JP7078420B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP7078420B2
JP7078420B2 JP2018028796A JP2018028796A JP7078420B2 JP 7078420 B2 JP7078420 B2 JP 7078420B2 JP 2018028796 A JP2018028796 A JP 2018028796A JP 2018028796 A JP2018028796 A JP 2018028796A JP 7078420 B2 JP7078420 B2 JP 7078420B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
solvent
oxide film
ionic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018028796A
Other languages
Japanese (ja)
Other versions
JP2019145679A (en
Inventor
和之 金本
政幸 菊池
智彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carlit Holdings Co Ltd
Original Assignee
Carlit Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carlit Holdings Co Ltd filed Critical Carlit Holdings Co Ltd
Priority to JP2018028796A priority Critical patent/JP7078420B2/en
Publication of JP2019145679A publication Critical patent/JP2019145679A/en
Application granted granted Critical
Publication of JP7078420B2 publication Critical patent/JP7078420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、固体電解コンデンサの製造方法に関する。 The present invention relates to a method for manufacturing a solid electrolytic capacitor.

ポリアニリン、ポリピロール、ポリチオフェン等の導電性高分子は、優れた安定性及び導電性を有することから、固体電解コンデンサ用電解質に適用されている。 Conductive polymers such as polyaniline, polypyrrole, and polythiophene have excellent stability and conductivity, and are therefore applied to electrolytes for solid electrolytic capacitors.

これらの導電性高分子は一般に、溶媒に不溶あるいは難溶、かつ、不融であるため成形、加工が困難である。 Generally, these conductive polymers are insoluble or sparingly soluble in a solvent, and are insoluble, so that molding and processing are difficult.

固体電解コンデンサは、誘電体酸化皮膜を有する弁作用金属上に、導電性高分子を含有する固体電解質層を形成してなるものが知られている。 A solid electrolytic capacitor is known in which a solid electrolyte layer containing a conductive polymer is formed on a valve acting metal having a dielectric oxide film.

導電性高分子を含有する固体電解質層の形成方法としては、化学酸化重合法が知られている。化学酸化重合法では、例えば、誘電体酸化皮膜が形成された弁作用金属上にて、モノマー化合物を含む溶液及び酸化剤を付着、接触させることで重合せしめ、前記弁作用金属上に導電性高分子からなる固体電解質層を形成することができる。 As a method for forming a solid electrolyte layer containing a conductive polymer, a chemical oxidative polymerization method is known. In the chemical oxidative polymerization method, for example, a solution containing a monomer compound and an oxidizing agent are adhered and brought into contact with each other on a valve acting metal on which a dielectric oxide film is formed to polymerize the valve acting metal, resulting in high conductivity on the valve acting metal. A solid electrolyte layer composed of molecules can be formed.

しかし、この化学酸化重合法では、所望の容量出現率及びESR、耐久性、特に耐湿性が得られないという問題がある。 However, this chemical oxidative polymerization method has a problem that a desired capacity appearance rate, ESR, durability, particularly moisture resistance cannot be obtained.

特許文献1には、陰極層に、分解点が少なくとも300℃の常温溶融塩と、導電性高分子とからなる陰極層を形成させた固体電解コンデンサが開示されている。しかし、該固体電解コンデンサは、所望の容量出現率及びESR、高耐久性、高耐湿性が得られないという問題があった。 Patent Document 1 discloses a solid electrolytic capacitor in which a cathode layer composed of a room temperature molten salt having a decomposition point of at least 300 ° C. and a conductive polymer is formed on the cathode layer. However, the solid electrolytic capacitor has a problem that a desired capacity appearance rate, ESR, high durability, and high moisture resistance cannot be obtained.

以上より、優れた電気特性を有し、高耐久性、高耐湿性を具備する固体電解コンデンサの製造方法が求められていた。 From the above, there has been a demand for a method for manufacturing a solid electrolytic capacitor having excellent electrical characteristics, high durability, and high moisture resistance.

特開2006-024708号公報Japanese Unexamined Patent Publication No. 2006-024708

従来の製造方法では、所望の容量出現率とESR、耐久性、耐湿性が得られないという問題がある。従って本発明は、優れた容量出現率とESRを兼ね備え、高耐久性、特に高耐湿性を有する固体電解コンデンサの製造方法を提供するものである。 The conventional manufacturing method has a problem that a desired capacity appearance rate, ESR, durability, and moisture resistance cannot be obtained. Therefore, the present invention provides a method for manufacturing a solid electrolytic capacitor having excellent capacity appearance rate and ESR, and having high durability, particularly high moisture resistance.

本発明は、イオン性液体を溶媒にて所定濃度に希釈した前処理液を用いることで、意外にも容量出現率とESR、耐久性、耐湿性が格段に優れる方法を提供できることを見出した。 The present invention has found that by using a pretreatment liquid obtained by diluting an ionic liquid to a predetermined concentration with a solvent, it is possible to provide a method in which the volume appearance rate, ESR, durability and moisture resistance are remarkably excellent.

すなわち、本発明は以下に示すものである。 That is, the present invention is as shown below.

第一の発明は、誘電体酸化皮膜を形成させた陽極金属上に、電解質塩を保持させる工程(a)、固体電解質層を形成させる工程(b)を少なくとも有する固体電解コンデンサの製造方法において、前記電解質塩を保持させる工程(a)が、イオン性液体を溶媒にて所定濃度に希釈した前処理液を準備し、該前処理液を前記陽極金属上に接触させ、溶媒を蒸発させることにより、誘電体酸化皮膜上に電解質塩を保持させる工程であることを特徴とする固体電解コンデンサの製造方法である。 The first invention relates to a method for manufacturing a solid electrolytic capacitor, which comprises at least a step (a) of holding an electrolyte salt on an anode metal on which a dielectric oxide film is formed and a step (b) of forming a solid electrolyte layer. In the step (a) of retaining the electrolyte salt, a pretreatment liquid obtained by diluting the ionic liquid to a predetermined concentration with a solvent is prepared, and the pretreatment liquid is brought into contact with the anode metal to evaporate the solvent. It is a method for manufacturing a solid electrolytic capacitor, which is a step of holding an electrolyte salt on a dielectric oxide film.

第二の発明は、前記前処理液は、イオン性液体10重量部に対し、溶媒10~30重量部にて希釈したものであることを特徴とする前記第一の発明に記載の固体電解コンデンサの製造方法である。 The second invention is the solid electrolytic capacitor according to the first invention, wherein the pretreatment liquid is diluted with 10 to 30 parts by weight of a solvent with respect to 10 parts by weight of the ionic liquid. It is a manufacturing method of.

第三の発明は、前記溶媒がメタノール、エタノール及びイソプロピルアルコールからなる群から選ばれる少なくとも一つであることを特徴とした前記第一又は第二の発明に記載の固体電解コンデンサの製造方法である。 The third invention is the method for producing a solid electrolytic capacitor according to the first or second invention, wherein the solvent is at least one selected from the group consisting of methanol, ethanol and isopropyl alcohol. ..

第四の発明は、前記イオン性液体が、非ポリマーの窒素オニウムカチオンを含み、該カチオン部位がイミダゾリウム及び/又はピリジニウム骨格を少なくとも有することを特徴とする前記第一から第三の発明のいずれか一つに記載の固体電解コンデンサの製造方法である。 A fourth aspect of the invention is any of the first to third aspects of the invention, wherein the ionic liquid contains a non-polymeric nitrogen onium cation and the cation moiety has at least an imidazolium and / or a pyridinium skeleton. The method for manufacturing a solid electrolytic capacitor according to one of the above.

第五の発明は、前記イオン性液体が、含フッ素有機アニオンを含み、該アニオンがビストリフルオロメタンスルホニルイミドアニオンを少なくとも有することを特徴とする前記第一から第四の発明のいずれか一つに記載の固体電解コンデンサの製造方法である。 A fifth aspect of the invention is one of the first to fourth inventions, wherein the ionic liquid contains a fluorine-containing organic anion, and the anion has at least a bistrifluoromethanesulfonylimide anion. The method for manufacturing a solid electrolytic capacitor according to the above.

第六の発明は、前記誘電体酸化皮膜を形成させた陽極金属が、タンタル、チタン及びニオブからなる群から選ばれる少なくとも一つの金属の焼結体であることを特徴とする前記第一から第五の発明のいずれか一つに記載の固体電解コンデンサの製造方法である。 The sixth invention is characterized in that the anode metal on which the dielectric oxide film is formed is a sintered body of at least one metal selected from the group consisting of tantalum, titanium and niobium. The method for manufacturing a solid electrolytic capacitor according to any one of the five inventions.

本発明によれば、優れた電気特性を有し、高耐久性と高耐湿性を具備した固体電解コンデンサの製造方法を提供することができる。すなわち、高静電容量と低ESRとを両立でき、耐湿熱試験において電気特性の経時変化が極めて少なく、高信頼性の固体電解コンデンサの製造方法を提供できる。 According to the present invention, it is possible to provide a method for manufacturing a solid electrolytic capacitor having excellent electrical characteristics, high durability and high moisture resistance. That is, it is possible to provide a highly reliable method for manufacturing a solid electrolytic capacitor, which can achieve both high capacitance and low ESR, and has extremely little change in electrical characteristics with time in a moisture resistance test.

耐熱性試験における容量変化率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the capacity change rate in a heat resistance test. 耐湿性試験における容量変化率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the capacity change rate in a moisture resistance test. 耐湿性試験におけるESRの経時変化を示すグラフである。It is a graph which shows the time-dependent change of ESR in a moisture resistance test.

以下に本発明について説明する。 The present invention will be described below.

本発明の固体電解コンデンサは、誘電体酸化皮膜を形成させた陽極金属上に、電解質塩および固体電解質が形成されてなる固体電解コンデンサである。 The solid electrolytic capacitor of the present invention is a solid electrolytic capacitor in which an electrolyte salt and a solid electrolyte are formed on an anode metal on which a dielectric oxide film is formed.

[誘電体酸化皮膜を形成させた陽極金属]
陽極金属としては、アルミニウム、タンタル、ニオブ、チタン等の弁作用金属を例示することができる。陽極金属の形状としては、微細な粒子を焼結させた焼結体、エッチング等により粗面化処理した箔状あるいは板状の形状で用いられる。これらの陽極金属の中でも、タンタル、ニオブ、チタンからなる群から選ばれる少なくとも一つの金属の焼結体であることが好ましい。
[Anode metal with a dielectric oxide film formed]
Examples of the anode metal include valve acting metals such as aluminum, tantalum, niobium, and titanium. The shape of the anode metal is a sintered body obtained by sintering fine particles, or a foil-like or plate-like shape that has been roughened by etching or the like. Among these anode metals, a sintered body of at least one metal selected from the group consisting of tantalum, niobium, and titanium is preferable.

陽極金属に公知の化成処理を施すことによって弁作用金属の表面に誘電体酸化皮膜を形成することができる。例えば、アジピン酸二アンモニウム等の水溶液中で陽極酸化処理を行い、陽極金属上に誘電体酸化皮膜を形成することができる。 By applying a known chemical conversion treatment to the anode metal, a dielectric oxide film can be formed on the surface of the valve acting metal. For example, the anodic oxidation treatment can be performed in an aqueous solution of diammonium adipate or the like to form a dielectric oxide film on the anodic metal.

[電解質塩]
本発明に用いられる電解質塩は、イオン性液体とすることができる。本発明でいうイオン性液体とは、室温(25℃)で液状を呈する溶融塩(イオン性化合物)のことを指し、カチオン成分とアニオン成分とからなる塩である。
カチオン成分としては、アルキルアンモニウム、アルキルホスホニウム、アルキルピリジニウム、アルキルイミダゾリウム等が挙げられ、又、アニオン成分としては、テトラフルオロホウ酸、ヘキサフルオロリン酸、トリフルオロメタンスルホン酸、パーフルオロアルキルスルホニルイミド、パーフルオロアルキルスルホニルメチド、環状パーフルオロアルキルスルホニルイミド、ヒドロフッ化物、ビストリフルオロメタンスルホニルイミドアニオン、ビスフルオロメタンスルホニルイミドアニオン等が挙げられる。
これらのカチオン成分の中でも、非ポリマーの窒素オニウムカチオンを有し、該カチオン部位がイミダゾリウム及び/又はピリジニウム骨格を有するものが耐湿熱性の面で好ましい。また、アニオン成分の中でも、含フッ素有機アニオンを有し、該アニオンがビストリフルオロメタンスルホニルイミドアニオンであることが耐湿熱性の面で好ましい。また、カチオン成分として、非ポリマーの窒素オニウムカチオンを有し、該カチオン部位がイミダゾリウム及び/又はピリジニウム骨格を有するものであり、アニオン成分として、含フッ素有機アニオンを有し、該アニオンがビストリフルオロメタンスルホニルイミドアニオンであるものが耐湿熱性の面で好ましい。
[Electrolyte salt]
The electrolyte salt used in the present invention can be an ionic liquid. The ionic liquid in the present invention refers to a molten salt (ionic compound) that exhibits a liquid at room temperature (25 ° C.), and is a salt composed of a cationic component and an anionic component.
Examples of the cation component include alkylammonium, alkylphosphonium, alkylpyridinium, and alkylimidazolium, and examples of the anion component include tetrafluoroboric acid, hexafluorophosphate, trifluoromethanesulfonic acid, and perfluoroalkylsulfonylimide. Examples thereof include perfluoroalkylsulfonylmethides, cyclic perfluoroalkylsulfonylimides, hydrofluorides, bistrifluoromethanesulfonylimide anions, and bisfluoromethanesulfonylimide anions.
Among these cation components, those having a non-polymer nitrogen onium cation and having an imidazolium and / or a pyridinium skeleton at the cation moiety are preferable in terms of moisture resistance and heat resistance. Further, among the anion components, it is preferable that the anion has a fluorine-containing organic anion and the anion is a bistrifluoromethanesulfonylimide anion in terms of moisture resistance and heat resistance. Further, as a cation component, it has a non-polymer nitrogen onium cation, the cation moiety has an imidazolium and / or a pyridinium skeleton, and as an anion component, it has a fluorine-containing organic anion, and the anion is bistrifluoro. Those which are methanesulfonylimide anions are preferable in terms of moisture resistance and heat resistance.

[前処理液の溶媒]
本発明の前処理液の溶媒は、水又は有機溶媒を用いることができる。
[Solvent for pretreatment liquid]
As the solvent of the pretreatment liquid of the present invention, water or an organic solvent can be used.

有機溶媒としては、アルコール類、ケトン類、エステル類、エーテル類、セロソルブ類、芳香族炭化水素類、脂肪族炭化水素類等を用いることができる。 As the organic solvent, alcohols, ketones, esters, ethers, cellosolves, aromatic hydrocarbons, aliphatic hydrocarbons and the like can be used.

アルコール類としては、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、n-ブタノール、s-ブタノール、t-ブタノール、n-アミルアルコール、s-アミルアルコール、t-アミルアルコール、アリルアルコール、イソアミルアルコール、イソブチルアルコール、2-エチルブタノール、2-オクタノール、n-オクタノール、シクロヘキサノール、テトラヒドロフルフリルアルコール、フルフリルアルコール、n-ヘキサノール、n-ヘプタノール、2-ヘプタノール、3-ヘプタノール、ベンジルアルコール、メチルシクロヘキサノール、エチレングリコール、エチレングリコールモノメチルエーテル、グリセリン、ジエチレングリコール、プロピレングリコール等が挙げられる。 Alcohols include methanol, ethanol, 1-propanol, isopropyl alcohol, n-butanol, s-butanol, t-butanol, n-amyl alcohol, s-amyl alcohol, t-amyl alcohol, allyl alcohol, isoamyl alcohol, isobutyl. Alcohol, 2-ethylbutanol, 2-octanol, n-octanol, cyclohexanol, tetrahydrofurfuryl alcohol, furfuryl alcohol, n-hexanol, n-heptanol, 2-heptanol, 3-heptanol, benzyl alcohol, methylcyclohexanol, Examples thereof include ethylene glycol, ethylene glycol monomethyl ether, glycerin, diethylene glycol, propylene glycol and the like.

ケトン類としては、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、メチルイソブチルケトン、メチル-n-プロピルケトン等が挙げられる。 Examples of the ketone include acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, methyl isobutyl ketone, methyl-n-propyl ketone and the like.

エステル類としては、アセト酢酸エチル、安息香酸エチル、安息香酸メチル、蟻酸イソブチル、蟻酸エチル、蟻酸プロピル、蟻酸メチル、酢酸イソブチル、酢酸エチル、酢酸プロピル、酢酸メチル、サリチル酸メチル、シュウ酸ジエチル、酒石酸ジエチル、酒石酸ジブチル、フタル酸エチル、フタル酸メチル、フタル酸ブチル、γ-ブチロラクトン、マロン酸エチル、マロン酸メチル等が挙げられる。 Esters include ethyl acetoacetate, ethyl benzoate, methyl benzoate, isobutyl nitrate, ethyl lysate, propyl nitrate, methyl isomerate, isobutyl acetate, ethyl acetate, propyl acetate, methyl acetate, methyl salicylate, diethyl oxalate, diethyl tartrate. , Dibutyl tartrate, ethyl phthalate, methyl phthalate, butyl phthalate, γ-butyrolactone, ethyl malonate, methyl malonate and the like.

セロソルブ類としては、メチルセロソルブ、エチルセロソルブ等が挙げられる。 Examples of cellosolves include methyl cellosolve and ethyl cellosolve.

芳香族炭化水素類としては、ベンゼン、トルエン、キシレン等が挙げられる。 Examples of aromatic hydrocarbons include benzene, toluene, xylene and the like.

脂肪族炭化水素類としては、ヘキサン、シクロヘキサン等が挙げられる。 Examples of the aliphatic hydrocarbons include hexane and cyclohexane.

前記溶媒は混合して用いることができる。 The solvent can be mixed and used.

前記溶媒の中でも特に、メタノール、エタノール、イソプロピルアルコールからなる群から選ばれる少なくとも一つであることが、好ましく挙げられる。 Among the above-mentioned solvents, it is preferable that the solvent is at least one selected from the group consisting of methanol, ethanol and isopropyl alcohol.

[イオン性液体を溶媒にて所定濃度に希釈した前処理液]
上述した前処理液は、イオン性液体10重量部に対し、溶媒10~30重量部で希釈したものが好ましく、イオン性液体10重量部に対し、溶媒12~23重量部であることがより好ましく、イオン性液体10重量部に対し、溶媒15~19重量部であることが特に好ましく挙げられる。該範囲にすることで、特に優れた静電容量とESR特性を有する固体電解コンデンサを製造することができる。
[Pretreatment liquid obtained by diluting an ionic liquid to a predetermined concentration with a solvent]
The above-mentioned pretreatment liquid is preferably diluted with 10 to 30 parts by weight of the solvent with respect to 10 parts by weight of the ionic liquid, and more preferably 12 to 23 parts by weight with respect to 10 parts by weight of the ionic liquid. It is particularly preferable that the amount of the solvent is 15 to 19 parts by weight with respect to 10 parts by weight of the ionic liquid. Within this range, a solid electrolytic capacitor having particularly excellent capacitance and ESR characteristics can be manufactured.

上述した前処理液は、イオン性液体25~50質量%、溶媒50~75質量%であることが好ましく、イオン性液体30~45質量%、溶媒55~70質量%であることがより好ましく、イオン性液体35~40質量%、溶媒60~65質量%であることが更に好ましく上げられる。該範囲にすることで、特に優れた静電容量とESR特性を有する固体電解コンデンサを製造することができる。 The above-mentioned pretreatment liquid is preferably 25 to 50% by mass of the ionic liquid and 50 to 75% by mass of the solvent, and more preferably 30 to 45% by mass of the ionic liquid and 55 to 70% by mass of the solvent. More preferably, the ionic liquid is 35 to 40% by mass and the solvent is 60 to 65% by mass. Within this range, a solid electrolytic capacitor having particularly excellent capacitance and ESR characteristics can be manufactured.

[電解質塩を保持させる工程]
上述した電解質塩を保持させる工程を次に述べる。上述した前処理液を、誘電体酸化皮膜を有する弁作用金属に接触させた後、乾燥させることで、誘電体酸化皮膜を有する弁作用金属に、電解質塩を保持させたコンデンサ素子を作製する。接触させる方法は、任意の方法でよいが、好ましくは、浸漬させる方法が挙げられる。
[Step to retain electrolyte salt]
The step of retaining the above-mentioned electrolyte salt will be described below. The above-mentioned pretreatment liquid is brought into contact with the valve acting metal having a dielectric oxide film and then dried to produce a capacitor element in which the valve acting metal having a dielectric oxide film holds an electrolyte salt. The method of contacting may be any method, but a method of immersing is preferable.

つまり、誘電体酸化皮膜を有する弁作用金属を上述した前処理液に浸漬し引き上げた後乾燥して、誘電体酸化皮膜を有する弁作用金属に電解質塩を付着させる工程を有することが好ましく挙げられる。 That is, it is preferable to have a step of immersing the valve acting metal having a dielectric oxide film in the above-mentioned pretreatment liquid, pulling it up, and then drying it to attach an electrolyte salt to the valve acting metal having a dielectric oxide film. ..

誘電体酸化皮膜を有する弁作用金属を、上記前処理液に浸漬し、引き上げた後、乾燥する工程を複数回繰り返してもよい。好ましい回数としては、1~6回が好ましく挙げられ、1~3回がより好ましく挙げられ、1回が特に好ましく挙げられる。 The step of immersing the valve acting metal having a dielectric oxide film in the pretreatment liquid, pulling it up, and then drying it may be repeated a plurality of times. The preferred number of times is preferably 1 to 6 times, more preferably 1 to 3 times, and particularly preferably 1 time.

乾燥は室温での自然乾燥から加熱乾燥までのいずれでもよいが、80℃以上に加熱して乾燥させるのが好ましく挙げられる。 The drying may be any from natural drying at room temperature to heat drying, but it is preferable to heat to 80 ° C. or higher for drying.

[固体電解質]
前記固体電解質層を形成させる工程に用いられる導電性高分子は、好ましくはドーパントをドープした重合体である。重合体を製造するのに用いるモノマー化合物としては、特に制限されるものではなく、例えば、ピロール類、チオフェン類、アニリン類等を用いることができるが、導電性に優れることから、下記一般式(1)で表されるチオフェン化合物であることがより好ましい。
[Solid electrolyte]
The conductive polymer used in the step of forming the solid electrolyte layer is preferably a dopant-doped polymer. The monomer compound used for producing the polymer is not particularly limited, and for example, pyrroles, thiophenes, anilines and the like can be used, but since they are excellent in conductivity, the following general formula ( It is more preferable that it is a thiophene compound represented by 1).

Figure 0007078420000001
Figure 0007078420000001

上記一般式(1)中、Raは水素原子又は炭素数1~6の直鎖又は分岐状のアルキル基を示し、Xはそれぞれ同一でも異なっていても良い酸素原子又は硫黄原子を示す。 In the above general formula (1), Ra represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, and X represents an oxygen atom or a sulfur atom which may be the same or different, respectively.

上記一般式(1)で表されるチオフェン化合物として、具体的には、3,4-エチレンジオキシチオフェン、メチル-3,4-エチレンジオキシチオフェン、エチル-3,4-エチレンジオキシチオフェン、プロピル-3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、メチル-3,4-プロピレンジオキシチオフェン、エチル-3,4-プロピレンジオキシチオフェン、プロピル-3,4-プロピレンジオキシチオフェン、3,4-エチレンジチアチオフェン、メチル-3,4-エチレンジチアチオフェン、エチル-3,4-エチレンジチアチオフェン、プロピル-3,4-エチレンジチアチオフェン、3,4-プロピレンジチアチオフェン、メチル-3,4-プロピレンジチアチオフェン、エチル-3,4-プロピレンジチアチオフェン、プロピル-3,4-プロピレンジチアチオフェン等が挙げられる。 Specific examples of the thiophene compound represented by the general formula (1) include 3,4-ethylenedioxythiophene, methyl-3,4-ethylenedioxythiophene, ethyl-3,4-ethylenedioxythiophene, and the like. Propyl-3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, methyl-3,4-propylenedioxythiophene, ethyl-3,4-propylenedioxythiophene, propyl-3,4-propylenedi. Oxythiophene, 3,4-ethylenedithiathiophene, methyl-3,4-ethylenedithiathiophene, ethyl-3,4-ethylenedithiathiophene, propyl-3,4-ethylenedithiathiophene, 3,4-propylene Examples thereof include dithiathiophene, methyl-3,4-propylene dithiathiophene, ethyl-3,4-propylene dithiathiophene, propyl-3,4-propylene dithiathiophene and the like.

これらの中でも特に固体電解コンデンサにおける電気特性に優れる点より、3,4-エチレンジオキシチオフェン、メチル-3,4-エチレンジオキシチオフェン、エチル-3,4-エチレンジオキシチオフェンが特に好ましく挙げられる。 Among these, 3,4-ethylenedioxythiophene, methyl-3,4-ethylenedioxythiophene, and ethyl-3,4-ethylenedioxythiophene are particularly preferable because of their excellent electrical characteristics in solid electrolytic capacitors. ..

本発明に用いる導電性高分子は、上記一般式(1)で表されるチオフェン化合物等のモノマー化合物を、上記ドーパントの存在下で化学酸化重合することによって得ることができる。化学酸化重合のための酸化剤は例えば特開2010-31160号公報記載の公知の酸化剤を用いることができる。 The conductive polymer used in the present invention can be obtained by chemically oxidatively polymerizing a monomer compound such as the thiophene compound represented by the above general formula (1) in the presence of the above dopant. As the oxidizing agent for chemical oxidative polymerization, for example, a known oxidizing agent described in JP-A-2010-31160 can be used.

該ドーパントとしては、高分子への化学酸化ドープが起こりうる官能基を有していればよく、硫酸エステル基、リン酸エステル基、リン酸基、カルボキシル基、スルホ基等が好ましく挙げられる。これらの中でも、ドープ効果の点より、硫酸エステル基、カルボキシル基、スルホ基がより好ましく挙げられ、スルホ基が特に好ましく挙げられる。 The dopant may have a functional group capable of chemically oxidizing a polymer, and preferred examples thereof include a sulfate ester group, a phosphoric acid ester group, a phosphoric acid group, a carboxyl group, and a sulfo group. Among these, a sulfate ester group, a carboxyl group, and a sulfo group are more preferably mentioned, and a sulfo group is particularly preferable, from the viewpoint of the doping effect.

ドーパントとして、例えば、ヨウ素、臭素、塩素等のハロゲンイオン、ヘキサフルオロリン、ヘキサフルオロヒ素、ヘキサフルオロアンチモン、テトラフルオロホウ素、過塩素酸等のハロゲン化物イオン、又はメタンスルホン酸、ドデシルスルホン酸等のアルキル置換有機スルホン酸イオン、カンファースルホン酸イオン等の環状スルホン酸イオン、又はベンゼンスルホン酸、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、ベンゼンジスルホン酸等のアルキル置換もしくは無置換のベンゼンモノもしくはジスルホン酸イオン、2-ナフタレンスルホン酸、1,7-ナフタレンジスルホン酸等のスルホン酸基を1~4個置換したナフタレンスルホン酸のアルキル置換もしくは無置換イオン、アントラセンスルホン酸イオン、アントラキノンスルホン酸イオン、アルキルビフェニルスルホン酸、ビフェニルジスルホン酸等のアルキル置換もしくは無置換のビフェニルスルホン酸イオン、ポリスチレンスルホン酸、ナフタレンスルホン酸ホルマリン縮合体等の高分子スルホン酸イオン等、またはモリブドリン酸、タングストリン酸、タングストモリブドリン酸等のヘテロポリ酸イオン、メトキシベンゼンスルホン酸、エトキシベンゼンスルホン酸、キシレンスルホン酸が挙げられる。これらの中でも、ポリスチレンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、メトキシベンゼンスルホン酸、エトキシベンゼンスルホン酸、キシレンスルホン酸から選ばれる少なくとも一種がより好ましく挙げられ、パラトルエンスルホン酸が特に好ましく挙げられる。 Examples of the dopant include halogen ions such as iodine, bromine and chlorine, halide ions such as hexafluorolin, hexafluoroarsenic, hexafluoroantimon, tetrafluoroboron and perchloric acid, or methanesulfonic acid and dodecylsulfonic acid. Alkyl-substituted organic sulfonic acid ion, cyclic sulfonic acid ion such as camphor sulfonic acid ion, or alkyl-substituted or unsubstituted benzenemono or disulfonic acid ion such as benzenesulfonic acid, paratoluenesulfonic acid, dodecylbenzenesulfonic acid, benzenedisulfonic acid. , 2-naphthalene sulfonic acid, alkyl-substituted or unsubstituted ion of naphthalene sulfonic acid in which 1 to 4 sulfonic acid groups such as 1,7-naphthalenedi sulfonic acid are substituted, anthracene sulfonic acid ion, anthraquinone sulfonic acid ion, alkyl biphenyl sulfone. Alkyl-substituted or unsubstituted biphenyl sulfonic acid ion such as acid and biphenyl disulfonic acid, high molecular weight sulfonic acid ion such as polystyrene sulfonic acid and naphthalene sulfonic acid formalin condensate, or molybdrine acid, tongue sulphonic acid and tongue tomolib sulphonic acid. Examples thereof include heteropolyacid ions such as, methoxybenzene sulfonic acid, ethoxybenzene sulfonic acid, and xylene sulfonic acid. Among these, at least one selected from polystyrene sulfonic acid, benzene sulfonic acid, paratoluene sulfonic acid, methoxybenzene sulfonic acid, ethoxybenzene sulfonic acid, and xylene sulfonic acid is more preferable, and paratoluene sulfonic acid is particularly preferable. ..

[固体電解質層を形成させる工程]
前記固体電解層を形成させる工程を次に述べる。上述したモノマー化合物とドーパント及び酸化剤を含む混合溶液を、誘電体酸化皮膜を有し電解質塩を保持した弁作用金属に接触させた後、乾燥させることで、誘電体酸化皮膜を有し、電解質塩を保持した弁作用金属に、導電性高分子を付着させたコンデンサ素子を作製する。接触させる方法は、任意の方法でよいが、好ましくは、浸漬させる方法が挙げられる。
[Step of forming a solid electrolyte layer]
The step of forming the solid electrolytic layer will be described below. The above-mentioned mixed solution containing the monomer compound, the dopant and the oxidizing agent is brought into contact with a valve acting metal having a dielectric oxide film and holding an electrolyte salt, and then dried to have a dielectric oxide film and an electrolyte. A capacitor element in which a conductive polymer is attached to a valve-acting metal holding a salt is manufactured. The method of contacting may be any method, but a method of immersing is preferable.

つまり、誘電体酸化皮膜を有し電解質塩を保持した弁作用金属を、上述したモノマー化合物とドーパントを含む溶液に浸漬し引き上げた後乾燥して、誘電体酸化皮膜を有する弁作用金属に導電性高分子を付着させる工程を有することが好ましく挙げられる。 That is, the valve acting metal having a dielectric oxide film and holding an electrolyte salt is immersed in the above-mentioned solution containing the monomer compound and the dopant, pulled up, and then dried to be conductive to the valve acting metal having a dielectric oxide film. It is preferable to have a step of adhering a polymer.

誘電体酸化皮膜を有する弁作用金属を、上述したモノマー化合物とドーパント及び酸化剤を含む混合溶液に浸漬し、引き上げた後、乾燥する工程を複数回繰り返してもよい。好ましい回数としては、1~6回が好ましく挙げられ、1~3回がより好ましく挙げられ、1回が特に好ましく挙げられる。 The step of immersing the valve acting metal having a dielectric oxide film in a mixed solution containing the above-mentioned monomer compound, dopant and oxidizing agent, pulling it up, and then drying it may be repeated a plurality of times. The preferred number of times is preferably 1 to 6 times, more preferably 1 to 3 times, and particularly preferably 1 time.

固体電解質を形成させる工程は、モノマー化合物とドーパントを含む酸化剤溶液を交互に接触させる化学重合法や、電解重合法や、導電性高分子分散液を前記弁作用金属に接触させる方法も挙げられる。 Examples of the step of forming the solid electrolyte include a chemical polymerization method in which an oxidizing agent solution containing a monomer compound and a dopant are alternately contacted, an electrolytic polymerization method, and a method in which a conductive polymer dispersion is brought into contact with the valve acting metal. ..

乾燥は室温での自然乾燥から加熱乾燥までのいずれでもよいが、導電性高分子分散液に高沸点有機溶媒を含有させている場合には、150℃以上に加熱して乾燥させるのが好ましく挙げられる。 Drying may be performed from natural drying at room temperature to heat drying, but when the conductive polymer dispersion contains a high boiling point organic solvent, it is preferably heated to 150 ° C. or higher to dry. Be done.

[固体電解コンデンサ]
用いる弁作用金属の種類、形状により、固体電解コンデンサはチップ型とすることができる。
[Solid electrolytic capacitor]
The solid electrolytic capacitor can be a chip type depending on the type and shape of the valve acting metal used.

(実施例1)
陽極として大きさが1.3×2.1×1.6mmのタンタル焼結体を用い、陽極線としてタンタル線を用いた陽極体を0.05重量%燐酸水溶液中で80℃、25Vで150分陽極酸化し、脱イオン水の流水により洗浄して、乾燥を行いコンデンサ素子とした。
(Example 1)
A tantalum sintered body having a size of 1.3 × 2.1 × 1.6 mm 3 was used as an anode, and an anode body using a tantalum wire as an anode wire was used at 80 ° C. and 25 V in a 0.05 wt% aqueous phosphoric acid solution. It was anodized for 150 minutes, washed with running deionized water, and dried to obtain a condenser element.

(前処理液の製造)
1-エチル-3-メチルイミダゾリウム・ビストリフルオロメタンスルホニルイミド(ビストリフルオロメタンスルホニルイミドアニオン使用、東京化成工業株式会社製)10重量部をメタノール19部で希釈し前処理液を得た。
(Manufacturing of pretreatment liquid)
10 parts by weight of 1-ethyl-3-methylimidazolium / bistrifluoromethanesulfonylimide (using bistrifluoromethanesulfonylimide anion, manufactured by Tokyo Kasei Kogyo Co., Ltd.) was diluted with 19 parts of methanol to obtain a pretreatment solution.

(導電性高分子モノマーとドーパント及び酸化剤を含む混合溶液の製造)
1.0部の2-エチル-2,3-ジヒドロチエノ[3,4-b]-1,4-
ジオキシン(2-エチル-EDOT)と3.0部の40%パラトルエンスルホン酸第二鉄/n-ブタノール溶液を混合し、導電性高分子モノマーとドーパント及び酸化剤を含む混合溶液を得た。
(Manufacturing of a mixed solution containing a conductive polymer monomer, a dopant and an oxidizing agent)
1.0 part of 2-ethyl-2,3-dihydrothieno [3,4-b] -1,4-
Dioxine (2-ethyl-EDOT) and 3.0 parts of a 40% ferric paratoluenesulfonic acid / n-butanol solution were mixed to obtain a mixed solution containing a conductive polymer monomer, a dopant and an oxidizing agent.

(電解質塩を保持させる工程)
次に、上記前処理液に、上記コンデンサ素子を5分浸漬し、150℃で5分乾燥させる工程を3回繰り返した後、さらに150℃で1時間熱処理を行って電解質塩を保持させ、コンデンサ素子とした。
(Step to retain electrolyte salt)
Next, the step of immersing the capacitor element in the pretreatment liquid for 5 minutes and drying at 150 ° C. for 5 minutes was repeated three times, and then heat treatment was further performed at 150 ° C. for 1 hour to retain the electrolyte salt, and the capacitor was retained. It was an element.

(固体電解質層を形成させる工程)
次に、上記で得られた導電性高分子モノマーとドーパント及び酸化剤を含む混合溶液に、上記コンデンサ素子を5分浸漬し、150℃で5分乾燥させる工程を3回繰り返した後、さらに150℃で1時間熱処理を行って固体電解質層を形成させ、コンデンサ素子とした。
(Step of forming a solid electrolyte layer)
Next, the step of immersing the capacitor element in the mixed solution containing the conductive polymer monomer, the dopant and the oxidizing agent obtained above for 5 minutes and drying at 150 ° C. for 5 minutes was repeated 3 times, and then 150 more. A solid electrolyte layer was formed by heat treatment at ° C. for 1 hour to obtain a capacitor element.

(固体電解コンデンサの作製)
その後、上記で得られたコンデンサ素子の固体電解質上にグラファイト層及び銀ペースト層を順次形成し、銀ペースト層に導電性接着剤を介して陰極リードを、陽極に陽極リードをそれぞれ接続し、固体電解コンデンサを完成させた。
(Making a solid electrolytic capacitor)
After that, a graphite layer and a silver paste layer are sequentially formed on the solid electrolyte of the capacitor element obtained above, and a cathode lead is connected to the silver paste layer via a conductive adhesive and an anode lead is connected to the anode to form a solid. The electrolytic capacitor was completed.

(実施例10、比較例3~8
イオン性液体と溶媒の比率を表1に対応するように変えた以外は、実施例1と同様にして固体電解コンデンサを作製した。
(Examples 6 to 10, Comparative Examples 3 to 8 )
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the ratio of the ionic liquid and the solvent was changed so as to correspond to Table 1.

比較
イオン性液体のアニオンをトリフルオロメタンスルホン酸に変えた以外は、実施例1と同様にして固体電解コンデンサを作製した。
( Comparative Example 9 )
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the anion of the ionic liquid was changed to trifluoromethanesulfonic acid.

(実施例14)
イオン性液体のカチオンをピリジニウム(1-ブチル-ピリジニウム・ビストリフルオロメタンスルホニルイミド、東京化成工業株式会社製)に変えた以外は、実施例1と同様にして固体電解コンデンサを作製した。
(Example 14)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the cation of the ionic liquid was changed to pyridinium (1-butyl-pyridinium / bistrifluoromethanesulfonylimide, manufactured by Tokyo Kasei Kogyo Co., Ltd.).

(実施例15)
イオン性液体のカチオンをトリメチルプロピルアンモニウムビス(トリフルオロメタンスルホニル)イミド(東京化成工業株式会社製)に変えた以外は、実施例1と同様にして固体電解コンデンサを作製した。
(Example 15)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the cation of the ionic liquid was changed to trimethylpropylammonium bis (trifluoromethanesulfonyl) imide (manufactured by Tokyo Kasei Kogyo Co., Ltd.).

(比較例1)
実施例1に記載の電解質塩を保持させる工程において、溶媒によるイオン性液体の希釈を行わなかった以外は、実施例1と同様にして固体電解コンデンサを作製した。
(Comparative Example 1)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the ionic liquid was not diluted with a solvent in the step of retaining the electrolyte salt according to Example 1.

(比較例2)
実施例1に記載の電解質塩を保持させる工程を行わなかった以外は、実施例1と同様にして固体電解コンデンサを作製した。
(Comparative Example 2)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the step of retaining the electrolyte salt according to Example 1 was not performed.

<固体電解コンデンサの静電容量及びESR特性の評価>
実施例1、610、14、15及び比較例1~より得られた固体電解コンデンサについて、120Hzにおける静電容量(μF)を測定し、100kHzにおける等価直列抵抗(ESR)を測定した。測定結果を表1に示す。前処理液の溶媒重量部は、イオン性液体及び電解コンデンサ用電解液の重量部を10とした場合のものである。
<Evaluation of capacitance and ESR characteristics of solid electrolytic capacitors>
For the solid electrolytic capacitors obtained from Examples 1 , 6 to 10, 14, 15 and Comparative Examples 1 to 9 , the capacitance (μF) at 120 Hz was measured, and the equivalent series resistance (ESR) at 100 kHz was measured. The measurement results are shown in Table 1. The solvent weight part of the pretreatment liquid is the case where the weight part of the ionic liquid and the electrolytic solution for the electrolytic capacitor is 10.

Figure 0007078420000002
Figure 0007078420000002

<固体電解コンデンサの耐熱試験>
実施例1及び比較例2より得られた固体電解コンデンサを、125℃の恒温槽中で付加電圧2.5Vの条件で試験した。5時間後、12時間後、20時間後、29時間後、37時間後の耐熱試験後の固体電解コンデンサの120Hzにおける静電容量(μF)を測定した。測定結果から容量変化率を算出した結果を図1に示す。
<Heat resistance test of solid electrolytic capacitor>
The solid electrolytic capacitors obtained from Example 1 and Comparative Example 2 were tested in a constant temperature bath at 125 ° C. under the condition of an additional voltage of 2.5 V. The capacitance (μF) at 120 Hz of the solid electrolytic capacitor after the heat resistance test after 5 hours, 12 hours, 20 hours, 29 hours, and 37 hours was measured. The result of calculating the capacity change rate from the measurement result is shown in FIG.

<固体電解コンデンサの耐湿性試験>
実施例1及び比較例2より得られた固体電解コンデンサを、60℃、85%RHの恒温槽中、電圧付加無しの条件で試験した。条件下で100時間後、500時間後、1000時間後、1500時間後、2000時間後の固体電解コンデンサの120Hzにおける静電容量(μF)を測定し、100kHzにおける等価直列抵抗(ESR)を測定した。測定結果を図2、図3に示す。
<Moisture resistance test of solid electrolytic capacitors>
The solid electrolytic capacitors obtained from Example 1 and Comparative Example 2 were tested in a constant temperature bath at 60 ° C. and 85% RH under the condition of no voltage addition. Under the conditions, the capacitance (μF) at 120 Hz of the solid electrolytic capacitor after 100 hours, 500 hours, 1000 hours, 1500 hours, and 2000 hours was measured, and the equivalent series resistance (ESR) at 100 kHz was measured. .. The measurement results are shown in FIGS. 2 and 3.

本発明の固体電解コンデンサは信頼性、耐久性に優れるため、高周波数のデジタル機器等に適用できる。 Since the solid electrolytic capacitor of the present invention is excellent in reliability and durability, it can be applied to high frequency digital devices and the like.

Claims (4)

誘電体酸化皮膜を形成させた陽極金属上に、電解質塩を保持させる工程(a)、固体電解質層を形成させる工程(b)を少なくとも有する固体電解コンデンサの製造方法において、前記電解質塩を保持させる工程(a)が、イオン性液体10重量部に対し、溶媒10~30重量部に希釈した前処理液を準備し、該前処理液を前記陽極金属上に接触させ、溶媒を蒸発させることにより、誘電体酸化皮膜上に電解質塩を保持させる工程であって、
前記イオン性液体が、含フッ素有機アニオンを含み、該アニオンがビストリフルオロメタンスルホニルイミドアニオンを少なくとも有することを特徴とする固体電解コンデンサの製造方法。
In the method for manufacturing a solid electrolytic capacitor having at least a step (a) of holding an electrolyte salt on an anode metal on which a dielectric oxide film is formed and a step (b) of forming a solid electrolyte layer, the electrolyte salt is held. In step (a), a pretreatment liquid diluted to 10 to 30 parts by weight of a solvent is prepared with respect to 10 parts by weight of the ionic liquid, and the pretreatment liquid is brought into contact with the anode metal to evaporate the solvent. , A step of retaining the electrolyte salt on the dielectric oxide film,
A method for producing a solid electrolytic capacitor, wherein the ionic liquid contains a fluorine-containing organic anion, and the anion has at least a bistrifluoromethanesulfonylimide anion .
前記溶媒がメタノール、エタノール、イソプロピルアルコールからなる群から選ばれる少なくとも一つであることを特徴とした請求項に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to claim 1 , wherein the solvent is at least one selected from the group consisting of methanol, ethanol, and isopropyl alcohol. 前記イオン性液体が、非ポリマーの窒素オニウムカチオンを含み、該カチオン部位がイミダゾリウム及び/又はピリジニウム骨格を少なくとも有することを特徴とする請求項1又は2に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to claim 1 or 2 , wherein the ionic liquid contains a non-polymeric nitrogen onium cation, and the cation moiety has at least an imidazolium and / or a pyridinium skeleton. 前記誘電体酸化皮膜を形成させた陽極金属が、タンタル、チタン及びニオブからなる群から選ばれる少なくとも一つの金属の焼結体であることを特徴とする請求項1~のいずれか一つに記載の固体電解コンデンサの製造方法。 One of claims 1 to 3 , wherein the anode metal on which the dielectric oxide film is formed is a sintered body of at least one metal selected from the group consisting of tantalum, titanium and niobium. The method for manufacturing a solid electrolytic capacitor according to the description.
JP2018028796A 2018-02-21 2018-02-21 Manufacturing method of solid electrolytic capacitor Active JP7078420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018028796A JP7078420B2 (en) 2018-02-21 2018-02-21 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018028796A JP7078420B2 (en) 2018-02-21 2018-02-21 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2019145679A JP2019145679A (en) 2019-08-29
JP7078420B2 true JP7078420B2 (en) 2022-05-31

Family

ID=67773362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018028796A Active JP7078420B2 (en) 2018-02-21 2018-02-21 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP7078420B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118679541A (en) * 2022-02-14 2024-09-20 松下知识产权经营株式会社 Electrolytic capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024708A (en) 2004-07-07 2006-01-26 Japan Carlit Co Ltd:The Solid electrolytic capacitor and manufacturing method thereof
JP2008218920A (en) 2007-03-07 2008-09-18 Kaneka Corp Method of manufacturing conductive polymer solid electrolytic capacitor
JP2011029340A (en) 2009-07-23 2011-02-10 Kaneka Corp Method of manufacturing tantalum/niobium solid electrolytic capacitor
JP2012151147A (en) 2011-01-14 2012-08-09 Kaneka Corp Electrolyte for electrolytic capacitor and method for forming the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024708A (en) 2004-07-07 2006-01-26 Japan Carlit Co Ltd:The Solid electrolytic capacitor and manufacturing method thereof
JP2008218920A (en) 2007-03-07 2008-09-18 Kaneka Corp Method of manufacturing conductive polymer solid electrolytic capacitor
JP2011029340A (en) 2009-07-23 2011-02-10 Kaneka Corp Method of manufacturing tantalum/niobium solid electrolytic capacitor
JP2012151147A (en) 2011-01-14 2012-08-09 Kaneka Corp Electrolyte for electrolytic capacitor and method for forming the same

Also Published As

Publication number Publication date
JP2019145679A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP2012119427A (en) Solid electrolytic capacitor and method of manufacturing the same
KR20110098634A (en) Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
JP2017045868A (en) Electrolytic capacitor
JP2014027040A (en) Conductive polymer dispersion liquid for manufacturing solid electrolytic capacitor and solid electrolytic capacitor manufactured using the same
JP2014011222A (en) Conductive polymer dispersion for manufacturing solid electrolytic capacitor and solid electrolytic capacitor manufactured by using the same
JP2014041888A (en) Conductive polymer dispersion for manufacturing solid electrolytic capacitor and solid electrolytic capacitor manufactured using the same
JP2012246427A (en) Conductive polymer, conductive polymer aqueous solution, conductive polymer film, solid electrolytic capacitor and method for producing the same
JP7078420B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006024708A (en) Solid electrolytic capacitor and manufacturing method thereof
CN110121757B (en) Method for manufacturing solid electrolytic capacitor
JP2019110322A (en) Manufacturing method of electrolytic capacitor
JP6154461B2 (en) Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor
JP6878896B2 (en) Electrolytic capacitors and their manufacturing methods
JP2009032895A (en) Solid-state electrolytic capacitor, and manufacturing method thereof
JP2017222795A (en) Conductive polymer dispersion liquid and method for producing solid electrolytic capacitor using the same
WO2011052237A1 (en) Solid electrolytic capacitor and method for producing same
JP3846760B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2012146867A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2014192183A (en) Solid electrolytic capacitor and method of manufacturing the same
JP5296860B2 (en) Manufacturing method of solid electrolytic capacitor
JP5327844B2 (en) Electrolytic polymerization liquid for forming conductive polymer, conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP4035639B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5305351B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2020047755A (en) Method for manufacturing solid electrolytic capacitor
JP2020053575A (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220519

R150 Certificate of patent or registration of utility model

Ref document number: 7078420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350