JP4097223B2 - Vibration control structure - Google Patents

Vibration control structure Download PDF

Info

Publication number
JP4097223B2
JP4097223B2 JP2005023735A JP2005023735A JP4097223B2 JP 4097223 B2 JP4097223 B2 JP 4097223B2 JP 2005023735 A JP2005023735 A JP 2005023735A JP 2005023735 A JP2005023735 A JP 2005023735A JP 4097223 B2 JP4097223 B2 JP 4097223B2
Authority
JP
Japan
Prior art keywords
heq
viscoelastic body
vibration
equivalent viscous
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005023735A
Other languages
Japanese (ja)
Other versions
JP2006207332A (en
Inventor
達治 松本
良成 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2005023735A priority Critical patent/JP4097223B2/en
Publication of JP2006207332A publication Critical patent/JP2006207332A/en
Application granted granted Critical
Publication of JP4097223B2 publication Critical patent/JP4097223B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、例えば、木造建築住宅などの制振構造に関するものである。   The present invention relates to a vibration control structure such as a wooden house.

従来、木造建築住宅などの制振構造として、架構内に配設した減衰部材により振動エネルギを吸収する制振構造が提案されている。例えば、特開2003−56200号に記載されたものは、梁と柱で構成された架構内に、アームプレートを介して剛体を揺動可能に配置し、剛体と柱の間にゴム柱を装填し、接着剤で固定したものである。この制振構造では、建物が振動を受けて架構と剛体が相対移動したときに弾性部材が弾性変形し、振動エネルギを吸収するようになっている。   Conventionally, a vibration damping structure that absorbs vibration energy by a damping member disposed in a frame has been proposed as a vibration damping structure for a wooden building house or the like. For example, in Japanese Patent Application Laid-Open No. 2003-56200, a rigid body is slidably arranged via an arm plate in a frame composed of beams and columns, and a rubber column is loaded between the rigid body and the column. And fixed with an adhesive. In this vibration damping structure, the elastic member is elastically deformed to absorb vibration energy when the building receives vibration and the frame and the rigid body move relative to each other.

また、粘弾性ダンパを用いた制振構造も提案されている。例えば、特開2002−70356号には、油圧ダンパが筋交いに制限されない構造が提案されている。
2003−56200号公報 2002−70356号公報
A vibration damping structure using a viscoelastic damper has also been proposed. For example, Japanese Patent Application Laid-Open No. 2002-70356 proposes a structure in which a hydraulic damper is not limited to bracing.
No. 2003-56200 No. 2002-70356

特開2003−56200号公報に記載されたものは、建物に振動が作用したときに、ゴム柱に引張や圧縮の変形が生じる。ゴム柱に引張や圧縮変形をさせるため、許容できる変位量が小さい。また、引張変形や圧縮変形では弾性反力の上昇も大きく、柱等の剛体に作用する反力も大きい。このため、揺れが大きい場合には、ゴム柱で大きな変位を吸収できず、柱に大きな曲げ変形が生じる。また、同公報に記載されたものは柱とゴム柱を接着剤で接着しているが、接着剤による接着では地震動などの大きな振動が作用した場合に接着した部位が外れる可能性があり、信頼性に欠ける。   In the device described in Japanese Patent Laid-Open No. 2003-56200, when vibration is applied to a building, the rubber column is deformed by tension or compression. Since the rubber column is subjected to tensile or compressive deformation, the allowable displacement is small. Further, in the tensile deformation and the compression deformation, the elastic reaction force is greatly increased, and the reaction force acting on a rigid body such as a column is also large. For this reason, when the shaking is large, the rubber column cannot absorb a large displacement and a large bending deformation occurs in the column. In addition, what is described in the publication has a column and a rubber column bonded with an adhesive, but bonding with an adhesive may cause the bonded part to come off when large vibrations such as seismic vibrations are applied. Lack of sex.

また、2002−70356号公報に記載されているように油圧ダンパを用いたものは、その制振性能が温度に大きく依存しているため、季節により寒暖の差が大きいところでは安定した制振性能が得られない。また制振性能は振動の周波数によっても変化する。   In addition, as described in Japanese Patent Publication No. 2002-70356, the use of a hydraulic damper has its vibration damping performance greatly dependent on temperature, and therefore stable vibration damping performance where there is a large difference in temperature depending on the season. Cannot be obtained. The vibration control performance also varies depending on the vibration frequency.

本願発明に係る制振構造は、建物の骨組を構成する柱間に、粘弾性体の両側にプレートを加硫接着した制振部材を配設し、前記制振部材の一方のプレートを剛性体からなる連結材を介して片側の柱に固定し、他方のプレートを剛性体からなる連結材を介して反対側の柱に固定し、建物に振動が作用したときに前記粘弾性体がせん断変形するように構成した。 In the vibration damping structure according to the present invention, a vibration damping member obtained by vulcanizing and bonding plates on both sides of a viscoelastic body is disposed between columns constituting a framework of a building, and one plate of the vibration damping member is a rigid body. The viscoelastic body is shear-deformed when vibration is applied to the building, with the other plate fixed to the opposite column via a rigid connecting material. Configured to do.

この制振構造によれば、粘弾性体のせん断変形を利用して振動を吸収するので、揺れが大きい場合にも柱に大きな曲げ変形が生じない。また、粘弾性体の両側に加硫接着したプレートを介して粘弾性体を柱に固定しているので、地震動に耐え得る十分な接合強度を確保することができる。   According to this vibration damping structure, the vibration is absorbed by utilizing the shear deformation of the viscoelastic body, so that even when the vibration is large, the column does not undergo a large bending deformation. In addition, since the viscoelastic body is fixed to the column via the plates vulcanized and bonded to both sides of the viscoelastic body, it is possible to ensure sufficient joint strength that can withstand earthquake motion.

以下、本発明に係る制振構造の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of a vibration damping structure according to the present invention will be described with reference to the drawings.

この制振構造1は、図1に示すように、建物の骨組を構成する柱2a、2b間に配設したものであり、連結材3a,3bと、制振部材4とで構成されている。なお、この実施形態では、柱2a、2bに補強柱5a、5bを取り付けて制振構造1を設置している。   As shown in FIG. 1, the vibration damping structure 1 is disposed between columns 2 a and 2 b constituting a building framework, and includes a coupling member 3 a and 3 b and a vibration damping member 4. . In this embodiment, the damping structure 1 is installed by attaching the reinforcing columns 5a and 5b to the columns 2a and 2b.

連結材3a,3bは、柱2a、2bの間隔が広いところに制振部材4を取り付けるために用いるものである。この実施形態では所要の剛性を備えた棒状の部材を柱2a、2b間に設置している。   The connecting members 3a and 3b are used for attaching the damping member 4 to a place where the interval between the columns 2a and 2b is wide. In this embodiment, a rod-shaped member having a required rigidity is installed between the columns 2a and 2b.

制振部材4は、粘弾性体6の両側にプレート7,8を加硫接着で固着したものである。この実施形態では、制振部材4の一方のプレート7を片側の連結材3aに固定し、他方のプレート8を反対側の連結材3bに固定している。   The damping member 4 is obtained by fixing plates 7 and 8 to both sides of a viscoelastic body 6 by vulcanization adhesion. In this embodiment, one plate 7 of the vibration damping member 4 is fixed to one connecting member 3a, and the other plate 8 is fixed to the opposite connecting member 3b.

この制振構造1によれば、制振部材4が連結材3a,3b及び補強柱5a、5bを介して柱2a、2bに固定されており、図2に示すように、建物に振動が作用した場合、柱2a、2bの揺れに従って、補強柱5a、5b、連結材3a,3bを介して粘弾性体6の両側のプレート7,8が相対的に上下に変位し、粘弾性体6をせん断変形させる。このとき、粘弾性体6には、引張や圧縮変形がほとんど生じないので、柱2a、2bに大きな弾性反力が作用することがない。従って、大きな地震が発生した場合でも、柱2a、2bを大きく曲げ変形させることなく、粘弾性体6を大きくせん断変形させることができる。これにより効率良く振動エネルギを吸収することができる。   According to this vibration damping structure 1, the damping member 4 is fixed to the pillars 2a and 2b via the connecting members 3a and 3b and the reinforcing pillars 5a and 5b, so that the vibration acts on the building as shown in FIG. In this case, the plates 7 and 8 on both sides of the viscoelastic body 6 are relatively displaced up and down via the reinforcing columns 5a and 5b and the connecting members 3a and 3b according to the shaking of the columns 2a and 2b. Shear deformation. At this time, since the tensile and compressive deformation hardly occurs in the viscoelastic body 6, a large elastic reaction force does not act on the columns 2a and 2b. Therefore, even when a large earthquake occurs, the viscoelastic body 6 can be greatly sheared and deformed without greatly bending and deforming the columns 2a and 2b. Thereby, vibration energy can be absorbed efficiently.

上述した実施形態では、連結材3a,3b及び補強柱5a、5bを介して制振部材4を柱2a、2bに固定したものを例示したが、図3に示すように、柱2の間隔が狭いところに、制振部材4を柱2に直接固定してもよい。   In the above-described embodiment, the vibration damping member 4 is fixed to the columns 2a and 2b via the connecting members 3a and 3b and the reinforcing columns 5a and 5b. However, as shown in FIG. The damping member 4 may be directly fixed to the column 2 in a narrow place.

また、図4に示す制振構造11は、建物の骨組を構成する柱2a、2b間に配設したものであり、連結材12a、12bと、制振部材13とで構成されている。なお、図4中、上記の実施形態と同一の作用を奏する部材、部位には同一の符号を付している。   Further, the vibration damping structure 11 shown in FIG. 4 is disposed between the pillars 2 a and 2 b constituting the framework of the building, and is composed of connecting members 12 a and 12 b and a vibration damping member 13. In addition, in FIG. 4, the same code | symbol is attached | subjected to the member and site | part which show | plays the same effect | action as said embodiment.

この実施形態では、制振部材13は、図5に示すように、プレート14の両側に粘弾性体15、16を加硫接着し、さらにその両側にプレート17、18を加硫接着したものである。制振部材13は、図4に示すように、プレート14、17、18が壁の前後方向に対向するように立て向きに配し、連結材12aと補強柱5aを介して中央のプレート14を片側の柱2aに固定し、連結材12bと補強柱5bを介して両外側のプレート17、18を反対側の柱2bに固定している。また、連結材12a、12bはそれぞれ所要の剛性を備えた棒状の部材で構成されており、図5に示すように、左側の連結材12aは、中央のプレート14を前後に挟んでピン21で結合しており、右側の連結材12bはプレート17、18の内側にスペーサ23を介して配設してピン22で結合している。   In this embodiment, as shown in FIG. 5, the damping member 13 is obtained by vulcanizing and bonding viscoelastic bodies 15 and 16 on both sides of the plate 14 and further vulcanizing and bonding plates 17 and 18 on both sides thereof. is there. As shown in FIG. 4, the damping member 13 is arranged in an upright position so that the plates 14, 17, and 18 oppose each other in the front-rear direction of the wall, and the central plate 14 is interposed via the connecting member 12 a and the reinforcing column 5 a. It is fixed to the column 2a on one side, and the plates 17 and 18 on both outer sides are fixed to the column 2b on the opposite side via the connecting member 12b and the reinforcing column 5b. Each of the connecting members 12a and 12b is composed of a rod-like member having a required rigidity. As shown in FIG. 5, the left connecting member 12a is sandwiched by pins 21 with a central plate 14 sandwiched in the front and rear. The right connecting member 12b is disposed inside the plates 17 and 18 via the spacers 23 and is connected by pins 22.

この制振構造13によれば、建物に振動が作用した場合、建物の揺れに従って、柱2a、2b、補強柱5a、5b、連結材12a、12bを介して粘弾性体15、16の中央のプレート14、両側のプレート17、18が相対的に上下に変位し、プレート14、17、18間に固着した粘弾性体15、16をせん断変形させる。このとき、粘弾性体15、16には、引張や圧縮変形がほとんど生じないので、柱2a、2bに大きな弾性反力が作用することがない。従って、大きな地震が発生した場合でも、柱2a、2bを大きく曲げ変形させることなく、粘弾性体6を大きくせん断変形させることができる。これにより効率良く振動エネルギを吸収することができる。また、このように壁の前後にプレート14、17、18を対向させて、その間に粘弾性体15、16を配設することにより、粘弾性体15、16のせん断面積を広く確保することができる。   According to the vibration control structure 13, when vibration is applied to the building, the center of the viscoelastic bodies 15 and 16 via the pillars 2a and 2b, the reinforcing pillars 5a and 5b, and the connecting members 12a and 12b according to the shaking of the building. The plate 14 and the plates 17 and 18 on both sides are relatively displaced up and down to shear the viscoelastic bodies 15 and 16 fixed between the plates 14, 17 and 18. At this time, since the tensile and compressive deformation hardly occurs in the viscoelastic bodies 15 and 16, a large elastic reaction force does not act on the columns 2a and 2b. Therefore, even when a large earthquake occurs, the viscoelastic body 6 can be greatly sheared and deformed without greatly bending and deforming the columns 2a and 2b. Thereby, vibration energy can be absorbed efficiently. In addition, by arranging the viscoelastic bodies 15 and 16 between the plates 14, 17 and 18 facing the front and back of the wall in this way, it is possible to secure a wide shear area of the viscoelastic bodies 15 and 16. it can.

なお、壁の前後に対向させて、プレートを立て向きに配する場合、図6(a)に示すように、粘弾性体31の両側にプレート32,33を加硫接着で固着した制振部材30を用い、連結材12a、12bを介して、一方のプレート32を片側の柱2aに連結し、他方のプレート33を反対側の柱2bに連結するように構成することもできる。しかし、この場合、図6(b)に示すように、建物に振動が作用し、粘弾性体31にせん断変形が生じた場合には、粘弾性体31の弾性反力により、図中矢印aに示す方向に、制振部材30を回転させるような力が作用する。これに対して図4に示す実施形態では、3枚のプレート14、17、18と2つの粘弾性体15、16を前後に交互に積層しているので、粘弾性体15、16がせん断変形した際に、2つの粘弾性体15、16の弾性反力を相殺させ、制振部材13を回転させるような力が作用するのを抑えることができる。これにより効率良く振動エネルギを吸収させることができる。   When the plates are arranged facing up and down on the front and back of the wall, as shown in FIG. 6A, the damping member having the plates 32 and 33 fixed to both sides of the viscoelastic body 31 by vulcanization bonding. 30, one plate 32 can be connected to the column 2a on one side and the other plate 33 can be connected to the column 2b on the opposite side via the connecting members 12a and 12b. However, in this case, as shown in FIG. 6 (b), when vibration acts on the building and shear deformation occurs in the viscoelastic body 31, the elastic reaction force of the viscoelastic body 31 causes the arrow a in the figure. The force which rotates the damping member 30 acts in the direction shown in FIG. In contrast, in the embodiment shown in FIG. 4, the three plates 14, 17, 18 and the two viscoelastic bodies 15, 16 are alternately stacked on the front and back, so that the viscoelastic bodies 15, 16 are subjected to shear deformation. In this case, it is possible to cancel the elastic reaction force of the two viscoelastic bodies 15 and 16 and to prevent the force that rotates the damping member 13 from acting. Thereby, vibration energy can be absorbed efficiently.

次に、粘弾性体6について詳述する。   Next, the viscoelastic body 6 will be described in detail.

一般的な粘弾性材料は、振幅の増加に連れて剛性が増加し、抵抗力が大きくなる。振幅が大きくなるにつれて剛性が大きくなる性質をもつ粘弾性体を用いると、建物の加速度応答や各部応力の過大な上昇が生じる。そこで、振幅が増加しても剛性の増加が頭打ちになる性質を備えた粘弾性体を用いることが望ましい。   A general viscoelastic material increases in rigidity and resistance as the amplitude increases. If a viscoelastic body having the property that the rigidity increases as the amplitude increases, the acceleration response of the building and the stress of each part are excessively increased. Therefore, it is desirable to use a viscoelastic body having a property that the increase in rigidity reaches a peak even when the amplitude increases.

また、一般的に粘弾性体は、低温時に剛性が高くなり、高温時に剛性が低くなる。日本は一年を通じて気温の変化が大きく、−10℃〜40℃程度の温度範囲に対して剛性や減衰性能の点で比較的安定した性質を備えた粘弾性体を用いることが望ましい。   In general, viscoelastic bodies have high rigidity at low temperatures and low rigidity at high temperatures. In Japan, it is desirable to use a viscoelastic body having a relatively stable property in terms of rigidity and damping performance over a temperature range of about −10 ° C. to 40 ° C. since the temperature changes greatly throughout the year.

具体的には、粘弾性体は、等価粘性減衰定数の温度依存性が、低温側は−10℃のときの等価粘性減衰定数Heq(t=−10℃)と、20℃のときの等価粘性減衰定数Heq(t=20℃)の比が、1.00<Heq(t=−10℃)/Heq(t=20℃)<1.50であり、高温側は、40℃のときの等価粘性減衰定数Heq(t=40℃)と、20℃のときの等価粘性減衰定数Heq(t=20℃)の比が、1.00<Heq(t=40℃)/Heq(t=20℃)<0.90である高減衰ゴムを用いるとよい。   Specifically, in the viscoelastic body, the temperature dependence of the equivalent viscosity damping constant is such that the low temperature side has an equivalent viscosity damping constant Heq (t = −10 ° C.) at −10 ° C. and an equivalent viscosity at 20 ° C. The ratio of the damping constant Heq (t = 20 ° C.) is 1.00 <Heq (t = −10 ° C.) / Heq (t = 20 ° C.) <1.50, and the high temperature side is equivalent to 40 ° C. The ratio of the viscous damping constant Heq (t = 40 ° C.) to the equivalent viscous damping constant Heq (t = 20 ° C.) at 20 ° C. is 1.00 <Heq (t = 40 ° C.) / Heq (t = 20 ° C.) ) <0.90 high damping rubber may be used.

なお、ここで動的粘弾性試験における等価粘性減衰係数(Heq)とは、粘弾性材料のせん断変形を生じさせる正弦波加振を行い、その際の履歴ループ(ヒステリシス曲線)を測定し、その結果に基づいて計算されるものである。図7に基づいて説明すると、Heqは下記の式(数1)にて計算される数値である。

Figure 0004097223
Here, the equivalent viscous damping coefficient (Heq) in the dynamic viscoelasticity test is a sinusoidal vibration that causes shear deformation of the viscoelastic material, and the hysteresis loop (hysteresis curve) at that time is measured. It is calculated based on the result. If it demonstrates based on FIG. 7, Heq is a numerical value calculated by the following formula | equation (Formula 1).
Figure 0004097223

また、制振部材は交通振動などの環境振動から台風時の風揺れ、大地震に至るまでの幅広い振幅領域で機能する必要がある。交通振動などの環境振動から台風時交通振動の卓越周波数は通常4Hz〜7Hzに分布し、地震動は0.1Hz〜20Hz程度に分布する。このため、周波数や歪に関らず、安定した振動エネルギ吸収能力を発揮する粘弾性体を用いるとよい。   In addition, the damping member needs to function in a wide amplitude range from environmental vibrations such as traffic vibrations to wind fluctuations during typhoons and large earthquakes. From environmental vibrations such as traffic vibrations, the dominant frequency of typhoon traffic vibrations is usually distributed in the range of 4 Hz to 7 Hz, and seismic motion is distributed in the range of about 0.1 Hz to 20 Hz. For this reason, it is good to use the viscoelastic body which exhibits the stable vibration energy absorption capability irrespective of a frequency or distortion.

具体的には、粘弾性体は、限界変形量が粘弾性体の厚みの4倍以上であるとよい。これにより、台風時などにより大きいせん断歪変形が作用しても安定した振動エネルギ吸収能力を発揮することができる。   Specifically, the viscoelastic body preferably has a limit deformation amount that is four times or more the thickness of the viscoelastic body. Thereby, even if a larger shear strain deformation acts during a typhoon or the like, a stable vibration energy absorbing ability can be exhibited.

また、粘弾性体は、等価粘性減衰定数の周波数依存性が、0.5Hz〜20Hzまでの任意の周波数の等価粘性減衰定数Heq(f=0.5Hz〜20.0Hz)と、周波数が0.1のときの等価粘性減衰定数Heq(f=0.1Hz)の比が、1.00>Heq(f=0.5Hz〜20.0Hz)/Heq(f=0.1Hz)>0.90であるとよい。   In addition, the viscoelastic body has an equivalent viscous damping constant having a frequency dependency of an equivalent viscous damping constant Heq (f = 0.5 Hz to 20.0 Hz) of an arbitrary frequency from 0.5 Hz to 20 Hz, and a frequency of 0. The ratio of the equivalent viscous damping constant Heq (f = 0.1 Hz) at 1 is 1.00> Heq (f = 0.5 Hz to 20.0 Hz) / Heq (f = 0.1 Hz)> 0.90. There should be.

また、粘弾性体は、等価粘性減衰定数のせん断歪依存性が、せん断歪γ=0.5〜3.0までで任意の周波数での等価粘性減衰定数Heq(γ=0.5〜3.0)と、せん断歪がγ=1.0のときの等価粘性減衰定数Heq(γ=1.0)の比が、1.00>Heq(γ=0.5〜3.0)/Heq(γ=1.0)>0.90であるとよい。   In addition, the viscoelastic body has an equivalent viscous damping constant Heq (γ = 0.5-3.3) at an arbitrary frequency when the shear strain dependency of the equivalent viscous damping constant is shear strain γ = 0.5-3.0. 0) and the equivalent viscous damping constant Heq (γ = 1.0) when the shear strain is γ = 1.0 is 1.00> Heq (γ = 0.5 to 3.0) / Heq ( It is preferable that γ = 1.0)> 0.90.

粘弾性体が、上記の周波数依存性、せん断歪依存性を備えていれば、交通振動などの環境振動から台風時の風揺れ、地震動に至るまで幅広く振動を吸収することができる。   If the viscoelastic body has the above-described frequency dependency and shear strain dependency, it can absorb a wide range of vibrations from environmental vibrations such as traffic vibrations to wind fluctuations and earthquake motions during typhoons.

粘弾性体は、上述した歪依存性、周波数依存性、温度依存性を持たせるため、例えば、主鎖にC−C結合を有する基材ゴム100重量部に対してシリカを100〜150重量部添加し、そのシリカに対してシラン化合物を10〜30重量%配合した高減衰ゴムを用いるとよい。その好適な粘弾性体の一例を挙げると、基材ゴム100重量部に対してシリカを135重量部添加し、そのシリカに対してシラン化合物を17重量%配合したものを挙げることができる。この粘弾性体によれば、上述した歪依存性、周波数依存性、温度依存性を持たせることができ、上述した制振構造の機能を十分に発揮させることができる。   In order for the viscoelastic body to have the above-described strain dependency, frequency dependency, and temperature dependency, for example, 100 to 150 parts by weight of silica with respect to 100 parts by weight of the base rubber having a C—C bond in the main chain. It is preferable to use a high damping rubber in which 10 to 30% by weight of a silane compound is added to the silica. As an example of the suitable viscoelastic body, 135 parts by weight of silica is added to 100 parts by weight of the base rubber, and 17% by weight of the silane compound is added to the silica. According to this viscoelastic body, the above-described strain dependency, frequency dependency, and temperature dependency can be provided, and the function of the above-described vibration damping structure can be sufficiently exhibited.

なお、シラン化合物は、下記の一般式で:

Figure 0004097223
〔式中、R1 、R2 、R3 およびR4 のうちの少なくとも1つはアルコキシ基、またはハロゲン原子を示し、他は同一または異なって水素原子、アルキル基またはアリール基を示す。〕で表されるシラン化合物とを含有するゴム組成物の加硫成形により形成される。また、基材ゴムとしては、主鎖にC−C結合を有する種々のゴムがいずれも使用可能である。具体的には天然ゴム(NR)の他、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン−ブタジエン共重合ゴム(SBR)、エチレン−プロピレン共重合ゴム(EPM)、アクリロニトリル−ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)などがあげられる。これらはそれぞれ単独で使用される他、2種以上を併用することもできる。 The silane compound is represented by the following general formula:
Figure 0004097223
[Wherein, at least one of R 1 , R 2 , R 3 and R 4 represents an alkoxy group or a halogen atom, and the other represents the same or different and represents a hydrogen atom, an alkyl group or an aryl group. It is formed by vulcanization molding of a rubber composition containing a silane compound represented by the formula: As the base rubber, any of various rubbers having a C—C bond in the main chain can be used. Specifically, in addition to natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), ethylene-propylene copolymer rubber (EPM), acrylonitrile-butadiene copolymer rubber. (NBR), butyl rubber (IIR) and the like. These may be used alone or in combination of two or more.

上記の基材ゴムに添加されるシリカとしては、ゴムの補強剤として使用される、親水性あるいは疎水性の種々のシリカが使用可能である。上記シリカの添加量は、基材ゴム100重量部に対して100〜150重量部にするとよい。   As the silica added to the base rubber, various hydrophilic or hydrophobic silicas used as rubber reinforcing agents can be used. The addition amount of the silica is preferably 100 to 150 parts by weight with respect to 100 parts by weight of the base rubber.

前記一般式(1) で表されるシラン化合物において、R1 〜R4 に相当するアルコキシ基としては、Cn 2n+1Oで表される種々の炭素数のものがあげられるが、とくに炭素数が1〜2であるメトキシ、エトキシが好ましいものとしてあげられる。またハロゲン原子としては、フッ素、塩素、臭素などがあげられる。 In the silane compound represented by the general formula (1), examples of the alkoxy group corresponding to R 1 to R 4 include those having various carbon numbers represented by C n H 2n + 1 O. Preferable examples include methoxy and ethoxy having 1 to 2 carbon atoms. Examples of the halogen atom include fluorine, chlorine, bromine and the like.

アルキル基としては、Cn 2n+1で表される種々の炭素数のものがあげられるが、とくにその炭素数は1〜20程度であるのが好ましい。かかるアルキル基としては、たとえばメチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、第2級ブチル、第3級ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシルなどがあげられる。 Examples of the alkyl group include those having various carbon numbers represented by C n H 2n + 1 , and the carbon number is particularly preferably about 1 to 20. Examples of such alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, secondary butyl, tertiary butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and the like. can give.

またアリール基としては、たとえばフェニル、トリル、キシリル、ビフェニリル、o−テルフェニル、ナフチル、アントリル、フェナントリルなどがあげられる。かかるシラン化合物の具体例としては、これに限定されないがたとえば、n−ヘキシルトリメトキシシラン、トリエトキシフェニルシラン、ジエトキシジメチルシラン、ジメチルジクロロシラン、メチルジクロロシランなどがあげられる。   Examples of the aryl group include phenyl, tolyl, xylyl, biphenylyl, o-terphenyl, naphthyl, anthryl, phenanthryl and the like. Specific examples of such silane compounds include, but are not limited to, n-hexyltrimethoxysilane, triethoxyphenylsilane, diethoxydimethylsilane, dimethyldichlorosilane, methyldichlorosilane, and the like.

ゴム組成物には上記以外にもたとえば、加硫剤、加硫促進剤、加硫促進助剤、加硫遅延剤、シリカ以外の補強剤、充填剤、軟化剤、可塑剤、粘着性付与剤その他、各種の添加剤を添加してもよい。上記のうち加硫剤としては、たとえば硫黄、有機含硫黄化合物、有機過酸化物などがあげられ、このうち有機含硫黄化合物としては、たとえばN,N′−ジチオビスモルホリンなどがあげられ、有機過酸化物としては、たとえばベンゾイルペルオキシド、ジクミルペルオキシドなどがあげられる。   In addition to the above, the rubber composition includes, for example, a vulcanizing agent, a vulcanization accelerator, a vulcanization acceleration aid, a vulcanization retarder, a reinforcing agent other than silica, a filler, a softening agent, a plasticizer, and a tackifier. In addition, various additives may be added. Among the above, examples of the vulcanizing agent include sulfur, organic sulfur-containing compounds, and organic peroxides. Among these, examples of the organic sulfur-containing compounds include N, N'-dithiobismorpholine and the like. Examples of the peroxide include benzoyl peroxide and dicumyl peroxide.

また加硫促進剤としては、たとえばテトラメチルチウラムジスルフィド、テトラメチルチウラムモノスルフィドなどのチウラム系加硫促進剤;ジブチルジチオカーバミン酸亜鉛、ジエチルジチオカーバミン酸亜鉛、ジメチルジチオカーバミン酸ナトリウム、ジエチルジチオカーバミン酸テルルなどのジチオカーバミン酸類;2−メルカプトベンゾチアゾール、N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミドなどのチアゾール類;トリメチルチオ尿素、N,N′−ジエチルチオ尿素などのチオウレア類などの有機促進剤や、あるいは消石灰、酸化マグネシウム、酸化チタン、リサージ(PbO)などの無機促進剤があげられる。   Examples of the vulcanization accelerator include thiuram vulcanization accelerators such as tetramethylthiuram disulfide and tetramethylthiuram monosulfide; zinc dibutyldithiocarbamate, zinc diethyldithiocarbamate, sodium dimethyldithiocarbamate, diethyl Dithiocarbamates such as tellurium dithiocarbamate; Thiazoles such as 2-mercaptobenzothiazole and N-cyclohexyl-2-benzothiazolesulfenamide; Organics such as thioureas such as trimethylthiourea and N, N′-diethylthiourea Examples of the promoter include inorganic promoters such as slaked lime, magnesium oxide, titanium oxide, and risurge (PbO).

加硫促進助剤としては、たとえばステアリン酸、オレイン酸、綿実脂肪酸などの脂肪酸や、あるいは亜鉛華などの金属酸化物などがあげられる。加硫遅延剤としては、たとえばサリチル酸、無水フタル酸、安息香酸などの芳香族有機酸;N−ニトロソジフェニルアミン、N−ニトロソ−2,2,4−トリメチル−1,2−ジハイドロキノン、N−ニトロソフェニル−β−ナフチルアミンなどのニトロソ化合物などがあげられる。   Examples of the vulcanization acceleration aid include fatty acids such as stearic acid, oleic acid and cottonseed fatty acid, and metal oxides such as zinc white. Examples of the vulcanization retarder include aromatic organic acids such as salicylic acid, phthalic anhydride, and benzoic acid; N-nitrosodiphenylamine, N-nitroso-2,2,4-trimethyl-1,2-dihydroquinone, N-nitroso And nitroso compounds such as phenyl-β-naphthylamine.

上記加硫剤、加硫促進剤、加硫促進助剤および加硫遅延剤は、その合計の配合量が、基材ゴム100重量部に対して4〜15重量部程度程度であるのが好ましい。老化防止剤としては、たとえば2−メルカプトベンゾイミダゾールなどのイミダゾール類;フェニル−α−ナフチルアミン、N,N′−ジ−β−ナフチル−p−フェニレンジアミン、N−フェニル−N′−イソプロピル−p−フェニレンジアミンなどのアミン類;ジ−t−ブチル−p−クレゾール、スチレン化フェノールなどのフェノール類などがあげられる。   The total amount of the vulcanizing agent, vulcanization accelerator, vulcanization acceleration aid and vulcanization retarder is preferably about 4 to 15 parts by weight with respect to 100 parts by weight of the base rubber. . Examples of the antioxidant include imidazoles such as 2-mercaptobenzimidazole; phenyl-α-naphthylamine, N, N′-di-β-naphthyl-p-phenylenediamine, N-phenyl-N′-isopropyl-p- Examples include amines such as phenylenediamine; phenols such as di-t-butyl-p-cresol and styrenated phenol.

老化防止剤の配合量は、基材ゴム100重量部に対して1.5〜5重量部程度が好ましい。シリカ以外の補強剤としては主にカーボンブラックが使用される他、ケイ酸塩系のホワイトカーボン、亜鉛華、表面処理沈降性炭酸カルシウム、炭酸マグネシウム、タルク、クレーなどの無機補強剤や、あるいはクマロンインデン樹脂、フェノール樹脂、ハイスチレン樹脂(スチレン含有量の多いスチレン−ブタジエン共重合体)などの有機補強剤も使用できる。   The blending amount of the antioxidant is preferably about 1.5 to 5 parts by weight with respect to 100 parts by weight of the base rubber. Carbon black is mainly used as a reinforcing agent other than silica, and inorganic reinforcing agents such as silicate-based white carbon, zinc white, surface-treated precipitated calcium carbonate, magnesium carbonate, talc, clay, or the like. Organic reinforcing agents such as malon indene resin, phenol resin, and high styrene resin (styrene-butadiene copolymer having a high styrene content) can also be used.

また充填剤としては、たとえば炭酸カルシウム、クレー、硫酸バリウム、珪藻土などがあげられる。上記シリカ以外の補強剤および/または充填剤の配合量は、基材ゴム100重量部に対して5〜50重量部程度が好ましい。軟化剤としては、たとえば脂肪酸(ステアリン酸、ラウリン酸など)、綿実油、トール油、アスファルト物質、パラフィンワックスなどの、植物油系、鉱物油系、および合成系の各種軟化剤があげられる。   Examples of the filler include calcium carbonate, clay, barium sulfate, and diatomaceous earth. The blending amount of the reinforcing agent and / or filler other than silica is preferably about 5 to 50 parts by weight with respect to 100 parts by weight of the base rubber. Examples of the softener include vegetable oil-based, mineral oil-based, and synthetic softeners such as fatty acids (stearic acid, lauric acid, etc.), cottonseed oil, tall oil, asphalt substances, and paraffin wax.

軟化剤の配合量は、基材ゴム100重量部に対して10〜100重量部程度が好ましい。可塑剤としては、たとえばジブチルフタレート、ジオクチルフタレート、トリクレジルフォスフェートなどの各種可塑剤があげられる。可塑剤の配合量は、基材ゴム100重量部に対して5〜20重量部程度が好ましい。   The blending amount of the softening agent is preferably about 10 to 100 parts by weight with respect to 100 parts by weight of the base rubber. Examples of the plasticizer include various plasticizers such as dibutyl phthalate, dioctyl phthalate, and tricresyl phosphate. As for the compounding quantity of a plasticizer, about 5-20 weight part is preferable with respect to 100 weight part of base rubber.

さらに粘着性付与剤としては、たとえばクマロン・インデン樹脂、芳香族系樹脂、芳香族・脂肪族混合系樹脂、ロジン系樹脂、シクロペンタジエン系樹脂などがあげられる。粘着性付与剤の配合量は、基材ゴム100重量部に対して5〜50重量部程度であるのが好ましい。   Further, examples of the tackifier include coumarone / indene resin, aromatic resin, aromatic / aliphatic mixed resin, rosin resin, and cyclopentadiene resin. The compounding amount of the tackifier is preferably about 5 to 50 parts by weight with respect to 100 parts by weight of the base rubber.

上記以外にも、ゴム組成物にはたとえば分散剤、溶剤などを適宜配合してもよい。ゴム組成物は、上記の各成分を、たとえば密閉式混練機などを用いて混練することで製造される。そして粘弾性体は、たとえば上記ゴム組成物をローラーヘッド押出機などを用いてシート状に成形し、所定の形状を有するようにこのシートを打ち抜いた後、打ち抜いたシートを、所定の厚みを有するように複数枚、積層した状態で、所定の型内で加熱して加硫成形するなどして製造される。   In addition to the above, for example, a dispersant, a solvent and the like may be appropriately blended in the rubber composition. The rubber composition is produced by kneading the above components using, for example, a closed kneader. The viscoelastic body has a predetermined thickness after the rubber composition is molded into a sheet using a roller head extruder or the like, punched out to have a predetermined shape, and then punched out. Thus, in a state where a plurality of sheets are laminated, they are manufactured by heating and vulcanization molding in a predetermined mold.

また、粘弾性体のせん断ばね定数の総和が、住宅パネルや柱等で構成された住宅躯体のせん断ばね定数よりも大きいとよい。すなわち、住宅全体の構造減衰δは、せん断変形を受けた際の住宅躯体のみによるせん断ばね定数をK1、せん断変形を受けた際の制振部材のみによるせん断ばね定数をK2、せん断変形を受けた際の住宅躯体のみによる構造減衰をδ1、せん断変形を受けた際の制振部材のみによる構造減衰をδ2として、下記の数2で求められる。

Figure 0004097223
Moreover, the sum total of the shear spring constant of a viscoelastic body is good to be larger than the shear spring constant of the housing frame comprised by the housing panel, the pillar, etc. That is, the structural damping δ of the entire house was subjected to shear deformation by K1, the shear spring constant by only the housing frame when subjected to shear deformation, and by K2, the shear spring constant by only the damping member when subjected to shear deformation. The structural attenuation by only the housing frame at the time is δ1, and the structural attenuation by only the damping member when subjected to shear deformation is δ2, and is obtained by the following formula 2.
Figure 0004097223

粘弾性体のせん断ばね定数の総和を、住宅パネルや柱等で構成された住宅躯体のみのせん断ばね定数よりも大きくすることにより、住宅に振動が作用したときに、粘弾性体で吸収するエネルギーの割合が大きくなり、粘弾性体による制振効果がより発揮されるようになる。   Energy absorbed by the viscoelastic body when vibration is applied to the house by making the sum of the shear spring constants of the viscoelastic body larger than the shear spring constant of only the housing frame composed of housing panels and columns And the vibration damping effect by the viscoelastic body is more exhibited.

以上、本発明の一実施形態に係る制振構造を説明したが、本発明に係る制振構造は、上記の実施形態に限定されるものではない。   Although the vibration damping structure according to one embodiment of the present invention has been described above, the vibration damping structure according to the present invention is not limited to the above embodiment.

本発明の一実施形態に係る制振構造を示す正面図。The front view which shows the damping structure which concerns on one Embodiment of this invention. (a)は振動が作用する前の制振構造の状態を示す正面図、(b)は振動が作用した状態を示す正面図。(A) is a front view which shows the state of the damping structure before a vibration acts, (b) is a front view which shows the state in which the vibration acted. 本願発明の他の実施形態に係る制振構造を示す正面図。The front view which shows the damping structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る制振構造を示す正面図。The front view which shows the damping structure which concerns on other embodiment of this invention. 本発明の他の実施形態に係る制振部材を示す平面図。The top view which shows the damping member which concerns on other embodiment of this invention. (a)、(b)は本発明の他の実施形態に係る制振構造の比較例を示す平面図。(A), (b) is a top view which shows the comparative example of the damping structure which concerns on other embodiment of this invention. ヒステリシス曲線測定結果より等価減衰係数を計算する方法を示した図。The figure which showed the method of calculating an equivalent attenuation coefficient from a hysteresis curve measurement result.

符号の説明Explanation of symbols

1 制振構造
2a,2b 柱
3a,3b 連結材
4 制振部材
5a,5b 補強柱
6 粘弾性体
7,8 プレート
DESCRIPTION OF SYMBOLS 1 Damping structure 2a, 2b Column 3a, 3b Connecting material 4 Damping member 5a, 5b Reinforcement column 6 Viscoelastic body 7, 8 Plate

Claims (6)

建物の骨組を構成する柱間に、粘弾性体の両側にプレートを加硫接着した制振部材を配設し、前記制振部材の一方のプレートを剛性体からなる連結材を介して片側の柱に固定し、他方のプレートを剛性体からなる連結材を介して反対側の柱に固定し、建物に振動が作用したときに前記粘弾性体がせん断変形するように構成した制振構造。 Between the pillars constituting the building framework, vibration damping members with vulcanized and bonded plates are arranged on both sides of the viscoelastic body, and one plate of the vibration damping member is attached to one side via a connecting member made of a rigid body . A vibration damping structure in which the viscoelastic body is shear-deformed when a vibration is applied to a building by fixing the other plate to a column on the opposite side via a connecting member made of a rigid body . 前記粘弾性体は、等価粘性減衰定数の温度依存性が、
低温側は−10℃のときの等価粘性減衰定数Heq(t=−10℃)と、20℃のとき
の等価粘性減衰定数Heq(t=20℃)の比が、1.00<Keq(t=−10℃)/Keq(t=20℃)<1.50であり、
高温側は、40℃のときの等価粘性減衰定数Heq(t=40℃)と、20℃のときの等価粘性減衰定数Heq(t=20℃)の比が、1.00<Heq(t=40℃)/Heq(t=20℃)<0.90であることを特徴とする請求項1に記載の制振構造。
The viscoelastic body has the temperature dependence of the equivalent viscous damping constant,
On the low temperature side, the ratio of the equivalent viscous damping constant Heq (t = −10 ° C.) at −10 ° C. to the equivalent viscous damping constant Heq (t = 20 ° C.) at 20 ° C. is 1.00 <Keq (t = −10 ° C.) / Keq (t = 20 ° C.) <1.50,
On the high temperature side, the ratio of the equivalent viscous damping constant Heq (t = 40 ° C.) at 40 ° C. to the equivalent viscous damping constant Heq (t = 20 ° C.) at 20 ° C. is 1.00 <Heq (t = The vibration damping structure according to claim 1, wherein: 40 ° C.) / Heq (t = 20 ° C.) <0.90.
前記粘弾性体は、限界変形量が粘弾性体の厚みの4倍以上であることを特徴とする請求項1又は2に記載の制振構造。   The damping structure according to claim 1 or 2, wherein the viscoelastic body has a limit deformation amount that is four times or more the thickness of the viscoelastic body. 前記粘弾性体は、等価粘性減衰定数の周波数依存性が、
0.5Hz〜20Hzまでの任意の周波数の等価粘性減衰定数Heq(f=0.5Hz〜20.0Hz)と、周波数が0.1のときの等価粘性減衰定数Heq(f=0.1Hz)の比が、1.00>Heq(f=0.5Hz〜20.0Hz)/Heq(f=0.1Hz)>0.90であることを特徴とする請求項1から3の何れかに記載の制振構造。
The viscoelastic body has a frequency dependence of an equivalent viscous damping constant,
An equivalent viscous damping constant Heq (f = 0.5 Hz to 20.0 Hz) at an arbitrary frequency from 0.5 Hz to 20 Hz and an equivalent viscous damping constant Heq (f = 0.1 Hz) when the frequency is 0.1. 4. The ratio according to claim 1, wherein the ratio is 1.00> Heq (f = 0.5 Hz to 20.0 Hz) / Heq (f = 0.1 Hz)> 0.90. 5. Damping structure.
前記粘弾性体は、等価粘性減衰定数のせん断歪依存性が、
せん断歪γ=0.5〜3.0までで任意の周波数での等価粘性減衰定数Heq(γ=0.5〜3.0)と、せん断歪がγ=1.0のときの等価粘性減衰定数Heq(γ=1.0)の比が、1.00>Heq(γ=0.5〜3.0)/Heq(γ=1.0)>0.90であることを特徴とする請求項1から4の何れかに記載の制振構造。
The viscoelastic body has a shear strain dependency of an equivalent viscous damping constant,
Equivalent viscous damping constant Heq (γ = 0.5 to 3.0) at an arbitrary frequency with shear strain γ = 0.5 to 3.0 and equivalent viscous damping when shear strain γ = 1.0 The ratio of constant Heq (γ = 1.0) is 1.00> Heq (γ = 0.5 to 3.0) / Heq (γ = 1.0)> 0.90, Item 5. The vibration damping structure according to any one of Items 1 to 4.
前記粘弾性体のせん断ばね定数の総和が、住宅パネルや柱等で構成された住宅躯体のせん断ばね定数よりも大きいことを特徴とする請求項1に記載の制振構造。   The damping structure according to claim 1, wherein a total sum of shear spring constants of the viscoelastic body is larger than a shear spring constant of a housing body composed of a housing panel or a column.
JP2005023735A 2005-01-31 2005-01-31 Vibration control structure Expired - Fee Related JP4097223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023735A JP4097223B2 (en) 2005-01-31 2005-01-31 Vibration control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023735A JP4097223B2 (en) 2005-01-31 2005-01-31 Vibration control structure

Publications (2)

Publication Number Publication Date
JP2006207332A JP2006207332A (en) 2006-08-10
JP4097223B2 true JP4097223B2 (en) 2008-06-11

Family

ID=36964481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023735A Expired - Fee Related JP4097223B2 (en) 2005-01-31 2005-01-31 Vibration control structure

Country Status (1)

Country Link
JP (1) JP4097223B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5658892B2 (en) * 2010-03-10 2015-01-28 トヨタホーム株式会社 Bearing walls and buildings
JP5825355B2 (en) * 2011-10-20 2015-12-02 村田機械株式会社 Automatic warehouse rack equipment
JP6535695B2 (en) * 2017-04-13 2019-06-26 旭化成ホームズ株式会社 Vibration control device and building

Also Published As

Publication number Publication date
JP2006207332A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP5407082B2 (en) building
JP4795114B2 (en) Damping structure
JP4097223B2 (en) Vibration control structure
JP4881018B2 (en) Vibration control structure
JP2006322309A (en) Vibration control unit
JP4814857B2 (en) Seismic bearing wall structure
JPH01190847A (en) Vibration-proof rubber
KR101780829B1 (en) High damping composition
JP2007308939A (en) Seismic control structure
JP5277424B2 (en) Vibration control device
JP4881017B2 (en) Vibration control structure
JPH1081787A (en) Vibration-damping member
JP4702796B2 (en) Vibration control cabinet
JP4773215B2 (en) Damping braces and damping structures
JP4114813B2 (en) Damping wall structure
JP2007308938A (en) Seismic control structure
JP2015160903A (en) High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing
JP4260100B2 (en) High damping laminate rubber composition
JPS6283139A (en) Earthquakeproof structure
JPH11257424A (en) Vibration control sheet and vibration control structure
JP5566737B2 (en) Vibration suppression brace
JP4010680B2 (en) Brace damper
JP4140831B2 (en) Structure anchor structure, vibration damping device and rolling bearing device used for structure anchor structure
JP2016056279A (en) High-damping composition and viscoelastic damper
JP5603656B2 (en) Vibration control structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080307

R150 Certificate of patent or registration of utility model

Ref document number: 4097223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees