JPH011843A - Seismic isolation structure - Google Patents

Seismic isolation structure

Info

Publication number
JPH011843A
JPH011843A JP62-157190A JP15719087A JPH011843A JP H011843 A JPH011843 A JP H011843A JP 15719087 A JP15719087 A JP 15719087A JP H011843 A JPH011843 A JP H011843A
Authority
JP
Japan
Prior art keywords
rubber
seismic isolation
damper
viscoelastic
isolation structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62-157190A
Other languages
Japanese (ja)
Other versions
JP2615626B2 (en
JPS641843A (en
Inventor
明彦 荻野
弘 小島
重信 鈴木
深堀 美英
Original Assignee
株式会社ブリヂストン
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP62157190A priority Critical patent/JP2615626B2/en
Priority claimed from JP62157190A external-priority patent/JP2615626B2/en
Publication of JPH011843A publication Critical patent/JPH011843A/en
Publication of JPS641843A publication Critical patent/JPS641843A/en
Application granted granted Critical
Publication of JP2615626B2 publication Critical patent/JP2615626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、機器及び構造物等に地震力を伝えないように
するための免震構造体に係り、特に免震効果とダンピン
グ効果を兼備する改良された免震構造体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a seismic isolation structure for preventing the transmission of seismic force to equipment, structures, etc. This invention relates to an improved seismic isolation structure.

[従来の技術及び先行技術] 複数個の鋼板とゴム板とを交互に積層した構造体(免震
ゴム)が、地震時の防振性を満たす支承部材として、最
近注目をあびている。
[Background Art and Prior Art] A structure (seismic isolation rubber) in which a plurality of steel plates and rubber plates are alternately laminated has recently attracted attention as a support member that satisfies vibration isolation properties during earthquakes.

このような免震ゴムは、コンクリートのような剛体建築
物と基礎土台との間に介在されると、横方向に柔らかい
、即ち剪断剛性率が小さいので、建築物の固有周期を地
震の周期からずらす作用を有し、地震により建物が受け
る加速度が非常に小さくなる。
When such seismic isolation rubber is interposed between a rigid building such as concrete and the foundation foundation, it is soft in the lateral direction, that is, has a small shear rigidity, so it can change the natural period of the building from the earthquake period. It has a shifting effect, which greatly reduces the acceleration that buildings receive from earthquakes.

このような免震ゴムにおいては、地震による変形後は再
び元の位置へ戻る弾性変形を行なうことが大きな特徴と
されており、しかも、免震ゴムのクリープ現象による建
物の沈下を極力小さくするために、免震ゴム自体のエネ
ルギー吸収能力(fA衰効果)は極めて小さいものとな
っている。このため、従来、免震ゴムは、その材料特性
としてヒステリシスロスの小さいゴム材料を用いて構成
されている。
A major feature of this type of seismic isolation rubber is that it undergoes elastic deformation to return to its original position after being deformed by an earthquake.Moreover, in order to minimize the sinking of the building due to the creep phenomenon of the seismic isolation rubber, Furthermore, the energy absorption capacity (fA damping effect) of the seismic isolation rubber itself is extremely small. For this reason, conventionally, seismic isolation rubber has been constructed using a rubber material that has a small hysteresis loss as a material characteristic.

しかしながら、このような低減衰の免震ゴムのみを用い
る免震装置では、地震時の建物のゆっくりした横揺れは
、地震が治まった後も長時間にわたって残るため、この
横揺れ量が大きいと、免震ゴム自身の破損はもとより、
建物と他の構造物との衝突や木管、ガス管、配線などの
備品の破壊をもたらす危険性がある。
However, with such a seismic isolation system that uses only low-attenuation seismic isolation rubber, the slow lateral sway of the building during an earthquake remains for a long time even after the earthquake subsides, so if the amount of lateral sway is large, In addition to damage to the seismic isolation rubber itself,
There is a risk of collision between the building and other structures and destruction of equipment such as wood pipes, gas pipes, and wiring.

そこで、従来においては、この横揺れ変位をできるだけ
早く減少させるために、地震力が加わった際に直ちに塑
性変形をする軟質金属などでできた塑性ダンパーを併用
する方法がとられている。
Conventionally, in order to reduce this rolling displacement as quickly as possible, a method has been adopted in which a plastic damper made of a soft metal or the like that undergoes plastic deformation immediately upon application of an earthquake force is used in combination.

例えば、免震ゴムの内部に空洞部を設け、この部分に鉛
を埋め込み、地震時の塑性変形を利用して、免震ゴムに
ダンピング効果を付与することによって、免震効果とダ
ンパー(ダンピング効果)を兼備したものとすることが
提案されている。
For example, by creating a hollow part inside the seismic isolation rubber, filling this part with lead, and using plastic deformation during an earthquake to impart a damping effect to the seismic isolation rubber, the seismic isolation effect and the damper (damping effect) can be created. ) is proposed.

しかしながら、このような免震装置では、地震エネルギ
ーの吸収機能は増大されるものの、塑性ダンパーが高弾
性であることに起因する新たな共震現象が高周波領域に
現われる。
However, in such a seismic isolation device, although the seismic energy absorption function is increased, a new resonance phenomenon occurs in the high frequency region due to the high elasticity of the plastic damper.

また、鉛入り免震ゴムにおいては、大地震の際の免震ゴ
ムの大変形時に、鋼板の硬質板が鉛を傷ツケ、更に傷つ
いた鉛がゴム等の軟質板を傷つけるため、免震ゴム全体
の破断を引き起こし易い。
In addition, when using seismic isolation rubber containing lead, when the seismic isolation rubber is greatly deformed during a major earthquake, the hard steel plate will damage the lead, and the damaged lead will further damage soft plates such as rubber, so the seismic isolation rubber It is easy to cause the entire structure to break.

しかも、傷ついた鉛は、繰り返しの大変形によって容易
に破断する。
Furthermore, damaged lead easily breaks due to repeated large deformations.

本発明は上記従来の問題点を解決し、免震効果とダンピ
ング効果を兼備する改良された免震装置として、複数個
の剛性を有する硬質板と粘弾性的性質を有する軟質板と
を交互に貼り合わせてなる免震ゴムと、プラスチックよ
りなるダンパーとが並列して設けられてなることを特徴
とする免震装置、例えば、免震ゴム内にダンパーを内蔵
する免震装置について先に特許出願した(特願昭61−
217689号。以下、「先願」という。)[発明が解
決しようとする問題点] 上記先願に開示されるダンパー内蔵積層ゴムは、小変形
から大変形において、優れた減衰性を示すが、微小振動
の減衰には効果が小さいという欠点がある。
The present invention solves the above-mentioned conventional problems and provides an improved seismic isolation device that has both a seismic isolation effect and a damping effect. We have previously applied for a patent for a seismic isolation device characterized by a seismic isolation rubber bonded together and a damper made of plastic installed in parallel, for example, a seismic isolation device with a damper built into the seismic isolation rubber. (Special application 1986-
No. 217689. Hereinafter referred to as "first application". ) [Problems to be Solved by the Invention] The laminated rubber with a built-in damper disclosed in the above-mentioned prior application shows excellent damping performance in small to large deformations, but has the disadvantage that it is ineffective in damping minute vibrations. There is.

[問題点を解決するための手段] 本発明は、小変形から大変形にも優れた減衰性を示すと
共に、微小振動に対しても優れた効果を発揮することの
できる免震構造体を提供するものである。
[Means for Solving the Problems] The present invention provides a seismic isolation structure that exhibits excellent damping properties from small to large deformations, and can also exhibit excellent effects against minute vibrations. It is something to do.

本発明の免震構造体は、複数個の剛性を有する硬質板と
粘弾性的性質を有する軟質板とを交互に貼り合わせてな
る積層ゴムに空洞部を設け、この空洞部に粘弾性材料で
主に構成されるダンパーを配置し、かつ、該ダンパーと
積層ゴムの空洞内壁との間に、ダンパーよりも低弾性の
材料を介在させてなることを特徴とする。
The seismic isolation structure of the present invention has a cavity in a laminated rubber made by alternately laminating a plurality of hard plates having rigidity and soft plates having viscoelastic properties, and a viscoelastic material is provided in the cavity. It is characterized in that a damper is mainly arranged, and a material having lower elasticity than the damper is interposed between the damper and the inner wall of the cavity of the laminated rubber.

[作用] 本発明者らは前述の如く、従来の問題点を解決し、免震
効果とダンピング効果を兼備する免震装置について研究
を重ねた結果、免震ゴムの内部に空洞を設けこの部分に
優れたヒステリシス特性を有する特定の粘弾性物質をダ
ンパーとして配置することによって、小変形から大変形
に到る幅広い領域で、極めて高減衰の免震構造体を得る
ことかできた。
[Function] As mentioned above, the inventors of the present invention solved the conventional problems and conducted repeated research on a seismic isolation device that has both a seismic isolation effect and a damping effect. By arranging a specific viscoelastic material with excellent hysteresis characteristics as a damper, we were able to obtain a seismic isolation structure with extremely high attenuation over a wide range of deformations, from small to large.

しかしながら、この場合、上記特定の粘弾性物質でさえ
も減衰性を大きくしようとすればする程、微小変形にお
いては周囲をとりまく免震ゴムよりも弾性率が高くなる
。勿論、鉛や鋼材で出来た塑性体に比べるとその上昇率
ははるかに小さいが、高ロス性を発揮させるには、一般
的には、高弾性率とならざるを得ない。
However, in this case, the more the damping properties of even the above-mentioned specific viscoelastic material are increased, the higher the elastic modulus becomes than that of the surrounding seismic isolation rubber during minute deformations. Of course, the rate of increase is much smaller than that of plastic bodies made of lead or steel, but in order to exhibit high loss properties, it is generally necessary to have a high modulus of elasticity.

ところで、現代社会の要求として精密加工を必要とする
IC工場、パイオニ場、レーザー工場及び鉄道、道路沿
線の家屋などに対する微振動対策が挙げられる。一般の
免震ゴムの場合、その横方向の弾性率が低いため、これ
らの微振動に対しても防振効果を発揮し、優れた振動減
衰効果を発揮する。
By the way, modern society requires countermeasures against micro-vibration for IC factories, pioneering plants, laser factories, railways, houses along roads, etc. that require precision processing. In the case of general seismic isolation rubber, since its modulus of elasticity in the lateral direction is low, it exhibits a vibration isolation effect even against these minute vibrations, and exhibits an excellent vibration damping effect.

しかしながら前述の如く、粘弾性物質を配置した免震ゴ
ムの場合、この粘弾性物質の微小変位における弾性率が
高いため、結果として免震構造体としての弾性率が粘弾
性物質を配置しない一般の免震ゴムに比べて高くなる。
However, as mentioned above, in the case of seismic isolation rubber in which a viscoelastic material is arranged, the elastic modulus of this viscoelastic material is high at minute displacements, so as a result, the elastic modulus of the seismic isolation structure is lower than that of a general case without a viscoelastic material. Higher than seismic isolation rubber.

このため、微小振動に対する減衰効果が低下する傾向が
あり、現在の要求特性を満足し得ないものとなる。
For this reason, the damping effect against minute vibrations tends to decrease, making it impossible to satisfy the current required characteristics.

そこで、本発明者らは、このように微小振動に対して、
ダンパーが免震ゴムの減衰作用を阻外することを防止す
るべく、更に検討を重ね、免震ゴムの積層ゴムと内蔵ダ
ンパーとの間に低弾性の材料をIIN材として配置する
ことにより、このような限外作用が有効に防止されるこ
とを見出し、本発明を完成させた。
Therefore, the present inventors have developed a method for dealing with minute vibrations in this way.
In order to prevent the damper from interfering with the damping action of the seismic isolation rubber, we conducted further studies and decided to place a low elastic material as an IIN material between the laminated rubber of the seismic isolation rubber and the built-in damper. The inventors have discovered that such ultraviolet effects can be effectively prevented, and have completed the present invention.

[実施例] 以下図面を参照して実施例について説明する。[Example] Examples will be described below with reference to the drawings.

第1図は本発明の一実施例に係る免震構造体を示す縦断
面図である。
FIG. 1 is a longitudinal sectional view showing a base isolation structure according to an embodiment of the present invention.

第1図に示す如く、本実施例の免震構造体1は、複数個
の剛性を有する硬質板11と粘弾性的性質を育する軟質
板12とを交互に貼り合わせてなる積層円柱状のゴム2
の中心部に円筒状の空間を設け、この空間内に粘弾性材
料で主に構成されるダンパー3を配置し、かつ、該ダン
パー3と積層ゴム2の空洞内壁との間に、ダンパーより
も低弾性の材料(以下、「低弾性材料」と称することが
ある。)4を介在させてなるものである。なお、図中、
符号13.14はフランジ、20は建物、30は基礎で
ある。
As shown in FIG. 1, the base isolation structure 1 of this embodiment is a laminated cylindrical structure made by alternately bonding a plurality of hard plates 11 with rigidity and soft plates 12 with viscoelastic properties. rubber 2
A cylindrical space is provided in the center of the cylindrical space, and a damper 3 mainly made of a viscoelastic material is disposed within this space, and between the damper 3 and the inner wall of the cavity of the laminated rubber 2, there is a space larger than the damper. A low elastic material (hereinafter sometimes referred to as "low elastic material") 4 is interposed therebetween. In addition, in the figure,
Reference numerals 13 and 14 are flanges, 20 is a building, and 30 is a foundation.

本発明において、Ut層ゴム2の形状、その空洞の形状
やダンパー3の形状は免震効果、ダンピング効果を有効
に発揮し得る形状であれば良く、形状的には何ら拘束さ
れないが、一般的には、柱状体が適している。
In the present invention, the shape of the Ut layer rubber 2, the shape of its cavity, and the shape of the damper 3 may be any shape that can effectively exhibit the seismic isolation effect and the damping effect, and are not restricted in any way; A columnar body is suitable for this.

また、低弾性材料4は、必ずしもダンパー3の側面及び
上、下面を被覆するように設ける必要はなく、側面のみ
であったり、上面又は、下面のみであっても良い。また
、低弾性材料4は、第1図に示す如く、ダンパー3と積
層ゴム2の空洞との間に封入するように設けるのが好ま
しい。
Furthermore, the low elasticity material 4 does not necessarily need to be provided to cover the side surfaces, upper and lower surfaces of the damper 3, and may be provided only on the side surfaces, the upper surface or the lower surface. Further, the low elastic material 4 is preferably provided so as to be enclosed between the damper 3 and the cavity of the laminated rubber 2, as shown in FIG.

ただし必要に応じてこの低弾性材料部分の一部を空間で
代替してもよい。
However, if necessary, a part of this low elasticity material portion may be replaced with a space.

なお、第1図に示すような免震構造体1において、積層
ゴム2の大きさ、ダンパー3の大きさ、低弾性材料4の
厚さ等にも特に制限はなく、免震構造体の使用目的等に
応じて適宜選定されるが、例えば、積層ゴムの空洞の直
径ぶと積層ゴムの直径りどの比、It/Lは、 □≦0 、80 好ましくは β □≦0.70 更に好ましくは □≦0.64 であることが望ましい。
In addition, in the seismic isolation structure 1 shown in FIG. 1, there are no particular restrictions on the size of the laminated rubber 2, the size of the damper 3, the thickness of the low elastic material 4, etc., and the use of the seismic isolation structure is Although it is appropriately selected depending on the purpose, for example, the ratio of the diameter of the cavity of the laminated rubber to the diameter of the laminated rubber, It/L, is □≦0, 80, preferably β □≦0.70, more preferably It is desirable that □≦0.64.

また、低弾性材料4の厚さILoと積層ゴム2の空洞の
直径1との比、℃。/Lは、 好ましくは であることが望ましい。
Also, the ratio between the thickness ILo of the low elastic material 4 and the diameter 1 of the cavity of the laminated rubber 2, °C. /L is preferably .

以下に、本発明の免震構造体の積層ゴム2、ダンパー3
及び低弾性材料4の各々の構成材料について説明する。
Below, the laminated rubber 2 and damper 3 of the seismic isolation structure of the present invention will be described.
and the constituent materials of the low elastic material 4 will be explained.

積層ゴム2の硬質板11の材質としては、金属、セラミ
ックス、プラスチックス、FRP、ポリウレタン、木材
、紙板、スレート板、化粧板などを用いることができる
。また軟質板12としては、各種の加硫ゴム、プラスチ
ックなどの有機材料、これらの発泡体、アスファルト、
粘土等の無機材料、これらの混合材料など各種のものを
用いることができる。これらの硬質板11及び軟質板1
2の形状は、円形、方形、その他、五角形、六角形等の
多角形としても良い。
As the material of the hard plate 11 of the laminated rubber 2, metal, ceramics, plastics, FRP, polyurethane, wood, paper board, slate board, decorative board, etc. can be used. The soft board 12 may be made of various vulcanized rubbers, organic materials such as plastics, foams thereof, asphalt,
Various materials such as inorganic materials such as clay and mixed materials thereof can be used. These hard plates 11 and soft plates 1
The shape of 2 may be a circle, a square, or a polygon such as a pentagon or a hexagon.

一方、ダンパー3の主構成材料である粘弾性材料として
は、25℃、50%引張変形時のヒステリシス比(hs
。)が0.2以上、好ましくは0.3以上であるものが
好ましい。なお、引張速度200mm/minで、hl
ioは、第2図の応力ABHO の面積比で与えられる。
On the other hand, the viscoelastic material that is the main constituent material of the damper 3 has a hysteresis ratio (hs
. ) is 0.2 or more, preferably 0.3 or more. In addition, at a tensile speed of 200 mm/min, hl
io is given by the area ratio of stress ABHO in FIG.

また、粘弾性材料の弾性率は、周波数5Hz。Further, the elastic modulus of the viscoelastic material is at a frequency of 5 Hz.

歪0.01%で動的に測定された貯蔵弾性率Eの25℃
における値が 1≦E≦2X t o’  (kg/cm” )好まし
くは 5≦E≦1x t o’  (kg/cm2)であるこ
とが望ましい。
Storage modulus E measured dynamically at 25°C at 0.01% strain
It is desirable that the value of is 1≦E≦2X t o'(kg/cm"), preferably 5≦E≦1x t o' (kg/cm2).

また、粘弾性材料の引っ張り破断時における伸びは1%
以上あることが好ましく、より好ましくは5%以上、更
に好ましくは10%以上、特に20%以上あることが好
ましい。
In addition, the elongation of viscoelastic materials at tensile breakage is 1%.
The content is preferably at least 5%, more preferably at least 10%, particularly preferably at least 20%.

しかして、低弾性材料4としては、25℃、5Hz、O
,Of%歪で動的に測定された貯蔵弾性率Eに関して、
低弾性材料のEをEL%上記粘弾性材料のEをEvとす
れば 好ましくは より好ましくは Ev であることが望ましい。
Therefore, as the low elastic material 4, 25°C, 5Hz, O
, For the storage modulus E measured dynamically at % strain,
E of the low elastic material is EL% If E of the above viscoelastic material is Ev, it is preferably Ev.

このような、低弾性材料4としては、上記特性を満たす
ものであれば何れでも良く、各種ゴム、プラスチック、
その他、後述する粘弾性材料として例示したもののうち
上記特性を有するものを用いることができる。また、低
弾性材料としては、フオーム状発泡体、金属、プラスチ
ック、ゴム等のバネ体、毛布、織物、ワラクズ等を用い
ることもできる。低弾性材料層は、必要に応じて部分的
に空間であっても良い。
The low elasticity material 4 may be any material that satisfies the above characteristics, such as various rubbers, plastics,
In addition, among the viscoelastic materials mentioned below, those having the above characteristics can be used. Further, as the low elasticity material, a foam, a spring body made of metal, plastic, rubber, etc., a blanket, a woven fabric, a wall sack, etc. can also be used. The low modulus material layer may be partially empty if desired.

本発明において、ダンパーの粘弾性材料としては、前述
の特性を有する未加硫ゴム、加硫ゴム、その他前述の特
性を有する樹脂、可塑性物質等が挙げられる。
In the present invention, examples of the viscoelastic material of the damper include unvulcanized rubber and vulcanized rubber having the above-mentioned properties, resins and plastic substances having the above-mentioned properties, and the like.

本発明において、粘弾性材料としては、前述のようなヒ
ステリシス比、弾性率特性を有する未加硫ゴム、加硫ゴ
ム又はその類似物であることが好ましく、例えば、エチ
レンプロピレンゴム(EPR,EPDM)、ニトリルゴ
ム(N B R) 、ブチルゴム、ハロゲン化ブチルゴ
ム、クロロブレンゴム(CR)、天然ゴム(NR)、イ
ソプレンゴム(IR)、スチレンブタジェンゴム(SB
R)、ブタジェンゴムゝ(BR)、アクリルゴム、エチ
レン−酢ビゴム(EVA)、ポリウレタン等の一般ゴム
、シリコーンゴム、フッ素ゴム、エチレンアクリルゴム
、ポリエステルエラストマー、エピクロルヒドリンゴム
、塩素化ポリエチレン等の特殊ゴム、又は熱可塑性エラ
ストマー等が挙げられる。なお、粘弾性材料が未加硫ゴ
ムの場合には、100℃におけるムーニー粘度ML、。
In the present invention, the viscoelastic material is preferably unvulcanized rubber, vulcanized rubber, or similar substances having the above-mentioned hysteresis ratio and elastic modulus characteristics, such as ethylene propylene rubber (EPR, EPDM). , nitrile rubber (NBR), butyl rubber, halogenated butyl rubber, chloroprene rubber (CR), natural rubber (NR), isoprene rubber (IR), styrene butadiene rubber (SB
R), general rubbers such as butadiene rubber (BR), acrylic rubber, ethylene-vinyl acetate rubber (EVA), polyurethane, special rubbers such as silicone rubber, fluororubber, ethylene acrylic rubber, polyester elastomer, epichlorohydrin rubber, chlorinated polyethylene, Alternatively, thermoplastic elastomers and the like can be mentioned. In addition, when the viscoelastic material is unvulcanized rubber, Mooney viscosity ML at 100°C.

4が10以上であることが好ましい。It is preferable that 4 is 10 or more.

これらのゴム材料は単独で用いても、2種以上をブレン
ドして用いても良い。また、これらのゴム材料には、各
種充填剤、粘着付与剤、滑剤、老化防止剤、可塑剤、軟
化剤、低分子量ポリマー、オイル等、ゴム材料に一般的
な配合剤を混合することにより、目的に応じた硬さ、ロ
ス特性、耐久性を付与することもできる。特に長期間に
亙り所定の性能を維持するために上記のゴム材料に適切
な老化防止剤、重合禁止剤、スコーチ防止剤等の安定剤
を加えたり、ポリマー自身を水添、その他の変性を行な
うことにより安定化を図ることは極めて有効である。
These rubber materials may be used alone or in combination of two or more. In addition, these rubber materials are mixed with common compounding agents for rubber materials such as various fillers, tackifiers, lubricants, anti-aging agents, plasticizers, softeners, low molecular weight polymers, oils, etc. Hardness, loss characteristics, and durability can also be added depending on the purpose. In particular, in order to maintain specified performance over a long period of time, appropriate stabilizers such as anti-aging agents, polymerization inhibitors, and scorch inhibitors are added to the above rubber materials, or the polymer itself is hydrogenated or otherwise modified. It is extremely effective to achieve stabilization by

なお、粘弾性材料と他の構成材料との接着を行う場合、
一般的には粘弾性材料の粘着性を利用した粘着によるの
が有利であるが、この粘着性による接着のために、接着
部に必要な化学結合又は物理結合による網目を導入して
も良い。
In addition, when adhering the viscoelastic material and other constituent materials,
Generally, it is advantageous to use adhesion using the tackiness of a viscoelastic material, but for adhesion using this tackiness, it is also possible to introduce a network of necessary chemical or physical bonds into the bonded portion.

本発明の粘弾性材料としては、上記の特性を有する未加
硫ゴム、加硫ゴムの他に、上記の特性を有する次のよう
な物質を利用することもできる。
As the viscoelastic material of the present invention, in addition to unvulcanized rubber and vulcanized rubber having the above characteristics, the following substances having the above characteristics can also be used.

例えば、ポリスチレン、ポリエチレン、ポリプロピレン
、ABS、ポリ塩化ビニル、ポリメタクリル酸メチル、
ポリカーボネート、ポリアセタール、ナイロン、塩化ポ
リエーテル、ポリ四フッ化エチレン、アセチルセルロー
ス、エチルセルロース等の熱可塑性プラスチック及びこ
れらのプラスチックに必要に応じて、次に示す充填剤、
可塑剤、軟化剤、粘着付与剤、オリゴマー滑剤等を配合
したものが挙げられる。
For example, polystyrene, polyethylene, polypropylene, ABS, polyvinyl chloride, polymethyl methacrylate,
Thermoplastic plastics such as polycarbonate, polyacetal, nylon, chlorinated polyether, polytetrafluoroethylene, acetyl cellulose, and ethyl cellulose, and the following fillers as necessary for these plastics:
Examples include those containing plasticizers, softeners, tackifiers, oligomer lubricants, etc.

■ 充填剤: クレー、珪藻土、カーボンブラシク、シ
リカ、タルク、硫酸バリウム、炭酸カルシウム、炭酸マ
グネシウム、金属酸化物、マイカ、グラファイト、水酸
化アルミニウム等の鱗片状無機充填剤、各種の金属粉、
木片、ガラス粉、セラミックス粉、粒状ないし粉末ポリ
マー等の粒状ないし粉体状固体充填剤、その他各種の天
然又は人工の短繊維、長繊維(例えば、ワラ、毛、ガラ
スファイバー、金属ファイバー、その他各種のポリマー
ファイバー等)等のゴム用あるいは樹脂用充填剤。
■ Fillers: Scale-like inorganic fillers such as clay, diatomaceous earth, carbon brush, silica, talc, barium sulfate, calcium carbonate, magnesium carbonate, metal oxides, mica, graphite, aluminum hydroxide, various metal powders,
Wood chips, glass powder, ceramic powder, granular or powder solid fillers such as granular or powdered polymers, and various other natural or artificial short fibers and long fibers (e.g., straw, hair, glass fiber, metal fiber, and other various types) Fillers for rubber or resin, such as polymer fibers, etc.

充填剤の配合割合は、ゴム100重量部に対し30〜2
50重量部とするのが好ましい。
The blending ratio of filler is 30 to 2 parts by weight per 100 parts by weight of rubber.
The amount is preferably 50 parts by weight.

なお、短繊維としては、ガラス、プラスチック、天然物
等の一般の短繊維が用いられる。これらの短繊維には次
のような特殊な短繊維補強物も含む。例えば短繊維の配
合状態は、加硫可能なゴムに分子中に一〇−NH−基を
有する熱可塑性ポリマーの短繊維が、フェノールホルム
アルデヒド系樹脂の初期縮合物を介してグラフトしてい
る強化ゴム組成物のように、短繊維がゴムに化学的に結
合して配合されているものが好ましい。上記熱可塑性ポ
リマーの微細な短ua維は、融点が190〜235℃、
好ましくは190〜225℃、特に好ましくは200℃
〜220℃である、ナイロン6、ナイロン610、ナイ
ロン12、ナイロン611、ナイロン612等のナイロ
ン、ポリへブタメチレン尿素、ポリウンデカメチレン尿
素等のポリ尿素やポリウレタン等のポリマー分子中に−
CONH−基を有する熱可塑性ポリマー、特にはナイロ
ンから形成することが好ましく、平均径が0.05〜0
.8μであり、かつ円形断面を有し、最短繊維長が好ま
しくは1μm以上で、繊維軸方向に分子が配列された微
細な短繊維の形態で埋封されていることが好適である。
In addition, as short fibers, general short fibers such as glass, plastic, and natural products are used. These short fibers also include special short fiber reinforcements such as: For example, the blending state of short fibers is a reinforced rubber in which short fibers of a thermoplastic polymer having 10-NH- groups in the molecule are grafted to vulcanizable rubber via an initial condensate of phenol formaldehyde resin. It is preferable to use a composition in which short fibers are chemically bonded to rubber. The fine short UA fibers of the thermoplastic polymer have a melting point of 190 to 235°C,
Preferably 190-225°C, particularly preferably 200°C
In polymer molecules such as nylons such as nylon 6, nylon 610, nylon 12, nylon 611, and nylon 612, polyureas such as polyhebutamethylene urea and polyundecamethylene urea, and polyurethanes, which have a temperature of ~220°C.
It is preferably formed from a thermoplastic polymer having CONH groups, especially nylon, and has an average diameter of 0.05 to 0.
.. It is preferable that the fiber has a diameter of 8 μm, a circular cross section, a shortest fiber length of preferably 1 μm or more, and is embedded in the form of fine short fibers with molecules arranged in the fiber axis direction.

■ 軟化剤: アロマティック系、ナフテン系、パラフ
ィン系等の各種ゴム用あるいは樹脂用軟化剤。
■ Softeners: Softeners for various rubbers or resins, such as aromatic, naphthene, and paraffin.

軟化剤の好ましい配合割合は、ゴム100重量部に対し
5〜150重量部である。
The preferred blending ratio of the softener is 5 to 150 parts by weight per 100 parts by weight of rubber.

■ 可塑剤: フタル酸エステル、フタル酸混基エステ
ル、脂肪族二塩基酸エステル、グリコールエステル、脂
肪酸エステル、リン酸エステル、ステアリン酸エステル
等の各種エステル系可塑剤、エポキシ系可塑剤、その化
プラスチック用可塑剤又は、フタレート系、アジペート
系、セバケート系、フォスフェート系、ポリエーテル系
、ポリエステル系等のNBR用可望刑。
■Plasticizers: Various ester plasticizers such as phthalate esters, phthalate mixed group esters, aliphatic dibasic acid esters, glycol esters, fatty acid esters, phosphate esters, stearate esters, epoxy plasticizers, and their plastics. or plasticizers for NBR such as phthalate, adipate, sebacate, phosphate, polyether, and polyester.

可塑剤の好ましい配合割合は、ゴム100重量部に対し
5〜150重量部である。
The preferred blending ratio of the plasticizer is 5 to 150 parts by weight per 100 parts by weight of rubber.

■ 粘着付与剤: クマロン樹脂、クマロン−インデン
樹脂、フェノールテルペン樹脂、石油系炭化水素、ロジ
ン誘導体等の各種粘着付与剤(タッキファイヤ−)。
■ Tackifiers: Various tackifiers (tackifiers) such as coumaron resin, coumaron-indene resin, phenol terpene resin, petroleum hydrocarbons, and rosin derivatives.

粘着付与剤の好ましい配合割合は、ゴム100重量部に
対し1〜5offi量部である。
The preferred blending ratio of the tackifier is 1 to 5 parts by weight per 100 parts by weight of rubber.

■ オリゴマー: クラウェーチル、含フツ素オリゴマ
ー、ポリブテン、キシレン樹脂、塩化ゴム、ポリエチレ
ンワックス、石油樹脂、ロジンエステルゴム、ポリアル
キレンゲリコールジアクリレート、液状ゴム(ポリブタ
ジェン、スチレン−ブタジェンゴム、ブタジェン−アク
リロニトリルゴム、ポリクロロプレン等)、シリコーン
系オリゴマー、ポリ−α−オレフィン等の各種オリゴマ
ー。
■ Oligomers: Klawetyl, fluorine-containing oligomers, polybutene, xylene resin, chlorinated rubber, polyethylene wax, petroleum resin, rosin ester rubber, polyalkylene gelicol diacrylate, liquid rubber (polybutadiene, styrene-butadiene rubber, butadiene-acrylonitrile rubber, polyester) chloroprene, etc.), silicone oligomers, poly-α-olefins, and other oligomers.

オリゴマーの好ましい配合割合は、ゴム100重量部に
対し5〜ioo重量部である。
The preferred blending ratio of the oligomer is 5 to 100 parts by weight per 100 parts by weight of rubber.

■ 滑剤: パラフィン、ワックス等の炭化水素系滑剤
、高級脂肪酸、オキシ脂肪酸等の脂肪酸系滑剤、脂肪酸
アミド、アルキレンビス脂肪酸アミド等の脂肪酸アミド
系滑剤、脂肪酸低級アルコールエステル、脂肪酸多価ア
ルコールエステル、脂肪酸ポリグリコールエステル等の
エステル系滑剤、脂肪アルコール、多価アルコ−ル、ポ
リグリコール、ポリグリセロール等のアルコール系滑剤
、金属石鹸、混合系滑剤等の各種滑剤。
■ Lubricants: Hydrocarbon lubricants such as paraffin and wax, fatty acid lubricants such as higher fatty acids and oxyfatty acids, fatty acid amide lubricants such as fatty acid amide and alkylene bis fatty acid amide, fatty acid lower alcohol esters, fatty acid polyhydric alcohol esters, and fatty acids. Various lubricants such as ester lubricants such as polyglycol esters, alcohol lubricants such as fatty alcohols, polyhydric alcohols, polyglycols, and polyglycerols, metal soaps, and mixed lubricants.

滑剤の好ましい配合割合は、ゴム100重量部に対し1
〜50重量部である。
The preferred blending ratio of the lubricant is 1 to 100 parts by weight of rubber.
~50 parts by weight.

本発明において、粘弾性体材料としては、ビチューメン
、粘土等の天然物等を用いることもできる。
In the present invention, natural products such as bitumen and clay can also be used as the viscoelastic material.

なお、本発明において、ダンパー3は、前述のような粘
弾性材料で主に構成されるものであれば、どのような構
成のものであっても良いが、例えば、 (A)  網状構造体、波状構造体、ハニカム状構造体
及び織物の少なくとも一つの骨格体と粘弾性材料とを複
合してなるもの。
In the present invention, the damper 3 may have any configuration as long as it is mainly composed of the viscoelastic material as described above, but for example, (A) a network structure; A composite of a skeleton of at least one of a wavy structure, a honeycomb structure, and a fabric, and a viscoelastic material.

(B)  粘弾性材料中に球状体、柱状体、又は粘弾性
材料中にセルを形成するような仕切部材(第3図(a)
〜(e)に示したようなもの)のような固体物質を封入
したもの。
(B) A partition member that forms a spherical body, a columnar body, or a cell in a viscoelastic material (Fig. 3 (a)
~ those shown in (e)) are enclosed in a solid substance.

とすることができる。It can be done.

上記(A)の場合、具体的な構成としては、例えば次の
ようにして作製されるものが挙げられる。
In the case of (A) above, a specific configuration may be one manufactured as follows, for example.

■ 骨格体と粘弾性体とを加圧一体化する。■ Integrate the skeletal body and the viscoelastic body under pressure.

11  骨格体と粘弾性体とを交互に重ねる。11 Alternately stack the skeletal body and the viscoelastic body.

Ill  骨格体と粘弾性体とを加圧一体化したものを
、骨格体及び/又は粘弾性体と交互に重ねる。
Ill A skeleton body and a viscoelastic body are integrated under pressure and are alternately stacked on the skeleton body and/or the viscoelastic body.

!■ 上記!−IIIで作製されるものに、更に板状材
又は線状材を積層するなどして組み合せる。
! ■ Above! -It is combined by further laminating a plate-like material or a wire-like material to what is produced in III.

また、骨格体は、網状構造体、波状構造体、ハニカム状
構造体及び織物(例えばストッキング状のもの)のいず
れか一つであるが、これらの骨格体の材質としては、特
に制限はないが、金属、セラミックス、プラスチックス
、FRP、ポリウレタン、綿、絹等の天然系、ポリアミ
ド、ポリエステル等の合成繊維が挙げられる。
In addition, the skeleton may be any one of a net-like structure, a wave-like structure, a honeycomb-like structure, and a fabric (for example, a stocking-like structure), but there are no particular restrictions on the material of these skeletons. , metals, ceramics, plastics, FRP, polyurethane, natural fibers such as cotton and silk, and synthetic fibers such as polyamide and polyester.

一方、(B)の場合、球状体、柱状体あるいはセル形成
仕切部材等の固体物質の材質としては、特に制限されな
いが、例えば金属、セラミックス、ガラス、FRP、プ
ラスチックス、ポリウレタン、高硬度ゴム、木材、岩石
、砂、砂利等が適している。また、仕切部材には、これ
らの他に比較的硬度の低いゴム材料や紙、革等を用いる
とともできる。
On the other hand, in the case of (B), the material of the solid substance such as the spherical body, columnar body, or cell forming partition member is not particularly limited, but examples include metal, ceramics, glass, FRP, plastics, polyurethane, high hardness rubber, Suitable materials include wood, rocks, sand, gravel, etc. In addition to these materials, the partition member may also be made of a rubber material with relatively low hardness, paper, leather, or the like.

なお、第3図(a)〜(e)に示す仕切部材8は、いず
れも、ダンパーの軟質体に、垂直方向に細長いセルの集
合体を形成するようなものであって、(a)は同心円状
、(b)は放射状、(C)は(a)と(b)との組合せ
、(d)は放射状、(e)は螺旋状に仕切部材8を設け
たものである。第3図(a)〜(e)において最外円筒
はダンパーの加硫ゴムの内壁を示す。
Note that the partition members 8 shown in FIGS. 3(a) to 3(e) all form an aggregate of vertically elongated cells in the soft body of the damper, and (a) The partition members 8 are provided concentrically, (b) radially, (C) a combination of (a) and (b), (d) radially, and (e) spirally. In FIGS. 3(a) to 3(e), the outermost cylinder represents the inner wall of the vulcanized rubber of the damper.

ゴム材料としては、前述の未加硫ゴム、加硫ゴムに用い
られるゴム材料が挙げられる。
Examples of the rubber material include the aforementioned rubber materials used for unvulcanized rubber and vulcanized rubber.

勿論、本発明において、ダンパーの構成は前記(A)、
(B)に限定されるものではない。・なお、本発明の免
震構造体は、その耐候性等の向上を目的として、外表面
部を耐候性に優れたゴム材料で被覆するなどの改良を加
えることもできる。
Of course, in the present invention, the structure of the damper is the above (A),
It is not limited to (B). - The seismic isolation structure of the present invention can be improved by coating the outer surface with a rubber material having excellent weather resistance, etc., for the purpose of improving its weather resistance.

この場合、被覆ゴム材料としては、耐候性の優れたゴム
状ポリマーが望ましく、例えば、ブチルゴム、アクリル
ゴム、ポリウレタン、シリコンゴム、フッ素ゴム、多硫
化ゴム、エチレンプロピレンゴム(ERP及びEPDM
)、ハイパロン、塩素化ポリエチレン、エチレン酢酸ビ
ニルゴム、エピクロルヒドリンゴム、クロロブレンゴム
等が挙げられる。これらのうち、特にブチルゴム、ポリ
ウレタン、エチレンプロピレンゴム、ハイパロン、塩素
化ポリエチレン、エチレン酢酸ビニルゴム、クロロブレ
ンゴムが耐候性の面からは効果的である。更に、軟質板
を構成するゴムとの接着性を考慮した場合には、ブチル
ゴム、エチレンプロピレンゴム、クロロブレンゴムが望
ましく、とりわけエチレンプロピレンゴムを用いるのが
最も好ましい。
In this case, the coating rubber material is preferably a rubbery polymer with excellent weather resistance, such as butyl rubber, acrylic rubber, polyurethane, silicone rubber, fluororubber, polysulfide rubber, ethylene propylene rubber (ERP and EPDM).
), Hypalon, chlorinated polyethylene, ethylene vinyl acetate rubber, epichlorohydrin rubber, chloroprene rubber, etc. Among these, butyl rubber, polyurethane, ethylene propylene rubber, Hypalon, chlorinated polyethylene, ethylene vinyl acetate rubber, and chloroprene rubber are particularly effective in terms of weather resistance. Furthermore, in consideration of adhesion to the rubber constituting the soft plate, butyl rubber, ethylene propylene rubber, and chloroprene rubber are preferable, with ethylene propylene rubber being most preferable.

これらのゴム材料は単独で用いても、2f!以上をブレ
ンドして用いても良い。また、伸び、その他の物性を改
良するために市販ゴム、例えば、天然ゴム、イソプレン
ゴム、エチレンブタジェンゴム、ブタジェンゴム、ニト
リルゴム等とブレンドしても良い。更に、これらのゴム
材料には、各種充填剤、老化防止剤、可塑剤、軟化剤、
オイル等、ゴム材料に一般的な配合剤を混合しても良い
Even if these rubber materials are used alone, 2f! You may use a blend of the above. Further, in order to improve elongation and other physical properties, it may be blended with commercially available rubbers such as natural rubber, isoprene rubber, ethylene butadiene rubber, butadiene rubber, nitrile rubber, etc. Furthermore, these rubber materials contain various fillers, anti-aging agents, plasticizers, softeners,
General compounding agents such as oil may be mixed with rubber materials.

このような本発明の免震装置を製造するには、例えば、
硬質板と軟質板とを交互に積層して加硫成形した免震ゴ
ムをくり抜いたり、あらかじめ中心部の空洞部ができる
よう加硫成形された免震ゴムの空洞部に予め成形したダ
ンパー及び低弾性材料を挿入するか、予め成形したダン
パー及び低弾性材料に中心部をくり抜いた硬質板と軟質
板材料とを交互にはさみ込みこれを共加硫する方法が採
用される。
In order to manufacture such a seismic isolation device of the present invention, for example,
A damper and a damper are pre-molded into the hollow part of the seismic isolation rubber which has been vulcanized and molded by laminating hard plates and soft plates alternately, or by hollowing out the seismic isolation rubber which has been vulcanized and molded by laminating hard plates and soft plates in advance. A method is adopted in which an elastic material is inserted, or a hard plate with a hollowed out center and a soft plate material are alternately sandwiched between a pre-formed damper and a low elastic material and then co-vulcanized.

[発明の効果] このような本発明の免震構造体は、免震効果と共にダン
パー効果を具備するため、地震発生時の揺れは免震構造
体に吸収され、建物に伝えられる揺れの程度が減少され
る。このため大地震の発生時においても、建物と他の構
造物とが衝突したり、木管、ガス管、配線等の儲品か破
壊することが防止される。しかも、fJt層ゴムとダン
パーとの間に介在する低弾性材料の1yi街効果により
、微小振動において、ダンパーが免震作用を限外するの
を効果的に防止することができるため、微小振動から、
不変形〜大変形に到る広範な領域において、極めて優れ
た減衰効果が発揮される。
[Effects of the Invention] Since the base isolation structure of the present invention has a damper effect as well as a base isolation effect, shaking when an earthquake occurs is absorbed by the base isolation structure, and the degree of shaking transmitted to the building is reduced. reduced. Therefore, even in the event of a major earthquake, buildings are prevented from colliding with other structures, and valuable items such as wood pipes, gas pipes, and wiring are prevented from being destroyed. Moreover, the 1yi-gauge effect of the low-elasticity material interposed between the fJt layer rubber and the damper can effectively prevent the damper from limiting its seismic isolation effect in the case of minute vibrations. ,
Extremely excellent damping effects are exhibited in a wide range of areas from no deformation to large deformation.

なお、本発明の免震構造体は免震効果の他に、除振(防
振、抑振)等の優れた効果も十分に期待できるものであ
る。
In addition, the seismic isolation structure of the present invention can be fully expected to have excellent effects such as vibration isolation (vibration isolation, vibration suppression) in addition to the seismic isolation effect.

【図面の簡単な説明】 第1図は本発明の一実施例に係る免震構造体を示す縦断
面図、第2図は材料の応力−歪曲線である。第3図(a
)〜(e)は各々仕切部材の例を示す斜視図である。 1・・・免震構造体、     2・・・積層ゴム、3
・・・ダンパー、      4・・・低弾性材料、1
1・・・硬質板、      12・・・軟質板、13
.14・・・フランジ。 代理人  弁理士  重 野  剛
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing a base isolation structure according to an embodiment of the present invention, and FIG. 2 is a stress-strain curve of the material. Figure 3 (a
) to (e) are perspective views each showing an example of a partition member. 1... Seismic isolation structure, 2... Laminated rubber, 3
...damper, 4...low elasticity material, 1
1...Hard board, 12...Soft board, 13
.. 14...Flange. Agent Patent Attorney Tsuyoshi Shigeno

Claims (1)

【特許請求の範囲】[Claims] (1)複数個の剛性を有する硬質板と粘弾性的性質を有
する軟質板とを交互に貼り合わせてなる積層ゴムに空洞
部を設け、この空洞部に粘弾性材料で主に構成されるダ
ンパーを配置し、かつ、該ダンパーと積層ゴムの空洞内
壁との間に、ダンパーよりも低弾性の材料を介在させて
なることを特徴とする免震構造体。
(1) A cavity is provided in a laminated rubber made by alternately laminating a plurality of rigid plates with rigidity and soft plates with viscoelastic properties, and a damper mainly made of viscoelastic material is provided in this cavity. What is claimed is: 1. A seismic isolation structure characterized in that a material having lower elasticity than the damper is interposed between the damper and a cavity inner wall of the laminated rubber.
JP62157190A 1987-06-24 1987-06-24 Seismic isolation structure Expired - Fee Related JP2615626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62157190A JP2615626B2 (en) 1987-06-24 1987-06-24 Seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62157190A JP2615626B2 (en) 1987-06-24 1987-06-24 Seismic isolation structure

Publications (3)

Publication Number Publication Date
JPH011843A true JPH011843A (en) 1989-01-06
JPS641843A JPS641843A (en) 1989-01-06
JP2615626B2 JP2615626B2 (en) 1997-06-04

Family

ID=15644169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62157190A Expired - Fee Related JP2615626B2 (en) 1987-06-24 1987-06-24 Seismic isolation structure

Country Status (1)

Country Link
JP (1) JP2615626B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956329A (en) * 1988-11-28 1990-09-11 Allied-Signal Inc. High surface area cordierite catalyst support structures
US5438806A (en) * 1993-12-13 1995-08-08 Reinhall; Per Composition for vibration damping
JPH10281221A (en) * 1997-04-07 1998-10-23 Fujikura Rubber Ltd Vibrationproofing rubber device
CN1218105C (en) * 2003-06-11 2005-09-07 尹学军 Shock-absorbing seat
JP4600144B2 (en) * 2005-05-16 2010-12-15 横浜ゴム株式会社 Complex seismic isolation bearing
JP2009108200A (en) * 2007-10-30 2009-05-21 Bridgestone Corp Elastomer composition for plug in base isolation structure, composition for plug in base isolation structure, plug in base isolation structure, and base isolation structure
JP5140546B2 (en) * 2007-10-30 2013-02-06 株式会社ブリヂストン Seismic isolation structure
JP5174443B2 (en) * 2007-11-28 2013-04-03 株式会社ブリヂストン Seismic isolation structure
JP6051325B1 (en) * 2016-04-01 2016-12-27 黒沢建設株式会社 Seismic isolation device with concentric laminated damping material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ201015A (en) * 1982-06-18 1986-05-09 New Zealand Dev Finance Building support:cyclic shear energy absorber

Similar Documents

Publication Publication Date Title
US4899323A (en) Anti-seismic device
JP2615639B2 (en) Seismic isolation structure
JP2855605B2 (en) Seismic isolation device
GB2185987A (en) Resilient coat for tie of direct-connection type track
JPH011843A (en) Seismic isolation structure
JP2615626B2 (en) Seismic isolation structure
CN1218105C (en) Shock-absorbing seat
JPH0784815B2 (en) Seismic isolation device
JP2832983B2 (en) Damper
JP2570340B2 (en) Seismic isolation structure
JP3851386B2 (en) Seismic isolation structure
JP2570341B2 (en) Seismic isolation structure
JP2836068B2 (en) Damper
JPH09177367A (en) Base insulation structure
JP2004211745A (en) Highly damped supporting device
JP4360133B2 (en) Damper material for seismic isolation devices
JP2658024B2 (en) Seismic isolation device
JP3314716B2 (en) Building dampers
JPH10295498A (en) Cushion member
JP2832986B2 (en) Building damping material
JPH09242376A (en) Vibration isolating device
JP2001200103A (en) Vibration damping vtscoelastic material for building
JPH08260753A (en) Base isolation device
JPH08326840A (en) Base isolation structure
JPH1122782A (en) Base isolation device