JP2010251805A - Illumination device - Google Patents

Illumination device Download PDF

Info

Publication number
JP2010251805A
JP2010251805A JP2010176952A JP2010176952A JP2010251805A JP 2010251805 A JP2010251805 A JP 2010251805A JP 2010176952 A JP2010176952 A JP 2010176952A JP 2010176952 A JP2010176952 A JP 2010176952A JP 2010251805 A JP2010251805 A JP 2010251805A
Authority
JP
Japan
Prior art keywords
insulating layer
light emitting
semiconductor light
light
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010176952A
Other languages
Japanese (ja)
Inventor
Tomohiro Sanpei
友広 三瓶
Yumiko Hayashida
裕美子 林田
Masahiro Izumi
昌裕 泉
Kiyoshi Otani
清 大谷
Yutaka Honda
豊 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2010176952A priority Critical patent/JP2010251805A/en
Publication of JP2010251805A publication Critical patent/JP2010251805A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32153Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/32175Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic
    • H01L2224/32188Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic the layer connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illumination device which suppresses a temperature rise of a semiconductor luminous element to easily maintain luminous efficiency. <P>SOLUTION: The illumination device includes a metal board 2, an insulating layer 5, a conductor 8, a semiconductor luminous element 11, a bonding wire 17 and a translucent sealing member 22. An element mounting part 3 is integrally provided on the metal board 2. The insulating layer 5 is laminated on the metal board 2 excluding the element mounting part 3. The conductor 8 is provided on the insulating layer 5. The semiconductor luminous element 11 is die-bonded to the element mounting part 3. The semiconductor luminous element 11 and the conductor 8 are connected with the bonding wire 17. The semiconductor luminous element 11 is sealed with the sealing member 22. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、LED(発光ダイオード)チップ等の半導体発光素子を発光させて照明をする照明装置に関する。   The present invention relates to an illumination device that performs illumination by causing a semiconductor light emitting element such as an LED (light emitting diode) chip to emit light.

従来、例えば縦横に列をなして二次元配列された複数のLEDチップを電気的に接続して、これらのチップを発光させて、面状光源として用いる照明装置が知られている。そして、光源がLEDチップである照明装置では、LEDチップが発した熱を外部に放出するために金属ベースプリント基板が用いられている。このプリント基板は、アルミニウム等の金属板上に絶縁層を積層するとともに、この絶縁層上に導体パターンを設けて形成され、LEDチップは、絶縁層上にフリップチップ実装又はワイヤボンディングによって実装されている(例えば、特許文献1参照。)。   2. Description of the Related Art Conventionally, for example, there is known an illumination device that is used as a planar light source by electrically connecting a plurality of LED chips that are two-dimensionally arranged in rows and columns to emit light. And in the illuminating device whose light source is an LED chip, the metal base printed circuit board is used in order to discharge | release the heat | fever which the LED chip emitted outside. This printed circuit board is formed by laminating an insulating layer on a metal plate such as aluminum and providing a conductor pattern on this insulating layer, and the LED chip is mounted on the insulating layer by flip chip mounting or wire bonding. (For example, refer to Patent Document 1).

特開2004−193357号公報(段落0002、0013、0038、図1−図7)Japanese Patent Laying-Open No. 2004-193357 (paragraphs 0002, 0013, 0038, FIGS. 1 to 7)

前記のように従来の照明装置では、LEDチップとこれからの放熱促進を担う金属板との間に絶縁層が介在されている。絶縁層の厚みは、この絶縁層の両面に位置された金属板と導体パターンとの間の電気絶縁を確保する上で、現状では0.25mm以上必要であるとされている。絶縁層は金属材料に比較して遥かに熱伝導率が低い。特許文献1に記載のように絶縁層を、熱硬化性樹脂に無機質のフィラーを混ぜて熱伝導率を改善した構成としても、依然として金属材料と比較した場合には熱伝導率が低いことには変わりがない。そのため、LEDチップの温度上昇を十分に抑制し難く、LEDチップの発光効率を維持する上では改善の余地がある。   As described above, in the conventional lighting device, the insulating layer is interposed between the LED chip and the metal plate responsible for promoting heat dissipation from now on. The thickness of the insulating layer is currently required to be 0.25 mm or more in order to ensure electrical insulation between the metal plate located on both surfaces of the insulating layer and the conductor pattern. The insulating layer has a much lower thermal conductivity than the metal material. As described in Patent Document 1, the insulating layer is composed of a thermosetting resin mixed with an inorganic filler to improve the thermal conductivity, but the thermal conductivity is still low when compared with a metal material. There is no change. Therefore, it is difficult to sufficiently suppress the temperature rise of the LED chip, and there is room for improvement in maintaining the light emission efficiency of the LED chip.

しかも、従来の照明装置は、個々のLEDチップから放出される光の利用が十分ではない。そのため、照明装置全体としての光の取出し効率は、25lm〜50lm程度と低く、LED照明装置としては、その効率が蛍光ランプの発光効率(70lm〜100lm程度)より低いものしか得られていない現状にある。   And the conventional illuminating device cannot fully utilize the light discharge | released from each LED chip. Therefore, the light extraction efficiency of the entire lighting device is as low as about 25 lm to 50 lm, and as the LED lighting device, only the efficiency lower than the luminous efficiency (about 70 lm to 100 lm) of the fluorescent lamp is obtained. is there.

本発明の目的は、半導体発光素子の温度上昇を抑制して発光効率を維持しやすい照明装置を提供することにある。   The objective of this invention is providing the illuminating device which suppresses the temperature rise of a semiconductor light-emitting element and is easy to maintain luminous efficiency.

請求項1の発明は、素子取付け部を一体に有する放熱基板と;この放熱基板に前記素子取付け部を除いて積層された絶縁層と;前記絶縁層上に設けられるとともに、その端と前記素子取付部との間に前記絶縁層が露出するように設けられた表面に光反射層を有しする導体と;その上面の高さ位置が前記絶縁層及び前記導体の高さ以上となるように前記素子取付け部にダイボンドされる半導体発光素子と;この半導体発光素子と前記導体とを接続したボンディングワイヤと;前記半導体発光素子を封止して設けた透光性の封止部材と;を具備したことを特徴としている。   The invention according to claim 1 is a heat dissipation substrate integrally having an element mounting portion; an insulating layer laminated on the heat dissipation substrate excluding the element mounting portion; provided on the insulating layer, and an end thereof and the element A conductor having a light reflecting layer on the surface provided so that the insulating layer is exposed between the mounting portion; and a height position of the upper surface thereof equal to or higher than the height of the insulating layer and the conductor. A semiconductor light emitting element die-bonded to the element mounting portion; a bonding wire connecting the semiconductor light emitting element and the conductor; and a translucent sealing member provided by sealing the semiconductor light emitting element. It is characterized by that.

請求項1の発明で、放熱基板としては、金属基板又は炭素系基板を挙げることができる。金属基板は、各種の金属材料で形成でき、例えば、熱伝導性に優れたCu(銅)やAl(アルミニウム)及びその合金等を好適に用いることができる。炭素系基板はカーボン又はグラファイトで形成できる。放熱基板として炭素系基板を用いる場合、炭素系粉末材料を成形型によって圧縮成形できる。このため、放熱基板が例えば凸部で形成される素子取付け部を有した構成であっても、凸部を形成するのにエッチング処理等を要することがなく、型成形によって凸部からなる素子取付け部を有した所定形状の放熱基板を容易に作ることができる利点がある。これとともに、放熱基板として炭素系基板を用いることは、昨今の銅価格の高騰の影響を受けない放熱基板とできる点で好ましい。   In the invention of claim 1, examples of the heat dissipation substrate include a metal substrate and a carbon-based substrate. The metal substrate can be formed of various metal materials, and for example, Cu (copper), Al (aluminum), an alloy thereof, and the like excellent in thermal conductivity can be suitably used. The carbon-based substrate can be formed of carbon or graphite. When a carbon-based substrate is used as the heat dissipation substrate, the carbon-based powder material can be compression-molded with a molding die. For this reason, even if the heat dissipation substrate has an element mounting portion formed of, for example, a convex portion, an etching process or the like is not required to form the convex portion, and an element mounting made of the convex portion is formed by molding. There is an advantage that a heat dissipation substrate having a predetermined shape having a portion can be easily formed. At the same time, the use of a carbon-based substrate as the heat dissipation substrate is preferable in that it can be a heat dissipation substrate that is not affected by the recent rise in copper prices.

本発明で、放熱基板の素子取付け部は、絶縁層に覆われない部位を指している。放熱基板が金属基板である場合、絶縁層で覆われた金属基板の部位の厚みは0.25mm〜0.50mmとすることが好ましく、それにより、前記部位の厚み寸法の精度を向上できるに伴い、ボンディングワイヤと導体とがワイヤボンディングにより接合された接合部の接合強度のばらつきが抑制されて、接合の信頼性を向上できる。   In the present invention, the element mounting portion of the heat dissipation board refers to a portion that is not covered by the insulating layer. When the heat dissipation substrate is a metal substrate, the thickness of the portion of the metal substrate covered with the insulating layer is preferably set to 0.25 mm to 0.50 mm, whereby the accuracy of the thickness dimension of the portion can be improved. Variations in the bonding strength of the bonding portion where the wire and the conductor are bonded by wire bonding are suppressed, and the bonding reliability can be improved.

また、本発明で、絶縁層にはガラスエポキシ基板を好適に用いることができるとともに、良好な光反射性能を得るために白色を呈する絶縁層を使用することが好ましい。例えば、白色のガラスエポキシ基板からなる絶縁層を用いた場合には、半導体発光素子からその周囲に放出された光が、絶縁層で吸収されることが抑制されて、この白色の絶縁層で反射されるから、光の取出し効率を高めるのに有効である。   In the present invention, a glass epoxy substrate can be suitably used as the insulating layer, and it is preferable to use a white insulating layer in order to obtain good light reflection performance. For example, when an insulating layer made of a white glass epoxy substrate is used, light emitted from the semiconductor light emitting element to the periphery thereof is suppressed from being absorbed by the insulating layer and reflected by the white insulating layer. Therefore, it is effective for increasing the light extraction efficiency.

また、本発明で、導体は、例えばCu(銅)やAg(銀)等の電気伝導率が良い金属からなり、例えば放熱基板が金属基板である場合はエッチング処理により設けることができるが、これ以外に接着剤を用いて絶縁層上に設けられたものであってもよい。この導体の表面にレジスト層を塗布することもできる。レジスト層で導体を覆った構成では、導体の絶縁性を向上できるとともに、導体の耐マイグレーション性の向上と、導体の酸化等を抑制できる点で好ましい。   In the present invention, the conductor is made of a metal having good electrical conductivity such as Cu (copper) or Ag (silver). For example, when the heat dissipation substrate is a metal substrate, the conductor can be provided by etching. In addition, it may be provided on the insulating layer using an adhesive. A resist layer can be applied to the surface of the conductor. The configuration in which the conductor is covered with the resist layer is preferable in that the insulation of the conductor can be improved, the migration resistance of the conductor can be improved, and the oxidation of the conductor can be suppressed.

また、本発明で、半導体発光素子には、例えば青色発光する青色LEDチップ、紫外光を発する紫外LEDチップ等を好適に用いることができるが、青色LEDチップ、赤色LEDチップ、緑色LEDチップのうちの少なくとも二種のLEDチップを組み合わせて用いることも可能である。そして、例えば発光源に青色LEDチップを用いて白色発光をする照明装置とする場合には、青色の光で励起されて主として黄色の光を放射する蛍光体が混ぜられた封止部材を用いればよく、或いは、紫外光により励起されて主として赤色の光を放射する蛍光体、紫外光により励起されて主として緑色の光を放射する蛍光体、及び紫外光により励起されて主として黄色の光を放射する蛍光体が夫々混ぜられた封止部材を用いればよい。   In the present invention, for example, a blue LED chip that emits blue light, an ultraviolet LED chip that emits ultraviolet light, and the like can be suitably used as the semiconductor light emitting element. Among blue LED chips, red LED chips, and green LED chips, It is also possible to use a combination of at least two types of LED chips. For example, when a lighting device that emits white light using a blue LED chip as a light emitting source is used, if a sealing member mixed with a phosphor that is excited by blue light and emits mainly yellow light is used. Well or alternatively, a phosphor that is excited by ultraviolet light to emit mainly red light, a phosphor that is excited by ultraviolet light to emit mainly green light, and a phosphor that is excited by ultraviolet light to emit mainly yellow light What is necessary is just to use the sealing member with which each fluorescent substance was mixed.

本発明で、素子取付け部に半導体発光素子をダイボンドするには、ダイボンド材(接着剤)を用いる。このダイボンド材の厚みは接着機能を失わない範囲で10μm以下にするとよい。又、光の取出し性能をより向上させる上では、ダイボンド材を透光性として、半導体発光素子から放射された光の一部を素子取付け部で反射させることが好ましい。又、本発明で、半導体発光素子を外気及び湿気から遮断してこの素子の寿命低下を防ぐ透光性の封止部材には、透光性の合成樹脂、例えばエポキシ樹脂、シリコーン樹脂、ウレタン樹脂等を用いることができる他、樹脂以外の封止部材として透明な低融点ガラスを用いることもできる。   In the present invention, a die-bonding material (adhesive) is used for die-bonding the semiconductor light-emitting element to the element mounting portion. The thickness of this die bond material is preferably 10 μm or less as long as the bonding function is not lost. In order to further improve the light extraction performance, it is preferable to make the die bond material translucent and reflect a part of the light emitted from the semiconductor light emitting element at the element mounting portion. Further, in the present invention, the light-transmitting sealing member that blocks the semiconductor light-emitting element from the outside air and moisture and prevents the lifetime of the element from being shortened includes a light-transmitting synthetic resin such as an epoxy resin, a silicone resin, and a urethane resin. In addition, a transparent low-melting-point glass can be used as a sealing member other than a resin.

本発明によれば、導体及びボンディングワイヤを介して半導体発光素子に通電することにより、この素子を発光させ、その光を封止部材に透過させて外部に取出し、その取出し方向の照明を行う。この点灯時に、導体と放熱基板との間の電気的絶縁を担う絶縁層は、放熱基板と半導体発光素子との間には介在されておらず、又、半導体発光素子は放熱基板と一体の素子取付け部に直接ダイボンドされている。そのため、点灯時に半導体発光素子が発する熱は、絶縁層に邪魔されることなく放熱基板に直接的に伝導する。従って、半導体発光素子の熱が、高効率で放熱基板に伝わってこの放熱基板から外部に放出されるので、半導体発光素子の温度上昇を効果的に抑制できる。   According to the present invention, by energizing the semiconductor light-emitting element through the conductor and the bonding wire, the element is caused to emit light, the light is transmitted through the sealing member, taken out to the outside, and illumination in the taking-out direction is performed. At the time of lighting, the insulating layer responsible for electrical insulation between the conductor and the heat dissipation board is not interposed between the heat dissipation board and the semiconductor light emitting element, and the semiconductor light emitting element is an element integrated with the heat dissipation board. It is die-bonded directly to the mounting part. Therefore, the heat generated by the semiconductor light emitting element during lighting is directly conducted to the heat dissipation substrate without being disturbed by the insulating layer. Therefore, the heat of the semiconductor light emitting device is transmitted to the heat dissipation substrate with high efficiency and released from the heat dissipation substrate, so that the temperature rise of the semiconductor light emitting device can be effectively suppressed.

また、本発明は、前記絶縁層が積層された前記放熱基板の一面から突出された凸部で前記素子取付け部を形成するとともに、この素子取付け部を、前記半導体発光素子がダイボンドされた先端面から前記放熱基板の一面に至るに従い次第に太くしてもよい。この形態で、放熱基板の凸部からなる素子取付け部は、レーザ光を用いた加工、機械加工等で形成できる他、エッチング処理等でも形成できる。そして、この形態では、素子取付け部の断面積が、絶縁層が接着された放熱基板の一面に近付く程大きいので、半導体発光素子から放熱基板の裏面に向けての熱伝導がより容易となる。   According to the present invention, the element mounting portion is formed by a convex portion protruding from one surface of the heat dissipation substrate on which the insulating layer is laminated, and the element mounting portion is formed on the tip surface on which the semiconductor light emitting element is die-bonded. The thickness may be gradually increased from one side of the heat dissipation board to the other surface. In this embodiment, the element mounting portion formed of the convex portion of the heat dissipation substrate can be formed by processing using laser light, machining, or the like, or can be formed by etching processing or the like. And in this form, since the cross-sectional area of an element attachment part is so large that it approaches the one surface of the thermal radiation board | substrate with which the insulating layer was adhere | attached, the heat conduction from a semiconductor light-emitting element toward the back surface of a thermal radiation board | substrate becomes easier.

また、更に前記形態において、前記凸部からなる素子取付け部が通る逃げ孔を前記絶縁層が有し、この絶縁層を前記放熱基板に接着して積層するとともに、この接着に用いた接着剤の余剰分を前記逃げ孔に食み出させてもよい。接着剤には、ペースト状の接着剤又はシート状の接着剤(接着シート)等を用いることができるとともに、この接着剤は放熱基板の素子取付け部を除いた領域に配置して使用されるものである。   Further, in the above-described embodiment, the insulating layer has a relief hole through which the element mounting portion composed of the convex portion passes, and the insulating layer is bonded to the heat dissipation substrate and laminated, and the adhesive used for the bonding is used. The surplus portion may be devoured into the escape hole. As the adhesive, a paste-like adhesive or a sheet-like adhesive (adhesive sheet) can be used, and this adhesive is disposed and used in a region excluding the element mounting portion of the heat dissipation board. It is.

この形態では、凸部からなる素子取付け部が通る絶縁層の逃げ孔によって、放熱基板に絶縁層を接着する際に、逃げ孔が凸部からなる素子取付け部に嵌合するので、放熱基板に対する絶縁層の位置決めがしやすい。これにより、絶縁層が素子取付け部に当たらないようにして、放熱基板に絶縁層を適正に積層させることができる。そして、この形態では、逃げ孔を接着剤の余剰分が収容される接着剤溜まりとして利用することができる。   In this embodiment, when the insulating layer is bonded to the heat dissipation board by the escape hole of the insulating layer through which the element mounting portion made of the convex portion passes, the escape hole fits into the element mounting portion made of the convex portion. Easy positioning of the insulating layer. Thereby, an insulating layer can be appropriately laminated | stacked on a thermal radiation board | substrate so that an insulating layer may not hit an element attachment part. In this embodiment, the escape hole can be used as an adhesive reservoir in which excess adhesive is accommodated.

更に前記形態では、接着剤の余剰分を逃げ孔内に食み出させたことにより、放熱基板と絶縁層との間に接着剤の厚みに相当する隙間が逃げ孔に連通して形成されることがない。このため、前記隙間がある場合のようにそこに溜まった空気が、封止部材を加熱硬化させる際に泡となって封止部材内に流出して、この封止部材内に気泡となって留まることがない。   Furthermore, in the said form, the clearance gap corresponding to the thickness of an adhesive agent is formed in communication with an escape hole between a thermal radiation board | substrate and the insulating layer by having made the excess part of an adhesive stick out in an escape hole. There is nothing. For this reason, the air accumulated in the gap as in the case where there is a gap flows out into the sealing member when the sealing member is heated and cured, and becomes a bubble in the sealing member. There is no stay.

また、前記形態において、逃げ孔に対する余剰分の高さ位置は、絶縁層の表面と同じ高さ以下であればよいが、絶縁層の表面と同じ高さに近くなるようにすることは、未硬化の封止部材を充填する際に、空気が逃げ孔内に溜まり難くできる点で好ましい。   Further, in the above embodiment, the height of the surplus height with respect to the escape hole may be equal to or less than the height of the surface of the insulating layer, but it is not allowed to be close to the same height as the surface of the insulating layer. When filling the cured sealing member, it is preferable in that air can hardly accumulate in the escape hole.

前記形態において、逃げ孔に食み出した接着剤の食み出し部によって、凸部からなる素子取付け部の周面に対しても絶縁層が接着される場合には、放熱基板に対する絶縁層の積層強度を向上できる。その上、逃げ孔によって凸部からなる素子取付け部と絶縁層上の導体との間の沿面距離を長くして、これらの間の電気的絶縁を確保することもできる。   In the above-described embodiment, when the insulating layer is bonded to the peripheral surface of the element mounting portion formed of the convex portion by the protruding portion of the adhesive protruding into the escape hole, Lamination strength can be improved. In addition, the creepage distance between the element mounting portion formed of the convex portion and the conductor on the insulating layer can be increased by the escape hole, and electrical insulation between them can be ensured.

前記形態において、接着剤が乳白色ないしは白色である場合には、半導体発光素子からその周囲に放射された光を、逃げ孔に溜められた接着剤によって反射させて取出せるので、光の取出し効率を高めるのに寄与できる。   In the above embodiment, when the adhesive is milky white or white, the light radiated from the semiconductor light emitting element to the periphery thereof can be reflected and extracted by the adhesive stored in the escape hole, so that the light extraction efficiency is improved. Can contribute to increase.

さらに前記形態において、前記絶縁層と前記逃げ孔への食み出し部を有した前記接着剤の光反射率が互いに異なるようにこれら絶縁層と接着剤の色を異ならせてもよい。   Furthermore, in the said form, you may vary the color of these insulating layers and adhesives so that the light reflectivity of the said adhesive which has the protrusion part to the said insulating layer and the said escape hole may mutually differ.

この形態で、絶縁層と接着剤の光反射率を異ならせる上で、接着剤の光反射率を絶縁層の光反射率より低くすると良い。例えば絶縁層の色が白色である場合、接着層の色を茶色系ないし黒色とすることが、絶縁層と接着剤の色の差を際立たせる上で好ましい。   In this form, in order to make the light reflectance of the insulating layer and the adhesive different, it is preferable to make the light reflectance of the adhesive lower than the light reflectance of the insulating layer. For example, when the color of the insulating layer is white, it is preferable that the color of the adhesive layer is brown or black in order to make the color difference between the insulating layer and the adhesive stand out.

さらにこの形態では、逃げ孔に食み出している接着層の食み出し部の色と、絶縁層の逃げ孔の周りの部分の色が異なっている。このため、逃げ孔内の素子取付け部に半導体発光素子をダイボンドする位置を定めるに際し、この位置決めの基準を得る上で好適である。つまり、位置決め基準は、半導体発光素子を実装する実装機が備える撮像カメラで逃げ孔を撮像しその撮像データを画像認識することに基づいて得るが、既述の色の差があるので、絶縁層と食み出し部との境界、つまり、逃げ孔を前記位置決めの基準として容易に認識できる。   Further, in this embodiment, the color of the protruding portion of the adhesive layer protruding into the escape hole is different from the color of the portion around the escape hole of the insulating layer. For this reason, when determining the position where the semiconductor light emitting element is die-bonded to the element mounting portion in the escape hole, it is suitable for obtaining this positioning reference. That is, the positioning reference is obtained on the basis of imaging the escape hole with the imaging camera provided in the mounting machine for mounting the semiconductor light emitting element and recognizing the imaging data. The boundary between the protrusion and the protruding portion, that is, the escape hole can be easily recognized as the positioning reference.

さらに前記形態において、前記放熱基板と前記絶縁層の光反射率が互いに異なるようにこれら放熱基板と絶縁層の色を異ならせるとともに、前記逃げ孔への食み出し部を有した前記接着剤を透明材料で形成してもよい。   Further, in the above-described embodiment, the adhesive having a protruding portion to the escape hole and different colors of the heat dissipation substrate and the insulating layer so that the light reflectance of the heat dissipation substrate and the insulating layer are different from each other. You may form with a transparent material.

この形態で、放熱基板と絶縁層の光反射率を異ならせる上で、放熱基板の光反射率を絶縁層の光反射率より低くすると良い。例えば絶縁層の色が白色である場合、放熱基板を銅製とすることで、絶縁層と放熱基板の色の差を際立たせることが可能である。   In this embodiment, the light reflectance of the heat dissipation substrate and the insulating layer are preferably made lower than the light reflectivity of the insulating layer in order to make the light reflectivity different between the heat dissipation substrate and the insulating layer. For example, when the color of the insulating layer is white, it is possible to make the color difference between the insulating layer and the heat radiating substrate stand out by making the heat radiating substrate made of copper.

この形態では、逃げ孔に食み出している接着層の食み出し部を透視して撮像される放熱基板の色と、絶縁層の逃げ孔の周りの部分の色が異なっている。このため、逃げ孔内の素子取付け部に半導体発光素子をダイボンドする位置を定めるに際し、この位置決めの基準を得る上で好適である。つまり、位置決め基準は、半導体発光素子を実装する実装機が備える撮像カメラで逃げ孔を撮像しその撮像データを画像認識することに基づいて得るが、既述の色の差があるので、食み出し部で覆われた放熱基板と絶縁層との境界、つまり、逃げ孔を前記位置決めの基準として容易に認識できる。   In this embodiment, the color of the heat dissipation substrate imaged through the protruding portion of the adhesive layer protruding into the escape hole is different from the color of the portion around the escape hole of the insulating layer. For this reason, when determining the position where the semiconductor light emitting element is die-bonded to the element mounting portion in the escape hole, it is suitable for obtaining this positioning reference. In other words, the positioning reference is obtained based on imaging the escape hole with the imaging camera provided in the mounting machine for mounting the semiconductor light emitting element, and recognizing the imaging data. The boundary between the heat dissipation substrate covered with the protruding portion and the insulating layer, that is, the escape hole can be easily recognized as the positioning reference.

また上記いずれかの形態において、前記素子取付け部の先端面に光反射層を積層し、前記半導体発光素子を前記素子取付け部にダイボンドするダイボンド材が透光性を有していてもよい。   In any one of the above forms, a die-bonding material for laminating a light reflecting layer on the tip surface of the element mounting portion and die-bonding the semiconductor light emitting element to the element mounting portion may have translucency.

この形態で、光反射層を金属のメッキ層で形成することは、半導体発光素子から素子取付け部への熱伝導を実質的に妨げない点で好ましく、そのような光反射層として例えばAg(銀)のメッキ層を挙げることができ、その採用により90%以上の光反射率を得ることができる。この場合には、透光性ダイボンド材を通って光反射層に入射した光を高効率で反射させて、光の取出し効率をより向上させることができるので好ましい。又、請求項6の発明で、ダイボンド材には、フリットガラスや透光性合成樹脂例えば透明シリコーン樹脂等を用いることができる。ダイボンド材を透明シリコーン樹脂とすることは、ダイボンド材が半導体発光素子の発熱により変色を伴って劣化する可能性が極めて小さいので、長期にわたり光の取出し効率を維持できる点で好ましい。   In this embodiment, it is preferable that the light reflecting layer is formed of a metal plating layer because it does not substantially hinder heat conduction from the semiconductor light emitting element to the element mounting portion. As such a light reflecting layer, for example, Ag (silver) And a light reflectance of 90% or more can be obtained. In this case, the light incident on the light reflecting layer through the light-transmitting die bond material is reflected with high efficiency, which is preferable because the light extraction efficiency can be further improved. In the invention of claim 6, frit glass or translucent synthetic resin such as transparent silicone resin can be used as the die bond material. It is preferable to use a transparent silicone resin as the die-bonding material because the possibility that the die-bonding material is deteriorated with discoloration due to heat generation of the semiconductor light-emitting element is extremely small, so that the light extraction efficiency can be maintained for a long time.

この形態では、半導体発光素子からその裏面に放出された光を、ダイボンド材を通して素子取付け部の光反射層で反射させて取出すことができるため、光の取出し効率を向上できる。   In this embodiment, light emitted from the semiconductor light emitting element to the back surface thereof can be reflected and extracted by the light reflection layer of the element mounting portion through the die bonding material, so that the light extraction efficiency can be improved.

前記形態において、前記封止部材に蛍光体を混入するとともに、前記光反射層から前記逃げ孔に食み出した前記接着剤の食み出し部にわたる側部光反射層を、前記素子取付け部の側面に積層してもよい。この形態で、側部光反射層は、素子取付け部の先端面に光反射層と同種の金属メッキ層とすることが好ましい。この形態では、側部光反射層によって光の取出し効率を向上できる。つまり、半導体発光素子から発した光で励起された蛍光体が放射する光の一部は、素子取付け部の側面に入射するので、この入射光が側部光反射層によって光の取出し方向に反射されることで、光の取出し効率を向上できる。   In the above embodiment, the side light reflecting layer extending from the light reflecting layer to the escape hole of the adhesive is mixed with the phosphor in the sealing member, You may laminate on the side. In this embodiment, the side light reflecting layer is preferably a metal plating layer of the same type as the light reflecting layer on the tip surface of the element mounting portion. In this embodiment, the light extraction efficiency can be improved by the side light reflecting layer. That is, a part of the light emitted from the phosphor excited by the light emitted from the semiconductor light emitting element is incident on the side surface of the element mounting portion, and this incident light is reflected in the light extraction direction by the side light reflecting layer. As a result, the light extraction efficiency can be improved.

また、上記いずれかの形態において、前記絶縁層及び導体上にレジスト層を積層し、このレジスト層に前記ボンディングワイヤと導体との接続部及び前記素子取付け部が配置された開口を複数設け、これら開口毎に前記封止部材を設けてもよい。   Further, in any one of the above forms, a resist layer is laminated on the insulating layer and the conductor, and a plurality of openings in which the bonding wire and conductor connecting portions and the element mounting portions are arranged are provided in the resist layer. The sealing member may be provided for each opening.

この形態で、レジスト層は、透明又は有色の合成樹脂材料で形成することもできるが、白色の合成樹脂からなるレジスト層、特に光の反射率が80%以上の白色合成樹脂からなるレジスト層を用いることが好ましい。更に、この請求項8の発明で、開口の形状は、円形であることが好ましいが、これに限らず角形であっても良い。   In this form, the resist layer can be formed of a transparent or colored synthetic resin material, but a resist layer made of a white synthetic resin, particularly a resist layer made of a white synthetic resin having a light reflectance of 80% or more. It is preferable to use it. Furthermore, in the invention of claim 8, the shape of the opening is preferably circular, but is not limited to this, and may be square.

この形態では、レジスト層で導体を覆うとともに、この導体とボンディングワイヤとの接続部を含んでレジスト層外に配置された導体部分を封止部材で封止しているので、金属製の導体の酸化等を防止できる。更に、請求項8の発明では、レジスト層の開口毎に封止部材が設けられているので、全ての半導体発光素子と導体とにわたって封止部材を設けた構成に比較して、封止部材の使用量を低減できる。しかも、封止部材がポッティングにより開口に供給される場合には、ポッティングされた未硬化の封止部材がレジスト層の開口の外側に広がることを、開口の縁で塞き止めることが可能である。   In this embodiment, the conductor is covered with the resist layer, and the conductor portion disposed outside the resist layer including the connection portion between the conductor and the bonding wire is sealed with the sealing member. Oxidation can be prevented. Furthermore, in the invention of claim 8, since the sealing member is provided for each opening of the resist layer, the sealing member is provided in comparison with the configuration in which the sealing member is provided over all semiconductor light emitting elements and conductors. The amount used can be reduced. In addition, when the sealing member is supplied to the opening by potting, it is possible to prevent the potted uncured sealing member from spreading outside the opening of the resist layer at the edge of the opening. .

本発明によれば、半導体発光素子の熱を直接的に放熱基板に伝えて放出するので、半導体発光素子の温度上昇が抑制されて、半導体発光素子の発光効率を維持しやすい照明装置を提供できる。また、導体と素子取付部との間に絶縁距離を確保することができる。   According to the present invention, since the heat of the semiconductor light emitting element is directly transmitted to the heat dissipation substrate and released, the temperature rise of the semiconductor light emitting element is suppressed, and an illumination device that easily maintains the light emission efficiency of the semiconductor light emitting element can be provided. . Moreover, an insulation distance can be ensured between the conductor and the element mounting portion.

本発明の第1実施形態に係る照明装置を一部切欠いて示す正面図。FIG. 2 is a front view showing the lighting device according to the first embodiment of the present invention with a part cut away. 図1の照明装置の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of illuminating device of FIG. 図2に示された部分を封止部材が除かれた状態で示す正面図。The front view which shows the part shown by FIG. 2 in the state from which the sealing member was removed. 図1の照明装置において半導体発光素子の直下の反射率と光束との関係を示す図。The figure which shows the relationship between the reflectance directly under a semiconductor light-emitting element, and a light beam in the illuminating device of FIG. 図1の照明装置において半導体発光素子の周りでの反射率と光束との関係を示す図。The figure which shows the relationship between the reflectance around a semiconductor light-emitting element, and a light beam in the illuminating device of FIG. 本発明の第2実施形態に係る照明装置の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of illuminating device which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る照明装置の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of illuminating device which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る照明装置を一部の封止部材を省略して示す正面図。The front view which abbreviate | omits one part sealing member and shows the illuminating device which concerns on 4th Embodiment of this invention. 図8の照明装置の一部を拡大して封止部材が除かれた状態で示す正面図。The front view shown in the state which expanded a part of lighting apparatus of FIG. 8, and the sealing member was removed. 図9中F10−F10線に沿って示す断面図。Sectional drawing shown along F10-F10 line in FIG. 図9中F11−F11線に沿って示す断面図。Sectional drawing shown along the F11-F11 line | wire in FIG. 本発明の第5実施形態に係る照明装置の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of illuminating device which concerns on 5th Embodiment of this invention. 図12に示された部分を封止部材が除かれた状態で示す正面図。The front view which shows the part shown by FIG. 12 in the state from which the sealing member was removed.

図1〜図5を参照して本発明の第1実施形態を説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1中符号1は例えばLEDパッケージを形成する照明装置を示している。この照明装置1は、例えばパッケージ基板として機能する放熱基板例えば金属基板2と、絶縁層5と、複数の導体8と、複数のLEDチップ例えば半導体発光素子11と、ボンディングワイヤ17,18と、リフレクタ20と、封止部材22と、を備えて形成されている。   Reference numeral 1 in FIG. 1 indicates an illumination device that forms, for example, an LED package. The lighting device 1 includes, for example, a heat dissipation substrate that functions as a package substrate, such as a metal substrate 2, an insulating layer 5, a plurality of conductors 8, a plurality of LED chips such as semiconductor light emitting elements 11, bonding wires 17 and 18, and reflectors. 20 and a sealing member 22.

金属基板2は、Cuからなるとともに、照明装置1として必要とされる発光面積を得るために所定形状例えば長方形状をなしている。金属基板2は、これと一体の凸部からなる素子取付け部3を例えば半導体発光素子11と同数有している。   The metal substrate 2 is made of Cu and has a predetermined shape, for example, a rectangular shape, in order to obtain a light emitting area required for the lighting device 1. The metal substrate 2 has, for example, the same number of element mounting portions 3 made of convex portions integrated with the metal substrate 2 as the semiconductor light emitting elements 11.

なお、本発明は、素子取付け部3に一個の半導体発光素子11を取付けることに制約されることはなく、一つの素子取付け部3に複数個の半導体発光素子11を並べて取付けることも可能である。その場合、同じ色を発する複数個の半導体発光素子11であっても、或いは異なる色を発する複数個の半導体発光素子11であってもよい。異なる色を発する複数個の半導体発光素子11を一つの素子取付け部3に取付ける場合には、赤色、黄色、青色の光を発する3個の半導体発光素子11を並べて取付けることもできる。そして、一つの素子取付け部3に複数個の半導体発光素子11を並べて取付けた構成においては、照明装置1の全光束を向上させることが可能である。   The present invention is not limited to mounting one semiconductor light emitting element 11 on the element mounting portion 3, and a plurality of semiconductor light emitting elements 11 can be mounted side by side on one element mounting portion 3. . In that case, it may be a plurality of semiconductor light emitting elements 11 emitting the same color, or a plurality of semiconductor light emitting elements 11 emitting different colors. In the case where a plurality of semiconductor light emitting elements 11 emitting different colors are attached to one element attaching portion 3, three semiconductor light emitting elements 11 emitting red, yellow and blue light can be attached side by side. In the configuration in which a plurality of semiconductor light emitting elements 11 are mounted side by side on one element mounting portion 3, the total luminous flux of the lighting device 1 can be improved.

金属基板2の素子取付け部3以外の部位からなる基板主部2a(図2参照)の厚みAは例えば0.25mmである。素子取付け部3が設けられていない基板主部2aの裏面は、放熱面又は他の放熱部材に面接触する伝熱面として用いられる。   The thickness A of the substrate main portion 2a (see FIG. 2) formed of a portion other than the element mounting portion 3 of the metal substrate 2 is, for example, 0.25 mm. The back surface of the substrate main portion 2a where the element mounting portion 3 is not provided is used as a heat transfer surface that is in surface contact with the heat dissipation surface or another heat dissipation member.

素子取付け部3は基板主部2aの表面(一面)に突設されている。図2で代表して示すように素子取付け部3の先端面3aは前記一面と平行な平坦面をなしている。素子取付け部3はその先端面3aから金属基板2の一面に至るに従い次第に太く形成されている。言い換えれば、素子取付け部3は、その高さ方向と直交する断面積が先端面3aから金属基板2の一面に至るに従い次第に大きくなる円錐台状に形成されている。そのため、素子取付け部3の最大径をなす根元部の周面は基板主部2aとの間に角を作ることなく弧状となって基板主部2aの表面に連続している。   The element mounting portion 3 is projected from the surface (one surface) of the substrate main portion 2a. As representatively shown in FIG. 2, the tip surface 3a of the element mounting portion 3 forms a flat surface parallel to the one surface. The element mounting portion 3 is gradually formed thicker from the tip end surface 3a to one surface of the metal substrate 2. In other words, the element mounting portion 3 is formed in a truncated cone shape whose cross-sectional area perpendicular to the height direction becomes gradually larger from the tip surface 3 a to one surface of the metal substrate 2. For this reason, the peripheral surface of the base portion forming the maximum diameter of the element mounting portion 3 forms an arc shape without forming a corner with the substrate main portion 2a and continues to the surface of the substrate main portion 2a.

表面素子取付け部3の先端面3aには光反射層4が被着されている。光反射層4は、Agの薄膜からなり、その厚みBは0.003mm〜0.005mmである。これとともに、Ag製光反射層4の光反射率は90%以上である。   A light reflecting layer 4 is attached to the front end surface 3 a of the surface element mounting portion 3. The light reflecting layer 4 is made of an Ag thin film, and its thickness B is 0.003 mm to 0.005 mm. At the same time, the light reflectance of the Ag light reflection layer 4 is 90% or more.

光反射層4を含めた素子取付け部3の高さは、半導体発光素子11の表面(図2において上面)の高さ位置が導体8の高さ位置以上になることを満たせば、絶縁層5の表面(図2において上面)の高さ位置より低くても差し支えないが、絶縁層5の表面の高さ位置と同じかそれ以上高くすることが好ましく、本実施形態では絶縁層5上の導体8の表面(図2において上面)の高さ位置より高くしてある。   If the height of the element mounting portion 3 including the light reflecting layer 4 satisfies that the height position of the surface of the semiconductor light emitting element 11 (the upper surface in FIG. 2) is equal to or higher than the height position of the conductor 8, the insulating layer 5 However, it is preferable that the height of the surface of the insulating layer 5 is equal to or higher than the height position of the surface of the insulating layer 5. 8 is higher than the height position of the surface (upper surface in FIG. 2).

絶縁層5には光反射性能を得るために例えば白色のガラスエポキシ基板が用いられている。絶縁層5の厚みBは、最小で0.060mmあればよく、本実施形態では例えば0.25mmにしてある。この絶縁層5は、図2及び図3で代表して示すように素子取付け部3が通る逃げ孔6を有している。この逃げ孔6は例えば円形で、その直径は素子取付け部3の最大径をなす根元部の直径より大きい。逃げ孔6は素子取付け部3と同数設けられている。なお、本実施例では絶縁層5を一層としたが、これは二層とすることもできる。例えば前記最小厚みでの実施では、厚み0.030mmのガラスエポキシ基板を二枚積層したものを用いることが可能である。それにより、一層の絶縁層よりも高い絶縁耐圧を確保できる。   For example, a white glass epoxy substrate is used for the insulating layer 5 in order to obtain light reflection performance. The thickness B of the insulating layer 5 may be 0.060 mm at the minimum, and is set to, for example, 0.25 mm in this embodiment. The insulating layer 5 has an escape hole 6 through which the element mounting portion 3 passes, as representatively shown in FIGS. 2 and 3. The escape hole 6 is circular, for example, and the diameter thereof is larger than the diameter of the root portion forming the maximum diameter of the element mounting portion 3. The same number of escape holes 6 as the element mounting portions 3 are provided. In this embodiment, the insulating layer 5 is a single layer, but it may be a double layer. For example, in the implementation with the minimum thickness, it is possible to use a laminate of two glass epoxy substrates having a thickness of 0.030 mm. Thereby, a higher withstand voltage than that of one insulating layer can be secured.

絶縁層5は基板主部2aの表面(一面)に接着剤7を用いて貼り合わせることにより金属基板2に積層されている。接着剤7は、絶縁性であって、絶縁層5と基板主部2aとの間に例えば0.005mm以下の膜厚Cで設けられる。絶縁層5の接着において、絶縁層5の各逃げ孔6は各素子取付け部3に夫々嵌合するので、絶縁層5は金属基板2に素子取付け部3を除いて積層され、それにより、素子取付け部3は逃げ孔6に露出されている。   The insulating layer 5 is laminated on the metal substrate 2 by being bonded to the surface (one surface) of the substrate main portion 2a using an adhesive 7. The adhesive 7 is insulative and is provided with a film thickness C of, for example, 0.005 mm or less between the insulating layer 5 and the substrate main portion 2a. In adhesion of the insulating layer 5, each escape hole 6 of the insulating layer 5 is fitted into each element mounting portion 3, so that the insulating layer 5 is laminated on the metal substrate 2 except for the element mounting portion 3. The attachment portion 3 is exposed in the escape hole 6.

前記嵌合により絶縁層5が素子取付け部3に当たらないので、絶縁層5が金属基板2に対して浮くようなことがなく適正に重ね合わされるとともに、金属基板2に対し絶縁層5が位置決めされる。言い換えれば、凸部からなる素子取付け部3が通る絶縁層5の逃げ孔6によって、金属基板2へ絶縁層5を接着する際に、この絶縁層5が素子取付け部3に当たらないようにして、金属基板2に絶縁層5を適正に積層させることができる。   Since the insulating layer 5 does not hit the element mounting portion 3 due to the fitting, the insulating layer 5 does not float with respect to the metal substrate 2 and is properly superimposed, and the insulating layer 5 is positioned with respect to the metal substrate 2. Is done. In other words, when the insulating layer 5 is bonded to the metal substrate 2 by the escape hole 6 of the insulating layer 5 through which the element mounting portion 3 made of a convex portion passes, the insulating layer 5 is prevented from hitting the element mounting portion 3. The insulating layer 5 can be appropriately laminated on the metal substrate 2.

そして、前記貼り合わせにおいて接着剤7の塗布量が多く余剰を生じた場合、その余剰分7a(図2及び図3参照)の一部は、張り合わせの際に加えられる圧力によって逃げ孔6に押し出される。より正確には、素子取付け部3の形状に起因して、この素子取付け部3の側面と逃げ孔6との間に必然的に形成される環状の隙間に、余剰分7aからなる食み出し部が押し出されてそこに溜められて固化される。それにより、絶縁層5は、素子取付け部3の側面に対しても接着されるので、積層強度が高められる。しかも、余剰分7aは体積固有抵抗が10−2〜10−15Ω・mの絶縁層として機能するので、後述のように導体8が装着された絶縁層5と素子取付け部3の側面との間の耐電圧を向上できる。   When the application amount of the adhesive 7 is large in the pasting and a surplus is generated, a part of the surplus 7a (see FIGS. 2 and 3) is pushed out to the escape hole 6 by the pressure applied at the time of pasting. It is. More precisely, due to the shape of the element mounting portion 3, the protrusion 7a is formed in an annular gap inevitably formed between the side surface of the element mounting portion 3 and the escape hole 6. The part is pushed out and stored there and solidified. Thereby, since the insulating layer 5 is adhered also to the side surface of the element mounting portion 3, the lamination strength is increased. Moreover, since the surplus portion 7a functions as an insulating layer having a volume resistivity of 10-2 to 10-15 Ω · m, between the insulating layer 5 on which the conductor 8 is mounted and the side surface of the element mounting portion 3 as described later. Withstand voltage can be improved.

複数の導体8は、各半導体発光素子11への通電要素としてこれら半導体発光素子11を直列に接続するために設けられ、絶縁層5の基板主部2aに接着された裏面とは反対側の面にエッチング処理等により形成されている。これらの導体8は、Cuからなり、絶縁層5を基板主部2aに貼り合わせる前に設けられる。図1に示すように各導体8は、絶縁層5の長手方向に所定間隔毎に点在して二列形成されている。各列での複数の導体8は例えば4mmピッチで各逃げ孔6と交互に並べられている。これら列の一端側に位置した導体8には電線接続部9が一体に連続して形成されている。これら電線接続部9の夫々には図示しない電源にいたる電線が個別に半田付けされる。   The plurality of conductors 8 are provided to connect the semiconductor light emitting elements 11 in series as current-carrying elements to the semiconductor light emitting elements 11, and are opposite to the back surface bonded to the substrate main portion 2a of the insulating layer 5. It is formed by an etching process or the like. These conductors 8 are made of Cu, and are provided before the insulating layer 5 is bonded to the substrate main portion 2a. As shown in FIG. 1, the conductors 8 are formed in two rows at intervals of a predetermined interval in the longitudinal direction of the insulating layer 5. The plurality of conductors 8 in each row are alternately arranged with each escape hole 6 at a pitch of 4 mm, for example. An electric wire connecting portion 9 is integrally and continuously formed on the conductor 8 located on one end side of these rows. Each of these electric wire connecting portions 9 is individually soldered with electric wires leading to a power source (not shown).

図2及び図3で代表して示すように各導体8は、逃げ孔6の縁には達しておらず、この逃げ孔6の縁から所定距離隔てられている。それにより、導体8の端8aとこれに最も近接している逃げ孔6の縁との間に、白色の絶縁層5の一部が露出されている。ここに、導体8の端8aとは、正確には、導体8に被着された後述の光反射層10の端を指している。なお、符号5aで絶縁層5の露出面を示す。そのため、導体8の端8aと素子取付け部3との間に前記環状の隙間より大きい絶縁距離を確保することができるとともに、露出面5aでもそこに入射した光を光の取出し方向に反射させることができる。   As representatively shown in FIGS. 2 and 3, each conductor 8 does not reach the edge of the escape hole 6 but is separated from the edge of the escape hole 6 by a predetermined distance. Thereby, a part of the white insulating layer 5 is exposed between the end 8a of the conductor 8 and the edge of the escape hole 6 closest to the end 8a. Here, the end 8a of the conductor 8 refers to the end of the light reflecting layer 10 described later that is attached to the conductor 8. In addition, the exposed surface of the insulating layer 5 is shown with the code | symbol 5a. Therefore, an insulation distance larger than the annular gap can be ensured between the end 8a of the conductor 8 and the element mounting portion 3, and light incident on the exposed surface 5a is reflected in the light extraction direction. Can do.

導体8の端8aは、半導体発光素子11の後述する電極14又は15から0.25mm〜6.0mmの距離Dを隔てて位置される。これは、後述のワイヤボンディングにおいて導体8に対しては、その端8a、正確には端8aと絶縁層5との境目をボンディングマシンに認識させて、そこを基準に所定距離E離れた位置にボンディングワイヤを接合するので、その際にボンディングワイヤの接合部にストレスが残留することを極力抑制するための配慮である。   The end 8a of the conductor 8 is located at a distance D of 0.25 mm to 6.0 mm from an electrode 14 or 15 described later of the semiconductor light emitting element 11. This is because the bonding machine recognizes the end 8a, more precisely the boundary between the end 8a and the insulating layer 5, with respect to the conductor 8 in wire bonding, which will be described later, at a position separated by a predetermined distance E with reference to that. Since the bonding wire is bonded, this is a consideration for suppressing the residual stress at the bonding portion of the bonding wire as much as possible.

各導体8の表面にはAgの光反射層10が被着されている。この光反射層10は、反射率が90%以上のAgの薄膜からなり、その厚みは0.003mm〜0.005mmである。光反射層10を含めた導体8の厚みGは0.012mm〜0.018mmである。各導体8上の光反射層10及び各素子取付け部3の光反射層4は、いずれも例えばメッキ処理により一度に設けることができる。この場合、導体8及び素子取付け部3がCu製であるので、これらをメッキ浴することなく、光反射層10及び4をメッキ処理して設けることが可能である。なお、光反射層10の表面にレジスト膜を積層することも可能である。   An Ag light reflecting layer 10 is deposited on the surface of each conductor 8. The light reflecting layer 10 is made of an Ag thin film having a reflectance of 90% or more, and has a thickness of 0.003 mm to 0.005 mm. The thickness G of the conductor 8 including the light reflection layer 10 is 0.012 mm to 0.018 mm. Both the light reflecting layer 10 on each conductor 8 and the light reflecting layer 4 of each element mounting portion 3 can be provided at a time by, for example, plating. In this case, since the conductor 8 and the element mounting portion 3 are made of Cu, the light reflecting layers 10 and 4 can be provided by plating without plating them. A resist film can be laminated on the surface of the light reflecting layer 10.

各半導体発光素子11は例えば青色LEDチップからなる。このLEDチップは、例えば窒化物半導体を用いてなるダブルワイヤー型であって、図2に示すように透光性を有する素子基板12の一面に半導体発光層13を積層して形成されている。素子基板12は例えばサファイア基板で作られている。半導体発光層13は、素子基板12の裏面にバッファ層、n型半導体層、発光層、p型クラッド層、p型半導体層を順次積層して形成されている。発光層は、バリア層とウエル層を交互に積層した量子井戸構造をなしている。n形半導体層にはn側電極14が設けられ、p形半導体層にはp側電極15が設けられている。この半導体発光層13は反射膜を有しておらず、半導体発光素子11の厚み方向の双方に光を放射できるとともに、素子基板12の側面から側方へも光を放射できる。   Each semiconductor light emitting element 11 is made of, for example, a blue LED chip. This LED chip is a double-wire type using, for example, a nitride semiconductor, and is formed by laminating a semiconductor light emitting layer 13 on one surface of a light-transmitting element substrate 12 as shown in FIG. The element substrate 12 is made of, for example, a sapphire substrate. The semiconductor light emitting layer 13 is formed by sequentially stacking a buffer layer, an n-type semiconductor layer, a light emitting layer, a p-type cladding layer, and a p-type semiconductor layer on the back surface of the element substrate 12. The light emitting layer has a quantum well structure in which barrier layers and well layers are alternately stacked. An n-side electrode 14 is provided on the n-type semiconductor layer, and a p-side electrode 15 is provided on the p-type semiconductor layer. The semiconductor light emitting layer 13 does not have a reflective film, and can emit light in both the thickness direction of the semiconductor light emitting element 11 and can also emit light from the side surface of the element substrate 12 to the side.

これらの半導体発光素子11は、素子基板12の前記一面と平行な他面を接着剤例えば透光性のシリコーン樹脂からなるダイボンド材16を用いて各素子取付け部3の先端面3aにダイボンドされている。それによって、各半導体発光素子11は、各導体8と同じく例えば4mmピッチで、これら導体8と交互に配置されている。   These semiconductor light emitting elements 11 are die-bonded to the front end surface 3a of each element mounting portion 3 on the other surface parallel to the one surface of the element substrate 12 using a die bond material 16 made of an adhesive such as a translucent silicone resin. Yes. Accordingly, the respective semiconductor light emitting elements 11 are arranged alternately with these conductors 8 at a pitch of 4 mm, for example, like the respective conductors 8.

ダイボンド材16の厚みHは0.10mm以下である。ダイボンド材16は半導体発光素子11から素子取付け部3への伝熱の抵抗部材となるが、以上のようにきわめて薄いので、このダイボンド材16での熱抵抗は実質的に無視できる程度である。ダイボンド材16の厚みHは、接着性能を失わない範囲でできるだけ薄くすることが望ましい。   The thickness H of the die bond material 16 is 0.10 mm or less. The die bond material 16 serves as a resistance member for heat transfer from the semiconductor light emitting element 11 to the element mounting portion 3. However, since the die bond material 16 is extremely thin as described above, the thermal resistance of the die bond material 16 is substantially negligible. It is desirable that the thickness H of the die bond material 16 be as thin as possible without losing the bonding performance.

半導体発光素子11の半導体発光層13と素子取付け部3との間の絶縁耐圧は、ダイボンド材16だけではなく、このダイボンド材16よりもはるかに厚いサファイア製の素子基板12で確保されている。ダイボンド材16を含めた半導体発光素子11の厚みIは例えば0.09mmである。こうした半導体発光素子11を用いることによって、半導体発光層13の高さ位置は導体8表面の光反射層10より高く位置されており、しかも、本実施形態では半導体発光素子11全体が導体8表面の光反射層10より高く位置されている。   The withstand voltage between the semiconductor light emitting layer 13 of the semiconductor light emitting element 11 and the element mounting portion 3 is secured not only by the die bond material 16 but also by the element substrate 12 made of sapphire much thicker than the die bond material 16. The thickness I of the semiconductor light emitting element 11 including the die bond material 16 is 0.09 mm, for example. By using such a semiconductor light emitting element 11, the height position of the semiconductor light emitting layer 13 is positioned higher than the light reflecting layer 10 on the surface of the conductor 8, and in the present embodiment, the entire semiconductor light emitting element 11 is on the surface of the conductor 8. It is positioned higher than the light reflecting layer 10.

こうした高さの差によって、後述のワイヤボンディングにおいて、ボンディングマシンでボンディングワイヤの一端を半導体発光層13の電極14,15にボールボンディングにより接合した後に、このボンディングワイヤの他端を導体8に接合する際、ボンディングマシンのボンディングツールの移動に絶縁層5が邪魔になり難く、又、ボンディングワイヤを斜め下方に無理に引くこともないので、ワイヤボンディングがし易い。   Due to the difference in height, in wire bonding described later, one end of the bonding wire is bonded to the electrodes 14 and 15 of the semiconductor light emitting layer 13 by ball bonding in a bonding machine, and the other end of the bonding wire is bonded to the conductor 8. At this time, the insulating layer 5 does not easily interfere with the movement of the bonding tool of the bonding machine, and the bonding wire is not forcibly pulled downward, so that wire bonding is easy.

更に、本実施形態のように半導体発光素子11全体が絶縁層5の表面よりも高い位置に配置されている好ましい構成では、半導体発光素子11からその周囲に放射される光が、絶縁層5に妨げられることなく、逃げ孔6の周りに差し込み易い。それにより、半導体発光素子11の周りで光を反射させて光を取出すことができるので、光の取出し効率を高めることができる点で有利である。   Furthermore, in a preferred configuration in which the entire semiconductor light emitting element 11 is disposed at a position higher than the surface of the insulating layer 5 as in the present embodiment, light emitted from the semiconductor light emitting element 11 to the periphery thereof is applied to the insulating layer 5. It is easy to insert around the escape hole 6 without being obstructed. Thereby, the light can be extracted by reflecting the light around the semiconductor light emitting element 11, which is advantageous in that the light extraction efficiency can be increased.

金属基板2の長手方向に交互に配置された導体8と半導体発光素子11とは、ワイヤボンディングにより設けられたボンディングワイヤ17で接続されている。更に、前記二列の導体列の他端側に位置した導体8同士は、図1に示すようにワイヤボンディングにより設けられた端部ボンディングワイヤ18で接続されている。従って、本実施形態の場合、各半導体発光素子11は電気的に直列に接続されている。   The conductors 8 and the semiconductor light emitting elements 11 arranged alternately in the longitudinal direction of the metal substrate 2 are connected by bonding wires 17 provided by wire bonding. Further, the conductors 8 positioned on the other end side of the two conductor rows are connected by an end bonding wire 18 provided by wire bonding as shown in FIG. Accordingly, in the present embodiment, the semiconductor light emitting elements 11 are electrically connected in series.

以上の光反射層4を有した金属基板2、光反射層10を有した導体8付きの絶縁層5、複数の半導体発光素子11、ボンディングワイヤ17、及び端部ボンディングワイヤ18によって、照明装置1の面状発光源が形成されている。   The lighting device 1 includes the metal substrate 2 having the light reflecting layer 4, the insulating layer 5 with the conductor 8 having the light reflecting layer 10, the plurality of semiconductor light emitting elements 11, the bonding wires 17, and the end bonding wires 18. The planar light source is formed.

リフレクタ20は、一個一個又は数個の半導体発光素子11毎に個別に設けられるものではなく、絶縁層5上の全ての半導体発光素子11を包囲する単一のものであり、枠、例えば図1に示すように長方形をなす枠で形成されている。リフレクタ20は絶縁層5に接着されている。電線接続部9の一部は電線を接続するためにリフレクタ20の外に位置されている。リフレクタ20の内周面は光反射面となっている。そのために、例えばリフレクタ20の成形材料である合成樹脂中に酸化アルミニウム等の白色粉末を混入させている。このリフレクタ20は、光の取出し方向に取出された光を、投光対象に対して制御をするレンズ等の配光制御部材(図示しない)の取付け部として、利用することが可能である。   The reflector 20 is not individually provided for each one or several semiconductor light emitting elements 11, but is a single one surrounding all the semiconductor light emitting elements 11 on the insulating layer 5. As shown in FIG. 2, it is formed of a rectangular frame. The reflector 20 is bonded to the insulating layer 5. A part of the wire connecting portion 9 is located outside the reflector 20 in order to connect the wire. The inner peripheral surface of the reflector 20 is a light reflecting surface. Therefore, for example, white powder such as aluminum oxide is mixed in a synthetic resin that is a molding material of the reflector 20. The reflector 20 can use the light extracted in the light extraction direction as an attachment portion of a light distribution control member (not shown) such as a lens that controls the projection target.

封止部材22は、リフレクタ20内に注入して加熱処理により硬化されていて、前記面状発光源のリフレクタ20内に位置された殆どの部分を埋めている。この封止部材22は、透光性材料例えば透明シリコーン樹脂からなり、その内部には必要により蛍光体が混入されている。本実施形態では半導体発光素子11が青色発光をするので、この光で励起されて主に黄色の光を放射する蛍光体(図示しない)が、好ましくは略均一に分散した状態で混入されている。   The sealing member 22 is injected into the reflector 20 and cured by heat treatment, and fills most of the portion located in the reflector 20 of the planar light source. The sealing member 22 is made of a translucent material such as a transparent silicone resin, and a phosphor is mixed therein if necessary. In this embodiment, since the semiconductor light emitting element 11 emits blue light, a phosphor (not shown) that is excited by this light and emits mainly yellow light is preferably mixed in a substantially uniformly dispersed state. .

この組み合わせにより、照明装置1の点灯により半導体発光層13から放出された青色の光の一部が蛍光体に当たることなく封止部材22を通過する一方で、青色の光が当たった蛍光体が、青色によって励起されて黄色の光を放射し、この黄色の光が封止部材22を通過するので、これら補色関係にある二色の混合によって照明装置1は白色光を照射できる。なお、リフレクタ20が枠形であるので、照明装置1から取出される光の多くは、リフレクタ20で反射されることなく封止部材22を透過するので、反射を原因とする光の損失が少なく、光の取出し効率を向上するにも有効である。   By this combination, a part of blue light emitted from the semiconductor light emitting layer 13 by lighting of the lighting device 1 passes through the sealing member 22 without hitting the phosphor, while the phosphor hit by the blue light is Since the yellow light is emitted by being excited by the blue color and the yellow light passes through the sealing member 22, the illumination device 1 can irradiate the white light by mixing these two colors having a complementary color relationship. In addition, since the reflector 20 has a frame shape, most of the light extracted from the lighting device 1 passes through the sealing member 22 without being reflected by the reflector 20, so that the loss of light due to reflection is small. It is also effective in improving the light extraction efficiency.

以上の構成の照明装置1では、接着剤7の余剰分7aが逃げ孔11内に食み出しているので、金属基板2とこれに接着剤7を介して積層された絶縁層5との間に、接着剤7の厚みに相当する隙間が逃げ孔6に連通して形成されることがない。このため、前記隙間がある場合のようにそこに溜まった空気が、封止部材22を加熱硬化させる際に泡となって封止部材22内に流出して、この封止部材22内に気泡となって留まることがない。封止部材22内に気泡が残留していると、そこに外部から水分が入り込んだ場合、絶縁耐圧が低下する恐れがあるが、こうしたことがないようにできる。   In the illuminating device 1 having the above configuration, the surplus portion 7a of the adhesive 7 protrudes into the escape hole 11, so that the gap between the metal substrate 2 and the insulating layer 5 laminated thereon with the adhesive 7 is interposed. In addition, a gap corresponding to the thickness of the adhesive 7 is not formed in communication with the escape hole 6. For this reason, the air accumulated in the gap as in the case where there is a gap flows out into the sealing member 22 when the sealing member 22 is heated and cured, and bubbles are generated in the sealing member 22. It will never stay. If air bubbles remain in the sealing member 22, if moisture enters from the outside, the withstand voltage may be reduced, but this can be prevented.

以上の構成の照明装置1は、各半導体発光素子11に通電して、これらの半導体発光素子11を発光させることにより図2中矢印方向に光を取出して照明を行う。この点灯時に各半導体発光素子11が発熱する。   The illuminating device 1 having the above configuration illuminates each semiconductor light emitting element 11 by energizing each of the semiconductor light emitting elements 11 to emit light in the direction of the arrow in FIG. Each semiconductor light emitting element 11 generates heat during the lighting.

ところで、半導体発光素子11に電力を導く導体8と金属基板2とは、これらの間に設けた絶縁層5で電気的に絶縁されているが、この絶縁層5は金属基板2と半導体発光素子11との間には介在されていないとともに、半導体発光素子11は金属基板2の素子取付け部3に直接ダイボンドされている。   By the way, the conductor 8 for guiding electric power to the semiconductor light emitting element 11 and the metal substrate 2 are electrically insulated by an insulating layer 5 provided therebetween. The insulating layer 5 is electrically insulated from the metal substrate 2 and the semiconductor light emitting element. The semiconductor light emitting element 11 is directly die-bonded to the element mounting portion 3 of the metal substrate 2.

そのため、各半導体発光素子11が発する熱は、絶縁層5に邪魔されることなく金属基板2に直接的に伝導する。より具体的には、半導体発光素子11の熱は、実質的に熱抵抗とはならないほど薄いダイボンド材16を通ってから、Agの光反射層4を経て金属基板2の素子取付け部3に伝えられる。しかも、金属基板2の素子取付け部3は、半導体発光素子11がダイボンドされた先端面3aから金属基板2の基板主部2aに至るに従い次第に太く、言い換えれば、素子取付け部3の断面積が基板主部2aに近付く程大きくなっているので、半導体発光素子11から金属基板2の裏面に向けての熱伝導がより容易となる。そして、金属基板2の熱はこの金属基板2の裏面から外部に放出される。   Therefore, the heat generated by each semiconductor light emitting element 11 is directly conducted to the metal substrate 2 without being disturbed by the insulating layer 5. More specifically, the heat of the semiconductor light-emitting element 11 passes through the die-bonding material 16 that is so thin that it does not substantially become thermal resistance, and then is transmitted to the element mounting portion 3 of the metal substrate 2 through the Ag light reflecting layer 4. It is done. Moreover, the element mounting portion 3 of the metal substrate 2 gradually becomes thicker from the tip surface 3a to which the semiconductor light emitting element 11 is die-bonded to the substrate main portion 2a of the metal substrate 2, in other words, the cross-sectional area of the element mounting portion 3 is the substrate. Since it becomes so large that it approaches the main part 2a, the heat conduction from the semiconductor light emitting element 11 toward the back surface of the metal substrate 2 becomes easier. The heat of the metal substrate 2 is released from the back surface of the metal substrate 2 to the outside.

こうして半導体発光素子11の熱が高効率に金属基板2を通って外部に放出されるので、各半導体発光素子11の温度上昇が効果的に抑制され、各半導体発光素子11の温度を設計通りに維持できる。そのため、各半導体発光素子11の発光効率の低下と、各半導体発光素子11が発する光量のばらつきが抑制され、その結果として、各半導体発光素子から取出される光の色むらを抑制できる。   In this way, the heat of the semiconductor light emitting element 11 is released to the outside through the metal substrate 2 with high efficiency, so that the temperature rise of each semiconductor light emitting element 11 is effectively suppressed, and the temperature of each semiconductor light emitting element 11 is set as designed. Can be maintained. Therefore, a decrease in the light emission efficiency of each semiconductor light emitting element 11 and a variation in the amount of light emitted from each semiconductor light emitting element 11 are suppressed, and as a result, color unevenness of light extracted from each semiconductor light emitting element can be suppressed.

又、前記構成の各半導体発光素子11は全方向に光を放射し、取分け、表方向つまり金属基板2とは反対側の光の取出し方向に放射される光よりも、裏方向つまり金属基板2に向けて放射される光の方が強い。   Each of the semiconductor light emitting elements 11 having the above-described structure emits light in all directions, and is separated from the light emitted in the front direction, that is, the light extraction direction opposite to the metal substrate 2, that is, the metal substrate 2. The light emitted toward is stronger.

そして、裏方向に放射された光の多くは、透光性のダイボンド材16を通って90%以上の光反射率を有したAgメッキ層からなる光反射層4に入射し、この光反射層4で光の取出し方向に反射される。このような半導体発光素子11直下での高効率の反射により、光の取出し効率をより向上させることができる。ちなみに、半導体発光素子11の直下の反射率と光束との関係を示した図4から分かるように460nmの波長の光については、反射率が高いほど取出される光の強さ(相対発光強度)が上がることが測定の結果明らかとなり、半導体発光素子11の直下の反射率は91.35%であることが確かめられた。   Then, most of the light emitted in the reverse direction passes through the translucent die-bonding material 16 and enters the light reflecting layer 4 made of an Ag plating layer having a light reflectance of 90% or more, and this light reflecting layer. 4 is reflected in the light extraction direction. Such high-efficiency reflection directly under the semiconductor light emitting element 11 can further improve the light extraction efficiency. Incidentally, as can be seen from FIG. 4 showing the relationship between the reflectance immediately below the semiconductor light-emitting element 11 and the light flux, the intensity of light extracted with respect to light having a wavelength of 460 nm (relative emission intensity) increases as the reflectance increases. As a result of the measurement, it was clarified that the reflectance immediately below the semiconductor light emitting element 11 was 91.35%.

しかも、前記裏方向に放射された光の一部、及び封止部材22内の蛍光体から放射された光の一部は、白色の絶縁層5に入射し、この絶縁層5で光の取出し方向に反射される。加えて、裏方向に向かった光の一部は、導体8を覆ったAgメッキ層からなる光反射層10に入射し、この光反射層10で光の取出し方向に反射される。更に、絶縁層5の逃げ孔6の周辺は、その一部が導体8で覆われることがなく、この導体8と逃げ孔6との間おいて露出面5aを有している。言い換えれば、逃げ孔6の周辺は、その周方向に沿って途切れることなく連続した白色反射面とみなすことができるので、そこに入射した光を、光の取出し方向に反射させることができる。   In addition, a part of the light emitted in the reverse direction and a part of the light emitted from the phosphor in the sealing member 22 enter the white insulating layer 5, and light is extracted by the insulating layer 5. Reflected in the direction. In addition, a part of the light directed in the back direction is incident on the light reflecting layer 10 made of an Ag plating layer covering the conductor 8 and is reflected by the light reflecting layer 10 in the light extraction direction. Furthermore, the periphery of the escape hole 6 of the insulating layer 5 is not partially covered with the conductor 8, and has an exposed surface 5 a between the conductor 8 and the escape hole 6. In other words, since the periphery of the escape hole 6 can be regarded as a continuous white reflecting surface without interruption along the circumferential direction, the light incident thereon can be reflected in the light extraction direction.

ちなみに、半導体発光素子11の周りでの反射率と光束との関係を示した図5から分かるように400nm〜740nmの波長の光の平均反射率が高いほど取出される光の強さ(相対発光強度)が上がることが測定の結果明らかとなり、半導体発光素子11の周りでの反射率は93.7%であることが確かめられた。   Incidentally, as can be seen from FIG. 5 showing the relationship between the reflectance around the semiconductor light emitting element 11 and the luminous flux, the intensity of the extracted light (relative light emission) increases as the average reflectance of light having a wavelength of 400 nm to 740 nm increases. As a result of the measurement, it was clarified that the reflectivity around the semiconductor light emitting element 11 was 93.7%.

図4及び図5によれば、反射率が下がるほど発光強度が下がり、逆に言えば、反射率が上がるほど発光強度が上がることが明らかであるので、Agメッキ層からなる光反射層4,10、及び白色の絶縁層5での高反射特性により、照明装置1の発光効率(光の取出し効率)を向上することができた。ちなみに、照明装置1の消費電力が0.06Wである場合、光束7.4lm、発光効率125lm/Wで照明ができることが実験の結果確かめられた。   4 and 5, it is clear that the emission intensity decreases as the reflectance decreases, and conversely, the emission intensity increases as the reflectance increases. 10 and the high reflection characteristics of the white insulating layer 5 can improve the light emission efficiency (light extraction efficiency) of the lighting device 1. Incidentally, as a result of the experiment, it was confirmed that when the power consumption of the illumination device 1 is 0.06 W, illumination can be performed with a luminous flux of 7.4 lm and a light emission efficiency of 125 lm / W.

したがって、前記構成の照明装置1は、高熱伝導により各半導体発光素子11の温度上昇による発光効率の低下を抑制しつつ、各半導体発光素子11の裏側に放射された光の高反射特性により、光の取出し効率を向上できる。   Therefore, the illumination device 1 having the above-described configuration suppresses a decrease in light emission efficiency due to a temperature rise of each semiconductor light emitting element 11 due to high heat conduction, and has a high reflection characteristic of light emitted to the back side of each semiconductor light emitting element 11. The extraction efficiency can be improved.

又、金属基板2の素子取付け部3に半導体発光素子11をダイボンドしたダイボンド材16は、透明なシリコーン樹脂であるので、このダイボンド材16は熱により変色を伴って劣化する可能性が極めて小さい。したがって、光反射層4で反射されて取出される光の取出し効率を長期にわたり維持できる。   Moreover, since the die-bonding material 16 obtained by die-bonding the semiconductor light-emitting element 11 to the element mounting portion 3 of the metal substrate 2 is a transparent silicone resin, the possibility that the die-bonding material 16 is deteriorated with discoloration due to heat is extremely small. Therefore, the extraction efficiency of the light reflected and extracted by the light reflecting layer 4 can be maintained over a long period of time.

図6、図7は夫々異なる本発明の他の実施形態を示している。これらの実施形態は、以下説明する事項以外は、図示されない事項を含めて第1実施形態と同じであるので、第1実施形態と同じ部分には同一符号を付してその説明を省略する。   6 and 7 show other embodiments of the present invention which are different from each other. Since these embodiments are the same as the first embodiment including matters not shown except for the items described below, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.

図6に示した第2実施形態では、リフレクタ20が複数の反射孔21(一つのみ代表して示す。)を有している。これらの反射孔21には、素子取付け部3にダイボンドされた半導体発光素子11が個別に配置されている。各反射孔21は光の取出し側に行くに従って次第に孔径が拡大するテーパ孔で形成されている。又、封止部材22は、各反射孔21の夫々に充填して固化されている。以上説明した事項以外は第1実施形態と同じである。   In the second embodiment shown in FIG. 6, the reflector 20 has a plurality of reflection holes 21 (only one is shown as a representative). In these reflection holes 21, the semiconductor light emitting elements 11 die-bonded to the element mounting portion 3 are individually arranged. Each reflection hole 21 is formed as a tapered hole whose diameter gradually increases as it goes to the light extraction side. Further, the sealing member 22 is filled and solidified in each of the reflection holes 21. Except for the matters described above, the second embodiment is the same as the first embodiment.

したがって、この第2実施形態の照明装置1でも、第1実施形態で説明した作用と同様な作用を得られるから、高熱伝導により各半導体発光素子11の温度上昇による発光効率の低下を抑制しつつ、各半導体発光素子11の裏側に放射された光の高反射特性により、光の取出し効率を向上できる。   Therefore, since the lighting device 1 of the second embodiment can obtain the same operation as that described in the first embodiment, while suppressing the decrease in the light emission efficiency due to the temperature rise of each semiconductor light emitting element 11 due to the high thermal conductivity. The light extraction efficiency can be improved by the high reflection characteristic of the light emitted to the back side of each semiconductor light emitting element 11.

しかも、第2実施形態の照明装置1では封止部材22の使用量を低減できる。また、光の取出し方向に取出された光を、投光対象に対して制御をするレンズ等の配光制御部材の取付け部として、リフレクタ20を利用することも可能である。   Moreover, in the lighting device 1 of the second embodiment, the amount of the sealing member 22 used can be reduced. In addition, the reflector 20 can be used as an attachment portion of a light distribution control member such as a lens that controls the light extracted in the light extraction direction with respect to the light projection target.

図7に示した第3実施形態では、リフレクタを省略して構成の簡単化を図っている。そして、図示しないディスペンサーから未硬化の封止部材を半導体発光素子11ごとに滴下(ボッティング)して、これら半導体発光素子11を個別に封止部材22で封止している。なお、未硬化の封止部材は滴下された後に半球状を呈して硬化される。以上説明した事項以外は第1実施形態と同じである。   In the third embodiment shown in FIG. 7, the reflector is omitted to simplify the configuration. Then, an uncured sealing member is dropped (botted) for each semiconductor light emitting element 11 from a dispenser (not shown), and the semiconductor light emitting elements 11 are individually sealed with the sealing member 22. The uncured sealing member is dripped and then cured in a hemispherical shape. Except for the matters described above, the second embodiment is the same as the first embodiment.

したがって、この第3実施形態の照明装置1でも、第1実施形態で説明した作用と同様な作用を得られるから、高熱伝導により各半導体発光素子11の温度上昇による発光効率の低下を抑制しつつ、各半導体発光素子11の裏側に放射された光の高反射特性により、光の取出し効率を向上できる。しかも、第3実施形態の照明装置1では封止部材22の使用量を低減できる。   Therefore, since the lighting device 1 of the third embodiment can obtain the same operation as that described in the first embodiment, while suppressing the decrease in the light emission efficiency due to the temperature rise of each semiconductor light emitting element 11 due to the high thermal conductivity. The light extraction efficiency can be improved by the high reflection characteristic of the light emitted to the back side of each semiconductor light emitting element 11. Moreover, in the lighting device 1 of the third embodiment, the amount of the sealing member 22 used can be reduced.

図8〜図11は本発明の第4実施形態を示している。この第4実施形態は、以下説明する事項以外は、図示されない事項を含めて第1実施形態と同じであるので、第1実施形態と同じ部分には同一符号を付してその説明を省略する。   8 to 11 show a fourth embodiment of the present invention. Since the fourth embodiment is the same as the first embodiment except for the matters described below, including the items not shown, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted. .

第4実施形態では電気絶縁性のレジスト層25が付加されている。レジスト層25は、例えば酸化アルミニウム等の白色粉末が混入された合成樹脂からなる。この白色レジスト層25の光反射率は80%以上であり、又、レジスト層25の厚みは例えば略0.1mmである。   In the fourth embodiment, an electrically insulating resist layer 25 is added. The resist layer 25 is made of a synthetic resin mixed with a white powder such as aluminum oxide. The light reflectance of the white resist layer 25 is 80% or more, and the thickness of the resist layer 25 is approximately 0.1 mm, for example.

レジスト層25は、光反射層4で覆われた導体8及び絶縁層5上に積層されているとともに、複数つまり素子取付け部3と同数の開口25aを有している。このレジスト層25の導体8に積層された積層部位と絶縁層5に積層された積層部位とは一体に連続している。これとともに、前記両積層部位の絶縁層5からの高さ位置は図10と図11との比較から分かるように光反射層10が積層された導体8の厚み分に応じて異なっている。   The resist layer 25 is laminated on the conductor 8 and the insulating layer 5 covered with the light reflecting layer 4, and has a plurality of openings 25 a, that is, the same number of openings 25 a as the element mounting portions 3. The laminated portion laminated on the conductor 8 of the resist layer 25 and the laminated portion laminated on the insulating layer 5 are integrally continuous. At the same time, the height position of the two laminated portions from the insulating layer 5 differs depending on the thickness of the conductor 8 on which the light reflecting layer 10 is laminated, as can be seen from the comparison between FIG. 10 and FIG.

開口25aは図9に例示したように円形で、かつ、その径は素子取付け部3より数倍大きい。図9のように正面から見た状態で、開口25a毎に、その中央部に位置して一個の素子取付け部3が設けられているとともに、この素子取付け部3上に装着された半導体発光素子11とこれに接続された一対のボンディングワイヤ17が設けられている。これに伴いボンディングワイヤ17と前記半導体発光素子11を挟むように配置された導体8との接続部も開口25aに設けられている。そのため、レジスト層25は、素子取付け部3及びその周囲、並びにこの周囲に位置された導体8の端部を除いて設けられている。   The opening 25 a is circular as illustrated in FIG. 9, and its diameter is several times larger than the element mounting portion 3. When viewed from the front as shown in FIG. 9, a single element mounting portion 3 is provided at the center of each opening 25a, and a semiconductor light emitting element mounted on the element mounting portion 3 11 and a pair of bonding wires 17 connected thereto. Accordingly, a connection portion between the bonding wire 17 and the conductor 8 disposed so as to sandwich the semiconductor light emitting element 11 is also provided in the opening 25a. Therefore, the resist layer 25 is provided except for the element attachment portion 3 and the periphery thereof, and the end portion of the conductor 8 positioned in the periphery.

開口25a内に配置された半導体発光素子11、一対のボンディングワイヤ17、これらボンディングワイヤ17と接続された導体8の端部は、開口25a毎に設けられた封止部材22で封止されている。封止部材22は、図示しないディスペンサーから未硬化の封止部材を開口25a毎に滴下(ポッティング)して供給され、滴下後に略半球状に盛り上がった形状を呈して硬化して設けられたものである。なお、第4実施形態において図8に示したリフレクタ20は省略してもよい。以上説明した事項以外は第1実施形態と同じである。   The semiconductor light emitting element 11 disposed in the opening 25a, the pair of bonding wires 17, and the ends of the conductors 8 connected to the bonding wires 17 are sealed with a sealing member 22 provided for each opening 25a. . The sealing member 22 is provided by dripping (potting) an uncured sealing member from a dispenser (not shown) for each opening 25a, and is cured by presenting a substantially hemispherical shape after dropping. is there. In the fourth embodiment, the reflector 20 shown in FIG. 8 may be omitted. Except for the matters described above, the second embodiment is the same as the first embodiment.

従って、この第4実施形態の照明装置1でも、第1実施形態で説明した作用と同様な作用を得られるから、各半導体発光素子11の温度上昇による発光効率の低下を抑制しつつ、各半導体発光素子11の裏側に放射された光の高反射特性により、光の取出し効率を向上できる。   Accordingly, the illumination device 1 of the fourth embodiment can obtain the same operation as the operation described in the first embodiment. Therefore, each semiconductor light emitting element 11 can be prevented from lowering the light emission efficiency due to the temperature rise, and each semiconductor The light extraction efficiency can be improved by the high reflection characteristic of the light emitted to the back side of the light emitting element 11.

その上、光反射層10が積層された導体8の酸化及び硫化のうち少なくとも酸化を防ぐレジスト層25が白色であることにより、このレジスト層25に半導体発光素子11から差込む光を反射できるので、光の取出し効率を向上する上で好ましい。   In addition, since the resist layer 25 that prevents at least oxidation among the oxidation and sulfidation of the conductor 8 on which the light reflecting layer 10 is laminated is white, the light inserted from the semiconductor light emitting element 11 into the resist layer 25 can be reflected. It is preferable for improving the light extraction efficiency.

更に、レジスト層25が有した複数の開口25a毎に封止部材22を設けたので、第1実施形態のように全ての半導体発光素子11と導体8とにわたって封止部材22を設けた構成に比較して、蛍光体が混入された封止部材22の使用量を低減できる。   Furthermore, since the sealing member 22 is provided for each of the plurality of openings 25a of the resist layer 25, the sealing member 22 is provided over all the semiconductor light emitting elements 11 and the conductors 8 as in the first embodiment. In comparison, the amount of the sealing member 22 mixed with the phosphor can be reduced.

しかも、封止部材22をポッティングにより開口25aに供給して設けたので、ポッティングされた未硬化の封止部材が硬化するまでの間にレジスト層25の開口25aの外側に広がることを、開口25aの縁で塞き止めことが可能である。それにより、封止部材22の盛り上がり高さが適正に規制されて、半導体発光素子11上の封止部材22の厚みをより厚くできるとともに、ボンディングワイヤ17の一部が封止部材22から突出する恐れがないようにできる。   In addition, since the sealing member 22 is provided by being supplied to the opening 25a by potting, the opening 25a indicates that the potted uncured sealing member spreads outside the opening 25a of the resist layer 25 until it is cured. It is possible to block at the edge of. As a result, the rising height of the sealing member 22 is appropriately regulated, the thickness of the sealing member 22 on the semiconductor light emitting element 11 can be increased, and a part of the bonding wire 17 protrudes from the sealing member 22. You can avoid fear.

図12及び図13は本発明の第5実施形態を示している。この第5実施形態は、以下説明する事項以外は、図示されない事項を含めて第1実施形態と同じであるので、第1実施形態と同じ部分には同一符号を付してその説明を省略する。   12 and 13 show a fifth embodiment of the present invention. Since the fifth embodiment is the same as the first embodiment except for the matters described below, including the items not shown, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted. .

第5実施形態では、接着剤7に樹脂系の接着シートを用いている。この接着剤7の光反射率は白色の絶縁層5での光反射率よりも低く、そのために、例えば茶色系の接着剤7が採用されている。接着剤7は、予め、凸部からなる素子取付け部3に個々に対応する複数の孔を有して形成されている。各孔の大きさは素子取付け部3の根元の直径より大きい。接着剤7をなした接着シートの厚みC´は、第1実施形態で説明した接着剤の膜厚より数倍厚い。   In the fifth embodiment, a resin adhesive sheet is used for the adhesive 7. The light reflectivity of the adhesive 7 is lower than the light reflectivity of the white insulating layer 5. For this reason, for example, a brown adhesive 7 is employed. The adhesive 7 is formed in advance with a plurality of holes corresponding respectively to the element mounting portions 3 made of convex portions. The size of each hole is larger than the diameter of the base of the element mounting portion 3. The thickness C ′ of the adhesive sheet that forms the adhesive 7 is several times thicker than the film thickness of the adhesive described in the first embodiment.

接着剤7は、その各孔に素子取付け部3が通るように金属基板2の表面に重ねられ、この上に絶縁層5が重ねられた状態で、これら三者が厚み方向に加圧されるに伴い、金属基板2と絶縁層5とを接着している。この接着により、接着剤7の孔の縁部側の部位が、余剰分7aとなって図13に示すように絶縁層5の逃げ孔6内に環状をなして食み出している。逃げ孔6に対する余剰分7a言い換えれば、食み出し部の食み出し寸法は、略0.2μmである。図12に示すように食み出し部からなる余剰分7aは、逃げ孔6を形成した面の基板主部2a側の部位に被さるように逃げ孔6内で盛り上がっている。   The adhesive 7 is stacked on the surface of the metal substrate 2 so that the element mounting portion 3 passes through each hole, and the three layers are pressed in the thickness direction with the insulating layer 5 stacked thereon. Accordingly, the metal substrate 2 and the insulating layer 5 are bonded. As a result of this adhesion, a portion on the edge side of the hole of the adhesive 7 forms an excess 7a and protrudes into the escape hole 6 of the insulating layer 5 as shown in FIG. In other words, the surplus dimension 7a with respect to the escape hole 6 is approximately 0.2 μm. As shown in FIG. 12, the surplus portion 7 a formed by the protruding portion rises in the escape hole 6 so as to cover the portion on the substrate main part 2 a side of the surface on which the escape hole 6 is formed.

更に、第5実施形態では、各素子取付け部3の側面に側部光反射層4aが積層されている。側部光反射層4aは、素子取付け部3の先端面3aに積層された反射層4と余剰分7aとにわたっている。この側部光反射層4aは、反射層4と同じAgのメッキ層からなり、反射層4とともに無電解メッキにより設けられている。無電解メッキは、金属基板2に絶縁層5が接着された状態で施されるので、接着剤7の余剰分7aに側部光反射層4aが被着されることがない。このため、基板主部2aの余剰分7aに覆われた部位に側部光反射層4aは達していない。以上説明した事項以外は第1実施形態と同じである。   Further, in the fifth embodiment, the side light reflecting layer 4 a is laminated on the side surface of each element mounting portion 3. The side light reflecting layer 4a extends over the reflecting layer 4 laminated on the tip end surface 3a of the element mounting portion 3 and the surplus portion 7a. The side light reflection layer 4 a is made of the same Ag plating layer as the reflection layer 4, and is provided together with the reflection layer 4 by electroless plating. Since the electroless plating is performed in a state where the insulating layer 5 is bonded to the metal substrate 2, the side light reflection layer 4 a is not attached to the surplus portion 7 a of the adhesive 7. For this reason, the side light reflection layer 4a does not reach the portion covered with the surplus portion 7a of the substrate main portion 2a. Except for the matters described above, the second embodiment is the same as the first embodiment.

したがって、この第5実施形態の照明装置1でも、第1実施形態で説明した作用と同様な作用を得られるから、各半導体発光素子11の温度上昇による発光効率の低下を抑制しつつ、各半導体発光素子11の裏側に放射された光の高反射特性により、光の取出し効率を向上できる。   Therefore, since the illumination device 1 of the fifth embodiment can obtain the same operation as the operation described in the first embodiment, each semiconductor light-emitting element 11 can be prevented from lowering the light emission efficiency due to the temperature rise, and each semiconductor The light extraction efficiency can be improved by the high reflection characteristic of the light emitted to the back side of the light emitting element 11.

その上、凸部からなる素子取付け部3に、その先端面3aの光反射層4に連続して側部光反射層4aを設けたから、この側部光反射層4aによって光の取出し効率をより向上できる。つまり、封止部材22に混ぜられた蛍光体は半導体発光素子11から発した光で励起されて周囲に光を放射する。蛍光体から放射された光の一部は、素子取付け部11の側面に入射する。そのため、この入射光をAgからなる側部光反射層4aによって光の取出し方向に反射させて、光の取出し効率を向上できる。ちなみに、各素子取付け部3に光反射層4及び側部光反射層4aを設けない場合の照明装置の全光束を100とすると、第5実施形態の照明装置1の全光束は110であり、光の取出し効率を10%向上できることが確かめられた。   In addition, since the side light reflecting layer 4a is provided on the element mounting portion 3 formed of a convex portion continuously to the light reflecting layer 4 on the tip end surface 3a, the side light reflecting layer 4a further increases the light extraction efficiency. It can be improved. That is, the phosphor mixed in the sealing member 22 is excited by the light emitted from the semiconductor light emitting element 11 and emits light to the surroundings. Part of the light emitted from the phosphor enters the side surface of the element mounting portion 11. Therefore, the incident light is reflected by the side light reflection layer 4a made of Ag in the light extraction direction, so that the light extraction efficiency can be improved. Incidentally, assuming that the total luminous flux of the illumination device when the light reflection layer 4 and the side light reflection layer 4a are not provided in each element mounting portion 3 is 100, the total luminous flux of the illumination device 1 of the fifth embodiment is 110, It was confirmed that the light extraction efficiency can be improved by 10%.

なお、第5実施形態では、接着剤7の余剰部(食み出し部)7aの食み出し量を、その表面の高さ位置が、絶縁層5の表面と同じ高さに近くなるようにすることもできる。このような高さまで余剰部(食み出し部)7aを食み出させた場合にも、素子取付け部5の頂部は余剰部(食み出し部)7aの表面より突出していて、側部光反射面4a全体が余剰部(食み出し部)7aで覆われることがない。そのため、接着剤7に色が付いている場合であっても、側部光反射面4aによる光の取出し方向に反射作用を得て、光の取出し効率を向上できる。   In the fifth embodiment, the amount of protrusion of the surplus portion (projection portion) 7 a of the adhesive 7 is set so that the height position of the surface is close to the same height as the surface of the insulating layer 5. You can also Even when the surplus part (projection part) 7a is projected to such a height, the top of the element mounting part 5 protrudes from the surface of the surplus part (projection part) 7a, and the side light The entire reflecting surface 4a is not covered with the surplus portion (projecting portion) 7a. Therefore, even when the adhesive 7 is colored, it is possible to improve the light extraction efficiency by obtaining a reflection effect in the light extraction direction by the side light reflecting surface 4a.

しかも、余剰部7aの高さ位置を絶縁層5の表面と同じ高さに近くなるようにした場合には、未硬化の封止部材22を充填する際に、空気が逃げ孔11内に溜まり難くなる。したがって、既述のように金属基板2と絶縁層5との間に隙間が形成されないことと相まって、硬化された止部材22内への気泡の残留を効果的に抑制できる。   Moreover, when the height of the surplus portion 7a is close to the same height as the surface of the insulating layer 5, when the uncured sealing member 22 is filled, air accumulates in the escape hole 11. It becomes difficult. Therefore, in combination with the fact that no gap is formed between the metal substrate 2 and the insulating layer 5 as described above, it is possible to effectively suppress the remaining of bubbles in the hardened stop member 22.

更に、第5実施形態では、逃げ孔6に食み出している接着層7の余剰分(食み出し部)7aの色と、絶縁層5の逃げ孔6の周りの部分の色が異なっているので、これらの色の差によって、絶縁層5と余剰分7aとの境界、つまり、逃げ孔6をダイボンドする際の位置決めの基準として容易に認識できる。   Furthermore, in the fifth embodiment, the color of the surplus portion (the protruding portion) 7a of the adhesive layer 7 protruding into the escape hole 6 and the color of the portion around the escape hole 6 of the insulating layer 5 are different. Therefore, the difference between these colors can be easily recognized as a reference for positioning when the die hole is bonded to the boundary between the insulating layer 5 and the surplus portion 7a, that is, the escape hole 6.

すなわち、逃げ孔7内の素子取付け部3に半導体発光素子11をダイボンドする場合、半導体発光素子11を実装する実装機(図示しない)が備える撮像カメラで逃げ孔6を撮像し、実装機が備える画像認識部で、撮像された画像を認識するとともに画像認識部に予め記憶されている基準画像と認識画像とをパターンマッチングすることによって、半導体発光素子11をダイボンドする際の位置決めの基準を得ており、それに基づいて指定された位置に実装機が半導体発光素子11をダイボンドするようになっている。   That is, when the semiconductor light emitting element 11 is die-bonded to the element mounting portion 3 in the escape hole 7, the escape hole 6 is imaged by an imaging camera provided in a mounting machine (not shown) for mounting the semiconductor light emitting element 11, and the mounting machine is provided. The image recognition unit recognizes the captured image and pattern matching between the reference image stored in advance in the image recognition unit and the recognition image, thereby obtaining a positioning reference when die-bonding the semiconductor light emitting element 11 The mounting machine die-bonds the semiconductor light-emitting element 11 at a position designated based on that.

既述のように余剰分(食み出し部)7aの色が白色の絶縁層5に対して光反射率が低い茶色系であるので、前記画像認識において、絶縁層5と余剰分(食み出し部)7aとの境界、つまり、逃げ孔6を容易に認識できる。それにより、逃げ孔6内の素子取付け部3に半導体発光素子11をダイボンドする際の位置決めの基準を確実に取得できる。これにより、前記画像認識での照合率(パターンマッチングの正解率)を90パーセント以上とすることが可能となった。   As described above, the color of the surplus portion (projection portion) 7a is a brown system having a low light reflectance with respect to the white insulating layer 5, and therefore, in the image recognition, the surplus portion (devoured portion). The boundary with the protruding portion 7a, that is, the escape hole 6 can be easily recognized. Accordingly, it is possible to reliably acquire a reference for positioning when the semiconductor light emitting element 11 is die-bonded to the element mounting portion 3 in the escape hole 6. As a result, the collation rate (accuracy rate of pattern matching) in the image recognition can be set to 90% or more.

なお、以上のように位置決め基準を確実に取得するのに、第5実施形態の構成で、逃げ孔6へ食み出した余剰分7aを有した接着剤7を透明材料で形成して実施することもできる。   In order to reliably obtain the positioning reference as described above, the configuration of the fifth embodiment is performed by forming the adhesive 7 having the surplus portion 7a protruding into the escape hole 6 from a transparent material. You can also.

この場合、食み出し部である余剰分7aを透過して撮像される基板主部2aの色は、この主部2aの形成材料の色である。つまり、放熱基板が銅製であれば、銅の茶色系の色であり、炭素系材料製であれば黒色系の色である。これらの色は、白色の絶縁層5の色とは異なっていて、その光反射率は絶縁層5の光反射率よりも低い。   In this case, the color of the substrate main portion 2a that is imaged through the surplus portion 7a that is the protruding portion is the color of the material forming the main portion 2a. That is, if the heat dissipation substrate is made of copper, it is a copper brown color, and if it is made of a carbon material, it is a black color. These colors are different from the color of the white insulating layer 5, and the light reflectance thereof is lower than the light reflectance of the insulating layer 5.

このように逃げ孔6に食み出している接着層7の余剰分(食み出し部)7aを透視視認される基板主部2aの色と、絶縁層5の逃げ孔6の周りの部分の色が異なっているので、これらの色の差によって、絶縁層5と基板主部2aとの境界、つまり、逃げ孔6をダイボンドする際の位置決めの基準として容易に認識できる。したがって、逃げ孔6内の素子取付け部3に半導体発光素子11をダイボンドする際の位置決めの基準を確実に取得できる。   In this way, the color of the substrate main portion 2a seen through the surplus portion (projection portion) 7a of the adhesive layer 7 protruding into the escape hole 6 and the portion around the escape hole 6 of the insulating layer 5 are shown. Since the colors are different, the difference between these colors can be easily recognized as a reference for positioning when the die hole is bonded to the boundary between the insulating layer 5 and the substrate main portion 2a, that is, the escape hole 6. Therefore, the positioning reference when the semiconductor light emitting element 11 is die-bonded to the element mounting portion 3 in the escape hole 6 can be reliably acquired.

1…照明装置、2…金属基板(放熱基板)、2a…基板主部、3…素子取付け部、3a…素子取付け部の先端面、4…光反射層、4a…側部光反射層、5…絶縁層、5a…露出面、6…逃げ孔、7…接着剤、7a…接着剤の余剰分(食み出し部)、8…導体、10…光反射層、11…半導体発光素子、12…素子基板、13…半導体発光層、16…ダイボンド材、17…ボンディングワイヤ、22…封止部材、25…レジスト層、25a…レジスト層の開口   DESCRIPTION OF SYMBOLS 1 ... Illuminating device, 2 ... Metal substrate (heat dissipation board), 2a ... Substrate main part, 3 ... Element attachment part, 3a ... Front end surface of element attachment part, 4 ... Light reflection layer, 4a ... Side light reflection layer, 5 DESCRIPTION OF SYMBOLS ... Insulating layer, 5a ... Exposed surface, 6 ... Escape hole, 7 ... Adhesive, 7a ... Excess part of adhesive (extruding part), 8 ... Conductor, 10 ... Light reflecting layer, 11 ... Semiconductor light emitting element, 12 DESCRIPTION OF SYMBOLS ... Element board | substrate, 13 ... Semiconductor light emitting layer, 16 ... Die bond material, 17 ... Bonding wire, 22 ... Sealing member, 25 ... Resist layer, 25a ... Opening of resist layer

Claims (1)

素子取付け部を一体に有する放熱基板と;
この放熱基板に前記素子取付け部を除いて積層された絶縁層と;
前記絶縁層上に設けられるとともに、その端と前記素子取付部との間に前記絶縁層が露出するように設けられた表面に光反射層を有しする導体と;
その上面の高さ位置が前記絶縁層及び前記導体の高さ以上となるように前記素子取付け部にダイボンドされる半導体発光素子と;
この半導体発光素子と前記導体とを接続したボンディングワイヤと;
前記半導体発光素子を封止して設けた透光性の封止部材と;
を具備したことを特徴とする照明装置。
A heat dissipation board integrally having an element mounting portion;
An insulating layer laminated on the heat dissipation substrate excluding the element mounting portion;
A conductor provided on the insulating layer and having a light reflecting layer on a surface provided such that the insulating layer is exposed between an end of the insulating layer and the element mounting portion;
A semiconductor light emitting device that is die-bonded to the device mounting portion such that the height position of the upper surface is equal to or higher than the height of the insulating layer and the conductor;
A bonding wire connecting the semiconductor light emitting element and the conductor;
A translucent sealing member provided by sealing the semiconductor light emitting element;
An illumination device comprising:
JP2010176952A 2006-11-30 2010-08-06 Illumination device Pending JP2010251805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176952A JP2010251805A (en) 2006-11-30 2010-08-06 Illumination device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006324606 2006-11-30
JP2006353468 2006-12-27
JP2010176952A JP2010251805A (en) 2006-11-30 2010-08-06 Illumination device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007250227A Division JP4600455B2 (en) 2006-11-30 2007-09-26 Lighting device

Publications (1)

Publication Number Publication Date
JP2010251805A true JP2010251805A (en) 2010-11-04

Family

ID=39725831

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007250227A Expired - Fee Related JP4600455B2 (en) 2006-11-30 2007-09-26 Lighting device
JP2010176952A Pending JP2010251805A (en) 2006-11-30 2010-08-06 Illumination device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007250227A Expired - Fee Related JP4600455B2 (en) 2006-11-30 2007-09-26 Lighting device

Country Status (1)

Country Link
JP (2) JP4600455B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187305A (en) * 2013-03-25 2014-10-02 Toyoda Gosei Co Ltd Light-emitting device
JP2015070242A (en) * 2013-10-01 2015-04-13 シチズン電子株式会社 Semiconductor light-emitting device
JP2016207757A (en) * 2015-04-17 2016-12-08 シチズン電子株式会社 Led light-emitting device and manufacturing method therefor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8567988B2 (en) * 2008-09-29 2013-10-29 Bridgelux, Inc. Efficient LED array
JP5123269B2 (en) * 2008-09-30 2013-01-23 ソウル オプト デバイス カンパニー リミテッド Light emitting device and manufacturing method thereof
JP6211795B2 (en) * 2012-05-16 2017-10-11 ローム株式会社 LED light source module
JP2014127560A (en) * 2012-12-26 2014-07-07 Kyocera Connector Products Corp Holder for semiconductor light-emitting element, semiconductor light-emitting element module, lighting fixture, and method of manufacturing holder for semiconductor light-emitting element
JP6617452B2 (en) * 2015-07-07 2019-12-11 日亜化学工業株式会社 Linear light source
JP6626311B2 (en) * 2015-10-21 2019-12-25 ローム株式会社 Semiconductor device
JP6639890B2 (en) * 2015-12-11 2020-02-05 株式会社ダイワ工業 Wiring board laminate and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305620A (en) * 1997-03-06 1998-11-17 Matsushita Electron Corp Light-emitting apparatus and recording apparatus using the same
JP2002094122A (en) * 2000-07-13 2002-03-29 Matsushita Electric Works Ltd Light source and its manufacturing method
JP2003152225A (en) * 2001-08-28 2003-05-23 Matsushita Electric Works Ltd Light emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4122742B2 (en) * 2001-08-28 2008-07-23 松下電工株式会社 Light emitting device
JP2004265986A (en) * 2003-02-28 2004-09-24 Citizen Electronics Co Ltd High luminance light emitting element, and method for manufacturing the same and light emitting device using the same
JP2005210042A (en) * 2003-09-11 2005-08-04 Kyocera Corp Light emitting apparatus and illumination apparatus
JP4241658B2 (en) * 2005-04-14 2009-03-18 シチズン電子株式会社 Light emitting diode light source unit and light emitting diode light source formed using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305620A (en) * 1997-03-06 1998-11-17 Matsushita Electron Corp Light-emitting apparatus and recording apparatus using the same
JP2002094122A (en) * 2000-07-13 2002-03-29 Matsushita Electric Works Ltd Light source and its manufacturing method
JP2003152225A (en) * 2001-08-28 2003-05-23 Matsushita Electric Works Ltd Light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187305A (en) * 2013-03-25 2014-10-02 Toyoda Gosei Co Ltd Light-emitting device
JP2015070242A (en) * 2013-10-01 2015-04-13 シチズン電子株式会社 Semiconductor light-emitting device
JP2016207757A (en) * 2015-04-17 2016-12-08 シチズン電子株式会社 Led light-emitting device and manufacturing method therefor

Also Published As

Publication number Publication date
JP2008182186A (en) 2008-08-07
JP4600455B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4600455B2 (en) Lighting device
JP5273486B2 (en) Lighting device
JP4771179B2 (en) Lighting device
JP5768435B2 (en) Light emitting device
US7934856B2 (en) Illumination device with semiconductor light-emitting elements
JP5842813B2 (en) Light emitting device and method for manufacturing light emitting device
JP4678391B2 (en) Lighting equipment
JP2006245032A (en) Light emitting device and led lamp
JP4808550B2 (en) Light emitting diode light source device, lighting device, display device, and traffic signal device
JP2003152225A (en) Light emitting device
JP2008244165A (en) Lighting system
KR101704628B1 (en) Light-emitting module
JP2008166081A (en) Lighting device, and lighting apparatus having lighting device
JP2008078401A (en) Lighting device
JP2009289810A (en) Illuminator
JP5935078B2 (en) LED module and method for manufacturing the same, lighting apparatus, and straight tube LED lamp
JP2009231397A (en) Lighting system
JP2008251664A (en) Illumination apparatus
JP5376404B2 (en) Light emitting device
JP2006100753A (en) Semiconductor module and its manufacturing method
JP2008235720A (en) Illumination apparatus
KR20140004351A (en) Light emitting diode package
JP2006049715A (en) Luminous light source, illuminating unit, and display unit
JP2009081349A (en) Lighting device
JP2009076803A (en) Light emitting module and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130801

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423