JPH09177370A - Vibration isolation structure - Google Patents

Vibration isolation structure

Info

Publication number
JPH09177370A
JPH09177370A JP7341317A JP34131795A JPH09177370A JP H09177370 A JPH09177370 A JP H09177370A JP 7341317 A JP7341317 A JP 7341317A JP 34131795 A JP34131795 A JP 34131795A JP H09177370 A JPH09177370 A JP H09177370A
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation structure
plates
plate
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7341317A
Other languages
Japanese (ja)
Inventor
Koji Kubo
孝治 久保
Isao Hagiwara
萩原  勲
Yoshihide Fukahori
美英 深堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP7341317A priority Critical patent/JPH09177370A/en
Publication of JPH09177370A publication Critical patent/JPH09177370A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/022Bearing, supporting or connecting constructions specially adapted for such buildings and comprising laminated structures of alternating elastomeric and rigid layers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0235Anti-seismic devices with hydraulic or pneumatic damping
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/14Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against other dangerous influences, e.g. tornadoes, floods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Abstract

PROBLEM TO BE SOLVED: To provide a structure having an effect on an eathquake and excellent vibration-isolation performance not subject to an effect by a wind shaking, etc., at the normal time and superior durability. SOLUTION: This vibration isolation structure has a composite laminate, in which a plurality of hard plates 16 having rigidity and soft plates 18 having viscoelastic properties are alternately laminated respectively, between an upper face plate 12 and an underside plate 14. The structure has at least two piston- shaped viscous dampers 24, which are placed outside the composite laminate and in which both ends of each damper 24 are connected to the upper and lower face plates 12, 14 by connecting means capable of following the deformation at 360 of ball joints 22, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は免震装置に係り、大
型のビルのみならず、特に風揺れ等の影響を受けやすい
戸建住宅等の軽負荷用としても好適に使用しうる免震装
置に用いられる免震構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation device, which can be suitably used not only for a large building but also for a light load of a detached house which is particularly susceptible to wind sway or the like. It relates to the seismic isolation structure used for.

【0002】[0002]

【従来の技術】従来、複数個の鋼板等の剛性を有した硬
質板と、粘弾性的性質を有したゴム等の軟質板とを交互
に積層した免震構造体が、中層、低層のビルや橋梁等の
免震装置のゴム支承片として広く用いられている。この
ような免震構造体の軟質板を構成するゴム等の弾性体
は、下記のようなばね特性を有するように設計されるの
が一般である。即ち、ゴム等の弾性体の横ばね定数KH
、搭載質量をMとして、水平方向の固有振動数fH は
次の条件を満たすように設計する。
2. Description of the Related Art Conventionally, seismic isolation structures in which a plurality of rigid hard plates such as steel plates and soft plates such as rubber having viscoelastic properties are alternately laminated are used for middle and low-rise buildings. It is widely used as a rubber support piece for seismic isolation devices such as bridges and bridges. An elastic body such as rubber constituting a soft plate of such a seismic isolation structure is generally designed to have the following spring characteristics. That is, the lateral spring constant KH of an elastic body such as rubber
, And the mounted mass is M, the horizontal natural frequency fH is designed to satisfy the following conditions.

【0003】[0003]

【数1】 [Equation 1]

【0004】この固有振動数fH は、建物や橋梁などの
重量と、ゴムなどの弾性体の横ばね定数KH との比で決
まるので、ビルや橋梁など搭載重量Mの大きいものの免
震装置の軟質板を構成する弾性体はばね剛性の大きい材
料、高弾性材料が用いられることが一般的である。ま
た、免震構造体の積層部分に鉛等の塑性物を併用したも
のが一般的に用いられていた。
Since the natural frequency fH is determined by the ratio of the weight of a building or bridge to the lateral spring constant KH of an elastic body such as rubber, the seismic isolation device is flexible even if the building or bridge has a large loading weight M. As the elastic body forming the plate, a material having a high spring rigidity or a highly elastic material is generally used. In addition, a structure in which a plastic material such as lead is used together in the laminated portion of the base isolation structure is generally used.

【0005】このような、例えば、鉛を併用した免震構
造体は、低歪みにおける高弾性及び高歪みにおける低弾
性と、高減衰性とを合わせ持つので、地震や交通振動、
風揺れなどに効果を発揮することができる。しかしなが
ら、剪断歪み200%にも及ぶ大きな地震の場合は、免
震の効果は発揮できるものの、高い剪断歪みや歪み応力
により内部に用いた鉛等の塑性物が大きく塑性変型した
り、切断破壊されてしまう虞があり、特に建造物に用い
た場合には免震構造体のみを交換することができないた
め、大きな地震等の振動をうけた後においても継続使用
しうる、より高い耐久性を有する免震構造体が要望され
ていた。
[0005] Such a seismic isolation structure using lead in combination, for example, has both high elasticity at low strain and low elasticity at high strain, and high damping properties.
It can be effective against wind sway. However, in the case of a large earthquake with a shear strain of up to 200%, the effect of seismic isolation can be exhibited, but due to the high shear strain and strain stress, the plastic material such as lead used inside is greatly plastically deformed or cut and fractured. Since it is not possible to replace only the seismic isolation structure when it is used in buildings, it has higher durability that can be used continuously even after it is subjected to vibration such as a large earthquake. A seismic isolation structure was requested.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来の技術に鑑みてなされたものであり、免震装置をビ
ルや橋梁等の重量物のみならず、戸建住宅用等の軽量物
に適用した場合にも高性能で、且つ、塑性変型や切断破
壊のない耐久性に優れた免震構造体の提供を目的とする
ものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional techniques, and the seismic isolation device is not only used for heavy objects such as buildings and bridges but also lightweight for detached houses. An object of the present invention is to provide a seismic isolation structure that has high performance even when applied to an object and has excellent durability without plastic deformation or cutting fracture.

【0007】[0007]

【課題を解決するための手段】本発明の免震構造体は、
上下の面板の間に剛性を有した硬質板と粘弾性的性質を
有した軟質板とを、それぞれ複数個、交互に積層した複
合積層体と、該複合積層体の外側に位置し、上下の面板
にそれぞれの両端が連結された少なくとも2個のダンパ
ーとを、備えたことを特徴とする。
The seismic isolation structure of the present invention comprises:
A composite laminate in which a hard plate having rigidity and a soft plate having viscoelastic properties are alternately laminated between the upper and lower face plates, respectively, and a composite laminate located outside the composite laminate, At least two dampers, both ends of which are connected to the face plate, are provided.

【0008】このダンパーは、シリンダー中に空気又は
粘性流体を有してなるピストン状の粘性ダンパーであ
り、さらに、ダンパーと上下の面板とが、ボールジョイ
ントで連結されていることを特徴とする。
This damper is a piston-like viscous damper having air or a viscous fluid in a cylinder, and is further characterized in that the damper and the upper and lower face plates are connected by a ball joint.

【0009】[0009]

【発明の実施の形態】本発明の免震構造体の粘弾性的性
質を有した軟質板に用いられる材料とは、50%モジュ
ラスが1.5〜10kgf/cm2 、25℃における動
的剪断弾性率Gが、1.5〜10kgf/cm2 の特性
を有するものを指し、50%モジュラスが2〜8kgf
/cm2 、動的剪断弾性率Gが、2〜8kgf/cm2
のものが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The material used for the soft plate having the viscoelasticity of the seismic isolation structure of the present invention is a material having a 50% modulus of 1.5 to 10 kgf / cm 2 and a dynamic shear at 25 ° C. An elastic modulus G indicates a property of 1.5 to 10 kgf / cm 2 , and a 50% modulus is 2 to 8 kgf.
/ Cm 2 , dynamic shear modulus G is 2 to 8 kgf / cm 2
Are preferred.

【0010】各種材料の50%モジュラス及び動的剪断
弾性率Gは、例えば、JIS K6301、K6394
に準拠して測定することができる。
The 50% modulus and the dynamic shear modulus G of various materials are, for example, JIS K6301, K6394.
It can be measured according to.

【0011】ここで、粘弾性的性質を有する材料として
は、熱可塑ゴム、ウレタンゴム、各種の加硫ゴム、未加
硫ゴム、微架橋ゴム、プラスチックス等の有機材料、こ
れらの発泡体、アスファルト、粘土等の無機材料、これ
らの混合材料など各種の材料であって、上記粘弾性的性
質を有するものを用いることができる。
Here, examples of the material having viscoelastic properties include organic materials such as thermoplastic rubber, urethane rubber, various vulcanized rubbers, unvulcanized rubbers, slightly crosslinked rubbers and plastics, foams thereof, Various materials such as inorganic materials such as asphalt and clay, and mixed materials thereof having the above viscoelastic properties can be used.

【0012】これらの材料は、平板状に成形され、軟質
板として用いられる。軟質板の形状やサイズには特に制
限はなく、所望の免震性能に適合するように適宜選択さ
れる。通常は、所謂円柱状のものが使用され、個々の軟
質板は円板状の形状を有する。軟質板の厚みは、一般に
は、重量物に用いる場合には、5〜10mm、軽量物に
用いる場合には、1〜4mm程度の厚みのものが使用さ
れる。
These materials are molded into a flat plate and used as a soft plate. The shape and size of the soft plate are not particularly limited, and are appropriately selected so as to meet the desired seismic isolation performance. Usually, a so-called columnar one is used, and each soft plate has a disc shape. The thickness of the soft plate is generally 5 to 10 mm when it is used for heavy objects, and about 1 to 4 mm when it is used for lightweight objects.

【0013】これらの材料は単独で用いても、複数種を
混合して用いてもよく、全体が均一な材料で形成されて
いてもよいが、内側部分に高ダンピング材料、外側部分
にクリープ性能の良くかつ柔らかい材料等と二種類以上
を組み合わせて使用してもよい。
These materials may be used alone or as a mixture of two or more kinds, and may be formed of a uniform material as a whole, but a high damping material is used for the inner part and creep performance is used for the outer part. You may use it in combination of 2 or more types with a good and soft material.

【0014】本発明の軟質板の材料としては、各種の加
硫ゴム、熱可塑ゴム、ウレタンゴムなどで前記好ましい
特性を有するものを用いることができる。また、軟質板
の内側部分としては、各種の加硫ゴム、未加硫ゴム、微
架橋ゴム、プラスチックス等の有機材料、これらの発泡
体、アスファルト、粘土等の無機材料、これらの混合材
料など各種の物を用いることができる。
As the material of the soft plate of the present invention, various vulcanized rubbers, thermoplastic rubbers, urethane rubbers and the like having the above-mentioned preferable properties can be used. Further, as the inner portion of the soft plate, various vulcanized rubbers, unvulcanized rubbers, slightly cross-linked rubbers, organic materials such as plastics, foams thereof, inorganic materials such as asphalt and clay, mixed materials thereof, etc. Various things can be used.

【0015】また、本発明の免震構造体における硬質板
としては、金属、セラミックス、プラスチックス、FR
P、ポリウレタン、木材、紙板、スレート板、化粧板等
所要の剛性を有する各種の材料を使用することができ
る。ここで、所要の剛性とは、設計条件により大きく変
わるが、剪断変型した特許、座屈現象が生じにくい剛性
を意味する。
Further, as the hard plate in the seismic isolation structure of the present invention, metal, ceramics, plastics, FR
Various materials having required rigidity, such as P, polyurethane, wood, paper board, slate board, decorative board, etc., can be used. Here, the required rigidity means a rigidity of a patent with shear deformation or a buckling phenomenon, although it varies greatly depending on design conditions.

【0016】硬質板の厚み、形状には特に制限はなく、
使用される材料及び所望の免震性能によって選択できる
が、その厚みは、一般には、重量物に用いる場合には、
2〜4mm、軽量物に用いる場合には、0.5〜2mm
程度の厚みのものが使用される。また、形状は、積層さ
れる軟質板と同様、任意であるが、通常は、併用する軟
質板と同じ形状のものを用い、円板状のものが一般的で
ある。
There is no particular limitation on the thickness and shape of the hard plate,
It can be selected depending on the material used and the desired seismic isolation performance, but its thickness is generally
2 to 4 mm, 0.5 to 2 mm when used for lightweight items
It is of a moderate thickness. The shape is arbitrary, like the laminated soft plates, but usually the same shape as the soft plate used together is used, and a disk-shaped one is common.

【0017】前記軟質板と硬質板とを交互に複数段積層
して複合積層体を構成するものである。軟質板及び硬質
板、それぞれの形状、面積及び厚さは前記した如く要求
される免震性能によって異なるが、通常は、複合積層体
は前記した如く円柱状を示し、軟質板及び硬質板両者の
形状が同じ円板状をなし、且つ、表面積も同じであるも
のが汎用されている。
A plurality of layers of the soft plate and the hard plate are alternately laminated to form a composite laminate. Although the shape, area and thickness of each of the soft plate and the hard plate differ depending on the seismic isolation performance required as described above, the composite laminate usually has a columnar shape as described above, and both the soft plate and the hard plate have a cylindrical shape. A disk having the same shape and the same surface area is commonly used.

【0018】本発明の免震構造体に耐候性を付与するた
め、前記積層複合体の外側を耐候性の優れた材料で被覆
しても良い。この被覆材料としては、例えば、ブチルゴ
ム、アクリルゴム、ポリウレタン、シリコンゴム、フッ
素ゴム、多硫化ゴム、エチレンプロピレンゴム(ERP
及びEPDM)、クロロスルホン化ポリエチレン、塩素
化ポリエチレン、エチレン酢酸ビニルゴム、クロロプレ
ンゴムなどを用いることができる。これらの材料は単独
でも、二種類以上をブレンドしても良い。また、天然ゴ
ム、イソプレンゴムスチレンブタジエンゴム、ブタジエ
ンゴム、ニトリルゴム等とブレンドしても良い。
In order to impart weather resistance to the seismic isolation structure of the present invention, the outside of the laminated composite may be coated with a material having excellent weather resistance. Examples of the coating material include butyl rubber, acrylic rubber, polyurethane, silicone rubber, fluororubber, polysulfide rubber, ethylene propylene rubber (ERP
And EPDM), chlorosulfonated polyethylene, chlorinated polyethylene, ethylene vinyl acetate rubber, chloroprene rubber and the like can be used. These materials may be used alone or as a blend of two or more. Further, it may be blended with natural rubber, isoprene rubber, styrene-butadiene rubber, butadiene rubber, nitrile rubber and the like.

【0019】本発明の免震構造体において前記積層複合
体の外側に位置し、上下の面板にそれぞれの両端が連結
されて配置されるダンパーは、効果的な減衰性能を示す
ものであれば公知のダンパーはいずれも使用できる。使
用し得るダンパーとしては、構造が簡単で減衰特性に優
れる粘性ダンパーが一般的である。具体的には、例え
ば、ピストン流孔型ダンパー、ピストン−側面すきま型
ダンパー、、ダッシュポット等が挙げられ、中に封入さ
れる流体としては、空気等の気体でも、シリコーン油等
の液体であってもよい。
In the seismic isolation structure of the present invention, a damper which is located outside the laminated composite body and which is arranged by connecting both ends of the upper and lower face plates to each other is known as long as it exhibits effective damping performance. Any of the dampers can be used. As a damper that can be used, a viscous damper having a simple structure and excellent damping characteristics is generally used. Specifically, for example, a piston flow hole type damper, a piston-side clearance type damper, a dash pot, etc. may be mentioned, and the fluid sealed therein may be gas such as air or liquid such as silicone oil. May be.

【0020】これらダンパーの両端を免震構造体の上下
の面板にそれぞれ連結するものであるが、連結の手段と
しては、任意の方向からの振動に対して減衰効果を発現
し得るという観点から、ボールジョイント等の360°
の変型に追随しうる手段を用いることが好ましい。ま
た、同様の観点から、ダンパーは積層複合体の外側の少
なくとも2か所に配置されることが好ましく、4か所に
配置されることがより好ましい。
Both ends of these dampers are respectively connected to the upper and lower face plates of the seismic isolation structure. As a connecting means, a damping effect can be exerted against vibration from any direction, 360 ° for ball joints, etc.
It is preferable to use a means capable of following the modification of From the same viewpoint, the dampers are preferably arranged at at least two positions outside the laminated composite, and more preferably at four positions.

【0021】このダンパーを配置することにより、ダン
パーの応力に対する抵抗力が働き、免震構造体へ減衰性
を付与することができる。従って、クリープ性に優れた
低減衰ゴム材料を用いた積層複合体による免震性能に加
えて、積層複合体外側の複数箇所にダンパーを配置する
ことにより、地震等の大変形に対しても効果的な高減衰
性を達成できる。
By arranging this damper, a resistance force against the stress of the damper works and a damping property can be imparted to the seismic isolation structure. Therefore, in addition to the seismic isolation performance of the laminated composite that uses a low damping rubber material with excellent creep properties, by placing dampers at multiple locations outside the laminated composite, it is effective for large deformation such as earthquakes. High damping property can be achieved.

【0022】本発明の免震構造体は、軟質板及び硬質板
のサイズ、積層枚数、ダンパーの種類や配置数を選択す
ることにより、橋、ビル等の重量物から、戸建住宅の如
き、比較的軽量(軽負荷)物についても、優れた免震性
能を示す免震構造体を得ることができる。ここで、軽負
荷物とは、面圧50kgf/cm2 未満、更には面圧3
0kgf/cm2 以下、更に好ましくは面圧20kgf
/cm2 以下のものを指す。
The seismic isolation structure of the present invention can be selected from heavy objects such as bridges and buildings, to detached houses such as detached houses, by selecting the sizes of soft and hard plates, the number of laminated layers, and the types and arrangements of dampers. It is possible to obtain a seismic isolation structure that exhibits excellent seismic isolation performance even for relatively lightweight (lightly loaded) objects. Here, the light load means a surface pressure of less than 50 kgf / cm 2 , and further a surface pressure of 3
0 kgf / cm 2 or less, more preferably a surface pressure of 20 kgf
/ Cm 2 or less.

【0023】本発明の構成は、免震構造体の上下の面板
の間に剛性を有した硬質板と粘弾性的性質を有した軟質
板とを、それぞれ複数個、交互に積層した複合積層体を
設け、該複合積層体の外側に位置し、上下の面板にそれ
ぞれの両端が連結された少なくとも2個のダンパーと
を、備えてなるものである。
The structure of the present invention is a composite laminate in which a plurality of rigid hard plates and soft plates having viscoelastic properties are alternately laminated between the upper and lower face plates of the seismic isolation structure. And at least two dampers, which are located outside the composite laminate and whose both ends are connected to the upper and lower face plates, respectively.

【0024】地震時などには、この免震構造体に大変形
が加わるが、この剪断変形をダンパーが緩和し、振動が
効果的に減衰され、積層構造体にいわゆる塑性変型を引
き起こす程のダメージが起こることがない。従って、一
度の地震で免震効果が失われることなく、耐久性のある
免震効果を有する。また、クリープ性に優れた低減衰ゴ
ム材料を用いた積層複合体を用いるため、耐久性能が向
上する。
During an earthquake or the like, a large deformation is applied to the base-isolated structure, but the damper absorbs the shear deformation, the vibration is effectively damped, and the laminated structure is damaged to cause so-called plastic deformation. Never happens. Therefore, the seismic isolation effect is not lost in one earthquake, and has a durable seismic isolation effect. Moreover, since the laminated composite body using the low-damping rubber material excellent in creep property is used, the durability performance is improved.

【0025】[0025]

【実施例】以下に本発明を図面を参照して実施例につい
て具体的に説明する。表1に実施例と比較例の条件と試
験結果をまとめて示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. Table 1 collectively shows the conditions and test results of Examples and Comparative Examples.

【0026】(実施例1)図1は本発明の実施例1に係
る免震構造体10の断面図を示している。図1に示す免
震構造体10において、上面板12(鉄板)と下面板1
4(鉄板)の間に硬質板16として外径250mm、厚
さ1.6mmの鋼板30枚、軟質板18として、50%
モジュラスが2.3kgf/cm2 、引張り強度が90
kgf/cm2 、破断時の伸びが760%のゴム材料を
用い、軟質板18(1枚の厚さ2.5mm)を31層用
いた。このゴム材料の剪断歪200%における剪断剛性
(G)は2.0kgf/cm2 、tanδは0.1であ
った。また、この積層複合体の外周を天然ゴム系ゴム材
料を用いた外被ゴム20で被覆した。積層複合体の外側
部に、その両端部がボールジョイント22で、それぞれ
上面板12と下面板14とに連結されたピストン型(側
面すきま型、シリコーン油充填)24を4か所に配置し
て、免震構造体10を得て、実施例1とした。
(Embodiment 1) FIG. 1 is a sectional view of a seismic isolation structure 10 according to Embodiment 1 of the present invention. In the seismic isolation structure 10 shown in FIG. 1, a top plate 12 (iron plate) and a bottom plate 1
Between 4 (iron plates), 30 hard plates 16 having an outer diameter of 250 mm and a thickness of 1.6 mm, and a soft plate 18 of 50%
Modulus 2.3 kgf / cm 2 , tensile strength 90
A rubber material having a kgf / cm 2 and an elongation at break of 760% was used, and 31 layers of the soft plate 18 (one sheet having a thickness of 2.5 mm) were used. The shear rigidity (G) at a shear strain of 200% of this rubber material was 2.0 kgf / cm 2 , and tan δ was 0.1. Further, the outer periphery of this laminated composite was covered with the outer rubber 20 made of a natural rubber type rubber material. Piston type (side clearance type, silicone oil filled) 24, which is connected to the upper plate 12 and the lower plate 14 at both ends by ball joints 22, is arranged at four locations on the outer side of the laminated composite. The seismic isolation structure 10 was obtained and set as Example 1.

【0027】この免震構造体に、荷重10t、振動数f
=0.2Hzの正弦波で剪断歪100%で震動を与えた
時の剪断剛性(G)、tanδを測定した。結果を下記
表1に示した。
With this seismic isolation structure, a load of 10 t and a frequency f
The shear rigidity (G) and tan δ when a vibration was applied with a sine wave of = 0.2 Hz and a shear strain of 100% were measured. The results are shown in Table 1 below.

【0028】また、この積層複合体の外側にダンパー2
4を配置しなかったこと以外は実施例1と同様にして、
免震構造体を作製して比較例1とした。この比較例1の
免震構造体について、実施例1と同様の評価を行い、結
果を下記表1に示した。
Further, the damper 2 is provided outside the laminated composite.
In the same manner as in Example 1 except that 4 was not arranged,
A seismic isolation structure was produced and used as Comparative Example 1. The seismic isolation structure of Comparative Example 1 was evaluated in the same manner as in Example 1, and the results are shown in Table 1 below.

【0029】[0029]

【表1】 [Table 1]

【0030】表1に明らかなごとく、本発明の免震構造
体である実施例1は積層複合体の外側部に振動減衰用の
ダンパーを配置しなかった比較例1の免震構造体に比べ
て、著しく減衰効果が向上していた。
As is apparent from Table 1, Example 1 which is the seismic isolation structure of the present invention is compared with the seismic isolation structure of Comparative Example 1 in which the damper for vibration damping is not arranged on the outer side of the laminated composite body. The damping effect was significantly improved.

【0031】また、この結果をみるに、剪断剛性(G)
が2.5kgf/cm2 、tanδが0.3という数値
は、例えば、戸建用免震構造体として十分なレベルであ
ることが確認された。
Further, looking at this result, the shear rigidity (G)
It was confirmed that the numerical values of 2.5 kgf / cm 2 and tan δ of 0.3 are, for example, sufficient levels for a seismic isolation structure for a detached house.

【0032】図2は免震構造体10に大変形が加わった
場合の断面図を示している。図2に示すように、積層複
合体の外側の4か所に設けられたダンパーが免震構造体
10に振動減衰性を付与しうるため、地震等の場合にお
いても、高減衰性を発揮しうることがわかる。
FIG. 2 shows a sectional view in the case where a large deformation is applied to the seismic isolation structure 10. As shown in FIG. 2, since the dampers provided at four places outside the laminated composite can impart the vibration damping property to the base isolation structure 10, high damping property is exhibited even in the case of an earthquake or the like. I know you can get it.

【0033】[0033]

【発明の効果】以上の説明から明らかなごとく、本発明
の免震構造体は、ビルや橋梁等の重量物のみならず、戸
建住宅用等の軽重量物に適用した場合にも高性能で、且
つ、塑性変型や切断破壊がなく、耐久性に優れた免震構
造体を得ることができた。
As is apparent from the above description, the seismic isolation structure of the present invention has high performance when applied to not only heavy objects such as buildings and bridges but also light objects such as detached houses. In addition, it was possible to obtain a seismic isolation structure having excellent durability without plastic deformation or cutting fracture.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1に係る免震構造体の断面図
である。
FIG. 1 is a cross-sectional view of a seismic isolation structure according to a first embodiment of the present invention.

【図2】 実施例1に係る免震構造体に大変形が加わっ
た場合の断面図である。
FIG. 2 is a cross-sectional view when a large deformation is applied to the seismic isolation structure according to the first embodiment.

【符号の説明】[Explanation of symbols]

10:免震構造体 12:上面板(鉄板) 14:下面板(鉄板) 16:硬質板 18:軟質板 20:外被ゴム 22:ボールジョイント 24:ダンパー 10: Seismic isolation structure 12: Top plate (iron plate) 14: Bottom plate (iron plate) 16: Hard plate 18: Soft plate 20: Outer rubber 22: Ball joint 24: Damper

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上下の面板の間に、剛性を有した硬質板
と粘弾性的性質を有した軟質板とを、それぞれ複数個、
交互に積層した複合積層体と、 該複合積層体の外側に位置し、上下の面板にそれぞれの
両端が連結された少なくとも2個のダンパーとを、 備えたことを特徴とする免震構造体。
1. A plurality of hard plates having rigidity and a plurality of soft plates having viscoelastic properties are provided between the upper and lower face plates, respectively.
A seismic isolation structure comprising: a composite laminate that is alternately laminated; and at least two dampers that are located outside the composite laminate and that are connected to upper and lower face plates at both ends thereof.
【請求項2】 前記ダンパーが、シリンダー中に空気又
は粘性流体を有してなるピストン状の粘性ダンパーであ
ることを特徴とする請求項1記載の免震構造体。
2. The seismic isolation structure according to claim 1, wherein the damper is a piston-like viscous damper having air or viscous fluid in a cylinder.
【請求項3】 前記ダンパーと上下の面板とが、ボール
ジョイントで連結されたことを特徴とする請求項2に記
載の免震構造体。
3. The seismic isolation structure according to claim 2, wherein the damper and the upper and lower face plates are connected by a ball joint.
JP7341317A 1995-12-27 1995-12-27 Vibration isolation structure Pending JPH09177370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7341317A JPH09177370A (en) 1995-12-27 1995-12-27 Vibration isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7341317A JPH09177370A (en) 1995-12-27 1995-12-27 Vibration isolation structure

Publications (1)

Publication Number Publication Date
JPH09177370A true JPH09177370A (en) 1997-07-08

Family

ID=18345128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7341317A Pending JPH09177370A (en) 1995-12-27 1995-12-27 Vibration isolation structure

Country Status (1)

Country Link
JP (1) JPH09177370A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255767A (en) * 2009-04-27 2010-11-11 Ihi Corp Three-dimensional base isolation device
CN104404865A (en) * 2014-11-26 2015-03-11 成都市新筑路桥机械股份有限公司 U-shaped damper bearing type vibration absorbing structure
CN109281418A (en) * 2018-11-14 2019-01-29 辽宁工业大学 A kind of compound multistage re-centring damper
CN109594670A (en) * 2018-12-07 2019-04-09 东南大学 A kind of bionical multi-dimensional shock absorption device with anti-pull-out property and its every shock-dampening method
JP2019073925A (en) * 2017-10-17 2019-05-16 株式会社大林組 Structure and vibration control method of structure
CN111305387A (en) * 2019-12-26 2020-06-19 中国建筑股份有限公司 Compression-shear separation type variable-rigidity rubber support and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255767A (en) * 2009-04-27 2010-11-11 Ihi Corp Three-dimensional base isolation device
CN104404865A (en) * 2014-11-26 2015-03-11 成都市新筑路桥机械股份有限公司 U-shaped damper bearing type vibration absorbing structure
JP2019073925A (en) * 2017-10-17 2019-05-16 株式会社大林組 Structure and vibration control method of structure
CN109281418A (en) * 2018-11-14 2019-01-29 辽宁工业大学 A kind of compound multistage re-centring damper
CN109594670A (en) * 2018-12-07 2019-04-09 东南大学 A kind of bionical multi-dimensional shock absorption device with anti-pull-out property and its every shock-dampening method
CN111305387A (en) * 2019-12-26 2020-06-19 中国建筑股份有限公司 Compression-shear separation type variable-rigidity rubber support and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4899323A (en) Anti-seismic device
US4923034A (en) Vibration-controlling member
JPH0868234A (en) Seismic isolator
JP2615639B2 (en) Seismic isolation structure
JP2855605B2 (en) Seismic isolation device
JPH01190847A (en) Vibration-proof rubber
JPH09177370A (en) Vibration isolation structure
JP4994338B2 (en) Seismic isolation structure and manufacturing method thereof
JPH09177367A (en) Base insulation structure
JP5124108B2 (en) Damping material
JP4413344B2 (en) Soundproof floor structure
JP2570341B2 (en) Seismic isolation structure
JP2615626B2 (en) Seismic isolation structure
JPS6283139A (en) Earthquakeproof structure
JPH08260753A (en) Base isolation device
JP3914033B2 (en) Anti-vibration and heat insulation floor structure for buildings
JP4881017B2 (en) Vibration control structure
JPH011843A (en) Seismic isolation structure
JPH08326840A (en) Base isolation structure
JP4097223B2 (en) Vibration control structure
JPH08105123A (en) Structure for base isolation
JPH0893845A (en) Base isolation structural body for light load
JPH09177368A (en) Vibration isolator
JP2001200103A (en) Vibration damping vtscoelastic material for building
JP2002188122A (en) Rubber support for bridge