JP2010245364A - Solid-state electrolytic capacitor and method of manufacturing the same - Google Patents

Solid-state electrolytic capacitor and method of manufacturing the same Download PDF

Info

Publication number
JP2010245364A
JP2010245364A JP2009093672A JP2009093672A JP2010245364A JP 2010245364 A JP2010245364 A JP 2010245364A JP 2009093672 A JP2009093672 A JP 2009093672A JP 2009093672 A JP2009093672 A JP 2009093672A JP 2010245364 A JP2010245364 A JP 2010245364A
Authority
JP
Japan
Prior art keywords
conductive polymer
forming
electrolytic capacitor
group
electropolymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009093672A
Other languages
Japanese (ja)
Other versions
JP5305351B2 (en
Inventor
Kazufumi Inoue
和文 井上
Shinji Matsumoto
伸二 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2009093672A priority Critical patent/JP5305351B2/en
Publication of JP2010245364A publication Critical patent/JP2010245364A/en
Application granted granted Critical
Publication of JP5305351B2 publication Critical patent/JP5305351B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic polymerization solution for conductive polymer formation that provides a conductive polymer of high electric conductivity and high thermal endurance, and to provide a solid-state electrolytic capacitor that uses the electrolyte polymerization solution and has low ESR and high thermal endurance and a method of manufacturing the same. <P>SOLUTION: The present invention relates to the electrolyte polymerizing electrolyte for conductive polymer formation prepared by dissolving in water a conductive polymer monomer and a base electrolyte salt represented by general formula (1), and a conductive polymer and a solid-state electrolytic capacitor manufactured using the electrolyte, are provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、導電性高分子形成用の電解重合液を使用し形成した導電性高分子並びに、該導電性高分子からなる固体電解質層を形成させてなる固体電解コンデンサとその製造方法に関する。   The present invention relates to a conductive polymer formed by using an electrolytic polymerization solution for forming a conductive polymer, a solid electrolytic capacitor formed with a solid electrolyte layer made of the conductive polymer, and a method for manufacturing the same.

アルミニウムやタンタル等の弁作用金属表面に誘電体酸化皮膜を形成し、該誘電体酸化皮膜上に固体電解質として電気伝導度の高い導電性高分子を形成させてなる固体電解コンデンサは、静電容量が高く、等価直列抵抗(以下、「ESR」と略記する。)が低い優れた特性を有することが知られている。   A solid electrolytic capacitor in which a dielectric oxide film is formed on the surface of a valve metal such as aluminum or tantalum, and a conductive polymer having a high electrical conductivity is formed on the dielectric oxide film as a solid electrolyte has a capacitance. It is known that it has an excellent characteristic that it has a high equivalent series resistance (hereinafter abbreviated as “ESR”).

上記固体電解コンデンサは一般的に、エッチング処理により表面積を拡大した弁作用金属箔、あるいは弁作用金属の粒子を焼結させることにより表面積を拡大した焼結体を、化成処理により該表面に誘電体酸化皮膜を形成させ、次いで、該誘電体酸化皮膜上に固体電解質層を形成し、カーボン及び銀ペーストからなる導電層を順次形成した後、リードフレームなどの外部端子に接続し、トランスファーモールド等による外装を施して製品化される。   In general, the solid electrolytic capacitor has a valve-acting metal foil whose surface area is enlarged by etching treatment or a sintered body whose surface area is enlarged by sintering particles of valve-acting metal, and a dielectric material on the surface by chemical conversion treatment. An oxide film is formed, then a solid electrolyte layer is formed on the dielectric oxide film, a conductive layer made of carbon and silver paste is sequentially formed, and then connected to an external terminal such as a lead frame, by transfer molding or the like It is commercialized with an exterior.

固体電解コンデンサのESRは、コンデンサを形成する各部材の固有抵抗と、コンデンサを形成する各部材間に発生する接触抵抗からなる、合成抵抗が主要な因子となっており、それらの改善によるESRのより一層の低減が望まれている。   The ESR of a solid electrolytic capacitor is mainly composed of a combined resistance consisting of the specific resistance of each member forming the capacitor and the contact resistance generated between each member forming the capacitor. Further reduction is desired.

固体電解コンデンサの劣化は、偶発的に発生する不具合の他は一般的に、コンデンサを形成する各部材の熱劣化と、コンデンサの外装部を介して浸入する水分等の酸素源に起因する各部材の酸化劣化が主要な因子となっており、これらの劣化要因に対し、コンデンサを形成する各部材、特に固体電解質層の熱耐久性能の向上と、外装部材を中心としたガスバリア性の向上等の対策が行われている。   Deterioration of solid electrolytic capacitors is generally due to thermal degradation of each member forming the capacitor and oxygen sources such as moisture entering through the exterior of the capacitor, in addition to accidents that occur accidentally. Oxidative degradation of these materials is a major factor, and against these degradation factors, improvement of the thermal durability performance of each member that forms the capacitor, especially the solid electrolyte layer, and improvement of gas barrier properties centering on exterior members, etc. Measures are being taken.

固体電解コンデンサに用いられる一般的な固体電解質としては、ポリピロールとポリエチレンジオキシチオフェンが挙げられ、さらに詳しくは、電解酸化重合によって形成されるポリピロールと、化学酸化重合によって形成されるポリエチレンジオキシチオフェンに大別される。   Typical solid electrolytes used for solid electrolytic capacitors include polypyrrole and polyethylene dioxythiophene. More specifically, polypyrrole formed by electrolytic oxidation polymerization and polyethylene dioxythiophene formed by chemical oxidation polymerization Broadly divided.

電解酸化重合によって形成される固体電解質は、緻密な膜を形成することができるため、導電性が優れる傾向があり、積層型のコンデンサの製造に用いられている。一方、化学酸化重合は、複雑な形状の素子にも対応できるため、巻回型のコンデンサの製造に多く用いられている。   Since the solid electrolyte formed by electrolytic oxidation polymerization can form a dense film, it tends to have excellent conductivity, and is used in the manufacture of multilayer capacitors. On the other hand, chemical oxidative polymerization can be used even for devices having complicated shapes, and is therefore often used in the manufacture of winding type capacitors.

前記、固体電解コンデンサを形成する固体電解質の固有の性能については、ポリピロールやポリエチレンジオキシチオフェン等の固体電解質の種類のみではなく、固体電解質形成時に使用する支持電解質によっても固体電解質の導電性や熱耐久性等の性能が変化することが知られている。   The inherent performance of the solid electrolyte forming the solid electrolytic capacitor is not limited to the type of solid electrolyte such as polypyrrole or polyethylenedioxythiophene, but also depending on the supporting electrolyte used when forming the solid electrolyte, the conductivity and heat of the solid electrolyte. It is known that performance such as durability changes.

特許文献1、特許文献2に開示されているように、積層型の固体電解コンデンサに用いられるポリピロールからなる固体電解質では、代表的な支持電解質として、パラトルエンスルホン酸、ナフタレンスルホン酸が挙げられるが、前記パラトルエンスルホン酸、ナフタレンスルホン酸を支持電解質として用いたポリピロールからなる固体電解質では、導電性や熱耐久性が十分ではなく、得られた固体電解コンデンサのESRが高く、高温下での耐久性が低いという欠点があった。   As disclosed in Patent Document 1 and Patent Document 2, in a solid electrolyte made of polypyrrole used for a multilayer solid electrolytic capacitor, paratoluenesulfonic acid and naphthalenesulfonic acid can be cited as typical supporting electrolytes. The solid electrolyte composed of polypyrrole using the above-mentioned paratoluenesulfonic acid and naphthalenesulfonic acid as a supporting electrolyte has insufficient conductivity and thermal durability, and the obtained solid electrolytic capacitor has high ESR and durability at high temperatures. There was a fault that the property was low.

特開平06−77093号公報Japanese Patent Laid-Open No. 06-77093 特開2001−110682号公報JP 2001-110682 A

本発明の目的は、高電導度かつ高熱耐久性の導電性高分子を与える導電性高分子形成用電解重合液を提供すること、また、上記電解重合液を用い、ESRが低く、高い熱耐久性を有する固体電解コンデンサとその製造方法を提供することである。   It is an object of the present invention to provide an electropolymerization liquid for forming a conductive polymer that gives a conductive polymer having high conductivity and high heat durability, and also uses the above electropolymerization liquid and has low ESR and high heat durability. It is providing the solid electrolytic capacitor which has the property, and its manufacturing method.

本発明者らは、鋭意検討した結果、上記問題を解決しうる導電性高分子形成用電解重合液、導電性高分子、固体電解コンデンサとその製造方法を完成するに至った。   As a result of intensive studies, the present inventors have completed an electrolytic polymerization solution for forming a conductive polymer, a conductive polymer, a solid electrolytic capacitor, and a method for manufacturing the same, which can solve the above problems.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

第一の発明は、導電性高分子単量体と支持電解質塩とが、溶媒に溶解されてなる導電性高分子形成用電解重合液において、
該支持電解質塩として、下記一般式(1)で示される化合物を少なくとも1種類含むことを特徴とする導電性高分子形成用電解重合液である。
The first invention is an electropolymerization liquid for forming a conductive polymer in which a conductive polymer monomer and a supporting electrolyte salt are dissolved in a solvent.
An electropolymerization liquid for forming a conductive polymer, comprising at least one compound represented by the following general formula (1) as the supporting electrolyte salt.

Figure 2010245364
Figure 2010245364

式(1)中、R〜Rはそれぞれ同一であっても異なってもよい水素原子、炭素数1〜6の直鎖又は分岐鎖状アルキル基、炭素数1〜6の直鎖又は分岐鎖状アルコキシ基、アミノ基、ニトロ基、スルホン酸基のいずれかを示し、少なくとも2つはスルホン酸基を示す。Xは対カチオンを示す。 In formula (1), R 1 to R 8 may be the same or different from each other, a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched chain having 1 to 6 carbon atoms. A chain alkoxy group, an amino group, a nitro group, or a sulfonic acid group is shown, and at least two of them are sulfonic acid groups. X + represents a counter cation.

第二の発明は、該支持電解質塩として、一般式(1)で表される化合物(D1)を少なくとも1種類以上含み、更に一般式(1)で表される化合物と同一ではない下記一般式(2)で表される化合物(D2)を少なくとも1種類以上含み、それぞれの化合物のモル比がD1:D2=99:1〜70:30であることを特徴とする第一の発明に記載の導電性高分子形成用電解重合液である。   The second invention includes at least one compound (D1) represented by the general formula (1) as the supporting electrolyte salt, and is not the same as the compound represented by the general formula (1). The compound according to (1), characterized in that it contains at least one compound (D2) represented by (2), and the molar ratio of each compound is D1: D2 = 99: 1 to 70:30. This is an electropolymerization liquid for forming a conductive polymer.

Figure 2010245364
Figure 2010245364

式(2)中、R〜R16はそれぞれ同一であっても異なってもよい水素原子、炭素数1〜6の直鎖又は分岐鎖状アルキル基、炭素数1〜6の直鎖又は分岐鎖状アルコキシ基、アミノ基、ニトロ基、スルホン酸基のいずれかを示し、少なくとも1つはスルホン酸基を示す。Xは対カチオンを示す。 In formula (2), R 9 to R 16 may be the same or different from each other, a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a linear or branched group having 1 to 6 carbon atoms. A chain alkoxy group, an amino group, a nitro group, or a sulfonic acid group is shown, and at least one of them represents a sulfonic acid group. X + represents a counter cation.

第三の発明は、下記一般式(3)〜(5)で示される少なくとも一つの化合物が添加剤として溶解されてなることを特徴とする第一又は第二の発明に記載の導電性高分子形成用電解重合液である。   According to a third aspect of the invention, there is provided the conductive polymer according to the first or second aspect, wherein at least one compound represented by the following general formulas (3) to (5) is dissolved as an additive. This is an electrolytic polymerization solution for formation.

Figure 2010245364
Figure 2010245364

式中、R17〜R32はそれぞれ同一でも異なっていてもよい、水素原子、炭素数1〜6の直鎖状又は分岐鎖状アルキル基又はフェニル基を示す。 In formula, R < 17 > -R < 32 > shows the hydrogen atom which may be same or different, respectively, a C1-C6 linear or branched alkyl group, or a phenyl group.

第四の発明は、前記導電性高分子単量体がピロール及び/又はピロール誘導体であることを特徴とする第一から第三の発明のいずれかに記載の導電性高分子形成用電解重合液である。   According to a fourth invention, the conductive polymer monomer for forming a conductive polymer according to any one of the first to third inventions, wherein the conductive polymer monomer is pyrrole and / or a pyrrole derivative. It is.

第五の発明は、第一から第四の発明のいずれかに記載の導電性高分子形成用電解重合液中にて電解重合することにより形成されたことを特徴とする導電性高分子である。   A fifth invention is a conductive polymer formed by electrolytic polymerization in the electropolymerization liquid for forming a conductive polymer according to any one of the first to fourth inventions. .

第六の発明は、弁作用金属に誘電体酸化被膜が形成され、該誘電体酸化被膜上に固体電解質を有する固体電解コンデンサにおいて、固体電解質に少なくとも第五の発明に記載の導電性高分子が含有されていることを特徴とする固体電解コンデンサである。   According to a sixth aspect of the present invention, in the solid electrolytic capacitor having a dielectric oxide film formed on the valve action metal and having a solid electrolyte on the dielectric oxide film, the conductive polymer according to at least the fifth aspect of the invention is provided on the solid electrolyte. It is a solid electrolytic capacitor characterized by containing.

第七の発明は、誘電体酸化被膜が形成された弁作用金属上に、第一から第四の発明のいずれかに記載の導電性高分子形成用電解重合液中で導電性高分子層を電解重合により形成する工程を少なくとも有する固体電解コンデンサの製造方法である。   In a seventh aspect of the present invention, a conductive polymer layer is formed in the electropolymerization liquid for forming a conductive polymer according to any one of the first to fourth aspects of the invention on the valve action metal on which the dielectric oxide film is formed. A method for producing a solid electrolytic capacitor having at least a step of forming by electrolytic polymerization.

第八の発明は、誘電体酸化被膜が形成された弁作用金属上に、導電性高分子層(A)を形成する工程と、前記導電性高分子層(A)上に第一から第五の発明のいずれかに記載の導電性高分子形成用電解重合液中で導電性高分子層(B)を電解重合により形成する工程とを有する固体電解コンデンサの製造方法である。   According to an eighth aspect of the present invention, there is provided a step of forming a conductive polymer layer (A) on the valve action metal on which the dielectric oxide film is formed, and a first to fifth steps on the conductive polymer layer (A). And forming a conductive polymer layer (B) by electrolytic polymerization in the electropolymerization liquid for forming a conductive polymer according to any one of the inventions.

第九の発明は、導電性高分子層(A)が層構造を有していることを特徴とする第八の発明に記載の固体電解コンデンサの製造方法である。   A ninth invention is the method for producing a solid electrolytic capacitor according to the eighth invention, wherein the conductive polymer layer (A) has a layer structure.

第十の発明は、導電性高分子層(A)の形成方法が、溶媒溶解性又は溶媒分散性の導電性高分子を含有した溶液を付着後乾燥させることにより形成する工程を含むことを特徴とする第八又は第九の発明に記載の固体電解コンデンサの製造方法である。   According to a tenth aspect of the invention, the method for forming the conductive polymer layer (A) includes a step of forming a solution containing a solvent-soluble or solvent-dispersible conductive polymer and then drying the solution. The method for producing a solid electrolytic capacitor according to the eighth or ninth invention.

第十一の発明は、導電性高分子層(A)の形成方法が、導電性高分子単量体の化学重合により形成されることを特徴とする第八又は第九の発明に記載の固体電解コンデンサの製造方法である。   The eleventh invention is characterized in that the method for forming the conductive polymer layer (A) is formed by chemical polymerization of a conductive polymer monomer, and the solid according to the eighth or ninth invention This is a method of manufacturing an electrolytic capacitor.

本発明によれば、従来よりも高電導度かつ高熱耐久性の導電性高分子を与える導電性高分子形成用電解重合液を提供すること、並びに、従来の固体電解コンデンサと比較して著しく優れたESR特性、高い熱耐久性を示す固体電解コンデンサとその製造方法を提供することができる。   According to the present invention, it is possible to provide an electropolymerization liquid for forming a conductive polymer that gives a conductive polymer having higher conductivity and higher heat durability than the conventional one, and it is remarkably superior to conventional solid electrolytic capacitors. It is possible to provide a solid electrolytic capacitor exhibiting high ESR characteristics and high thermal durability, and a method for manufacturing the same.

最初に、本発明の導電性高分子形成用電解重合液について説明する。   First, the electropolymerization liquid for forming a conductive polymer of the present invention will be described.

本発明の導電性高分子形成用電解重合液は、ドーパントを放出できる支持電解質塩及び導電性高分子単量体であるモノマーが、溶媒中に溶解されたものである。   The electropolymerization liquid for forming a conductive polymer of the present invention is a solution in which a supporting electrolyte salt capable of releasing a dopant and a monomer that is a conductive polymer monomer are dissolved in a solvent.

ドーパントとしては、例えば、ヨウ素、臭素、塩素等のハロゲンイオン、ヘキサフロロリン、ヘキサフロロヒ素、ヘキサフロロアンチモン、テトラフロロホウ素、過塩素酸等のハロゲン化物イオン、またはメタンスルホン酸、ドデシルスルホン酸等のアルキル置換有機スルホン酸イオン、カンファースルホン酸イオンなどの環状スルホン酸イオン、またはベンゼンスルホン酸、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、ベンゼンジスルホン酸等のアルキル置換もしくは無置換のベンゼンモノもしくはジスルホン酸イオン、2−ナフタレンスルホン酸、1,7−ナフタレンジスルホン酸等のスルホン酸基を1〜4個置換したナフタレンスルホン酸のアルキル置換もしくは無置換イオン、アントラセンスルホン酸イオン、アントラキノンスルホン酸イオン、アルキルビフェニルスルホン酸、ビフェニルジスルホン酸等のアルキル置換もしくは無置換のビフェニルスルホン酸イオン、ポリスチレンスルホン酸、ナフタレンスルホン酸ホルマリン縮合体等の高分子スルホン酸イオン等、に例示される置換または無置換の芳香族スルホン酸イオン、またはビスサルチレートホウ素、ビスカテコレートホウ素等のホウ素化合物イオン、またはモリブドリン酸、タングストリン酸、タングストモリブドリン酸等のヘテロポリ酸イオンなどが一般にあげられるが、本発明で用いる支持電解質塩は下記一般式(1)及び下記一般式(2)で示される化合物である。   Examples of the dopant include halogen ions such as iodine, bromine, and chlorine, halide ions such as hexafluoroline, hexafluoroarsenic, hexafluoroantimony, tetrafluoroboron, and perchloric acid, or methanesulfonic acid and dodecylsulfonic acid. Cyclic sulfonate ions such as alkyl-substituted organic sulfonate ions and camphor sulfonate ions, or alkyl-substituted or unsubstituted benzene mono- or disulfonate ions such as benzene sulfonic acid, paratoluene sulfonic acid, dodecyl benzene sulfonic acid, and benzene disulfonic acid Alkyl substituted or unsubstituted ions of naphthalenesulfonic acid substituted with 1 to 4 sulfonic acid groups such as 2-naphthalenesulfonic acid and 1,7-naphthalenedisulfonic acid, anthracenesulfonic acid ion, anthracene Substitutions exemplified by alkyl-substituted or unsubstituted biphenyl sulfonate ions such as non-sulfonate ions, alkylbiphenyl sulfonates and biphenyl disulfonates, and polymer sulfonate ions such as polystyrene sulfonate and naphthalene sulfonate formalin condensates In general, unsubstituted aromatic sulfonate ions, boron compound ions such as bissaltylate boron and biscatecholate boron, and heteropoly acid ions such as molybdophosphoric acid, tungstophosphoric acid, tungstomolybdophosphoric acid, etc. However, the supporting electrolyte salt used in the present invention is a compound represented by the following general formula (1) and the following general formula (2).

Figure 2010245364
Figure 2010245364

Figure 2010245364
Figure 2010245364

上記一般式(1)中のR〜Rはそれぞれ同一であっても異なっていてもよい、水素原子、炭素数1〜6の直鎖状又は分岐鎖状アルキル基、炭素数1〜6の直鎖状又は分岐鎖状アルコキシル基、アミノ基、ニトロ基、スルホン酸基のいずれかを示し、それらの内、少なくとも二つがスルホン酸基であり、より好ましくはR又はRの内少なくとも1つはスルホン酸基であり、かつ、R又はRの内少なくとも1つはスルホン酸基である。Xは対カチオンを示す。 R 1 to R 8 in the general formula (1) may be the same or different from each other, a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. A linear or branched alkoxyl group, an amino group, a nitro group, or a sulfonic acid group, at least two of which are sulfonic acid groups, more preferably at least one of R 2 or R 3 One is a sulfonic acid group, and at least one of R 6 or R 7 is a sulfonic acid group. X + represents a counter cation.

上記一般式(1)で示される化合物の具体例としては、好ましくは、アントラキノン−1,4−ジスルホン酸塩、アントラキノン−1,5−ジスルホン酸塩、アントラキノン−1,6−ジスルホン酸塩、アントラキノン−1,7−ジスルホン酸塩、アントラキノン−1,8−ジスルホン酸塩、アントラキノン−2,6−ジスルホン酸塩、アントラキノン−2,7−ジスルホン酸塩が挙げられ、より好ましくは、アントラキノン−2,6−ジスルホン酸塩、アントラキノン−2,7−ジスルホン酸塩が挙げられる。   Specific examples of the compound represented by the general formula (1) are preferably anthraquinone-1,4-disulfonate, anthraquinone-1,5-disulfonate, anthraquinone-1,6-disulfonate, anthraquinone. -1,7-disulfonate, anthraquinone-1,8-disulfonate, anthraquinone-2,6-disulfonate, anthraquinone-2,7-disulfonate, more preferably anthraquinone-2, Examples include 6-disulfonate and anthraquinone-2,7-disulfonate.

上記一般式(1)中の対カチオンとしては、アンモニウムカチオン、アルカリ金属カチオン、アルカリ土類金属カチオンが挙げられる。
前記アンモニウムカチオンとしては、NH 、NH、NH 、NHR 、NR 等が挙げられる。Rは炭素数1〜8の直鎖状又は分岐鎖状のアルキル基であり、R同士で連結して環を形成してもよい。
前記アルカリ金属カチオンとしては、リチウム、ナトリウム、カリウム等が挙げられる。
前記アルカリ土類金属カチオンとしては、マグネシウム、カルシウム等が挙げられる。
また、カチオンが水素イオンである酸も使用できる。
これらカチオンは、1種若しくは2種以上を混合して用いることが出来る。
Examples of the counter cation in the general formula (1) include an ammonium cation, an alkali metal cation, and an alkaline earth metal cation.
Examples of the ammonium cation include NH 4 + , NH 3 R + , NH 2 R 2 + , NHR 3 + , NR 4 + and the like. R is a linear or branched alkyl group having 1 to 8 carbon atoms, and R may be linked together to form a ring.
Examples of the alkali metal cation include lithium, sodium, and potassium.
Examples of the alkaline earth metal cation include magnesium and calcium.
Moreover, the acid whose cation is a hydrogen ion can also be used.
These cations can be used alone or in combination of two or more.

上記一般式(1)により表される化合物は、1種類若しくは2種類以上を使用することができる。   The compound represented by the general formula (1) may be used alone or in combination of two or more.

上記一般式(1)中のアントラキノンスルホン酸誘導体から生じるアニオンは、導電性高分子中にドーパントとして取り込まれることによって高電導度の導電性高分子を与え、かつ該ドーパントを有する導電性高分子は該ドーパントの脱離が生じにくく、極めて熱耐久性に優れたものとなる。   The anion generated from the anthraquinone sulfonic acid derivative in the general formula (1) gives a conductive polymer having high conductivity by being incorporated as a dopant in the conductive polymer, and the conductive polymer having the dopant is Desorption of the dopant is unlikely to occur and the thermal durability is extremely excellent.

上記一般式(2)中のR〜R16はそれぞれ同一であっても異なっていてもよい、水素原子、炭素数1〜6の直鎖状又は分岐鎖状アルキル基、炭素数1〜6の直鎖状又は分岐鎖状アルコキシル基、アミノ基、ニトロ基、スルホン酸基のいずれかを示し、それらの内、少なくとも一つがスルホン酸基を示し、Xは対カチオンを示す。 R 9 to R 16 in the general formula (2) may be the same as or different from each other, a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. Or a linear or branched alkoxyl group, an amino group, a nitro group, or a sulfonic acid group, at least one of which represents a sulfonic acid group, and X + represents a counter cation.

上記一般式(2)中のアントラキノンスルホン酸誘導体から生じるアニオンは、上記一般式(1)中のアントラキノンスルホン酸誘導体から生じるアニオンとともに、導電性高分子中にドーパントとして取り込まれることによってより高電導度の導電性高分子を与え、かつ該ドーパントを有する導電性高分子は該ドーパントの脱離が生じにくく、更に熱耐久性に優れたものとなる。   The anion generated from the anthraquinone sulfonic acid derivative in the general formula (2) is incorporated into the conductive polymer as a dopant together with the anion generated from the anthraquinone sulfonic acid derivative in the general formula (1). The conductive polymer having the above-described conductive polymer and having the dopant is less likely to cause the desorption of the dopant, and further has excellent thermal durability.

上記一般式(2)中のアントラキノンスルホン酸誘導体の具体例としては、好ましくは、アントラキノン−1−スルホン酸塩、アントラキノン−2−スルホン酸塩、1−ニトロアントラキノン−5-スルホン酸塩、5−ニトロアントラキノン−1−スルホン酸塩、1-アミノアントラキノン−5−スルホン酸塩、アントラキノン−1,4−ジスルホン酸塩、アントラキノン−1,5−ジスルホン酸塩、アントラキノン−1,6−ジスルホン酸塩、アントラキノン−1,7−ジスルホン酸塩、アントラキノン−1,8−ジスルホン酸塩、アントラキノン−2,6−ジスルホン酸塩、アントラキノン−2,7−ジスルホン酸塩、等が挙げられる。   Specific examples of the anthraquinone sulfonic acid derivative in the general formula (2) are preferably anthraquinone-1-sulfonate, anthraquinone-2-sulfonate, 1-nitroanthraquinone-5-sulfonate, 5- Nitroanthraquinone-1-sulfonate, 1-aminoanthraquinone-5-sulfonate, anthraquinone-1,4-disulfonate, anthraquinone-1,5-disulfonate, anthraquinone-1,6-disulfonate, Anthraquinone-1,7-disulfonate, anthraquinone-1,8-disulfonate, anthraquinone-2,6-disulfonate, anthraquinone-2,7-disulfonate, and the like.

上記一般式(2)中の対カチオンとしては、アンモニウムカチオン、アルカリ金属カチオン、アルカリ土類金属カチオンが挙げられる。
前記アンモニウムカチオンとしては、NH 、NH、NH 、NHR 、NR 等が挙げられる。Rは炭素数1〜8の直鎖状又は分岐鎖状のアルキル基であり、R同士で連結して環を形成してもよい。
前記アルカリ金属カチオンとしては、リチウム、ナトリウム、カリウム等が挙げられる。
前記アルカリ土類金属カチオンとしては、マグネシウム、カルシウム等が挙げられる。
また、カチオンが水素イオンである酸も使用できる。
これらカチオンは、1種若しくは2種以上を混合して用いることが出来る。
Examples of the counter cation in the general formula (2) include an ammonium cation, an alkali metal cation, and an alkaline earth metal cation.
Examples of the ammonium cation include NH 4 + , NH 3 R + , NH 2 R 2 + , NHR 3 + , NR 4 + and the like. R is a linear or branched alkyl group having 1 to 8 carbon atoms, and R may be linked together to form a ring.
Examples of the alkali metal cation include lithium, sodium, and potassium.
Examples of the alkaline earth metal cation include magnesium and calcium.
Moreover, the acid whose cation is a hydrogen ion can also be used.
These cations can be used alone or in combination of two or more.

従って、上記一般式(2)により表される化合物の具体例としては、例えば、アントラキノン−2−スルホン酸ナトリウムが挙げられる。
上記一般式(2)により表される化合物は、1種類若しくは2種類以上を使用することができる。
Accordingly, specific examples of the compound represented by the general formula (2) include sodium anthraquinone-2-sulfonate.
The compound represented by the general formula (2) may be used alone or in combination of two or more.

上記一般式(1)により表される化合物D1と上記一般式(2)により表される化合物D2のモル比は、D1:D2=60:40〜100:0の間であればよく、より好ましくは70:30〜99:1である。
上記モル比で混合させた電解重合液を用いることで優れたESRの電解コンデンサを得ることができる。
The molar ratio of the compound D1 represented by the general formula (1) and the compound D2 represented by the general formula (2) may be between D1: D2 = 60: 40 to 100: 0, and more preferably. Is 70:30 to 99: 1.
An excellent ESR electrolytic capacitor can be obtained by using an electrolytic polymerization solution mixed in the above molar ratio.

本発明の一般式(1)で表される化合物で表される少なくとも2つスルホン酸基を有するアントラキノンスルホン酸誘導体は、スルホン酸基が1つ置換したアントラキノンスルホン酸誘導体より水に対する溶解度が高い特徴を有する。
これにより、導電性高分子形成用電解重合液中の支持電解質塩の濃度を上げることができ、該導電性高分子形成用電解重合液を用いることで優れた電気特性の固体電解コンデンサを得ることができる。
The anthraquinone sulfonic acid derivative having at least two sulfonic acid groups represented by the compound represented by the general formula (1) of the present invention has higher water solubility than an anthraquinone sulfonic acid derivative substituted with one sulfonic acid group. Have
Thereby, the concentration of the supporting electrolyte salt in the electropolymerization liquid for forming a conductive polymer can be increased, and a solid electrolytic capacitor having excellent electrical characteristics can be obtained by using the electropolymerization liquid for forming a conductive polymer. Can do.

本発明の電解重合液中には添加剤を含有することができる。本発明にて使用される添加剤は、主に酸化防止剤、界面活性剤のいずれかの特性を有するものが好ましい。そのような添加剤としてより好ましくは下式(3)〜(5)で示される化合物である。   The electrolytic polymerization solution of the present invention may contain an additive. The additive used in the present invention is preferably one having mainly the characteristics of either an antioxidant or a surfactant. More preferred as such additives are compounds represented by the following formulas (3) to (5).

Figure 2010245364
Figure 2010245364

上記一般式(3)〜(5)中、R17〜R32はそれぞれ同一であっても異なっていてもよい、水素原子、炭素数1〜6の直鎖状又は分岐鎖状アルキル基又はフェニル基を示す。 In the general formulas (3) to (5), R 17 to R 32 may be the same as or different from each other, a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or phenyl. Indicates a group.

上記一般式(3)で表される化合物の具体例としては、例えば、4−ニトロフェノール、2−メチル−4−ニトロフェノール、3−メチル−4−ニトロフェノール、2−エチル−4−ニトロフェノール、3−エチル−4−ニトロフェノール、2−ヘキシル−4−ニトロフェノール、3−ヘキシル−4−ニトロフェノール等のニトロフェノール類が挙げられる。
上記一般式(4)で表される化合物の具体例としては、例えば、4−ニトロ−1−ナフトール等のニトロナフトール類が挙げられる。
上記一般式(5)で表される化合物の具体例としては、例えば、1−ヒドロキシ−4−ニトロアントラキノン等のニトロアントラキノン類を挙げることができる。
Specific examples of the compound represented by the general formula (3) include, for example, 4-nitrophenol, 2-methyl-4-nitrophenol, 3-methyl-4-nitrophenol, 2-ethyl-4-nitrophenol. , Nitrophenols such as 3-ethyl-4-nitrophenol, 2-hexyl-4-nitrophenol and 3-hexyl-4-nitrophenol.
Specific examples of the compound represented by the general formula (4) include nitronaphthols such as 4-nitro-1-naphthol.
Specific examples of the compound represented by the general formula (5) include nitroanthraquinones such as 1-hydroxy-4-nitroanthraquinone.

上記一般式(3)〜(5)により表される化合物は、1種若しくは2種以上を使用することができる。上記一般式(3)〜(5)により表される化合物は、得られる導電性高分子の熱耐久性の面から、4−ニトロフェノール、4−ニトロ−1−ナフトール、1−ヒドロキシ−4−ニトロアントラキノンであることが好ましい。   The compounds represented by the general formulas (3) to (5) can be used alone or in combination of two or more. The compounds represented by the above general formulas (3) to (5) are 4-nitrophenol, 4-nitro-1-naphthol, 1-hydroxy-4-phenyl from the viewpoint of thermal durability of the obtained conductive polymer. Nitroanthraquinone is preferred.

次いで本発明に使用できる導電性高分子単量体について説明する。   Next, the conductive polymer monomer that can be used in the present invention will be described.

本発明に使用されるモノマーとしては、ピロール、アニリン、フラン、チオフェン又はこれらの誘導体を用いることができる。該誘導体としては、3−アルキルピロール、3−アルキルチオフェン、3,4−アルキレンジオキシピロール、3,4−アルキレンジオキシチオフェンなどが挙げられる。前記モノマーは1種若しくは2種以上を同時に含有することができる。これらの中でも、得られる導電性高分子の電導度及び熱耐久性の面から、ピロール及び/又はその誘導体が好ましい。   As a monomer used in the present invention, pyrrole, aniline, furan, thiophene or a derivative thereof can be used. Examples of the derivatives include 3-alkylpyrrole, 3-alkylthiophene, 3,4-alkylenedioxypyrrole, 3,4-alkylenedioxythiophene. The said monomer can contain 1 type (s) or 2 or more types simultaneously. Among these, pyrrole and / or a derivative thereof are preferable from the viewpoint of the conductivity and thermal durability of the obtained conductive polymer.

本発明に使用する電解重合液の溶媒は、水、テトラヒドロフラン(THF)、ジオキサン、ジエチルエーテル等のエーテル類、或いはアセトン、メチルエチルケトン等のケトン類、ジメチルホルムアミド(DMF)やアセトニトリル、ベンゾニトリル、N−メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒、酢酸エチルや酢酸ブチル等のエステル類、クロロホルムや塩化メチレン等の非芳香族性の塩素系溶媒、ニトロメタンやニトロエタン、ニトロベンゼン等のニトロ化合物、あるいはメタノールやエタノール、プロパノール等のアルコール類、またはギ酸や酢酸、プロピオン酸等の有機酸または該有機酸の酸無水物(無水酢酸等)を0〜30%以下の割合で水と混合した混合溶媒を挙げることができる。これらの中でも、環境負荷、安全性の面から、水を単独で使用したものが好ましい。   The solvent of the electrolytic polymerization solution used in the present invention is water, ethers such as tetrahydrofuran (THF), dioxane, diethyl ether, or ketones such as acetone and methyl ethyl ketone, dimethylformamide (DMF), acetonitrile, benzonitrile, N- Aprotic polar solvents such as methylpyrrolidone (NMP) and dimethyl sulfoxide (DMSO), esters such as ethyl acetate and butyl acetate, non-aromatic chlorinated solvents such as chloroform and methylene chloride, nitromethane, nitroethane, nitrobenzene, etc. Nitro compounds, or alcohols such as methanol, ethanol and propanol, organic acids such as formic acid, acetic acid and propionic acid or acid anhydrides of such organic acids (such as acetic anhydride) with water in a proportion of 0 to 30% or less Name mixed solvent Kill. Among these, those using water alone are preferable from the viewpoint of environmental load and safety.

次に本発明の導電性高分子形成用電解重合液の組成について説明する。   Next, the composition of the electropolymerization liquid for forming a conductive polymer of the present invention will be described.

本発明の導電性高分子形成用電解重合液については、導電性高分子単量体を0.05〜0.7mol/L、好ましくは0.1〜0.3mol/Lの濃度で含有するものである。
また、前記支持電解質は0.005〜0.30mol/L、好ましくは0.01〜0.1mol/Lの濃度で含有するものである。
添加剤を含有させる場合、前記添加剤を0.002〜0.1mol/L、好ましくは0.003mol/Lの濃度で含有するものである。
The electropolymerization liquid for forming a conductive polymer of the present invention contains a conductive polymer monomer at a concentration of 0.05 to 0.7 mol / L, preferably 0.1 to 0.3 mol / L. It is.
The supporting electrolyte is contained at a concentration of 0.005 to 0.30 mol / L, preferably 0.01 to 0.1 mol / L.
When the additive is contained, the additive is contained at a concentration of 0.002 to 0.1 mol / L, preferably 0.003 mol / L.

本組成の導電性高分子形成用電解重合液を用いることで著しく電導度、熱耐久性に優れた導電性高分子が得られるとともに、優れた電気特性を有する固体電解コンデンサを得ることができる。   By using the electropolymerization liquid for forming a conductive polymer of this composition, a conductive polymer having remarkably excellent conductivity and thermal durability can be obtained, and a solid electrolytic capacitor having excellent electrical characteristics can be obtained.

次に本発明の導電性高分子形成用電解重合液を用い、固体電解コンデンサを製造する方法について説明する。   Next, a method for producing a solid electrolytic capacitor using the electropolymerization liquid for forming a conductive polymer of the present invention will be described.

本発明は、誘電体酸化被膜が形成された弁作用金属上に、導電性高分子層(A)を形成する工程と、前記導電性高分子層(A)上に上記の導電性高分子形成用電解重合液中で導電性高分子層(B)を電解重合により形成する工程とを有する固体電解コンデンサの製造方法である。   The present invention includes a step of forming a conductive polymer layer (A) on a valve action metal on which a dielectric oxide film is formed, and the formation of the conductive polymer on the conductive polymer layer (A). And a step of forming a conductive polymer layer (B) by electrolytic polymerization in the electrolytic polymerization solution for use.

弁作用金属表面の誘電体酸化皮膜上にプレコート層として導電性高分子層を予め形成しておき、次に前記プレコート層上に新たな導電性高分子層を本発明の電解重合液を用いて電解重合により形成することで固体電解質層を形成した後、該固体電解質層にカーボンペースト、銀ペースト等の導電ペーストを塗布乾燥することによって陰極層を形成する。
プレコート層の導電性高分子の形成方法としては(1)化学重合による導電性高分子層を形成する方法、(2)導電性高分子溶液を塗布乾燥して導電性高分子層を形成する方法が挙げられる。
次に弁作用金属から陽極リード端子、陰極層から陰極リード端子を接続して電極を取り出して素子を形成し、この素子全体をエポキシ樹脂等の絶縁性樹脂、あるいはセラミック製や金属製の外装ケース等により封止することで固体電解コンデンサを得ることができる。
A conductive polymer layer is formed in advance as a precoat layer on the dielectric oxide film on the valve metal surface, and then a new conductive polymer layer is formed on the precoat layer using the electrolytic polymerization solution of the present invention. After forming a solid electrolyte layer by forming by electropolymerization, a cathode layer is formed by applying and drying a conductive paste such as carbon paste and silver paste on the solid electrolyte layer.
As a method for forming the conductive polymer of the precoat layer, (1) a method of forming a conductive polymer layer by chemical polymerization, (2) a method of forming a conductive polymer layer by applying and drying a conductive polymer solution Is mentioned.
Next, the anode lead terminal is connected from the valve action metal, the cathode lead terminal is connected from the cathode layer, and the electrode is taken out to form an element. The entire element is made of an insulating resin such as epoxy resin, or an exterior case made of ceramic or metal. A solid electrolytic capacitor can be obtained by sealing with, for example.

導電性高分子(A)の形成方法として、溶媒溶解性又は溶媒分散性の導電性高分子を含有した溶液を付着後乾燥させることによる工程を含んでもよい。   The method of forming the conductive polymer (A) may include a step of drying after adhering a solution containing a solvent-soluble or solvent-dispersible conductive polymer.

前記溶媒溶解性導電性高分子としては、ポリアニリン、アルキルチオフェン又はそれらの誘導体が挙げられる。
前記溶媒分散性導電性高分子としては、ポリピロール、3,4−エチレンジオキシチオフェン又はそれらの誘導体が挙げられる。
溶媒溶解性又は溶媒分散性の導電性高分子に用いる溶媒としては、水、メタノール、エタノール、1−プロパノール、イソプロピルアルコール、n−ブタノール、s−ブタノール、t−ブタノール、n−アミルアルコール、s−アミルアルコール、t−アミルアルコール、アリルアルコール、アソアミルアルコール、イソブチルアルコール、2−エチルブタノール、2−オクタノール、n−オクタノール、シクロヘキサノール、テトラヒドロフルフリルアルコール、フルフリルアルコール、n−ヘキサノール、n-ヘプタノール、2−ヘプタノール、3−ヘプタノール、ベンジルアルコール、メチルシクロヘキサノール、エチレングリコール、エチレングリコールモノメチルエーテル、グリセリン、ジエチレングリコール、プロピレンカルボナート、プロピレングリコール等のアルコール類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、メチルイソブチルケトン、メチル−n−プロピルケトン等のケトン類、アセト酢酸エチル、安息香酸エチル、安息香酸メチル、蟻酸イソブチル、蟻酸エチル蟻酸プロピル、蟻酸メチル、酢酸イソブチル、酢酸エチル、酢酸プロピル、酢酸メチル、サリチル酸メチル、シュウ酸ジエチル、酒石酸ジエチル、酒石酸ジブチル、フタル酸エチル、フタル酸メチル、フタル酸ブチル等のエステル類が挙げられる。
Examples of the solvent-soluble conductive polymer include polyaniline, alkylthiophene, and derivatives thereof.
Examples of the solvent-dispersible conductive polymer include polypyrrole, 3,4-ethylenedioxythiophene, or derivatives thereof.
Solvents used for the solvent-soluble or solvent-dispersible conductive polymer include water, methanol, ethanol, 1-propanol, isopropyl alcohol, n-butanol, s-butanol, t-butanol, n-amyl alcohol, s- Amyl alcohol, t-amyl alcohol, allyl alcohol, asoamyl alcohol, isobutyl alcohol, 2-ethylbutanol, 2-octanol, n-octanol, cyclohexanol, tetrahydrofurfuryl alcohol, furfuryl alcohol, n-hexanol, n-heptanol , 2-heptanol, 3-heptanol, benzyl alcohol, methylcyclohexanol, ethylene glycol, ethylene glycol monomethyl ether, glycerin, diethylene glycol, propylene carbonate Alcohols such as propylene glycol, acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, methyl isobutyl ketone, ketones such as methyl-n-propyl ketone, ethyl acetoacetate, ethyl benzoate, methyl benzoate, isobutyl formate, ethyl formate Examples include propyl formate, methyl formate, isobutyl acetate, ethyl acetate, propyl acetate, methyl acetate, methyl salicylate, diethyl oxalate, diethyl tartrate, dibutyl tartrate, ethyl phthalate, methyl phthalate, and butyl phthalate.

前記導電性高分子形成用電解重合液を用いることによって、電導度に優れ、かつ、高温に暴露された際に特定の安定構造をとる導電性高分子が得られ、さらに前記導電性高分子を固体電解質とすることにより、従来よりも格段に優れたESR特性、熱耐久性を有する固体電解コンデンサを得ることができる。   By using the electropolymerization liquid for forming the conductive polymer, a conductive polymer having excellent conductivity and taking a specific stable structure when exposed to high temperature can be obtained. By using a solid electrolyte, it is possible to obtain a solid electrolytic capacitor having ESR characteristics and thermal durability that are remarkably superior to conventional ones.

本発明に用いられる陽極弁作用金属としては、アルミニウム、タンタル、ニオブ又はチタンからなる群から選ばれた1種が挙げられ、焼結体又は箔の形状で用いられる。   The anode valve action metal used in the present invention includes one selected from the group consisting of aluminum, tantalum, niobium and titanium, and is used in the form of a sintered body or foil.

本発明の固体電解コンデンサは、用いられる陽極弁作用金属の種類、形状により、チップ型または巻回型のいずれとすることができる。   The solid electrolytic capacitor of the present invention can be either a chip type or a wound type depending on the type and shape of the anode valve action metal used.

本発明の固体電解コンデンサは、以下の方法により製造される。なお、本発明は以下の製造方法により、なんら限定されない。   The solid electrolytic capacitor of the present invention is manufactured by the following method. In addition, this invention is not limited at all by the following manufacturing methods.

以下、本発明について実施例を挙げより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(導電性高分子フィルムの評価)
(実施例1)
20mm×20mmサイズのステンレス(SUS)からなる透明導電膜付きの基板を用意し、これをアセトン、純水にて洗浄後、105℃乾燥機中で10分間乾燥させた。つぎに、電解重合液(アントラキノン−1,5−ジスルホン酸二ナトリウム(東京化成工業(株)製):1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液)中に浸漬し、透明導電膜側を陽極として、電流値を10mAに固定して電解重合を行い、基板上に導電性高分子層を形成した。
(Evaluation of conductive polymer film)
Example 1
A substrate with a transparent conductive film made of stainless steel (SUS) having a size of 20 mm × 20 mm was prepared, washed with acetone and pure water, and then dried in a dryer at 105 ° C. for 10 minutes. Next, electrolytic polymerization solution (anthraquinone-1,5-disulfonic acid disodium (manufactured by Tokyo Kasei Kogyo (Co.)): 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 ( The mixture was dipped in the mixed solution (g)), the transparent conductive film side was used as an anode, the current value was fixed at 10 mA, and electrolytic polymerization was performed to form a conductive polymer layer on the substrate.

次に、上記透明導電膜付き基板上に形成された導電性高分子層を剥離し、導電性高分子フィルムを完成させた。   Next, the conductive polymer layer formed on the substrate with the transparent conductive film was peeled off to complete a conductive polymer film.

(実施例2)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液(アントラキノン−1,8−ジスルホン酸二カリウム(東京化成工業(株)製):1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液)を用いて電解重合を行い、導電性高分子フィルムを形成した。
(Example 2)
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, electrolytic polymerization solution (anthraquinone-1,8-disulfonic acid dipotassium (manufactured by Tokyo Chemical Industry Co., Ltd.)): 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g ) Was used to conduct electropolymerization to form a conductive polymer film.

(実施例3)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液(アントラキノン−2,6−ジスルホン酸二ナトリウム(東京化成工業(株)製):1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液)を用いて電解重合を行い、導電性高分子フィルムを形成した。
Example 3
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, the electrolytic polymerization solution (anthraquinone-2,6-disulfonic acid disodium (manufactured by Tokyo Kasei Kogyo (Co.)): 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g ) Was used to conduct electropolymerization to form a conductive polymer film.

(実施例4)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液(アントラキノン−2,7−ジスルホン酸二ナトリウム(東京化成工業(株)製):1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液)を用いて電解重合を行い、導電性高分子フィルムを形成した。
Example 4
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, an electrolytic polymerization solution (anthraquinone-2,7-disulfonic acid disodium (manufactured by Tokyo Chemical Industry Co., Ltd.): 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g ) Was used to conduct electropolymerization to form a conductive polymer film.

(実施例5)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液(アントラキノン−1,5−ジスルホン酸二ナトリウム(東京化成工業(株)製):1.4(mmol)+ピロール:0.6(g)+4−ニトロフェノール:0.5(g)+HO:45.8(g)の混合溶液)を用いて電解重合を行い、導電性高分子フィルムを形成した。
(Example 5)
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, electrolytic polymerization solution (anthraquinone-1,5-disulfonic acid disodium (manufactured by Tokyo Chemical Industry Co., Ltd.): 1.4 (mmol) + pyrrole: 0.6 (g) + 4-nitrophenol: 0.5 ( g) + H 2 O: 45.8 (g) mixed solution) was used for electrolytic polymerization to form a conductive polymer film.

(比較例1)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にブチルナフタレンスルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子フィルムを形成した。
(Comparative Example 1)
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, electropolymerization was performed using a mixed solution of sodium butylnaphthalenesulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) in the electrolytic polymerization solution, and the conductivity was increased. A polymer film was formed.

(比較例2)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液に2,7−ナフタレンジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子フィルムを形成した。
(Comparative Example 2)
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, electrolytic polymerization was performed using a mixed solution of disodium 2,7-naphthalenedisulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as the electrolytic polymerization solution. And a conductive polymer film was formed.

実施例1〜5及び比較例1、2の導電性高分子フィルムについて、4端子法を用いて電導度を測定した。また、105℃大気中放置による熱耐久性試験を行い、100時間経過後に電導度を評価した。結果を表1に示した。   For the conductive polymer films of Examples 1 to 5 and Comparative Examples 1 and 2, the conductivity was measured using a four-terminal method. In addition, a thermal durability test was performed by leaving it in the atmosphere at 105 ° C., and the electrical conductivity was evaluated after 100 hours. The results are shown in Table 1.

Figure 2010245364
Figure 2010245364

表1より、従来の電解重合液を用いた比較例1、2と比較して、実施例1〜5では高い電導度と熱耐久性を示した。特に、4−ニトロフェノールを添加した電解重合液では、高い熱耐久性が得られた。   From Table 1, compared with the comparative examples 1 and 2 using the conventional electrolytic polymerization liquid, in Examples 1-5, high electrical conductivity and thermal durability were shown. In particular, high thermal durability was obtained in the electrolytic polymerization solution to which 4-nitrophenol was added.

以上の結果より、ドーパントとして導電性高分子形成用電解重合液を使用することで、電導度及び熱耐久性に優れた導電性高分子を得られることを確認した。また、前記ドーパントを含む電解重合液において、添加剤として4−ニトロフェノールを含有せしめ、これを電解重合液として使用することで、得られる導電性高分子の熱耐久性が向上することを確認した。   From the above results, it was confirmed that a conductive polymer excellent in conductivity and thermal durability can be obtained by using an electropolymerization liquid for forming a conductive polymer as a dopant. Moreover, in the electrolytic polymerization liquid containing the said dopant, it was confirmed that the thermal durability of the resulting conductive polymer was improved by adding 4-nitrophenol as an additive and using this as the electrolytic polymerization liquid. .

(固体電解コンデンサの評価)
(実施例6)
表面に誘電体酸化皮膜が形成された3mm×5mmサイズのエッチドアルミニウム化成箔を105℃乾燥機中で10分間乾燥させた。これを、18℃サーモプレート上に10分間静置した。次に18℃に冷却したモノマー液(ピロール:3(g)+エタノール:5(g)+HO:18.4(g)の混合液):4μlを箔上に滴下し、1分間静置した。さらに、酸化剤液(p−トルエンスルホン酸テトラエチルアンモニウム(PTS−TEA):5.6(mmol)+ペルオキソ二硫酸アンモニウム:1.56(g)+HO:10.63(g)の混合液):12μlを箔上に滴下し、10分間静置することで化学酸化重合しプレコート層を形成した。これを純水にて洗浄し、105℃乾燥機中で10分間乾燥させた。
(Evaluation of solid electrolytic capacitors)
(Example 6)
A 3 mm × 5 mm size etched aluminum formed foil having a dielectric oxide film formed on the surface was dried in a 105 ° C. dryer for 10 minutes. This was left to stand on an 18 ° C. thermoplate for 10 minutes. Next, 4 μl of a monomer liquid (pyrrole: 3 (g) + ethanol: 5 (g) + H 2 O: 18.4 (g) mixed liquid) cooled to 18 ° C. was dropped on the foil and left for 1 minute. did. Furthermore, an oxidizing agent solution (p-toluenesulfonate tetraethylammonium (PTS-TEA): 5.6 (mmol) + ammonium peroxodisulfate: 1.56 (g) + H 2 O: 10.63 (g)) : 12 μl was dropped on the foil and left to stand for 10 minutes for chemical oxidative polymerization to form a precoat layer. This was washed with pure water and dried in a 105 ° C. dryer for 10 minutes.

次に、電解重合液(アントラキノン−1,5−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液)を用意した。 Next, an electrolytic polymerization liquid (anthraquinone-1,5-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) mixed liquid) was prepared. .

プレコート層形成済みエッチドアルミニウム化成箔を電解重合液中に浸漬し、プレコート層に接触させた外部電極を陽極として、電流値を0.4mAに固定して電解重合を行い、導電性高分子層(固体電解質層)を形成した。   A conductive polymer layer is formed by immersing an etched aluminum formed foil with a precoat layer formed in an electrolytic polymerization solution, using the external electrode brought into contact with the precoat layer as an anode, fixing the current value to 0.4 mA, and performing electrolytic polymerization. (Solid electrolyte layer) was formed.

次に、上記アルミニウム箔の導電性高分子層を形成した部分にカーボンペーストと銀ペーストを順に塗布し、乾燥させて、合計20個のコンデンサ素子を完成させた。   Next, a carbon paste and a silver paste were sequentially applied to the portion of the aluminum foil where the conductive polymer layer was formed and dried to complete a total of 20 capacitor elements.

これら20個のコンデンサ素子について、100kHzにおける等価直列抵抗(ESR)を測定した。また、155℃大気中放置による熱耐久性試験を行い、100時間経過後に100kHzにおける等価直列抵抗(ESR)を評価した。なお、熱耐久性試験において素子モールドは行わなかった。   For these 20 capacitor elements, the equivalent series resistance (ESR) at 100 kHz was measured. In addition, a thermal durability test was conducted by leaving in the atmosphere at 155 ° C., and the equivalent series resistance (ESR) at 100 kHz was evaluated after 100 hours. In the thermal durability test, element molding was not performed.

(実施例7)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−1,8−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Example 7)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization using a mixed solution of anthraquinone-1,8-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as an electrolytic polymerization solution. To form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(実施例8)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2,6−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Example 8)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization using a mixed solution of anthraquinone-2,6-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as an electrolytic polymerization solution. To form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(実施例9)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2,7−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
Example 9
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization using a mixed solution of anthraquinone-2,7-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as an electrolytic polymerization solution. To form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(実施例10)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−1,5−ジスルホン酸二ナトリウム:1.26(mmol)+アントラキノン−2−スルホン酸ナトリウム:0.14(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Example 10)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, anthraquinone-1,5-disulfonate disodium: 1.26 (mmol) + sodium anthraquinone-2-sulfonate: 0.14 (mmol) + pyrrole: 0.6 (g) + H 2 O : Electrolytic polymerization was performed using a mixed solution of 45.8 (g) to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(実施例11)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−1,8−ジスルホン酸二ナトリウム:1.26(mmol)+アントラキノン−1,5−ジスルホン酸二ナトリウム:0.14(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Example 11)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, anthraquinone-1,8-disulfonic acid disodium: 1.26 (mmol) + anthraquinone-1,5-disulfonic acid disodium: 0.14 (mmol) + pyrrole: 0.6 (g) Electrolytic polymerization was performed using a mixed solution of + H 2 O: 45.8 (g) to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(実施例12)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2,6−ジスルホン酸二ナトリウム:1.26(mmol)+アントラキノン−2−スルホン酸ナトリウム:0.14(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Example 12)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, anthraquinone-2,6-disulfonic acid disodium: 1.26 (mmol) + sodium anthraquinone-2-sulfonic acid: 0.14 (mmol) + pyrrole: 0.6 (g) + H 2 O : Electrolytic polymerization was performed using a mixed solution of 45.8 (g) to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(実施例13)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2,7−ジスルホン酸二ナトリウム:1.26(mmol)+アントラキノン−2.6−ジスルホン酸二ナトリウム:0.14(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Example 13)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, anthraquinone-2,7-disulfonic acid disodium: 1.26 (mmol) + anthraquinone-2.6-disulfonic acid disodium: 0.14 (mmol) + pyrrole: 0.6 (g) Electrolytic polymerization was performed using a mixed solution of + H 2 O: 45.8 (g) to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(実施例14)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−1,5−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)+4−ニトロフェノール:0.229(mmol)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Example 14)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, anthraquinone-1,5-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) + 4-nitrophenol: 0.229 Electrolytic polymerization was performed using a mixed solution of (mmol) to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(実施例15)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−1,8−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)+4−ニトロ−1−ナフトール:0.229(mmol)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Example 15)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, anthraquinone-1,8-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) + 4-nitro-1-naphthol: Electrolytic polymerization was performed using a mixed solution of 0.229 (mmol) to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(実施例16)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2,6−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)+1−ヒドロキシ−4−ニトロアントラキノン:0.229(mmol)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Example 16)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, anthraquinone-2,6-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) + 1-hydroxy-4-nitroanthraquinone : Electrolytic polymerization was performed using a mixed solution of 0.229 (mmol) to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(実施例17)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2,7−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)+4−ニトロフェノール:0.229(mmol)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Example 17)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, anthraquinone-2,7-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) + 4-nitrophenol: 0.229 Electrolytic polymerization was performed using a mixed solution of (mmol) to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(実施例18)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2,7−ジスルホン酸二ナトリウム:1.386(mmol)+アントラキノン−2.6−ジスルホン酸二ナトリウム:0.014(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Example 18)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, anthraquinone-2,7-disulfonic acid disodium: 1.386 (mmol) + anthraquinone-2.6-disulfonic acid disodium: 0.014 (mmol) + pyrrole: 0.6 (g) Electrolytic polymerization was performed using a mixed solution of + H 2 O: 45.8 (g) to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(実施例19)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2,7−ジスルホン酸二ナトリウム:0.98(mmol)+アントラキノン−2.6−ジスルホン酸二ナトリウム:0.42(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Example 19)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, anthraquinone-2,7-disulfonic acid disodium: 0.98 (mmol) + anthraquinone-2.6-disulfonic acid disodium: 0.42 (mmol) + pyrrole: 0.6 (g) Electrolytic polymerization was performed using a mixed solution of + H 2 O: 45.8 (g) to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(比較例3)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液にブチルナフタレンスルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Comparative Example 3)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, electropolymerization was performed using a mixed solution of sodium butylnaphthalenesulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) in the electrolytic polymerization solution, and the conductivity was increased. A polymer layer was formed. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(比較例4)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液に1,5−ナフタレンスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Comparative Example 4)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization was performed using a mixed solution of disodium 1,5-naphthalenesulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as an electrolytic polymerization solution. And a conductive polymer layer was formed. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

(比較例5)
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例6と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液に2,7−ナフタレンスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合溶液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例6と同様に行った。
(Comparative Example 5)
Twenty capacitor elements were obtained in the same manner as in Example 6 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization was performed using a mixed solution of 2,7-naphthalenesulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as an electrolytic polymerization solution. And a conductive polymer layer was formed. The characteristics of the capacitor element were evaluated in the same manner as in Example 6.

実施例6〜19及び比較例3〜5のコンデンサ素子の測定結果を表2、3に示す。   Tables 2 and 3 show the measurement results of the capacitor elements of Examples 6 to 19 and Comparative Examples 3 to 5.

Figure 2010245364
Figure 2010245364

Figure 2010245364
Figure 2010245364

表中の※1)は、D1とD2のモル比は実施例10から実施例13ではD1:D2=90:10、実施例18ではD1:D2=99:1、実施例19ではD1:D2=70:30を意味する。   * 1) in the table indicates that the molar ratio of D1 to D2 is D1: D2 = 90: 10 in Examples 10 to 13, D1: D2 = 99: 1 in Example 18, and D1: D2 in Example 19. = 70: 30.

実施例6〜19と比較例3〜5を比較すると、実施例6〜19の方がコンデンサのESRの低減及び優れた熱耐久性が得られた。実施例6〜9より実施例10〜13の方が、ESRが低いことより、D1とD2の混合した支持電解質を用いる方が優れたESRを得られることがわかった。
また、添加剤を加えた実施例14〜17では、大幅に熱耐久性が向上することがわかった。
When Examples 6 to 19 and Comparative Examples 3 to 5 were compared, Examples 6 to 19 obtained a reduction in ESR of the capacitor and excellent thermal durability. It turned out that the ESR which was excellent in the direction of using the supporting electrolyte which D1 and D2 mixed from Examples 10-13 from Examples 10-13 is lower than ESR.
Moreover, in Examples 14-17 which added the additive, it turned out that thermal durability improves significantly.

本発明の電解重合液により得られる導電性高分子は、固体電解コンデンサはもとより、有機ELディスプレイ、有機トランジスタ、ポリマー電池、太陽電池、各種センサー材料、電磁波シールド材料、帯電防止材料、エレクトロクロミック材料、人工筋肉などに好適に使用できる。   The conductive polymer obtained by the electrolytic polymerization solution of the present invention is not only a solid electrolytic capacitor, but also an organic EL display, an organic transistor, a polymer battery, a solar battery, various sensor materials, an electromagnetic shielding material, an antistatic material, an electrochromic material, It can be suitably used for artificial muscles.

Claims (11)

導電性高分子単量体と支持電解質塩とが、溶媒に溶解されてなる導電性高分子形成用電解重合液において、
該支持電解質塩として、下記一般式(1)で示される化合物を少なくとも1種類含むことを特徴とする導電性高分子形成用電解重合液。
Figure 2010245364
(式(1)中、R〜Rはそれぞれ同一であっても異なってもよい水素原子、炭素数1〜6の直鎖又は分岐鎖状アルキル基、炭素数1〜6の直鎖又は分岐鎖状アルコキシ基、アミノ基、ニトロ基、スルホン酸基のいずれかを示し、少なくとも2つはスルホン酸基を示す。Xは対カチオンを示す。)
In the electropolymerization liquid for forming a conductive polymer, in which the conductive polymer monomer and the supporting electrolyte salt are dissolved in a solvent,
An electropolymerization liquid for forming a conductive polymer, comprising at least one compound represented by the following general formula (1) as the supporting electrolyte salt.
Figure 2010245364
(In Formula (1), R < 1 > -R < 8 > is the same or different, respectively, a hydrogen atom, a C1-C6 linear or branched alkyl group, a C1-C6 linear or Any one of a branched alkoxy group, an amino group, a nitro group and a sulfonic acid group, at least two of which are sulfonic acid groups, and X + represents a counter cation.)
該支持電解質塩として、一般式(1)で表される化合物(D1)を少なくとも1種類以上含み、更に一般式(1)で表される化合物と同一ではない下記一般式(2)で表される化合物(D2)を少なくとも1種類以上含み、それぞれの化合物のモル比がD1:D2=99:1〜70:30であることを特徴とする請求項1に記載の導電性高分子形成用電解重合液。
Figure 2010245364
(式(2)中、R〜R16はそれぞれ同一であっても異なってもよい水素原子、炭素数1〜6の直鎖又は分岐鎖状アルキル基、炭素数1〜6の直鎖又は分岐鎖状アルコキシ基、アミノ基、ニトロ基、スルホン酸基のいずれかを示し、少なくとも1つはスルホン酸基を示す。Xは対カチオンを示す。)
The supporting electrolyte salt is represented by the following general formula (2) which contains at least one compound (D1) represented by the general formula (1) and is not the same as the compound represented by the general formula (1). 2. The electrolysis for forming a conductive polymer according to claim 1, wherein the compound (D2) contains at least one compound and the molar ratio of each compound is D1: D2 = 99: 1 to 70:30. Polymerization solution.
Figure 2010245364
(In the formula (2), R 9 to R 16 may be the same or different from each other, a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear chain having 1 to 6 carbon atoms, or Any one of a branched alkoxy group, an amino group, a nitro group and a sulfonic acid group, at least one of which represents a sulfonic acid group, and X + represents a counter cation.)
下記一般式(3)〜(5)で示される少なくとも一つの化合物が添加剤として溶解されてなることを特徴とする請求項1又は2に記載の導電性高分子形成用電解重合液。
Figure 2010245364
(式中、R17〜R32はそれぞれ同一でも異なっていてもよい、水素原子、炭素数1〜6の直鎖状又は分岐鎖状アルキル基又はフェニル基を示す。)
The electropolymerization liquid for forming a conductive polymer according to claim 1 or 2, wherein at least one compound represented by the following general formulas (3) to (5) is dissolved as an additive.
Figure 2010245364
(In the formula, R 17 to R 32 each represent a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a phenyl group, which may be the same or different.)
前記導電性高分子単量体がピロール及び/又はピロール誘導体であることを特徴とする請求項1から3のいずれかに記載の導電性高分子形成用電解重合液。   The electropolymerization liquid for forming a conductive polymer according to any one of claims 1 to 3, wherein the conductive polymer monomer is pyrrole and / or a pyrrole derivative. 請求項1から4のいずれかに記載の導電性高分子形成用電解重合液中にて電解重合することにより形成されたことを特徴とする導電性高分子。   5. A conductive polymer formed by electropolymerization in the electropolymerization liquid for forming a conductive polymer according to claim 1. 弁作用金属に誘電体酸化被膜が形成され、該誘電体酸化被膜上に固体電解質を有する固体電解コンデンサにおいて、固体電解質に少なくとも請求項5に記載の導電性高分子が含有されていることを特徴とする固体電解コンデンサ。   A solid electrolytic capacitor having a dielectric oxide film formed on a valve action metal and having a solid electrolyte on the dielectric oxide film, wherein the solid electrolyte contains at least the conductive polymer according to claim 5. Solid electrolytic capacitor. 誘電体酸化被膜が形成された弁作用金属上に、請求項1から4のいずれかに記載の導電性高分子形成用電解重合液中で導電性高分子層を電解重合により形成する工程を少なくとも有する固体電解コンデンサの製造方法。   A step of forming a conductive polymer layer by electropolymerization in the electrolytic polymer solution for forming a conductive polymer according to any one of claims 1 to 4 on the valve action metal on which the dielectric oxide film is formed. A method for producing a solid electrolytic capacitor. 誘電体酸化被膜が形成された弁作用金属上に、導電性高分子層(A)を形成する工程と、前記導電性高分子層(A)上に請求項1から4のいずれかに記載の導電性高分子形成用電解重合液中で導電性高分子層(B)を電解重合により形成する工程とを有する固体電解コンデンサの製造方法。   5. The step of forming a conductive polymer layer (A) on the valve action metal on which the dielectric oxide film is formed, and the conductive polymer layer (A) according to claim 1. And a step of forming a conductive polymer layer (B) by electrolytic polymerization in an electropolymerization liquid for forming a conductive polymer. 導電性高分子層(A)が層構造を有していることを特徴とする請求項8に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 8, wherein the conductive polymer layer (A) has a layer structure. 導電性高分子層(A)の形成方法が、溶媒溶解性又は溶媒分散性の導電性高分子を含有した溶液を付着後乾燥させることにより形成する工程を含むことを特徴とする請求項8又は9に記載の固体電解コンデンサの製造方法。   The method for forming a conductive polymer layer (A) includes a step of forming a conductive polymer layer (A) by depositing and then drying a solution containing a solvent-soluble or solvent-dispersible conductive polymer. 10. A method for producing a solid electrolytic capacitor according to 9. 導電性高分子層(A)の形成方法が、導電性高分子単量体の化学重合により形成されることを特徴とする請求項8又は9に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 8 or 9, wherein the conductive polymer layer (A) is formed by chemical polymerization of a conductive polymer monomer.
JP2009093672A 2009-04-08 2009-04-08 Solid electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP5305351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009093672A JP5305351B2 (en) 2009-04-08 2009-04-08 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009093672A JP5305351B2 (en) 2009-04-08 2009-04-08 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010245364A true JP2010245364A (en) 2010-10-28
JP5305351B2 JP5305351B2 (en) 2013-10-02

Family

ID=43098035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009093672A Expired - Fee Related JP5305351B2 (en) 2009-04-08 2009-04-08 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5305351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919234A (en) * 2017-10-26 2018-04-17 中国科学院福建物质结构研究所 A kind of enhanced ultracapacitor and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230156A (en) * 1999-12-10 2001-08-24 Showa Denko Kk Laminated solid electrolytic capacitor
JP2005011925A (en) * 2003-06-18 2005-01-13 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing process
JP2006128232A (en) * 2004-10-27 2006-05-18 Japan Carlit Co Ltd:The Solid electrolytic capacitor
JP2007142070A (en) * 2005-11-17 2007-06-07 Tayca Corp Dopant solution for conductive polymer, oxidizing agent also serving as dopant for conductive polymer, conductive composition, solid electrolytic capacitor, and method of manufacturing same
JP2007184317A (en) * 2006-01-04 2007-07-19 Shin Etsu Polymer Co Ltd Method of manufacturing solid-state electrolytic capacitor
JP2008186881A (en) * 2007-01-29 2008-08-14 Japan Carlit Co Ltd:The Solid electrolytic capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230156A (en) * 1999-12-10 2001-08-24 Showa Denko Kk Laminated solid electrolytic capacitor
JP2005011925A (en) * 2003-06-18 2005-01-13 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing process
JP2006128232A (en) * 2004-10-27 2006-05-18 Japan Carlit Co Ltd:The Solid electrolytic capacitor
JP2007142070A (en) * 2005-11-17 2007-06-07 Tayca Corp Dopant solution for conductive polymer, oxidizing agent also serving as dopant for conductive polymer, conductive composition, solid electrolytic capacitor, and method of manufacturing same
JP2007184317A (en) * 2006-01-04 2007-07-19 Shin Etsu Polymer Co Ltd Method of manufacturing solid-state electrolytic capacitor
JP2008186881A (en) * 2007-01-29 2008-08-14 Japan Carlit Co Ltd:The Solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919234A (en) * 2017-10-26 2018-04-17 中国科学院福建物质结构研究所 A kind of enhanced ultracapacitor and preparation method thereof

Also Published As

Publication number Publication date
JP5305351B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP4908672B2 (en) Solid electrolytic capacitor
JP5637544B2 (en) Solid electrolytic capacitor
JPH0546693B2 (en)
CN110121757B (en) Method for manufacturing solid electrolytic capacitor
WO2012137968A1 (en) Conductive polymer aqueous suspension, method for producing same, conductive organic material, solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP5305351B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5327844B2 (en) Electrolytic polymerization liquid for forming conductive polymer, conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP2011138814A (en) Electrolytic capacitor and method of manufacturing the same
WO2011052237A1 (en) Solid electrolytic capacitor and method for producing same
JP2009032895A (en) Solid-state electrolytic capacitor, and manufacturing method thereof
JP5289183B2 (en) Manufacturing method of solid electrolytic capacitor
JP4986062B2 (en) Manufacturing method of solid electrolytic capacitor
JP3846760B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2012054258A (en) Electrolytic polymerization solution for forming conductive polymer, solid electrolytic capacitor, and method for manufacturing the same
JP2014192183A (en) Solid electrolytic capacitor and method of manufacturing the same
JP4925144B2 (en) Manufacturing method of solid electrolytic capacitor
JP2011236339A (en) Electrolytic polymerization liquid for forming conductive polymer and method for manufacturing solid electrolytic capacitor using the same
JP2010090324A (en) Dopant solution for conductive polymer, dopant solution also serving as oxidizer for conductive polymer, conductive composition, solid electrolytic capacitor and method for manufacturing the same
JP7078420B2 (en) Manufacturing method of solid electrolytic capacitor
JP2012089542A (en) Electrolytic polymerization solution for forming conductive polymer and method of manufacturing solid electrolytic capacitor using the same
JP2005259807A (en) Solid electrolytic capacitor and its manufacturing method
JP2011210918A (en) Electrolytic polymerization solution for forming conductive polymer, and method of manufacturing solid electrolytic capacitor using the same
JP2013157591A (en) Polyaniline solution for manufacturing solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor using the same
JP2010021217A (en) Solid electrolytic capacitor, and method of manufacturing the same
JP2010143996A (en) Electroconductive polymer, solid electrolytic capacitor using the same, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees