JP2008116041A - Laminate support body - Google Patents

Laminate support body Download PDF

Info

Publication number
JP2008116041A
JP2008116041A JP2007267641A JP2007267641A JP2008116041A JP 2008116041 A JP2008116041 A JP 2008116041A JP 2007267641 A JP2007267641 A JP 2007267641A JP 2007267641 A JP2007267641 A JP 2007267641A JP 2008116041 A JP2008116041 A JP 2008116041A
Authority
JP
Japan
Prior art keywords
hard filler
laminated
plastic
hard
lave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007267641A
Other languages
Japanese (ja)
Other versions
JP4851416B2 (en
Inventor
Shigenobu Suzuki
重信 鈴木
Nobuo Murota
伸夫 室田
Takashi Kikuchi
隆志 菊地
宏典 ▲濱▼▲崎▼
Hironori Hamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007267641A priority Critical patent/JP4851416B2/en
Publication of JP2008116041A publication Critical patent/JP2008116041A/en
Application granted granted Critical
Publication of JP4851416B2 publication Critical patent/JP4851416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate support body which can be disposed and so on at a low cost and can exhibit a large damping force. <P>SOLUTION: A plastic fluid material 30 constituted of an elastoplastic body is injected in an elastic body hollow part 28 of a laminate elastic body 16. Further, a plurality of particle-shaped hard fillers which are constituted of hard materials which are considered to be rigid bodies with respect to the plastic fluid material 30 are filled in the plastic fluid material 30 so as to satisfy a predetermined volume fill rate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、積層支持体に関する。   The present invention relates to a laminated support.

従来から、ゴムなどの軟質板と金属などの硬質板とを交互に積層した積層支持体が、免震装置の支承等として使用されている。このような積層支持体には、例えば、中心に中空部を形成し、その内部に金属プラグが圧入されたものがある。   Conventionally, a laminated support in which soft plates such as rubber and hard plates such as metal are alternately laminated has been used as a support for seismic isolation devices. Such laminated supports include, for example, one in which a hollow portion is formed at the center and a metal plug is press-fitted therein.

この金属プラグとしては、減衰性能が安定している鉛製のものが使用されることが多いが、鉛は、廃却時等に要するコストが大きい。このため、特許文献1には、鉛に代えて、中空部に粘性体と固体物質とを封入し、固体物質の隙間を粘性体で充填するようにした免震装置が提案されており、固体物質としては、仕切り部材や柱状体及び粒状体が挙げられている。   As this metal plug, a lead-made plug having a stable damping performance is often used. However, lead requires a large cost when discarded. For this reason, Patent Document 1 proposes a seismic isolation device in which a viscous material and a solid material are sealed in a hollow portion instead of lead, and a gap between the solid materials is filled with the viscous material. Examples of the substance include partition members, columnar bodies, and granular bodies.

また、特許文献1では、粒状の硬質材料と組み合わせる粘性体として油等の液状体を例示しているが、長期の使用では液状体中で硬質部材が沈殿してしまい、分散状態が悪化する。このため、部分的に減衰特性が変化してしまい、安定した減衰性能を発揮できない。また、液状体は流動抵抗力が小さく、大きな減衰力を得るという点では適していない。
特公平7−84815号公報
Moreover, in patent document 1, although liquid bodies, such as oil, are illustrated as a viscous body combined with a granular hard material, in a long-term use, a hard member will precipitate in a liquid body and a dispersed state will deteriorate. For this reason, the attenuation characteristics partially change, and stable attenuation performance cannot be exhibited. Further, the liquid material is not suitable in that it has a small flow resistance and obtains a large damping force.
Japanese Patent Publication No. 7-84815

本発明は上記事実を考慮し、低コストで廃却等できると共に、大きな減衰力を発揮できる積層支持体を得ることを課題とする。   In view of the above facts, an object of the present invention is to obtain a laminated support that can be disposed of at low cost and can exhibit a large damping force.

請求項1に記載の発明では、剛性を有する剛性板と弾性を有する弾性板とが所定の積層方向に交互に積層されて構成され、この積層方向に中空部が形成された積層弾性体と、弾塑性体で構成され前記中空部内に注入された塑性流動材と、前記塑性流動材内に充填された硬質充填材と、を有することを特徴とする。   In the invention according to claim 1, a laminated elastic body in which rigid plates having rigidity and elastic plates having elasticity are alternately laminated in a predetermined lamination direction, and a hollow portion is formed in the lamination direction; It has a plastic fluid material made of an elasto-plastic material and injected into the hollow portion, and a hard filler material filled in the plastic fluid material.

したがって、被支持部材上に積層支持体が設置されると、支持部材の荷重が積層弾性体によって支持される。特に、積層弾性体を、剛性板と弾性板とを交互に積層して構成したので、支持部材を支持するための高い剛性が得られる。   Therefore, when the laminated support is installed on the supported member, the load of the support member is supported by the laminated elastic body. In particular, since the laminated elastic body is configured by alternately laminating rigid plates and elastic plates, high rigidity for supporting the support member can be obtained.

積層弾性体の中空部内には、塑性流動材が注入され、さらに、塑性流動材内には硬質充填材が充填されている。これにより、塑性流動材は、中空部の内面だけでなく、硬質充填材の表面とも接触し、接触面積が広くなっているので、積層弾性体のせん断変形時の減衰特性が向上し、大きな減衰力が得られる。すなわち、積層弾性体のせん断変形時に、硬質充填材どうしも相互に移動するが、この際に硬質充填材の間を塑性流動材が移動(流動)することにより、大きな減衰力を得ることが可能となる。   A plastic fluid is injected into the hollow portion of the laminated elastic body, and the plastic fluid is filled with a hard filler. As a result, the plastic fluid material contacts not only the inner surface of the hollow part but also the surface of the hard filler, and the contact area is widened, so that the damping characteristic during shear deformation of the laminated elastic body is improved, and the large damping is achieved. Power is obtained. That is, when the laminated elastic body undergoes shear deformation, the hard fillers move with each other. At this time, a large damping force can be obtained by moving (flowing) between the hard fillers. It becomes.

特に、本発明では、塑性流動材を弾塑性体で構成しているので、硬質充填材の分散状態が安定し、硬質充填材の沈殿が防止される(好ましくは沈殿しなくなる)。このように硬質材料の沈殿を防止することで、塑性流動材内における硬質充填材の分散状態は変化し難くなり、減衰特性が安定する。したがって、硬質充填材の体積充填率を下げても、所望の減衰特性を得ることができる。   In particular, in the present invention, since the plastic fluidized material is composed of an elastic-plastic material, the dispersion state of the hard filler is stabilized and precipitation of the hard filler is preferably prevented (preferably not precipitated). By preventing the precipitation of the hard material as described above, the dispersion state of the hard filler in the plastic fluidized material is hardly changed, and the damping characteristic is stabilized. Therefore, a desired damping characteristic can be obtained even if the volume filling rate of the hard filler is lowered.

しかも、この積層支持体では、鉛等の廃却に高いコストを要する材料を使用していないので、低コストで廃却できる。   In addition, since this laminated support does not use materials such as lead that require high costs, it can be discarded at low cost.

なお、本願における「充填」には、塑性流動材に対し硬質充填材を混ぜ入れることを含む。すなわち、積層弾性体の中空部内には、塑性流動材と硬質充填材との混合物もしくは紺連物が注入されていることになる。   Note that “filling” in the present application includes mixing a hard filler into a plastic fluidized material. That is, a mixture or a string of plastic fluid and hard filler is injected into the hollow portion of the laminated elastic body.

請求項2に記載の発明では、請求項1に記載の発明において、前記塑性流動材のせん断降伏応力τyが、0.1MPa≦τy≦10MPaであることを特徴とする。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, a shear yield stress τy of the plastic fluidized material is 0.1 MPa ≦ τy ≦ 10 MPa.

塑性流動材は、そのせん断降伏応力τyを大きくするほど減衰効果も大きくなるが、あまりに大きいと硬質充填材の充填(混入)が困難になる。逆に、せん断降伏応力τyを小さくするほど、塑性流動材を大きく塑性変形させることが可能となり、しかも硬質充填材の充填(混入)が容易になるが、減衰効果は小さくなる。   The plastic fluidized material has a greater damping effect as the shear yield stress τy is increased, but if it is too large, filling (mixing) of the hard filler becomes difficult. Conversely, as the shear yield stress τy is reduced, the plastic fluidized material can be greatly plastically deformed, and the filling (mixing) of the hard filler is facilitated, but the damping effect is reduced.

したがって、塑性流動材のせん断降伏応力τyを0.1MPa以上とすることで、大きな減衰性能を得ることが可能になる。   Therefore, a large damping performance can be obtained by setting the shear yield stress τy of the plastic fluid material to 0.1 MPa or more.

また、このせん断降伏応力τyを10MPa以下とすることで、塑性流動材を大きく塑性変形させることが可能になり、且つ、硬質充填材の充填(混入)も容易になる。   Further, by setting the shear yield stress τy to 10 MPa or less, the plastic fluidized material can be greatly plastically deformed, and the filling (mixing) of the hard filler is facilitated.

請求項3に記載の発明では、請求項1又は請求項2に記載の発明において、前記硬質充填材の体積充填率が、25%〜74%であることを特徴とする。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the volume filling rate of the hard filler is 25% to 74%.

請求項4に記載の発明では、請求項3に記載の発明において、前記硬質充填材の体積充填率が、さらに50%〜74%であることを特徴とする。   The invention according to claim 4 is the invention according to claim 3, wherein the volume filling rate of the hard filler is further 50% to 74%.

この「体積充填率」とは、塑性流動材の体積と硬質充填材の体積の和に対する硬質充填材の体積の比を百分率で示したものである。硬質充填材の体積充填率を25%以上とすることで、塑性流動材と硬質充填材との接触面積を広く確保して、流動時の抵抗力を増加させることができるので、大きな減衰力を得ることができる。   The “volume filling rate” is a percentage of the volume of the hard filler relative to the sum of the volume of the plastic fluid and the volume of the hard filler. By setting the volume filling rate of the hard filler to 25% or more, it is possible to secure a wide contact area between the plastic fluid material and the hard filler and increase the resistance force at the time of flow. Obtainable.

さらに、硬質充填材の体積充填率を50%以上とすることで、塑性流動材と硬質充填材との接触面積をより広く確保でき、特に大きな減衰力を得ることができる。硬質充填材の体積充填率を50%以上とするために、単位体積あたりの硬質充填材の数を多くした構成を採ることも可能であり、この構成では、硬質充填材間の間隔が狭くなるので、さらに大きな減衰力を得ることができる。   Furthermore, when the volume filling rate of the hard filler is 50% or more, a wider contact area between the plastic fluidized material and the hard filler can be secured, and a particularly large damping force can be obtained. In order to set the volume filling rate of the hard filler to 50% or more, it is possible to adopt a configuration in which the number of hard fillers per unit volume is increased. In this configuration, the interval between the hard fillers is narrowed. Therefore, a larger damping force can be obtained.

また、この体積充填率を74%以下とすることで、硬質充填材どうしの接触を低減し、硬質充填材の移動を容易とすることで、安定した減衰性能を発揮することができる。   Further, by setting the volume filling rate to 74% or less, the contact between the hard fillers is reduced and the movement of the hard fillers is facilitated, so that stable damping performance can be exhibited.

請求項5に記載の発明では、請求項1〜請求項4のいずれか1項に記載の発明において、前記硬質充填材が、粒状に形成された粒状体であることを特徴とする。   The invention according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, the hard filler is a granular body formed in a granular form.

硬質充填材を粒状体とすることで、塑性流動材中での硬質充填材の分散状態を良好にすることが容易となり、減衰性能が安定する。   By making the hard filler into a granular material, it becomes easy to improve the dispersion state of the hard filler in the plastic fluidized material, and the damping performance is stabilized.

請求項6に記載の発明では、請求項5に記載の発明において、前記粒状体の大きさが、その代表長さLの平均値Laveで0.001mm≦Lave≦1.0mmであることを特徴とする。   The invention according to claim 6 is characterized in that, in the invention according to claim 5, the size of the granular material is 0.001 mm ≦ Lave ≦ 1.0 mm in terms of the average value Lave of the representative length L. And

粒状体の大きさを、代表長さLの平均値Laveで0.001mm≦Lave≦1.0mmとすることで、高い減衰性能を得ることができる。   By setting the size of the granular material to 0.001 mm ≦ Lave ≦ 1.0 mm in terms of the average value Lave of the representative length L, high attenuation performance can be obtained.

請求項7に記載の発明では、請求項6に記載の発明において、前記粒状体の大きさが、その代表長さLの平均値Laveでさらに0.003mm≦Lave≦0.3mmであることを特徴とする。   In the invention described in claim 7, in the invention described in claim 6, the size of the granular material is 0.003 mm ≦ Lave ≦ 0.3 mm in terms of the average value Lave of the representative length L. Features.

粒状体の大きさを、代表長さLの平均値Laveでさらに0.003mm≦Lave≦0.3mmとすることで、より高い減衰性能を得ることができる。   By setting the size of the granular material to 0.003 mm ≦ Lave ≦ 0.3 mm in terms of the average value Lave of the representative length L, higher attenuation performance can be obtained.

請求項8に記載の発明では、剛性を有する剛性板と弾性を有する弾性板とが所定の積層方向に交互に積層されて構成され、この積層方向に中空部が形成された積層弾性体と、非硬化型の弾完全塑性体で構成され前記中空部内に注入された塑性流動材と、前記塑性流動材内に充填された硬質充填材と、を有し、前記塑性流動材のせん断降伏応力τyが、0.1MPa≦τy≦10MPaであり、前記硬質充填材の体積充填率が、25%〜74%であることを特徴とする。   In the invention according to claim 8, a laminated elastic body in which a rigid plate having rigidity and an elastic plate having elasticity are alternately laminated in a predetermined lamination direction, and a hollow portion is formed in the lamination direction; A plastic fluidized material made of a non-hardening elastic perfect plastic material and injected into the hollow portion, and a hard filler filled in the plastic fluidized material, and a shear yield stress τy of the plastic fluidized material Is 0.1 MPa ≦ τy ≦ 10 MPa, and the volume filling factor of the hard filler is 25% to 74%.

したがって、被支持部材上に積層支持体が設置されると、支持部材の荷重が積層弾性体によって支持される。特に、積層弾性体を、剛性板と弾性板とを交互に積層して構成したので、支持部材を支持するための高い剛性が得られる。   Therefore, when the laminated support is installed on the supported member, the load of the support member is supported by the laminated elastic body. In particular, since the laminated elastic body is configured by alternately laminating rigid plates and elastic plates, high rigidity for supporting the support member can be obtained.

積層弾性体の中空部内には、塑性流動材が注入され、さらに、塑性流動材内には硬質充填材が充填されている。これにより、塑性流動材は、中空部の内面だけでなく、硬質充填材の表面とも接触し、接触面積が広くなっているので、積層弾性体のせん断変形時の減衰特性が向上し、大きな減衰力が得られる。すなわち、積層弾性体のせん断変形時に、硬質充填材どうしも相互に移動するが、この際に硬質充填材の間を塑性流動材が移動(流動)することにより、大きな減衰力を得ることが可能となる。   A plastic fluid is injected into the hollow portion of the laminated elastic body, and the plastic fluid is filled with a hard filler. As a result, the plastic fluid material contacts not only the inner surface of the hollow part but also the surface of the hard filler, and the contact area is widened, so that the damping characteristic during shear deformation of the laminated elastic body is improved, and the large damping is achieved. Power is obtained. That is, when the laminated elastic body undergoes shear deformation, the hard fillers move with each other. At this time, a large damping force can be obtained by moving (flowing) between the hard fillers. It becomes.

特に、本発明では、塑性流動材を非硬化型の弾完全塑性体で構成しているので、硬質充填材の分散状態が安定し、硬質充填材の沈殿が防止される(好ましくは沈殿しなくなる)。このように硬質材料の沈殿を防止することで、塑性流動材内における硬質充填材の分散状態は変化し難くなり、減衰特性が安定する。したがって、硬質充填材の体積充填率を下げても、所望の減衰特性を得ることができる。   In particular, in the present invention, the plastic fluidized material is composed of a non-curing elastic perfect plastic material, so that the dispersion state of the hard filler is stabilized and precipitation of the hard filler is prevented (preferably not precipitated). ). By preventing the precipitation of the hard material as described above, the dispersion state of the hard filler in the plastic fluidized material is hardly changed, and the damping characteristic is stabilized. Therefore, a desired damping characteristic can be obtained even if the volume filling rate of the hard filler is lowered.

しかも、この積層支持体では、鉛等の廃却に高いコストを要する材料を使用していないので、低コストで廃却できる。   In addition, since this laminated support does not use materials such as lead that require high costs, it can be discarded at low cost.

特に、塑性流動材のせん断降伏応力τyを0.1MPa以上としているので、大きな減衰性能を得ることが可能になる。   In particular, since the shear yield stress τy of the plastic fluidized material is 0.1 MPa or more, a large damping performance can be obtained.

また、このせん断降伏応力τyを10MPa以下としているので、塑性流動材を大きく塑性変形させることが可能になり、且つ、硬質充填材の充填(混入)も容易になる。   Further, since the shear yield stress τy is set to 10 MPa or less, the plastic fluidized material can be largely plastically deformed, and the filling (mixing) of the hard filler is facilitated.

さらに、硬質充填材の体積充填率を25%以上としているので、塑性流動材と硬質充填材との接触面積を広く確保して、流動時の抵抗力を増加させることができるので、大きな減衰力を得ることができる。   Furthermore, since the volume filling rate of the hard filler is 25% or more, it is possible to secure a wide contact area between the plastic fluid material and the hard filler and increase the resistance force at the time of flow. Can be obtained.

また、この体積充填率を74%以下とすることで、硬質充填材どうしの接触を低減し、硬質充填材の移動を容易とすることで、安定した減衰性能を発揮することができる。   Further, by setting the volume filling rate to 74% or less, the contact between the hard fillers is reduced and the movement of the hard fillers is facilitated, so that stable damping performance can be exhibited.

請求項9に記載の発明では、請求項8に記載の発明において、前記粒状体の大きさが、その代表長さLの平均値Laveで0.001mm≦Lave≦1.0mmであることを特徴とする。   The invention according to claim 9 is characterized in that, in the invention according to claim 8, the size of the granular material is 0.001 mm ≦ Lave ≦ 1.0 mm in terms of the average value Lave of the representative length L. And

粒状体の大きさを、代表長さLの平均値Laveで0.001mm≦Lave≦1.0mmとすることで、高い減衰性能を得ることができる。   By setting the size of the granular material to 0.001 mm ≦ Lave ≦ 1.0 mm in terms of the average value Lave of the representative length L, high attenuation performance can be obtained.

本発明は上記構成としたので、低コストで廃却等できると共に、大きな減衰力を発揮できる。   Since the present invention has the above-described configuration, it can be discarded at a low cost and can exhibit a large damping force.

図1には、本発明の第1実施形態の積層支持体12が示されている。積層支持体12は、複数枚の円盤状の金属板18と、同じく複数枚の円盤状のゴム板20とを厚み方向に交互に積層した(以下この積層方向を「X方向」という)積層弾性体16を備えている。   FIG. 1 shows a laminated support 12 according to a first embodiment of the present invention. The laminated support 12 is a laminated elastic material in which a plurality of disk-shaped metal plates 18 and a plurality of disk-shaped rubber plates 20 are alternately laminated in the thickness direction (hereinafter, this lamination direction is referred to as “X direction”). A body 16 is provided.

積層弾性体16のX方向両端面には、フランジ板14が固定されている。フランジ板14は、積層弾性体16よりも側方に張り出すフランジ部14Fを備えており、このフランジ部14Fに形成された図示しないボルト孔にボルトを挿通して、積層支持体12が、支持部材(たとえば、建物基礎、土台、地盤等)及び被支持部材(たとえば、オフィスビル、病院、集合住宅、美術館、公会堂、学校、庁舎、神社仏閣、橋梁等)に取り付けられる。取付け状態では、被支持部材が積層支持体12を介して支持部材に支持される。   Flange plates 14 are fixed to both end surfaces of the laminated elastic body 16 in the X direction. The flange plate 14 includes a flange portion 14F that protrudes to the side of the laminated elastic body 16, and a bolt is inserted into a bolt hole (not shown) formed in the flange portion 14F so that the laminated support body 12 is supported. It is attached to members (for example, building foundations, foundations, grounds, etc.) and supported members (for example, office buildings, hospitals, apartment houses, museums, public halls, schools, government buildings, shrines and temples, bridges, etc.). In the attached state, the supported member is supported by the support member via the laminated support 12.

積層弾性体16を構成する金属板18とゴム板20とは加硫接着により(あるいは接着剤により)強固に張り合わされており、これらが不用意に分離したり位置ズレしたりしないようになっている。そして、積層支持体12が水平方向のせん断力を受けると、積層弾性体16も弾性的にせん断変形する。   The metal plate 18 and the rubber plate 20 constituting the laminated elastic body 16 are firmly bonded to each other by vulcanization adhesion (or by an adhesive), so that they are not inadvertently separated or misaligned. Yes. When the laminated support body 12 receives a horizontal shearing force, the laminated elastic body 16 is also elastically sheared.

したがって、支持部材と被支持部材とが水平方向に相対移動(振動)すると、積層弾性体16が全体として弾性的にせん断変形する。ここで、上記のように、金属板18とゴム板20とを交互に積層したことで、積層方向に荷重が作用しても、積層弾性体16の圧縮変形(すなわちゴム板20の圧縮)が抑制されている。   Accordingly, when the supporting member and the supported member are relatively moved (vibrated) in the horizontal direction, the laminated elastic body 16 is elastically sheared and deformed as a whole. Here, as described above, by alternately laminating the metal plates 18 and the rubber plates 20, even when a load acts in the laminating direction, the elastic deformation of the laminated elastic body 16 (that is, compression of the rubber plates 20) occurs. It is suppressed.

積層弾性体16はさらに、金属板18とゴム板20の外側端面を周囲から被覆する被覆材22を有している。被覆材22によって金属板18及びゴム板20に外部から雨や光が作用しなくなり、酸素やオゾン、紫外線などによる劣化が防止される。また、被覆材22は、厚さが一定とされており、その強度にばらつきがでないようにされている。なお、被覆材22はゴム板20と同一の材料によって形成することができる。この場合、ゴム板20と被覆材22とを別体で形成しておき、後工程で加硫接着等によって一体化させることが可能である。あるいは、被覆材22とゴム板20を接着剤等で接着してもよい。   The laminated elastic body 16 further includes a covering material 22 that covers the outer end faces of the metal plate 18 and the rubber plate 20 from the periphery. The coating material 22 prevents rain and light from acting on the metal plate 18 and the rubber plate 20 from the outside, thereby preventing deterioration due to oxygen, ozone, ultraviolet rays, or the like. Further, the covering material 22 has a constant thickness so that there is no variation in its strength. The covering material 22 can be formed of the same material as the rubber plate 20. In this case, the rubber plate 20 and the covering material 22 can be formed separately and integrated by vulcanization adhesion or the like in a subsequent process. Alternatively, the covering material 22 and the rubber plate 20 may be bonded with an adhesive or the like.

積層弾性体16の中央部には、積層弾性体16をX方向に貫通する弾性体中空部28が形成されている。弾性体中空部28は、本実施形態では円柱状の空間とされているが、形状は円柱状に限定されない。   An elastic hollow portion 28 that penetrates the laminated elastic body 16 in the X direction is formed at the center of the laminated elastic body 16. The elastic hollow portion 28 is a cylindrical space in the present embodiment, but the shape is not limited to a cylindrical shape.

弾性体中空部28には、弾塑性体で構成された塑性流動材30が注入されている。この弾塑性体とは、図5(A)に模式的に示すように、ある降伏点まではせん断応力とせん断ひずみとが比例する弾性的な挙動を示し、この降伏点を超えると、せん断応力が一定になるような塑性挙動を示す材料をいう。   A plastic fluid 30 made of an elastic-plastic material is injected into the elastic hollow portion 28. As shown schematically in FIG. 5 (A), this elastic-plastic body exhibits an elastic behavior in which shear stress and shear strain are proportional to a certain yield point. Refers to a material that exhibits plastic behavior such that is constant.

なお、この図5(A)に示したグラフは、塑性流動材30の挙動をあくまでモデル化したものである。したがって、降伏点まではせん断応力がせん断ひずみに正確に比例し、降伏点を越えるとせん断応力が完全に一定になっている。換言すると、降伏点を超えると塑性流動材は硬化していない(非硬化)状態になっている。このような挙動を示す材料は、特に弾完全塑性体と呼ばれ、本発明の塑性流動材30としては、もっとも好ましい特性となっている。しかしながら、実際にはこのような挙動を示す材料でなくても本発明に適用可能である。要するに、降伏点に達すると、せん断応力がわずかに増大することで(あるいは全く増大することなく)、せん断ひずみが増大するような挙動を示せばよい。図5(A)のグラフで考えると、降伏点に達するまでは直線(あるいは曲線)の傾きが相対的に急で、降伏点を超えると傾きが緩やかになっていればよい。たとえば、降伏点を超えた状態で、せん断応力がせん断ひずみに対し単調増加していても、その増加の程度、すなわち降伏点の右側での直線(あるいは曲線)の傾きが、降伏点の左側より小さければ、塑性流動材30としては、降伏点に達するまでは弾性的な挙動を示し、降伏点を超えると塑性的な挙動を示すことになるので、本発明の塑性流動材30として適用可能となる。   In addition, the graph shown to this FIG. 5 (A) modeled the behavior of the plastic fluid material 30 to the last. Therefore, the shear stress is exactly proportional to the shear strain up to the yield point, and after the yield point, the shear stress is completely constant. In other words, when the yield point is exceeded, the plastic fluidized material is not cured (non-hardened). A material exhibiting such a behavior is particularly called an elastic perfect plastic body, and has the most preferable characteristics as the plastic fluidized material 30 of the present invention. However, the present invention can be applied to the present invention even if the material does not actually exhibit such behavior. In short, it is only necessary to show a behavior in which the shear strain increases when the yield point is reached, because the shear stress slightly increases (or does not increase at all). Considering the graph of FIG. 5 (A), the slope of the straight line (or curve) may be relatively steep until the yield point is reached, and the slope may be gentle when the yield point is exceeded. For example, even if the shear stress increases monotonically with respect to the shear strain in the state beyond the yield point, the degree of the increase, that is, the slope of the straight line (or curve) on the right side of the yield point is greater than the left side of the yield point. If it is small, the plastic fluid material 30 exhibits an elastic behavior until the yield point is reached, and if it exceeds the yield point, the plastic fluid material 30 exhibits a plastic behavior, so that it can be applied as the plastic fluid material 30 of the present invention. Become.

また、実際の材料では、たとえば図5(B)に示すように、せん断応力が増大から減少に転ずる場合があり、この場合には、極大値でのせん断応力は上降伏点と言われる。さらに、図5(C)に示すように、上降伏点を超えた状態でせん断応力が減少から増加に転ずる場合があり、この場合には、極小値でのせん断応力は下降伏点と呼ばれる。このように、上降伏点や下降伏点がある材料であってもよい。図5(B)あるいは図5(C)に示すような材料では、上降伏点をせん断降伏応力τyとする。   In an actual material, for example, as shown in FIG. 5B, the shear stress may change from increasing to decreasing, and in this case, the shear stress at the maximum value is said to be the upper yield point. Furthermore, as shown in FIG. 5C, the shear stress may change from decreasing to increasing in a state exceeding the upper yield point, and in this case, the shear stress at the minimum value is referred to as a lower yield point. Thus, a material having an upper yield point or a lower yield point may be used. In the material as shown in FIG. 5B or 5C, the upper yield point is the shear yield stress τy.

この塑性流動材30としては、たとえば、未加硫ゴム、熱可塑性エラストマー等を挙げることができるが、これらに限定されない。未加硫ゴムの主成分(ポリマー)としては、天然ゴム(NR)、スチレン・ブタジエンゴム(SBR)、スチレン・プロピレンゴム(EPM、EPDM)、シリコーンゴム(Q)等が挙げられる。さらに、未加硫ゴムや熱可塑性エラストマー等にカーボンブラック、炭酸カルシウム、オイル・樹脂等の配合剤を配合したものでもよい。特に未加硫ゴムは入手が容易であり、且つ低コストで構成できるので、好ましい。   Examples of the plastic fluid material 30 include, but are not limited to, unvulcanized rubber and thermoplastic elastomer. Examples of the main component (polymer) of the unvulcanized rubber include natural rubber (NR), styrene / butadiene rubber (SBR), styrene / propylene rubber (EPM, EPDM), and silicone rubber (Q). Further, a compounding agent such as carbon black, calcium carbonate, oil or resin may be blended with unvulcanized rubber or thermoplastic elastomer. In particular, unvulcanized rubber is preferable because it is easily available and can be constructed at low cost.

さらに、弾性体中空部28、すなわち、塑性流動材30内には、塑性流動材30に対して剛体とみなせる硬質の材料で構成された球形の球状体32が、所定の体積充填率となるように複数充填されている。この「体積充填率」とは、塑性流動材30の体積と球状体32の体積の和に対する球状体32の体積の比を百分率で示したものである。   Further, in the elastic body hollow portion 28, that is, in the plastic fluid material 30, a spherical spherical body 32 made of a hard material that can be regarded as a rigid body with respect to the plastic fluid material 30 has a predetermined volume filling rate. A plurality are filled. The “volume filling rate” is a percentage of the volume of the spherical body 32 to the sum of the volume of the plastic fluid 30 and the volume of the spherical body 32.

球状体30は、本発明の硬質充填材の一例であるが、硬質充填材の材質は、塑性流動材30に対して剛体とみなせる程度の硬さを有する材料であればよい。たとえば、金属、セラミックやエンジニアリングプラスチック等を適用することができるが、これらに限定されない。金属の具体例としては、純鉄、あるいは炭素鋼やステンレス鋼などの鉄を主成分とした粉体を挙げることができる。特に鉄は、他の金属と比較して比較的高いため温度上昇が抑制され、初期の特性を維持できるので、好ましい。   The spherical body 30 is an example of the hard filler of the present invention, but the material of the hard filler may be a material having a hardness that can be regarded as a rigid body with respect to the plastic fluid material 30. For example, metals, ceramics, engineering plastics, and the like can be applied, but are not limited thereto. Specific examples of the metal include pure iron, and powder mainly composed of iron such as carbon steel and stainless steel. In particular, iron is preferable because it is relatively high compared to other metals, and thus temperature rise is suppressed and initial characteristics can be maintained.

弾性体中空部28の端部には閉塞板24が配置されている。閉塞板24は、弾性体中空部28のX方向の端部を閉塞できるように、弾性体中空部28よりも大径の円盤状に形成されている。閉塞板24をフランジ板14に固定することで、弾性体中空部28を密閉することができる。   A closing plate 24 is disposed at the end of the elastic hollow portion 28. The closing plate 24 is formed in a disk shape having a larger diameter than the elastic body hollow portion 28 so that the end of the elastic body hollow portion 28 in the X direction can be closed. By fixing the closing plate 24 to the flange plate 14, the elastic body hollow portion 28 can be sealed.

このような構成とされた第1実施形態の積層支持体12では、支持部材と被支持部材との水平方向への相対移動(振動)により、図2(A)に示すように積層弾性体16が弾性的にせん断変形する。このとき、図2(B)にも示すように、弾性体中空部28内の塑性流動材30も流動しつつ全体としてせん断変形し、エネルギーを吸収する。本実施形態では、塑性流動材30内に球状体32が充填されているため、塑性流動材30が弾性体中空部28の内面だけでなく、球状体32の表面にも接触し、その接触面積が広くなり、球状体32の介在によって塑性流動材30が流動し難くなっている。このため、積層弾性体16のせん断変形時の減衰特性が向上し、より大きな減衰力を発揮してエネルギー吸収できる。   In the laminated support body 12 of the first embodiment having such a configuration, the laminated elastic body 16 is shown in FIG. 2A by relative movement (vibration) between the support member and the supported member in the horizontal direction. Is elastically sheared. At this time, as shown also in FIG. 2B, the plastic fluid 30 in the elastic body hollow portion 28 also undergoes shear deformation as a whole and absorbs energy. In this embodiment, since the spherical body 32 is filled in the plastic fluid material 30, the plastic fluid material 30 contacts not only the inner surface of the elastic hollow portion 28 but also the surface of the spherical body 32, and the contact area thereof. The plastic fluidized material 30 is difficult to flow due to the interposition of the spherical body 32. For this reason, the damping characteristic at the time of shear deformation of the laminated elastic body 16 is improved, and a larger damping force can be exhibited to absorb energy.

図3(A)には、本実施形態のような球状体32(硬質充填材)を充填しない以外は、同一構成とされた比較例の積層弾性体が、塑性流動材30の部分のみを拡大して示されている。比較例の積層弾性体では、塑性流動材30が弾性体中空部28の内面だけに接触している。したがって、たとえば図3(A)に示すように変形前の断面において直方体状の領域E1を想定すると、この領域E1が図3(B)に示すように単にせん断変形するだけなので、減衰力に限界がある。一方、本実施形態では、球状体32(硬質充填材)が移動すると共に、塑性流動材30も球状体32(硬質充填材)の間の狭い隙間を移動(流動)するので、大きな減衰力が得られる。   In FIG. 3A, the laminated elastic body of the comparative example having the same configuration, except that the spherical body 32 (hard filler) as in the present embodiment is not filled, enlarges only the portion of the plastic fluid material 30. It is shown as In the laminated elastic body of the comparative example, the plastic fluid 30 is in contact only with the inner surface of the elastic body hollow portion 28. Therefore, assuming a rectangular parallelepiped region E1 in the cross section before deformation as shown in FIG. 3A, for example, this region E1 is simply sheared as shown in FIG. There is. On the other hand, in the present embodiment, the spherical body 32 (hard filler) moves and the plastic fluid 30 also moves (flows) in the narrow gap between the spherical bodies 32 (hard filler), so that a large damping force is generated. can get.

特に、本実施形態では、塑性流動材30を弾完全塑性体(非硬化弾塑性体)で構成しているため、充填された球状体32(硬質充填材)の分散状態が安定する。すなわち、球状体32は、不用意に沈殿したり偏在したりすることがなく、塑性流動材30内で均一に分布する。このため、塑性流動材30の減衰特性が部分的に変化することもなく、安定した減衰性能を発揮できる。   In particular, in this embodiment, since the plastic fluid material 30 is composed of an elastic perfect plastic material (non-hardened elastic plastic material), the dispersion state of the filled spherical bodies 32 (hard filler) is stabilized. That is, the spherical bodies 32 are uniformly distributed in the plastic fluidized material 30 without inadvertent precipitation or uneven distribution. For this reason, the damping characteristic of the plastic fluidized material 30 does not change partially, and stable damping performance can be exhibited.

しかも、本実施形態では、このように所望の減衰力を得るために、従来の鉛プラグのような鉛製の部材を必要としない。このため、低コストでの廃却が可能となる。   Moreover, in this embodiment, in order to obtain a desired damping force in this way, a lead member such as a conventional lead plug is not required. For this reason, it becomes possible to dispose at low cost.

なお、本実施形態では、本発明の硬質充填材の例として、球形に形成された球状体32を挙げたが、要するに、塑性流動材30内に充填されることで、塑性流動材30と接触して接触面積を増大し、塑性流動材30の流動抵抗力を増すことができれば、特に限定されない。たとえば、図4(A)に示す回転楕円体形状の硬質充填材36、図4(B)に示す円柱形状の硬質充填材38、図4(C)に示す円盤状の硬質充填材39、図4(D)に示す回転楕円体の長手方向中央部分がくびれた形状(いわゆる「落花生殻」形状)の硬質充填材41等を挙げることができる。   In the present embodiment, the spherical body 32 formed in a spherical shape is given as an example of the hard filler of the present invention. In short, the plastic fluid material 30 is brought into contact with the plastic fluid material 30 by being filled in the plastic fluid material 30. Thus, there is no particular limitation as long as the contact area can be increased and the flow resistance of the plastic fluid 30 can be increased. For example, the spheroidal hard filler 36 shown in FIG. 4 (A), the cylindrical hard filler 38 shown in FIG. 4 (B), the disk-like hard filler 39 shown in FIG. Examples thereof include a hard filler 41 having a constricted shape (so-called “peanut shell” shape) in the longitudinal center of the spheroid shown in FIG.

なお、硬質充填材を本実施形態のように球形とすると、その方向性が無くなるので、任意の方向で安定した減衰特性を発揮させることができる。この場合の「球形」には、完全な球形が含まれるのはもちろんであるが、実質的に方向依存性がない程度であれば、完全な球形でなくてもよい。たとえば、正多面体形状や、図4(E)に示すような、表面が五角形と六角形とで構成されている形状(いわゆる「サッカーボール」形状)の硬質充填材48や、図4(F)に示すような、球体の表面から、円錐状(角錐状、円錐台状、角錐台状であってもよい)の複数の微小突起が、それぞれの頂点を外側に向けるように形成された形状(いわゆる「金平糖」形状)の硬質充填材49等であってもよい。正多面体形状の硬質充填材48の場合には、面数が多くなるほど球形に近づき、方向性が解消されるので好ましい。また、金平糖形状の硬質充填材49の場合には、微小な突起の大きさを略均一とし、その位置の分布の偏りが少ないようにすると、突起による方向性が少なくなるので好ましい。   If the hard filler is spherical as in the present embodiment, the directionality is lost, and stable damping characteristics can be exhibited in any direction. In this case, the “spherical shape” includes a complete spherical shape, but may not be a complete spherical shape as long as it has substantially no direction dependency. For example, a regular polyhedron shape, a hard filler 48 having a surface composed of a pentagon and a hexagon (so-called “soccer ball” shape) as shown in FIG. 4E, or FIG. As shown in the figure, from the surface of the sphere, a plurality of conical (which may be pyramidal, frustum-shaped, or frustum-shaped) microprotrusions are formed so that each apex faces outward ( It may be a so-called “gold flat sugar” shape hard filler 49 or the like. In the case of the regular polyhedron-shaped hard filler 48, the larger the number of surfaces, the closer to a spherical shape, and the directionality is eliminated, which is preferable. In the case of the hard filler 49 in the shape of confetti, it is preferable to make the size of the minute projections substantially uniform and to reduce the deviation of the position distribution, because the directionality by the projections is reduced.

また、硬質充填材を粒状体とすれば、塑性流動材30中への充填が容易になり、減衰性能が安定するので好ましい。たとえば、上記した回転楕円体形状、円柱形状、円盤状、落花生形状、サッカーボール形状、金平糖形状はいずれも、塑性流動材30内で硬質充填材の挙動が各々が独立しているので、粒状体とみなすことができる。さらに、図8に示すように、不定形(形状が一定していない)の硬質充填材51であっても、それぞれが独立して粒状となっていれば、ここでいう粒状体に含まれる。   In addition, it is preferable to use a hard filler as a granular material because filling into the plastic fluid 30 is facilitated and the damping performance is stabilized. For example, since the spheroid shape, columnar shape, disc shape, peanut shape, soccer ball shape, and konpei sugar shape are all independent of the behavior of the hard filler in the plastic fluid 30, Can be considered. Furthermore, as shown in FIG. 8, even if the hard filler 51 has an indefinite shape (the shape is not constant), each of the hard fillers 51 is included in the granular body as long as it is independently granular.

硬質充填材を粒状体とした場合、その大きさを、代表長さLの平均値Laveで0.001mm以上1.0mm以下とすれば、高い減衰性能を得ることができ、好ましい。さらに、この粒状体の大きさを、同じく代表長さLの平均値Laveで0.003mm以上0.3mm以下とすれば、より高い減衰性能を得ることができ、さらに好ましい。   When the hard filler is granular, it is preferable that the size is 0.001 mm or more and 1.0 mm or less in terms of the average value Lave of the representative length L because high damping performance can be obtained. Furthermore, it is more preferable that the size of the granular material is 0.003 mm or more and 0.3 mm or less as the average value Lave of the representative length L, because higher attenuation performance can be obtained.

粒状体の代表長さLとは、図8に示すように、拡大鏡(顕微鏡やマイクロスコープ等)を用いて得られる観察面(投影面)に関して、一定の方向に図った最大遠間距離(Feret径)をいう。複数の粒状体についてこの代表長さLを測定して平均値をとったものが、ここでいう平均値Laveとなる。なお、図8に示した例では不定形の硬質充填材51を採り上げて代表長さLを測定しているが、硬質充填材の形状はこれに限定されず、たとえば、図4(A)〜(F)に示すいずれの硬質充填材であっても、同様にして代表長さLを測定できる。   As shown in FIG. 8, the representative length L of the granular material is a maximum distance (in a certain direction) with respect to an observation surface (projection surface) obtained using a magnifying glass (such as a microscope or a microscope). Feret diameter). A value obtained by measuring the representative length L of a plurality of granular bodies and taking an average value is an average value Lave here. In the example shown in FIG. 8, the irregular length of the hard filler 51 is taken and the representative length L is measured. However, the shape of the hard filler is not limited to this, and for example, FIG. In any of the hard fillers shown in (F), the representative length L can be measured in the same manner.

図6(A)には、硬質充填材の大きさ(代表長さLの平均値Lave)と減衰性能との関係がグラフで示されている。また、図6(B)には、硬質充填材の体積充填率φと減衰性能との関係がグラフで示されている。これらのグラフは、図1(A)に示した積層支持体12に対し、動的試験機を用いて鉛直方向に一定の荷重をかけた状態で水平方向に力を加えて規定変位のせん断変形を生じさせることにより行った試験の結果に基づいて得られたものである。   FIG. 6A is a graph showing the relationship between the size of the hard filler (the average value Lave of the representative length L) and the damping performance. FIG. 6B shows a graph of the relationship between the volume filling rate φ of the hard filler and the damping performance. These graphs show shear deformation at a specified displacement by applying a force in the horizontal direction to the laminated support 12 shown in FIG. 1 (A) while applying a constant load in the vertical direction using a dynamic tester. It was obtained based on the result of the test conducted by producing.

この試験の条件に用いた積層支持体12の構成は、以下の通りである。
・積層弾性体16の外径: 225mm
・積層弾性体16のゴム板20の1枚当りの厚さ: 1.8mm
・積層弾性体16の金属板18の1枚当りの厚さ: 0.8mm
・積層弾性体16のゴム板20の層数: 25層
・硬質充填材が充填された塑性流動材30の外径: 45mm
・硬質充填材の体積充填率: 0%〜75%
・硬質充填材の形状、材質: 不定形又は略球形の鉄粉
・硬質充填材の大きさ(Lave): 0.0001mm〜2.0mm
・ゴム板20の材料: 天然ゴム
・ゴム板20のせん断弾性係数: 0.39N/mm
・塑性流動材30の構成:未加硫ゴム
配合(重量%):天然ゴム13%、ブタジエンゴム31%、
カーボン36%、樹脂18%、
その他オイル等2%
The structure of the laminated support 12 used for the test conditions is as follows.
-Outer diameter of laminated elastic body 16: 225 mm
-Thickness per rubber plate 20 of the laminated elastic body 16: 1.8 mm
-Thickness per metal plate 18 of the laminated elastic body 16: 0.8 mm
-Number of layers of the rubber plate 20 of the laminated elastic body 16: 25-Outer diameter of the plastic fluidized material 30 filled with the hard filler: 45 mm
-Volume filling rate of hard filler: 0% to 75%
-Shape and material of hard filler: Indeterminate or nearly spherical iron powder-Size of hard filler (Lave): 0.0001 mm to 2.0 mm
-Material of rubber plate 20: Natural rubber-Shear elastic modulus of rubber plate 20: 0.39 N / mm 2
-Composition of plastic fluid 30: unvulcanized rubber
Formulation (wt%): natural rubber 13%, butadiene rubber 31%,
36% carbon, 18% resin,
Other oil 2%

また、試験の条件は、以下の通りである。
・せん断変位振幅:22.5mm〜112.5mm(せん断ひずみ:50%〜250%)
・試験振動数: 0.33Hz
・圧縮応力度: 10MPa
The test conditions are as follows.
・ Shear displacement amplitude: 22.5 mm to 112.5 mm (shear strain: 50% to 250%)
・ Test frequency: 0.33 Hz
・ Compressive stress: 10 MPa

なお、硬質充填材の代表長さLは硬質充填材のそれぞれで異なる値となるが、上記試験では、図9に示すように、その頻度分布として一山型(頻度の極大値が1箇所のみ存在する分布)の粒子群を用いている。   In addition, although the representative length L of the hard filler has a different value for each of the hard fillers, in the above test, as shown in FIG. 9, the frequency distribution is a single mountain (the maximum value of the frequency is only at one location). Particle group of existing distribution).

図7には、このようにして行った試験における、水平方向の変形変位(δ)と積層支持体12の水平方向荷重(Q)との関係が示されている。実際の積層支持体12では、このヒステリシス曲線で囲まれた領域の面積が広くなるほど、振動のエネルギーを多く吸収できる。そして、現実的に減衰性能を評価する指標としては、その簡易さ等から、切片荷重Qdが用いされることが多い。この切片荷重Qdは、変位0における水平荷重値であり、ヒステリシス曲線が縦軸と交差する点での荷重Qd1、Qd2を用いて、
Qd=(Qd1+Qd2)/2
と計算される。そして、この値が大きくなれば、ヒステリシス曲線で囲まれた領域の面積も広くなる。図6(A)及び(B)のグラフの縦軸は、このようにして得られた切片荷重Qdをとっている。また、図6(A)のグラフの横軸は、硬質充填材の大きさ(Lave)を対数目盛で示している。なお、図6(A)は、硬質充填材の体積充填率を65%とした場合の結果である。図6(B)は、硬質充填材の大きさ(Lave)を0.05mmとした場合の結果である。
FIG. 7 shows the relationship between the horizontal displacement (δ) and the horizontal load (Q) of the laminated support 12 in the test performed in this manner. The actual laminated support 12 can absorb more vibration energy as the area of the region surrounded by the hysteresis curve increases. In view of simplicity and the like, the intercept load Qd is often used as an index for realistically evaluating the attenuation performance. This intercept load Qd is a horizontal load value at a displacement of 0, and using the loads Qd1 and Qd2 at the point where the hysteresis curve intersects the vertical axis,
Qd = (Qd1 + Qd2) / 2
Is calculated. As this value increases, the area of the region surrounded by the hysteresis curve also increases. The vertical axis of the graphs of FIGS. 6A and 6B represents the intercept load Qd thus obtained. Further, the horizontal axis of the graph of FIG. 6A indicates the size (Lave) of the hard filler on a logarithmic scale. FIG. 6A shows the result when the volume filling rate of the hard filler is 65%. FIG. 6B shows the result when the size (Lave) of the hard filler is 0.05 mm.

図6(A)から、硬質充填材の大きさ(Lave)が0.05mm程度の場合が最も減衰性能が高く、これよりも大きさ(Lave)が大きくなっても、小さくなっても、減衰性能は漸減していることが分かる。   From FIG. 6 (A), when the size (Lave) of the hard filler is about 0.05 mm, the attenuation performance is the highest, and even when the size (Lave) is larger or smaller than this, the attenuation is reduced. It can be seen that the performance is gradually decreasing.

ここで、通常、本発明のような積層支持体の減衰特性は、等価減衰定数heqを用いて表現されることが多い。そこで、まず、図7において、履歴特性をバイリニアモデルで近似する。すなわち、この履歴特性の曲線を、破線で示す4本の直線(傾きはそれぞれKd1、Kd2、Ku1、Ku2)を用いて近似し、Kd1=Kd2=Kd、Qd1=Qd2=Qd、Ku1=Ku2=Kuとすると、   Here, usually, the attenuation characteristic of the laminated support as in the present invention is often expressed using an equivalent attenuation constant heq. Therefore, first, in FIG. 7, the hysteresis characteristics are approximated by a bilinear model. That is, this hysteresis characteristic curve is approximated using four straight lines indicated by broken lines (inclinations are Kd1, Kd2, Ku1, Ku2 respectively), and Kd1 = Kd2 = Kd, Qd1 = Qd2 = Qd, Ku1 = Ku2 = Ku

Figure 2008116041
の関係が成り立つ。
Figure 2008116041
The relationship holds.

そして一般に、免震用途に使用する積層支持体では、hep≧0.10とすることが好ましく、hep≧0.15とすることがより好ましい。   And generally, in the laminated support body used for a seismic isolation use, it is preferable to set it as hep> = 0.10, and it is more preferable to set it as hep> = 0.15.

本実施形態の積層支持体12では、Kd=332kN/mであり、得られた履歴特性より、Ku=10Kdとし、変形量をせん断ひずみ150%時の値0.0675mとすると、hep≧0.10がQd≧0.4×9.8kNに、hep≧0.15がQd≧0.8×9.8kNにそれぞれ相当する。以上の観点から、切片荷重Qdをたとえば0.4×9.8kN以上に設定すると、大きさ(Lave)が0.001mm以上1.0mm以下の場合にこの条件が満たされることが分かる。さらに高い減衰性能を得るべく、たとえば切片荷重Qdを0.8×9.8kN以上に設定すると、大きさ(Lave)が0.003mm以上0.3mm以下の場合にこの条件が満たされることが分かる。   In the laminated support 12 of this embodiment, when Kd = 332 kN / m, Ku = 10 Kd and the deformation amount is 0.0675 m when the shear strain is 150%, hep ≧ 0. 10 corresponds to Qd ≧ 0.4 × 9.8 kN, and hep ≧ 0.15 corresponds to Qd ≧ 0.8 × 9.8 kN. From the above viewpoints, it can be seen that when the intercept load Qd is set to 0.4 × 9.8 kN or more, for example, this condition is satisfied when the size (Lave) is 0.001 mm or more and 1.0 mm or less. In order to obtain higher attenuation performance, for example, when the intercept load Qd is set to 0.8 × 9.8 kN or more, it is understood that this condition is satisfied when the size (Lave) is 0.003 mm or more and 0.3 mm or less. .

また、図6(B)からは、硬質充填材の体積充填率φが増加していくと、減衰性能も概ね高くなるが、体積充填率が65%〜70%の範囲が最も減衰性能が高く、70%を超えると僅かに減少傾向が見られる。そして、体積充填率0%の場合と比較して、25%以上になると硬質充填材を充填した効果が確認され、さらに、50%以上では、2倍程度の減衰効果が得られる。これは、硬質充填材の体積充填率が増加していくと、塑性流動材30と硬質充填材との接触面積を広く確保できるためであると考えられる。ただし、硬質充填材の体積充填率が74%を超えると、硬質充填材どうしの接触部分が増大するため、安定した減衰性能を得ることが難しくなる。すなわち、硬質充填材の体積充填率を74%以下とすることで、硬質充填材どうしの接触部分を少なくし、硬質充填材の移動を容易とすることで、安定した減衰性能を発揮することが可能となる。   In addition, from FIG. 6B, as the volume filling rate φ of the hard filler increases, the damping performance generally increases, but the damping performance is highest when the volume filling rate ranges from 65% to 70%. If it exceeds 70%, a slight decreasing trend is observed. And compared with the case where the volume filling rate is 0%, when it is 25% or more, the effect of filling with the hard filler is confirmed, and when it is 50% or more, the damping effect is about twice. This is considered to be because when the volume filling rate of the hard filler increases, a wide contact area between the plastic fluidized material 30 and the hard filler can be secured. However, if the volume filling rate of the hard filler exceeds 74%, the contact portion between the hard fillers increases, and it becomes difficult to obtain a stable damping performance. In other words, by setting the volume filling rate of the hard filler to 74% or less, the number of contact portions between the hard fillers is reduced, and the movement of the hard filler is facilitated, thereby exhibiting stable damping performance. It becomes possible.

なお、硬質充填材として、球形に近いものを用いた場合と、不定形のものを用いた場合の双方で上記試験を行ったが、切片荷重Qdに有意な差は生じなかった。   In addition, although the said test was done by the case where the thing close | similar to a spherical shape was used as a hard filler, and the case where an amorphous thing was used, the significant difference did not arise in the intercept load Qd.

本発明の塑性流動材としては、要するに弾完全塑性体(非硬化弾塑性体)で構成されていれば、硬質充填材の分散状態を安定させることができる。特に、塑性流動材のせん断降伏応力τyは、0.1MPa以上で10MPa以下とすることが好ましい。すなわち、0.1MPa以上とすることで、十分な減衰性能を得ることが可能になる。10MPa以下とすることで、塑性流動材を大きく塑性変形させることが可能になる   In short, the plastic fluidized material of the present invention can stabilize the dispersion state of the hard filler as long as it is composed of an elastic perfect plastic material (non-hardened elastic plastic material). In particular, the shear yield stress τy of the plastic fluidized material is preferably 0.1 MPa or more and 10 MPa or less. That is, by setting the pressure to 0.1 MPa or more, sufficient attenuation performance can be obtained. By setting the pressure to 10 MPa or less, the plastic fluidized material can be greatly plastically deformed.

本発明の一実施形態の積層支持体を変形前において示す断面図であり、(A)は全体構成図、(B)は部分拡大図である。It is sectional drawing which shows the laminated support body of one Embodiment of this invention before a deformation | transformation, (A) is a whole block diagram, (B) is a partial enlarged view. 本発明の一実施形態の積層支持体を変形後において示す断面図であり、(A)は全体構成図、(B)は部分拡大図である。It is sectional drawing which shows the laminated support body of one Embodiment of this invention after deformation | transformation, (A) is a whole block diagram, (B) is a partial enlarged view. 比較例の積層支持体の部分拡大図であり、(A)は変形前、(B)は変形後である。It is the elements on larger scale of the laminated support body of a comparative example, (A) is before a deformation | transformation, (B) is after a deformation | transformation. (A)〜(F)はいずれも、本発明の積層支持体に適用可能な硬質充填材の例を示す斜視図である。(A)-(F) are all perspective views which show the example of the hard filler applicable to the lamination | stacking support body of this invention. (A)〜(C)はいずれも、弾塑性体の応力―ひずみ特性をモデル化して示すグラフである。(A) to (C) are all graphs showing the stress-strain characteristics of an elastic-plastic body. (A)は硬質充填材の大きさと減衰性能との関係を示すグラフであり、(B)は、硬質充填材の体積充填率と減衰性能の関係を示すグラフである。(A) is a graph which shows the relationship between the magnitude | size of a hard filler, and damping performance, (B) is a graph which shows the relationship between the volume filling factor of hard filler, and damping performance. 硬質充填材を使用した積層支持体での、水平方向の変形変位と水平方向荷重(Q)との関係を示すグラフである。It is a graph which shows the relationship between a horizontal deformation displacement and a horizontal load (Q) in the lamination | stacking support body which uses a hard filler. 本発明の積層支持体に適用可能な硬質充填材の図4に示したものとは異なる例を示す正面図である。It is a front view which shows the example different from what was shown in FIG. 4 of the hard filler applicable to the laminated support body of this invention. 本発明に適用される硬質充填材の代表長さと頻度分布との関係を示すグラフである。It is a graph which shows the relationship between the typical length of the hard filler applied to this invention, and frequency distribution.

符号の説明Explanation of symbols

12 積層支持体
14 フランジ板
14F フランジ部
16 積層弾性体
18 金属板
20 ゴム板
22 被覆材
24 閉塞板
28 弾性体中空部
30 塑性流動材
32 球状体
36 硬質充填材
38 硬質充填材
39 硬質充填材
42 硬質充填材
41 硬質充填材
48 硬質充填材
49 硬質充填材
51 硬質充填材
DESCRIPTION OF SYMBOLS 12 Laminated support body 14 Flange board 14F Flange part 16 Laminated elastic body 18 Metal plate 20 Rubber board 22 Cover material 24 Closure board 28 Elastic body hollow part 30 Plastic fluid material 32 Spherical body 36 Hard filler 38 Hard filler 39 Hard filler 42 Hard filler 41 Hard filler 48 Hard filler 49 Hard filler 51 Hard filler

Claims (9)

剛性を有する剛性板と弾性を有する弾性板とが所定の積層方向に交互に積層されて構成され、この積層方向に中空部が形成された積層弾性体と、
弾塑性体で構成され前記中空部内に注入された塑性流動材と、
前記塑性流動材内に充填された硬質充填材と、
を有することを特徴とする積層支持体。
A laminated elastic body in which a rigid plate having rigidity and an elastic plate having elasticity are alternately laminated in a predetermined lamination direction, and a hollow portion is formed in the lamination direction;
A plastic fluidized material composed of an elastoplastic material and injected into the hollow portion;
A hard filler filled in the plastic fluidized material;
A laminated support characterized by comprising:
前記塑性流動材のせん断降伏応力τyが、0.1MPa≦τy≦10MPaであることを特徴とする請求項1に記載の積層支持体。   The laminated support according to claim 1, wherein the plastic flow material has a shear yield stress τy of 0.1 MPa ≦ τy ≦ 10 MPa. 前記硬質充填材の体積充填率が、25%〜74%であることを特徴とする請求項1又は請求項2に記載の積層支持体。   The laminated support according to claim 1 or 2, wherein a volume filling rate of the hard filler is 25% to 74%. 前記硬質充填材の体積充填率が、さらに50%〜74%であることを特徴とする請求項3に記載の積層支持体。   4. The laminated support according to claim 3, wherein the volume filling rate of the hard filler is further 50% to 74%. 前記硬質充填材が、粒状に形成された粒状体であることを特徴とする請求項1〜請求項4のいずれか1項に記載の積層支持体。   The laminated support according to any one of claims 1 to 4, wherein the hard filler is a granular body formed in a granular form. 前記粒状体の大きさが、その代表長さLの平均値Laveで0.001mm≦Lave≦1.0mmであることを特徴とする請求項5に記載の積層支持体。   6. The laminated support according to claim 5, wherein the size of the granular material is 0.001 mm ≦ Lave ≦ 1.0 mm in terms of an average value Lave of the representative length L. 前記粒状体の大きさが、その代表長さLの平均値Laveでさらに0.003mm≦Lave≦0.3mmであることを特徴とする請求項6に記載の積層支持体。   The laminated support according to claim 6, wherein the size of the granular material is 0.003 mm ≦ Lave ≦ 0.3 mm in terms of an average value of the representative length L. 剛性を有する剛性板と弾性を有する弾性板とが所定の積層方向に交互に積層されて構成され、この積層方向に中空部が形成された積層弾性体と、
非硬化型の弾完全塑性体で構成され前記中空部内に注入された塑性流動材と、
前記塑性流動材内に充填された硬質充填材と、
を有し、
前記塑性流動材のせん断降伏応力τyが、0.1MPa≦τy≦10MPaであり、
前記硬質充填材の体積充填率が、25%〜74%であることを特徴とする積層支持体。
A laminated elastic body in which a rigid plate having rigidity and an elastic plate having elasticity are alternately laminated in a predetermined lamination direction, and a hollow portion is formed in the lamination direction;
A plastic fluidized material composed of a non-curing type elastic perfect plastic material and injected into the hollow portion;
A hard filler filled in the plastic fluidized material;
Have
The shear yield stress τy of the plastic fluid material is 0.1 MPa ≦ τy ≦ 10 MPa,
A volumetric filling factor of the hard filler is 25% to 74%.
前記粒状体の大きさが、その代表長さLの平均値Laveで0.001mm≦Lave≦1.0mmであることを特徴とする請求項8に記載の積層支持体。   9. The laminated support according to claim 8, wherein the size of the granular material is 0.001 mm ≦ Lave ≦ 1.0 mm in terms of an average value Lave of the representative length L.
JP2007267641A 2006-10-13 2007-10-15 Laminated support Active JP4851416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267641A JP4851416B2 (en) 2006-10-13 2007-10-15 Laminated support

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006279735 2006-10-13
JP2006279735 2006-10-13
JP2007267641A JP4851416B2 (en) 2006-10-13 2007-10-15 Laminated support

Publications (2)

Publication Number Publication Date
JP2008116041A true JP2008116041A (en) 2008-05-22
JP4851416B2 JP4851416B2 (en) 2012-01-11

Family

ID=39502137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267641A Active JP4851416B2 (en) 2006-10-13 2007-10-15 Laminated support

Country Status (1)

Country Link
JP (1) JP4851416B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108198A (en) * 2007-10-30 2009-05-21 Bridgestone Corp Elastomer composition for plug in base isolation structure, composition for plug in base isolation structure, plug in base isolation structure, and base isolation structure
JP2010255776A (en) * 2009-04-27 2010-11-11 Bridgestone Corp Base isolation structure
WO2013014907A1 (en) * 2011-07-28 2013-01-31 株式会社ブリヂストン Composition for plug of seismic structure, plug for seismic structure, and seismic structure, as well as method for manufacturing composition for plug of seismic structure, and method for manufacturing plug for seismic structure body
JP2013029166A (en) * 2011-07-28 2013-02-07 Bridgestone Corp Composition for plug of base isolation structure, plug for base isolation structure, and base isolation structure
JP2013122277A (en) * 2011-12-09 2013-06-20 Bridgestone Corp Method for manufacturing composition for plug of seismic structure and method for manufacturing plug for seismic structure
JP2013124717A (en) * 2011-12-14 2013-06-24 Bridgestone Corp Composition for plug of seismic structure, plug for seismic structure and seismic structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444532A (en) * 1990-06-11 1992-02-14 Rexnord Corp Abrasion-resistant offset side bar chain
JPH0784815B2 (en) * 1986-03-11 1995-09-13 株式会社ブリヂストン Seismic isolation device
JPH1088854A (en) * 1996-07-22 1998-04-07 Bridgestone Corp Vibration-isolation structure
JPH10184080A (en) * 1996-12-26 1998-07-14 Bridgestone Corp Vibration isolation structure and manufacture thereof
JP2004211745A (en) * 2002-12-27 2004-07-29 Tokai Rubber Ind Ltd Highly damped supporting device
JP2006316990A (en) * 2005-04-14 2006-11-24 Bridgestone Corp Laminated support
JP2007247833A (en) * 2006-03-17 2007-09-27 Bridgestone Corp Base isolation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784815B2 (en) * 1986-03-11 1995-09-13 株式会社ブリヂストン Seismic isolation device
JPH0444532A (en) * 1990-06-11 1992-02-14 Rexnord Corp Abrasion-resistant offset side bar chain
JPH1088854A (en) * 1996-07-22 1998-04-07 Bridgestone Corp Vibration-isolation structure
JPH10184080A (en) * 1996-12-26 1998-07-14 Bridgestone Corp Vibration isolation structure and manufacture thereof
JP2004211745A (en) * 2002-12-27 2004-07-29 Tokai Rubber Ind Ltd Highly damped supporting device
JP2006316990A (en) * 2005-04-14 2006-11-24 Bridgestone Corp Laminated support
JP2007247833A (en) * 2006-03-17 2007-09-27 Bridgestone Corp Base isolation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108198A (en) * 2007-10-30 2009-05-21 Bridgestone Corp Elastomer composition for plug in base isolation structure, composition for plug in base isolation structure, plug in base isolation structure, and base isolation structure
JP2010255776A (en) * 2009-04-27 2010-11-11 Bridgestone Corp Base isolation structure
WO2013014907A1 (en) * 2011-07-28 2013-01-31 株式会社ブリヂストン Composition for plug of seismic structure, plug for seismic structure, and seismic structure, as well as method for manufacturing composition for plug of seismic structure, and method for manufacturing plug for seismic structure body
JP2013029166A (en) * 2011-07-28 2013-02-07 Bridgestone Corp Composition for plug of base isolation structure, plug for base isolation structure, and base isolation structure
CN103717939A (en) * 2011-07-28 2014-04-09 株式会社普利司通 Composition for plug of seismic structure, plug for seismic structure, and seismic structure, as well as method for manufacturing composition for plug of seismic structure, and method for manufacturing plug for seismic structure body
JP2013122277A (en) * 2011-12-09 2013-06-20 Bridgestone Corp Method for manufacturing composition for plug of seismic structure and method for manufacturing plug for seismic structure
JP2013124717A (en) * 2011-12-14 2013-06-24 Bridgestone Corp Composition for plug of seismic structure, plug for seismic structure and seismic structure

Also Published As

Publication number Publication date
JP4851416B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4704946B2 (en) Laminated support
JP4851425B2 (en) Laminated support
JP4851416B2 (en) Laminated support
JPH06101740A (en) Lamination rubber support
Chakraborty et al. Design of re-centering spring for flat sliding base isolation system: Theory and a numerical study
US7758948B2 (en) Laminate support
JP2000129955A (en) Damper
CN108468394A (en) A kind of sealing plate prefabricated PC viscoelastic damper
JP5783862B2 (en) Magnetic field responsive resin composition, production method thereof and use thereof
JPS62211471A (en) Earthquake damping apparatus
CN208668661U (en) A kind of sealing plate prefabricated PC viscoelastic damper
JP5702643B2 (en) Bearing device
JP2011149476A (en) Vibration control damper
JP2008121822A (en) Vibration-isolation structure and its manufacturing method
JP2006265831A (en) Flexible box culvert
JP2012062968A (en) Laminated support
JP2013217483A (en) Laminated rubber bearing body
JP2012219570A (en) Vibration control device
JPH11125306A (en) Base isolation system
JP5091083B2 (en) Seismic isolation structure plug and seismic isolation structure
JP2007247833A (en) Base isolation device
Lee Seismic behavior of structures with dampers made from ultrahigh damping natural rubber
Steelman et al. Cyclic experimental behavior of nonseismic elastomeric bearings with stiffened angle side retainer fuses for quasi-isolated seismic bridge response
JP5643591B2 (en) Bearing device
JP2009210064A (en) Laminated support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

R150 Certificate of patent or registration of utility model

Ref document number: 4851416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250