JP2004211745A - Highly damped supporting device - Google Patents

Highly damped supporting device Download PDF

Info

Publication number
JP2004211745A
JP2004211745A JP2002379806A JP2002379806A JP2004211745A JP 2004211745 A JP2004211745 A JP 2004211745A JP 2002379806 A JP2002379806 A JP 2002379806A JP 2002379806 A JP2002379806 A JP 2002379806A JP 2004211745 A JP2004211745 A JP 2004211745A
Authority
JP
Japan
Prior art keywords
bearing device
plastic
damping bearing
damping
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002379806A
Other languages
Japanese (ja)
Inventor
Kazunobu Hashimoto
和信 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2002379806A priority Critical patent/JP2004211745A/en
Publication of JP2004211745A publication Critical patent/JP2004211745A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly damped supporting device having super plasticity in place of lead and using alternative materials as energy absorbing materials to cause no problems with environment or others. <P>SOLUTION: The highly damped supporting device comprises a plurality of rubber plates 4 and a plurality of steel plates 5 layered. The rubber plates 4 and the steel plates 5 have through-holes 4a, 5a, respectively, passing therethrough in the directions of their thicknesses. Super plastic plugs 6 are buried in the through-holes 4a, 5a. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鉛プラグ入りゴム支承(以下、LRB〔Lead Rubber Bearing〕という)に代えて用いることができる高減衰支承装置に関するものである。
【0002】
【従来の技術】
近年、土木用,建築用等の構造物に対する免震支承化は、ライフラインの確保と効率性の観点から進められており、また、免震支承の技術も、分散支承から高減衰支承へと変化している。この高減衰支承においては、積層ゴム体を用いた支承として、大きく分けてLRB(図10参照)と高減衰ゴム支承(HDR〔High Damping Rubber〕)との2種類があるが、LRBは、エネルギー吸収機構として、鉛21(図10参照)の塑性変形性能を利用(図11参照。図11において、斜線の面積が塑性変形によるエネルギー吸収量になる)したものであり、高減衰(等価減衰定数15〜30%)であることから、高減衰支承の市場において主流となっている。図10において、22,23は上下一対の鋼板で、24は積層ゴム体である。
【0003】
【発明が解決しようとする課題】
しかしながら、上記のLRBでは、エネルギー吸収材として鉛を用いているため、環境および廃棄における社会的な課題を抱えている。すなわち、鉛は、鉛中毒で知られる有毒物質であり、土木,建築等公共性の高い構造物に対し免震材料として用いるべきではないという問題を有している。そこで、鉛に代わる超塑性を有し、かつ環境等の問題が生じない代替材料をエネルギー吸収材として用いるようにした高減衰支承装置の提案が待ち望まれている。
【0004】
本発明は、このような事情に鑑みなされたもので、鉛に代わる超塑性を有し、かつ環境等の問題が生じない代替材料をエネルギー吸収材として用いるようにした高減衰支承装置の提供をその目的とする。
【0005】
【課題を解決するための手段】
上記の目的を達成するために、本発明の高減衰支承装置は、複数のゴム板と複数の硬質層とを積層してなる高減衰支承装置であって、上記各ゴム板と各硬質層とに、それらの厚み方向に沿って貫通する貫通孔が穿設され、上記貫通孔に超塑性プラスチックが埋設されているという構成をとる。
【0006】
すなわち、本発明の高減衰支承装置では、積層される複数のゴム板と複数の硬質層とに、それらの厚み方向に沿って穿設された貫通孔に、本発明者が、高減衰支承装置に適するとして見い出した、超塑性プラスチックを埋設しているため、この超塑性プラスチックが有する塑性変形性能により、高減衰支承が可能になる。例えば、超塑性プラスチックの塑性域における荷重−歪み関係を適宜設計することにより、等価減衰定数10〜64%の範囲の高減衰支承が可能になる。しかも、超塑性プラスチックとして、有機材料で、かつ熱可塑性であるプラスチックを用いることにより、環境等の問題を生じることがなくなるうえ、軽量であり、作業性が向上するという効果が得られる。
【0007】
ここで、本発明における「超塑性プラスチック」とは、超塑性の性質を示す熱可塑性プラスチック(合成樹脂)を指す。また、「超塑性の性質を示す」とは、つぎの4つの性質を示すことである。すなわち、▲1▼弾性域が歪み率で20%未満であること。▲2▼引張降伏強さが10MPa以上であること。▲3▼破壊伸びが200%以上で、そのうち塑性変形域が全体の80%以上を占めること。▲4▼引張破壊強さが10MPa以上であること。
【0008】
具体的には、上記の「超塑性プラスチック」とは、例えば、つぎの2つの技術の内のいずれか一方もしくは双方の技術で構成される材料のことである。すなわち、第1に、ポリマーアロイまたはポリマープレンド技術によって作製された2成分以上のポリマーで構成されるものであり、第2に、有機・無機フィラーがナノサイズ(10〜100nmの範囲)で高分散され、その充填量が全体の1〜300重量%で、好ましくは、1〜100重量%であるものである。このような「超塑性プラスチック」として、未来化成社製のアスワン(R)があげられる。このアスワンは、使用済みペット(PET)ボトルを砕いたフレークを主原料とし、上記技術によって高分散されされたプラスチックである。
【0009】
本発明において、高減衰支承装置を橋梁用支承もしくは建築用支承として用いる場合において、上記高減衰支承装置の等価減衰定数が10〜64%で、上記せん断方向の変形量が20〜400%で、上記貫通孔の個数が1〜12個であると、橋梁用支承もしくは建築用支承として好適に用いることができる。
【0010】
【発明の実施の形態】
つぎに、本発明の実施の形態を図面にもとづいて説明する。
【0011】
図1は本発明の高減衰支承装置の一実施の形態を示している。この実施の形態では、高減衰支承装置として、橋梁用のものが用いられている。図において、1,2は長方形状平板体からなる上下一対の鋼板(厚み32mm)であり、3は上記両鋼板1,2間に配設され上記両鋼板1,2に接着,一体化された積層ゴム体である。上記上側鋼板1には、その上面の中央部に、橋梁の橋桁の取付面(上側鋼板1の上面に載置する面)に設けた凸部(図示せず)に嵌合する凹部1aが形成されており、その下面には、後述する4つのプラグ6の上端部に嵌合する4つの凹部1bが仮想同一円周上に形成されている(図2参照)。また、上記下側鋼板2には、その上面の、上記各凹部1bに対応する部分に、上記各プラグ6の下端部に嵌合する4つの凹部2aが形成されている。
【0012】
上記積層ゴム体3は、略直方体に形成されており、複数枚(この実施の形態では、9枚)の長方形状平板体の天然ゴム製ゴム板4(厚み8mm程度)と、各ゴム板4間に配設され各ゴム板4に接着,一体化された複数枚(この実施の形態では、8枚)の長方形状平板体の鋼板(硬質層)5(厚み3mm程度)とを備えており、これら各ゴム板4,各鋼板5に、それらの厚み方向(すなわち、上下方向)に沿って同心状に貫通する複数個(この実施の形態では、4個)の円形の貫通孔4a,5aがそれぞれ同形状に穿設されている(図1および図3参照)。そして、これら各貫通孔4a,5aに、円柱形状からなる複数本(この実施の形態では、4本)の超塑性プラスチック製のプラグ6が埋設されている。この実施の形態では、上記各プラグ6として、未来化成社製のアスワンを上記形状に成形加工したものを用いている。
【0013】
また、この実施の形態では、上記高減衰支承装置を橋梁用として用いるため、上記各ゴム板4のせん断ばね定数を2.3×104 N/cmに、上記各プラグ6の降伏応力を14MPaに、高減衰支承装置の等価減衰定数を20%に設定している。また、上記高減衰支承装置のせん断方向の変形量(すなわち、上記各プラグ6のせん断方向の変形量〔せん断歪み〕)を175%に設定している。
【0014】
上記のように、この実施の形態では、各ゴム板4および各鋼板5に穿設した各貫通孔4a,5aに、超塑性プラスチック製のプラグ6を埋設しているため、このプラグ6が有する塑性変形性能により、高減衰支承が可能になる。しかも、上記各プラグ6は、使用済みペットボトルを砕いたフレークを主体とするものであり、リサイクル性に富んでおり、かつ軽量である。
【0015】
図4は本発明の高減衰支承装置の他の実施の形態を示している。この実施の形態では、高減衰支承装置として、建築用(例えば、住宅用)のものが用いられている。図において、11,12は長方形状平板体からなる上下一対の鋼板(厚み20mm)であり、13は上記両鋼板11,12間に配設され上記両鋼板11,12に接着,一体化された積層ゴム体である。上記上側鋼板11には、その下面の中央部に、後述するプラグ16の上端部に嵌合する凹部11aが形成されている(図5参照)。また、上記下側鋼板12には、その上面の中央部(上記凹部11aに対応する部分)に、上記プラグ16の下端部に嵌合する凹部12aが形成されている。
【0016】
上記積層ゴム体13は、略直方体に形成されており、複数枚(この実施の形態では、8枚)の長方形状平板体の天然ゴム製のゴム板14(厚み10mm程度)と、各ゴム板14間に配設され各ゴム板14に接着,一体化された複数枚(この実施の形態では、7枚)の長方形状平板体の鋼板(硬質層)15(厚み3mm程度)とを備えており、これら各ゴム板14,各鋼板15の中央部に、それらの厚み方向(すなわち、上下方向)に沿って同心状に貫通する円形の貫通孔14a,15aがそれぞれ同形状に穿設されている(図4および図6参照)。そして、これら各貫通孔14a,15aに、円柱形状からなる超塑性プラスチック製のプラグ16が埋設されている。この実施の形態でも、上記各プラグ16として、未来化成社製のアスワンを上記形状に成形加工したものを用いている。
【0017】
また、この実施の形態では、上記高減衰支承装置を建築用として用いるため、上記各ゴム板14のせん断ばね定数を270N/cmに、上記プラグ16の降伏応力を14MPaに、上記高減衰支承装置の等価減衰定数を30%に設定している。また、上記高減衰支承装置のせん断方向の変形量(すなわち、上記プラグ16のせん断方向の変形量〔せん断歪み〕)を200%に設定している。この実施の形態でも、上記実施の形態と同様の作用・効果を奏する。
【0018】
上記両高減衰支承装置の免震効果を調べるため、つぎの実験を行った。すなわち、静的な二軸加力試験機(鷲宮製作所製の形式LHV−II)を用い、加力条件は、面圧:0〜10Pa、周波数:0.01Hz、せん断方向の変形量:175〜200%に設定した。また、プラグ16の形状は直径30mmの円柱形状とし、橋梁用試験体は4本用い、建築用試験体は1本用いた。その実験の結果を、下記の表1に示す。
【0019】
【表1】

Figure 2004211745
【0020】
上記の表1から明らかなように、上記両高減衰支承装置は、その等価減衰定数が、橋梁用試験体では16.2%で、建築用試験体では26.8%であり、免震効果に優れていることが判る。
【0021】
上記の等価剛性,等価減衰定数は、下記の数式(1)および(2)で表わされる。
【0022】
等価剛性:Keq=(Qmax−Qmin)/2δd(N/m) …(1)
等価減衰定数:Heq=(ΔW/4πW)×100(%) …(2)
〔上記数式において、Qmax,Qmin,δdは図7参照。また、W=Keqδd2 /2、エネルギー吸収量:ΔW(図7における斜線の面積)=2π2 fCeqδd2 を示し、Ceq:等価粘性減衰係数(N・s/m)、f:加振周波数(Hz)である〕
【0023】
一方、合成された系(図8参照)の場合では、そのエネルギー吸収量は、ΔW=4QSpd〔Q:超塑性プラスチックのせん断降伏応力、Sp:超塑性プラスチックの断面積(図9参照)〕で求められる。また、上記系の等価剛性は、下記の数式(3)で表わされる。したがって、上記系の等価減衰定数は、下記の数式(4)で表わされる。
【0024】
Keq=GSg/L+QSp/d(N/m) …(3)
Heq=(4QSpd/2πKeqd2 )×100=(2QSp/πKeqd)×100(%) …(4)
〔上記数式において、G:ゴムのせん断弾性率、Sg:ゴム分の断面積、L:高さ(図9参照)である。〕
【0025】
なお、上記両実施の形態では、各プラグ6,16は円柱形状に形成されているが、これに限定されるものではなく、角柱形状等どのような柱形状に形成されていてもよい。また、上記積層ゴム体3,13は略直方体に形成されているが、円柱形状等どのような形状に形成されていてもよい。また、上記各鋼板1,2,5,11,12,15は長方形状平板体に形成されているが、どのような形状に形成されていてもよい。
【0026】
また、図1に示す実施の形態では、上記各ゴム板4のせん断ばね定数を2.3×104 N/cmに設定しているが、1.0×104 〜1.0×105 N/cmの範囲に設定することができる。また、上記各プラグ6の降伏応力を14MPaに設定しているが、5〜20MPaの範囲に設定することができる。一方、図4に示す実施の形態では、上記各ゴム板14のせん断ばね定数を270N/cmに設定しているが、200〜1000N/cmの範囲に設定することができる。また、上記プラグ16の降伏応力を14MPaに設定しているが、5〜20MPaの範囲に設定することができる。
【0027】
【発明の効果】
以上のように、本発明の高減衰支承装置によれば、交互に積層される複数のゴム板と複数の硬質層とに(それらの厚み方向に沿って)穿設された貫通孔に、超塑性プラスチックを埋設しているため、この超塑性プラスチックが有する塑性変形性能により、環境等の問題を生じることなく、軽量で作業性も良好な、高減衰支承が可能になる。例えば、超塑性プラスチックの塑性域における応力−歪み関係を適宜設計することにより、等価減衰定数10〜64%の範囲の高減衰支承が可能になる。しかも、超塑性プラスチックとして、有機材料で、熱可塑性であるPETを用いることにより、ペットボトルを回収しリサイクルして使用するというリサイクル性に富むようになる。
【0028】
本発明において、高減衰支承装置を橋梁用支承もしくは建築用支承として用いる場合において、上記高減衰支承装置の等価減衰定数が10〜64%で、上記せん断方向の変形量が20〜400%で、上記貫通孔の個数が1〜12個であると、橋梁用支承もしくは建築用支承として好適に用いることができる。
【図面の簡単な説明】
【図1】本発明の高減衰支承装置の一実施の形態を示す断面図である。
【図2】上側鋼板を下から見た図である。
【図3】鋼板の平面図である。
【図4】本発明の高減衰支承装置の他の実施の形態を示す断面図である。
【図5】上側鋼板を下から見た図である。
【図6】鋼板の平面図である。
【図7】ゴム支承における水平荷重−水平変形量関係を示す図である。
【図8】合成された系における荷重−歪み関係を説明する図である。
【図9】Sp,Sg,Lの説明図である。
【図10】従来例を示す断面図である。
【図11】鉛の塑性域における荷重−歪み関係を示す図である。
【符号の説明】
4 ゴム板
4a 貫通孔
5 鋼板
5a 貫通孔
6 プラグ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-damping bearing device that can be used in place of a rubber bearing containing a lead plug (hereinafter, referred to as LRB [Lead Rubber Bearing]).
[0002]
[Prior art]
In recent years, seismic isolation bearings for civil engineering and architectural structures have been promoted from the viewpoint of securing lifelines and efficiency. In addition, the technology of seismic isolation bearings has shifted from distributed bearings to high-damping bearings. Is changing. In this high-damping bearing, there are roughly two types of bearings using a laminated rubber body: an LRB (see FIG. 10) and a high-damping rubber bearing (HDR [High Damping Rubber]). As an absorption mechanism, the plastic deformation performance of lead 21 (see FIG. 10) is used (see FIG. 11. In FIG. 11, the hatched area indicates the amount of energy absorbed by plastic deformation), and a high damping (equivalent damping constant). 15 to 30%), which is the mainstream in the market of high damping bearings. In FIG. 10, reference numerals 22 and 23 denote a pair of upper and lower steel plates, and reference numeral 24 denotes a laminated rubber body.
[0003]
[Problems to be solved by the invention]
However, in the above-mentioned LRB, since lead is used as an energy absorbing material, there is a social problem in environment and disposal. That is, lead is a toxic substance known as lead poisoning and has a problem that it should not be used as a seismic isolation material for highly public structures such as civil engineering and construction. Therefore, there is a long-awaited need for a proposal for a high-damping bearing device in which an alternative material that has superplasticity in place of lead and does not cause environmental problems is used as an energy absorbing material.
[0004]
The present invention has been made in view of such circumstances, and provides a high-damping bearing device that uses an alternative material that has superplasticity instead of lead and does not cause environmental problems as an energy absorbing material. With that purpose.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a high damping bearing device of the present invention is a high damping bearing device obtained by laminating a plurality of rubber plates and a plurality of hard layers, wherein each of the rubber plates and each hard layer is Then, a through hole penetrating through in the thickness direction thereof is formed, and a superplastic plastic is buried in the through hole.
[0006]
That is, in the high damping bearing device of the present invention, the present inventor has made the high damping bearing device into a through hole formed in a plurality of laminated rubber plates and a plurality of hard layers along a thickness direction thereof. Since the superplastic, which is found to be suitable for, is embedded, the plastic deformation performance of the superplastic allows a high-damping bearing. For example, by appropriately designing the load-strain relationship in the plastic region of the superplastic plastic, a high damping bearing having an equivalent damping constant in the range of 10 to 64% becomes possible. In addition, by using an organic plastic material which is an organic material and thermoplastic as the superplastic plastic, problems such as environmental problems do not occur, and the effect of being lightweight and improving workability can be obtained.
[0007]
Here, “superplastic” in the present invention refers to a thermoplastic (synthetic resin) exhibiting superplastic properties. Further, “showing superplastic properties” means showing the following four properties. That is, (1) the elastic region has a distortion rate of less than 20%. (2) Tensile yield strength is 10 MPa or more. (3) The elongation at break is 200% or more, of which the plastic deformation area occupies 80% or more of the whole. (4) Tensile fracture strength is 10 MPa or more.
[0008]
Specifically, the above-mentioned “superplastic plastic” is, for example, a material constituted by one or both of the following two technologies. That is, first, it is composed of a polymer of two or more components produced by a polymer alloy or polymer blending technique. Second, the organic / inorganic filler is nano-sized (in the range of 10 to 100 nm) and highly dispersed. The filling amount is 1 to 300% by weight, preferably 1 to 100% by weight. As such “superplastic plastic”, Aswan (R) manufactured by Mirai Kasei Co., Ltd. can be mentioned. This aswan is a plastic which is made of flakes obtained by crushing a used PET (PET) bottle as a main raw material and highly dispersed by the above technology.
[0009]
In the present invention, when the high damping bearing device is used as a bridge bearing or a building bearing, the equivalent damping constant of the high damping bearing device is 10 to 64%, and the deformation amount in the shear direction is 20 to 400%. When the number of the through holes is 1 to 12, it can be suitably used as a bridge support or a building support.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0011]
FIG. 1 shows an embodiment of the high-damping bearing device of the present invention. In this embodiment, a high damping bearing device for a bridge is used. In the figure, reference numerals 1 and 2 denote a pair of upper and lower steel plates (thickness: 32 mm) formed of a rectangular flat plate, and 3 is disposed between the steel plates 1 and 2 and bonded to and integrated with the steel plates 1 and 2. It is a laminated rubber body. The upper steel plate 1 has a concave portion 1a formed in the center of the upper surface thereof so as to fit with a convex portion (not shown) provided on a mounting surface of a bridge girder of the bridge (a surface placed on the upper surface of the upper steel plate 1). On its lower surface, four recesses 1b that fit into upper ends of four plugs 6 described later are formed on the same virtual circumference (see FIG. 2). Further, the lower steel plate 2 has four recesses 2a which are fitted to the lower ends of the plugs 6 at portions corresponding to the recesses 1b on the upper surface thereof.
[0012]
The laminated rubber body 3 is formed in a substantially rectangular parallelepiped shape, and includes a plurality of (nine in this embodiment) rectangular rubber plates 4 (about 8 mm in thickness) made of a rectangular flat plate. A plurality of (eight in this embodiment) rectangular flat plate steel plates (hard layers) 5 (thickness of about 3 mm) which are disposed therebetween and bonded to and integrated with each rubber plate 4 are provided. A plurality (four in this embodiment) of circular through holes 4a, 5a penetrating through each of the rubber plates 4 and each of the steel plates 5 concentrically along their thickness direction (that is, the vertical direction). Are drilled in the same shape (see FIGS. 1 and 3). A plurality of (four in this embodiment) superplastic plastic plugs 6 each having a columnar shape are embedded in each of the through holes 4a and 5a. In this embodiment, as each of the plugs 6, one obtained by molding Aswan manufactured by Mirai Kasei Co., Ltd. into the above shape is used.
[0013]
In this embodiment, since the high damping bearing device is used for a bridge, the shear spring constant of each rubber plate 4 is set to 2.3 × 10 4 N / cm, and the yield stress of each plug 6 is set to 14 MPa. In addition, the equivalent damping constant of the high damping bearing device is set to 20%. The amount of deformation of the high damping bearing device in the shear direction (that is, the amount of deformation of each plug 6 in the shear direction [shear strain]) is set to 175%.
[0014]
As described above, in this embodiment, the plugs 6 made of superplastic plastic are embedded in the through holes 4a and 5a formed in the rubber plates 4 and the steel plates 5, respectively. The plastic deformation performance enables high damping bearings. In addition, each of the plugs 6 is mainly made of flakes obtained by crushing used PET bottles, and is highly recyclable and lightweight.
[0015]
FIG. 4 shows another embodiment of the high damping bearing device of the present invention. In this embodiment, a high-damping bearing device is used for a building (for example, for a house). In the figure, reference numerals 11 and 12 denote a pair of upper and lower steel plates (thickness: 20 mm) formed of rectangular flat plates, and 13 is disposed between the steel plates 11 and 12 and bonded to and integrated with the steel plates 11 and 12. It is a laminated rubber body. The upper steel plate 11 has a concave portion 11a that fits into an upper end portion of a plug 16 to be described later (see FIG. 5). The lower steel plate 12 has a concave portion 12a that fits into the lower end of the plug 16 at the center of the upper surface (the portion corresponding to the concave portion 11a).
[0016]
The laminated rubber body 13 is formed in a substantially rectangular parallelepiped, and includes a plurality of (eight in this embodiment) rectangular rubber plates 14 (about 10 mm thick) made of natural rubber, and each rubber plate. A plurality of (seven in this embodiment) rectangular plate-shaped steel plates (hard layers) 15 (thickness of about 3 mm), which are disposed between and bonded to each rubber plate 14 and integrated therewith. Circular through holes 14a and 15a are formed in the center of each of the rubber plate 14 and each of the steel plates 15 so as to penetrate concentrically along their thickness direction (that is, the up-down direction). (See FIGS. 4 and 6). A plug 16 made of a superplastic plastic having a cylindrical shape is embedded in each of the through holes 14a and 15a. Also in this embodiment, as each of the plugs 16, one obtained by molding Aswan manufactured by Mirai Kasei Co., Ltd. into the above shape is used.
[0017]
In this embodiment, since the high damping bearing device is used for construction, the shear spring constant of each rubber plate 14 is set to 270 N / cm, the yield stress of the plug 16 is set to 14 MPa, and the high damping bearing device is set. Is set to 30%. The amount of deformation of the high damping bearing device in the shear direction (ie, the amount of deformation of the plug 16 in the shear direction [shear strain]) is set to 200%. In this embodiment, the same operation and effect as those of the above embodiment can be obtained.
[0018]
The following experiment was conducted to examine the seismic isolation effect of both high damping bearing devices. That is, using a static biaxial force tester (Model LHV-II manufactured by Washinomiya Seisakusho), the conditions of the force were as follows: surface pressure: 0 to 10 Pa, frequency: 0.01 Hz, and deformation in the shear direction: 175 to 175. It was set to 200%. The shape of the plug 16 was a cylindrical shape having a diameter of 30 mm, four bridge test pieces were used, and one architectural test piece was used. The results of the experiment are shown in Table 1 below.
[0019]
[Table 1]
Figure 2004211745
[0020]
As is clear from Table 1 above, the equivalent damping constants of the two high-damping bearing devices are 16.2% for the bridge specimen and 26.8% for the architectural specimen, and the seismic isolation effect is obtained. It turns out that it is excellent.
[0021]
The equivalent rigidity and equivalent damping constant are represented by the following mathematical expressions (1) and (2).
[0022]
Equivalent rigidity: Keq = (Qmax−Qmin) / 2δd (N / m) (1)
Equivalent damping constant: Heq = (ΔW / 4πW) × 100 (%) (2)
[In the above equation, see FIG. 7 for Qmax, Qmin, and δd. Also, W = Keqδd 2/2, the energy absorption amount: [Delta] W indicates (Fig hatched area in 7) = 2π 2 fCeqδd 2, Ceq: Equivalent viscous damping coefficient (N · s / m), f: exciting frequency ( Hz)
[0023]
On the other hand, in the case of the synthesized system (see FIG. 8), the energy absorption amount is ΔW = 4QSpd [Q: shear yield stress of superplastic plastic, Sp: cross-sectional area of superplastic plastic (see FIG. 9)]. Desired. The equivalent stiffness of the system is represented by the following equation (3). Therefore, the equivalent damping constant of the above system is represented by the following equation (4).
[0024]
Keq = GSg / L + QSp / d (N / m) (3)
Heq = (4QSpd / 2πKeqd 2 ) × 100 = (2QSp / πKeqd) × 100 (%) (4)
[In the above formula, G: shear modulus of rubber, Sg: cross-sectional area of rubber, L: height (see FIG. 9). ]
[0025]
In each of the above embodiments, the plugs 6 and 16 are formed in a columnar shape. However, the present invention is not limited to this. The plugs 6 and 16 may be formed in any column shape such as a prismatic shape. Further, although the laminated rubber bodies 3 and 13 are formed in a substantially rectangular parallelepiped, they may be formed in any shape such as a cylindrical shape. Further, each of the steel plates 1, 2, 5, 11, 12, and 15 is formed in a rectangular flat plate, but may be formed in any shape.
[0026]
Further, in the embodiment shown in FIG. 1, the shear spring constant of each rubber plate 4 is set to 2.3 × 10 4 N / cm, but 1.0 × 10 4 to 1.0 × 10 5. It can be set in the range of N / cm. Although the yield stress of each plug 6 is set to 14 MPa, it can be set to a range of 5 to 20 MPa. On the other hand, in the embodiment shown in FIG. 4, the shear spring constant of each rubber plate 14 is set to 270 N / cm, but can be set in the range of 200 to 1000 N / cm. Although the yield stress of the plug 16 is set to 14 MPa, it can be set to a range of 5 to 20 MPa.
[0027]
【The invention's effect】
As described above, according to the high-damping bearing device of the present invention, the through holes formed in the plurality of alternately laminated rubber plates and the plurality of hard layers (along the thickness direction thereof) Since the plastic plastic is buried, the plastic deformation performance of the superplastic plastic enables high-damping bearings that are lightweight, have good workability, and have good workability without causing problems such as the environment. For example, by appropriately designing the stress-strain relationship in the plastic region of the superplastic, a high damping bearing having an equivalent damping constant in the range of 10 to 64% can be realized. In addition, by using PET, which is an organic material and thermoplastic, as the superplastic plastic, the PET bottles can be collected, recycled, and reused, thereby enhancing the recyclability.
[0028]
In the present invention, when the high-damping bearing device is used as a bridge bearing or a building bearing, the equivalent damping constant of the high-damping bearing device is 10 to 64%, and the deformation amount in the shear direction is 20 to 400%. When the number of the through holes is 1 to 12, it can be suitably used as a bridge support or a building support.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an embodiment of a high damping bearing device of the present invention.
FIG. 2 is a view of the upper steel plate as viewed from below.
FIG. 3 is a plan view of a steel plate.
FIG. 4 is a sectional view showing another embodiment of the high-damping bearing device of the present invention.
FIG. 5 is a view of the upper steel plate as viewed from below.
FIG. 6 is a plan view of a steel plate.
FIG. 7 is a diagram showing a horizontal load-horizontal deformation relationship in a rubber bearing.
FIG. 8 is a diagram illustrating a load-strain relationship in a synthesized system.
FIG. 9 is an explanatory diagram of Sp, Sg, and L.
FIG. 10 is a sectional view showing a conventional example.
FIG. 11 is a diagram showing a load-strain relationship in a plastic region of lead.
[Explanation of symbols]
4 Rubber plate 4a Through hole 5 Steel plate 5a Through hole 6 Plug

Claims (3)

複数のゴム板と複数の硬質層とを積層してなる高減衰支承装置であって、上記各ゴム板と各硬質層とに、それらの厚み方向に沿って貫通する貫通孔が穿設され、上記貫通孔に超塑性プラスチックが埋設されていることを特徴とする高減衰支承装置。A high-damping bearing device formed by laminating a plurality of rubber plates and a plurality of hard layers, wherein a through-hole is formed in each of the rubber plates and each of the hard layers along a thickness direction thereof, A high-damping bearing device, wherein a superplastic plastic is buried in the through hole. 上記超塑性プラスチックがPET(ポリエチレンテレフタレート)を主原料とするプラスチックである請求項1記載の高減衰支承装置。The high-damping bearing device according to claim 1, wherein the superplastic plastic is a plastic whose main raw material is PET (polyethylene terephthalate). 高減衰支承装置を橋梁用支承もしくは建築用支承として用い、高減衰支承装置の等価減衰定数が10〜64%で、上記せん断方向の変形量が20〜400%で、上記貫通孔の個数が1〜12個である請求項1または2記載の高減衰支承装置。The high damping bearing device is used as a bridge bearing or a building bearing. The equivalent damping constant of the high damping bearing device is 10 to 64%, the amount of deformation in the shear direction is 20 to 400%, and the number of the through holes is 1 The high damping bearing device according to claim 1 or 2, wherein the number is from 12 to 12.
JP2002379806A 2002-12-27 2002-12-27 Highly damped supporting device Withdrawn JP2004211745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002379806A JP2004211745A (en) 2002-12-27 2002-12-27 Highly damped supporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002379806A JP2004211745A (en) 2002-12-27 2002-12-27 Highly damped supporting device

Publications (1)

Publication Number Publication Date
JP2004211745A true JP2004211745A (en) 2004-07-29

Family

ID=32816204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002379806A Withdrawn JP2004211745A (en) 2002-12-27 2002-12-27 Highly damped supporting device

Country Status (1)

Country Link
JP (1) JP2004211745A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316990A (en) * 2005-04-14 2006-11-24 Bridgestone Corp Laminated support
JP2006336232A (en) * 2005-05-31 2006-12-14 Toyo Tire & Rubber Co Ltd Rolling compaction machine, and rubber cushion member for rolling compaction machine
JP2007247833A (en) * 2006-03-17 2007-09-27 Bridgestone Corp Base isolation device
JP2008116041A (en) * 2006-10-13 2008-05-22 Bridgestone Corp Laminate support body
JP2008121822A (en) * 2006-11-14 2008-05-29 Bridgestone Corp Vibration-isolation structure and its manufacturing method
JP2008151337A (en) * 2006-11-24 2008-07-03 Bridgestone Corp Laminated support
JP2009047194A (en) * 2007-08-14 2009-03-05 Bridgestone Corp Method of manufacturing stacked base isolation bearing and plug forming device used therefor
JP2009126003A (en) * 2007-11-21 2009-06-11 Bridgestone Corp Gas removing method, gas removing apparatus, manufacturing method of core, manufacturing apparatus of core, and laminated support
JP2019183573A (en) * 2018-04-16 2019-10-24 株式会社免制震ディバイス Maintenance method for foundation of structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316990A (en) * 2005-04-14 2006-11-24 Bridgestone Corp Laminated support
JP4704946B2 (en) * 2005-04-14 2011-06-22 株式会社ブリヂストン Laminated support
JP2006336232A (en) * 2005-05-31 2006-12-14 Toyo Tire & Rubber Co Ltd Rolling compaction machine, and rubber cushion member for rolling compaction machine
JP2007247833A (en) * 2006-03-17 2007-09-27 Bridgestone Corp Base isolation device
JP2008116041A (en) * 2006-10-13 2008-05-22 Bridgestone Corp Laminate support body
JP2008121822A (en) * 2006-11-14 2008-05-29 Bridgestone Corp Vibration-isolation structure and its manufacturing method
JP2008151337A (en) * 2006-11-24 2008-07-03 Bridgestone Corp Laminated support
JP2009047194A (en) * 2007-08-14 2009-03-05 Bridgestone Corp Method of manufacturing stacked base isolation bearing and plug forming device used therefor
JP2009126003A (en) * 2007-11-21 2009-06-11 Bridgestone Corp Gas removing method, gas removing apparatus, manufacturing method of core, manufacturing apparatus of core, and laminated support
JP2019183573A (en) * 2018-04-16 2019-10-24 株式会社免制震ディバイス Maintenance method for foundation of structure
JP7085883B2 (en) 2018-04-16 2022-06-17 株式会社免制震ディバイス Structure foundation maintenance method

Similar Documents

Publication Publication Date Title
Pham et al. Experimental investigation on lightweight rubberized concrete beams strengthened with BFRP sheets subjected to impact loads
Ismail et al. An innovative isolation device for aseismic design
Sideris et al. Large-scale seismic testing of a hybrid sliding-rocking posttensioned segmental bridge system
Di Sarno et al. Innovative strategies for seismic retrofitting of steel and composite structures
Tena-Colunga et al. Updated seismic design guidelines for model building code of Mexico
JP2004211745A (en) Highly damped supporting device
JP2008121799A (en) Base isolation structure
Kim et al. Dynamic collapse test on eccentric reinforced concrete structures with and without seismic retrofit
Lantz et al. Blast protection of unreinforced masonry walls: a state-of-the-art review
Arslan et al. Cyclic behavior of GFRP strengthened infilled RC frames with low and normal strength concrete
Monzon et al. Seismic response of full and hybrid isolated curved bridges
Trautner et al. Shake table testing of a miniature steel building with ductile‐anchor, uplifting‐column base connections for improved seismic performance
Torunbalci Seismic isolation and energy dissipating systems in earthquake resistant design
Heffernan et al. Research on the use of FRP for critical load-bearing infrastructure in conflict zones
Hamed et al. Masonry walls strengthened with composite materials–dynamic out-of-plane behavior
Avila et al. The nanoclay influence on impact response of laminated plates
JPS6245836A (en) Earthquake isolator
Tsai et al. Component test and mathematical modeling of advanced unbounded brace
JP2016000932A (en) Means and method for resuming to home position of base isolation structure, and improved ground provided with the means
JP4360133B2 (en) Damper material for seismic isolation devices
Mathew et al. A shake table investigation on low-cost seismic isolation using unbonded scrap tyre pad isolators
Ali et al. A review on exploring the behavior of multi-layer composite structures under dynamic loading
Newell Steel confined yielding damper for earthquake resistant design
Monzon et al. Seismic Response of Curved Highway Bridge with Seismic Isolation and Hybrid Protective Systems
Lui et al. Effects of diaphragm spacing and stiffness on the dynamic behavior of curved steel bridges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060411