer, a plurality of columnar improvement portions 2A are arranged vertically and horizontally in a plan view, but the present invention is not limited to this and other It is also possible to adopt an arrangement pattern. For example, as in the first modified example shown in FIG. 7, in the lower region (two-dot chain line in FIG. 7) of the structure 10, only the outer peripheral portion in the plan view may be the outer peripheral improved portion 2B in which the ground is improved. Further, as in a second modified example shown in FIG. 8, in addition to the outer circumference improved section 2B of the first modified example, a grid improved section 2C in which a ground is improved in a grid may be formed inside thereof. Further, as in the third modified example shown in FIG. 9, in the lower region (two-dot chain line in FIG. 9) of the structure 10, only the corner portion is improved into a L-shaped corner improving portion 2D in plan view. It is also possible to do so. Furthermore, the ground improvement body is not limited to being partially arranged in the lower region of the structure 10 in a plan view, but of course, it may be provided over the entire surface of the lower region although not shown.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。   In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the spirit of the present invention.

1、1A 液状化免震構造
2 地盤改良体
3 側壁
4 飽和砂層(液状化層)
5 ピット部
6 支持層(支持地盤)
10 構造物
G 軟弱地盤
G1 第1非液状化層
G2 飽和砂層(液状化層)
G3 第2非液状化層
G4 支持層
1, 1A Liquefaction seismic isolation structure 2 Ground improvement body 3 Side wall 4 Saturated sand layer (liquefaction layer)
5 Pit area 6 Support layer (support ground)
10 Structure G Soft ground G1 First non-liquefied layer G2 Saturated sand layer (liquefied layer)
G3 Second non-liquefied layer G4 Support layer

Claims (3)

構造物の免震基礎構造として用いられる液状化免震構造であって、
液状化層の上方に前記構造物が設けられ、
前記構造物の下方領域における前記液状化層には、上下方向の全体にわたって地盤改良体が形成され、
前記地盤改良体は、砂に特殊シリカ系薬剤を浸透させたものが使用され、前記液状化層の上層面から下層面までの層厚全体の高さ寸法で設けられ、
地震時に、前記液状化層の繰返し特性と、前記地盤改良体の繰返し軟化特性とを併せた挙動を示すことを特徴とする液状化免震構造。
A liquefaction base isolation structure used as a base isolation structure for structures,
The structure is provided above the liquefied layer,
The liquefaction layer in the lower region of the structure, a ground improvement body is formed over the entire vertical direction,
The ground improvement body, which is obtained by infiltrating a special silica-based agent into sand is used, and is provided with a height dimension of the entire layer thickness from the upper layer surface to the lower layer surface of the liquefied layer,
A liquefaction seismic isolation structure characterized by exhibiting a behavior that combines the repeated characteristics of the liquefied layer and the repeated softening characteristics of the ground improvement body during an earthquake.
支持地盤上に、前記液状化層を介して前記構造物が設けられ、
前記構造物の周囲に間隔をあけて全周にわたって側壁が設けられ、
前記支持地盤および前記側壁によって囲まれた領域に、飽和状態に設定された飽和砂が打設された前記液状化層が形成されていることを特徴とする請求項1に記載の液状化免震構造。
On the support ground, the structure is provided via the liquefaction layer,
Side walls are provided around the entire structure at intervals around the structure,
The liquefaction isolation system according to claim 1, wherein the liquefaction layer in which saturated sand set to a saturated state is cast is formed in a region surrounded by the support ground and the side wall. Construction.
前記地盤改良体は、前記構造物の下方領域における一部に設けられていることを特徴とする請求項1又は2に記載の液状化免震構造。   The liquefaction seismic isolation structure according to claim 1 or 2, wherein the ground improvement body is provided in a part of a lower region of the structure.
JP2015156214A 2015-08-06 2015-08-06 Liquefaction seismic isolation structure Active JP6691751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015156214A JP6691751B2 (en) 2015-08-06 2015-08-06 Liquefaction seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156214A JP6691751B2 (en) 2015-08-06 2015-08-06 Liquefaction seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2017036537A JP2017036537A (en) 2017-02-16
JP6691751B2 true JP6691751B2 (en) 2020-05-13

Family

ID=58048362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156214A Active JP6691751B2 (en) 2015-08-06 2015-08-06 Liquefaction seismic isolation structure

Country Status (1)

Country Link
JP (1) JP6691751B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112160348A (en) * 2020-09-04 2021-01-01 南京理工大学 Vertical shock insulation method for water target track

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953248A (en) * 1995-08-14 1997-02-25 Takenaka Komuten Co Ltd Structure coping with great earthquake
JP4824441B2 (en) * 2006-03-14 2011-11-30 株式会社竹中工務店 Seismic isolation structure and seismic isolation device
JP5013948B2 (en) * 2006-07-05 2012-08-29 ケミカルグラウト株式会社 Building foundation construction method

Also Published As

Publication number Publication date
JP2017036537A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP2012007410A (en) Reinforcement structure for structure of rectangular cross section
US8696250B2 (en) Backfill system for retaining wall
JP6357323B2 (en) Liquefaction countermeasure structure and its construction method
JP6007092B2 (en) Ground liquefaction countermeasure structure using structural load
JP2007321402A (en) Stress reducing structure for foundation pile, and stress reducing method
JP6691751B2 (en) Liquefaction seismic isolation structure
JP6238088B2 (en) Improved ground and ground improvement method
JP5480682B2 (en) Liquefaction countermeasure structure
JP5822201B2 (en) Basic structure of the structure
JP5877482B2 (en) Structure for reducing liquefaction damage of structures
JP5071852B2 (en) Structure subsidence suppression structure
JP2013155559A (en) Liquefaction damage reducing structure for construction
JP5282965B2 (en) Structure liquefaction countermeasure structure and structure liquefaction countermeasure construction method
Wang et al. Differential uplift and settlement between inner column and diaphragm wall in top-down excavation
CN205224085U (en) Add floor retaining wall
US9416515B2 (en) Device and method for keeping humidity/water away from concrete foundations and provide insulation
JP2006342666A (en) Method for antiseismic reinforcement of structure
JP5396196B2 (en) building
JP6017302B2 (en) Construction and its construction method
JP5983436B2 (en) Gravity breakwater
JP6043574B2 (en) Caisson method
JP6590767B2 (en) Liquefaction countermeasure method
JP2007239390A (en) Differential settlement suppressing structure
JP2010163771A (en) Structure and construction method for coping with liquefaction of structure
JP2010209528A (en) Lateral flow countermeasure structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6691751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150