JP4035639B2 - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP4035639B2
JP4035639B2 JP2001343206A JP2001343206A JP4035639B2 JP 4035639 B2 JP4035639 B2 JP 4035639B2 JP 2001343206 A JP2001343206 A JP 2001343206A JP 2001343206 A JP2001343206 A JP 2001343206A JP 4035639 B2 JP4035639 B2 JP 4035639B2
Authority
JP
Japan
Prior art keywords
acid
electrolytic capacitor
solid electrolytic
conductive polymer
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001343206A
Other languages
Japanese (ja)
Other versions
JP2003142343A5 (en
JP2003142343A (en
Inventor
良樹 濱
秀秋 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi AIC Inc
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2001343206A priority Critical patent/JP4035639B2/en
Publication of JP2003142343A publication Critical patent/JP2003142343A/en
Publication of JP2003142343A5 publication Critical patent/JP2003142343A5/ja
Application granted granted Critical
Publication of JP4035639B2 publication Critical patent/JP4035639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は導電性高分子を固体電解質とする固体電解コンデンサの製造方法に関する。
【0002】
【従来の技術】
固体電解コンデンサはアルミニウム、ニオブ、タンタル等の弁作用金属の箔や多孔質成形体を陽極とし、その表面にそれらの金属酸化物を誘電体、さらにその表面に固体電解質、カーボン、銀を陰極とする構造をしている。固体電解質は誘電体からリードをとる役割と、誘電体に熱や物理的な衝撃により損傷が生じたときに修復する役割を担っている。従来は固体電解質として二酸化マンガンや7,7′,8,8′−テトラシアノキノジメタン錯塩(TCNQ)等が用いられていた。しかし、二酸化マンガンは導電率が低いこと、誘電体の修復能力が弱いことなどが問題であった。特に導電率が低いことは、固体電解コンデンサの高周波領域におけるインピーダンスが大きい原因となっている。また、TCNQを電解質層とするものは、TCNQがはんだ温度以下の温度で融解するために耐熱性に劣っていた。また、TCNQの導電率は1S/cm程度が限界であるので、より高周波特性の優れたコンデンサへの要求には答えられるものではなかった。最近、これらに変わる固体電解質として、ポリピロール、ポリアニリン、ポリチオフェンやそれらの誘導体等の導電性高分子が提案されている。これらの導電性高分子は二酸化マンガンに比べて、導電率が高い、誘電体の修復能力が高いなどの利点がある。導電性高分子を形成させるには、溶液法、化学酸化重合法、電解重合法などがあるが、溶液法では高分子が可溶性である必要があるために導電性高分子の種類が限られる上、高分子が溶解しているために溶液粘度が高く、固体電解コンデンサの誘電体皮膜表面に十分に被覆することができないという問題がある。また、電解重合法では誘電体皮膜が絶縁性であるために通電させることができず、最初に二酸化マンガンもしくは化学酸化重合法などにより導電性高分子を形成してやらなければならず、工程が非常に煩雑となる。化学酸化重合法は工程が簡単であるために、広く検討されている導電性高分子の形成方法である。しかしながら、化学酸化重合法ではモノマー溶液を誘電体表面に導入するために反応の制御が困難であることから、導電率は重合時にモノマー溶液に含まれるプロトン酸の種類に大きく依存する。また、導電性高分子の耐熱性もプロトン酸の種類に大きく依存するため、重合時に導電率が高くなるプロトン酸が必ずしも耐熱性の高いプロトン酸であるとは限らず、導電率と耐熱性の特性を同時に満足させることは困難である。
【0003】
【発明が解決しようとする課題】
本発明の目的は、低周波数から高周波数までの容量、インピーダンスが優れしかもハンダリフロー等の熱処理工程を通しても特性の劣化が無い耐熱性に優れた固体電解コンデンサの簡便な製造方法を提供することにある。
【0004】
本発明の他の目的は、上記の発明に加えて固体電解質の形成が簡便な固体電解コンデンサの製造方法を提供するものである。
【0005】
本発明の他の目的は、上記の発明に加えて低コストで固体電解質の形成が簡便な固体電解コンデンサの製造方法を提供することにある。
【0006】
本発明の他の目的は、上記の発明に加えて耐熱性、耐湿性に優れ固体電解質の形成が簡便な固体電解コンデンサの製造方法を提供することにある。
【0007】
本発明の他の目的は、上記の発明の製造方法を用いて、低周波数から高周波数までの静電容量、インピーダンスが優れしかもハンダリフロー等の熱処理工程を通しても特性の劣化が無い固体電解コンデンサを提供することある。
【0008】
【課題を解決するための手段】
本発明は、弁作用金属に誘電体である酸化皮膜を形成し、次いで、この酸化皮膜に固体電解質層である電子共役系高分子に第一のプロトン酸を含む導電性高分子層を形成した後、この導電性高分子層をこの導電性高分子層に含まれる第一のプロトン酸より耐熱性の高い導電性高分子層を形成することができる第二のプロトン酸を含む溶液に浸漬することにより、前記導電性高分子層の第一のプロトン酸を第二のプロトン酸に交換し、次いで、乾燥後、その表面に陰極層を積層したことを特徴とする固体電解コンデンサの製造方法に関する。
【0013】
【発明の実施の形態】
本発明における第一のプロトン酸としては、化学酸化重合が容易に行え、導電性に優れる導電性高分子が得られるものが用いられ、特に制限なく公知のものを使用できるが、導電性高分子の導電性の点で、例えば、塩酸、硫酸、リン酸及びそのエステル類、亜リン酸及びそのエステル類、次亜リン酸及びそのエステル類等の無機酸、ベンゼンスルホン酸、パラトルエンスルホン酸、n−ヘキサンスルホン酸、n−オクチルスルホン酸、4−ドデシルベンゼンスルホン酸等のドデシルベンゼンスルホン酸、セチルスルホン酸、カンファースルホン酸、ポリ(ビニル)スルホン酸、ジノニルナフタレンスルホン酸、ナフタレンスルホン酸、p−クロロベンゼンスルホン酸、フェノールスルホン酸、フェノールジスルホン酸、トリクロロベンゼンスルホン酸、フェノールスルホン酸、4−ニトロトルエン−2−スルホン酸、1−オクタンスルホン酸、スルホン化ポリスチレン、スルホン化ポリエチレン、ニトロベンゼンスルホン酸、2−スルホ安息香酸、3−ニトロベンゼンスルホン酸、4−オクチルベンゼンスルホン酸、2−メチル−5−イソプロピルベンゼンスルホン酸、スルホコハク酸等が好ましい。これらの化合物は単独で、又は二種以上混合して用いることができる。
【0014】
本発明の第二のプロトン酸としては、導電性高分子の重合に用いた第一のプロトン酸より耐熱性の高い導電性高分子層を形成することができるプロトン酸が用いられる。耐熱性は、コンデンサの製造直後、及び240℃のハンダリフロー後の100kHzのインピーダンスの劣化率で判定することができる。本発明の第二のプロトン酸としては、上記の条件を満足すれば、特に制限なく公知のものを使用できるが、導電性高分子の耐熱性や導電性の点で、ベンゼンスルホン酸、トルエンスルホン酸、n−ヘキサンスルホン酸、n−オクチルスルホン酸、4−ドデシルベンゼンスルホン酸等のドデシルベンゼンスルホン酸、セチルスルホン酸、カンファースルホン酸、ポリ(ビニル)スルホン酸、ジノニルナフタレンスルホン酸、ナフタレンスルホン酸、p−クロロベンゼンスルホン酸、フェノールスルホン酸、フェノールジスルホン酸、トクロロベンゼンスルホン酸、フェノールスルホン酸、4−ニトロトルエン−2−スルホン酸、1−オクタンスルホン酸、スルホン化ポリスチレン、スルホン化ポリエチレン、ニトロベンゼンスルホン酸、2−スルホ安息香酸、3−ニトロベンゼンスルホン酸、4−オクチルベンゼンスルホン酸、2−メチル−5−イソプロピルベンゼンスルホン酸、スルホコハク酸等が好ましく、これらの内、導電性高分子の耐熱性や導電性の点で、トルエンスルホン酸、ドデシルベンゼンスルホン酸、カンファースルホン酸、ナフタレンスルホン酸、フェノールスルホン酸、フェノールジスルホン酸、スルホコハク酸、3−ニトロベンゼンスルホン酸がより好ましい。これらの化合物は単独で、又は二種以上混合して用いることができる。
【0015】
本発明において、第一のプロトン酸を第二のプロトン酸に交換するために用いられる第二のプロトン酸を含む溶液は、1.5〜50重量%の濃度の溶液として使用することが好ましい。溶剤としては、第二のプロトン酸を溶解可能である必要があり、かつ水及び/又は水と自由な割合で混ざり合う有機溶媒であることが好ましい。このような有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール等の低級アルキルアルコールや、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール等のグリコール系や、メチルセロソルブ、エチルセロソルブ、メチルカルビトール、エチルカルビトール、ブチルカルビトール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル等のモノエーテル類や、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジグライム、トリグライム、テトラエチレングリコールジメチルエーテル等のジエーテル類、アセトニトリル、スルホラン等があり、これらのうちの二種又は三種を組み合わせて用いることも可能である。これらの溶剤の内、アルコール類、及びグリコール類のモノエーテル又はジエーテルが第一のプロトン酸の溶解性の点で好ましい。また、アセトニトリル、スルホランが酸化剤による影響を受けにくい点で好ましい。無論、本発明における有機溶剤は上記のものに限定される訳ではない。
【0016】
本発明の固体電解コンデンサとは、タンタルやアルミニウムやニオブ等の酸化すると誘電体になる金属(弁作用金属)を陽極とし、その陽極金属の表面に誘電体皮膜とする薄い酸化皮膜を形成した後に、誘電体皮膜と陰極との電気的なコンタクトを得るための導電性物質を形成して陰極に接続し、その後に封止や缶詰等を行って作製するコンデンサを総称する。
【0017】
本発明における固体電解質は、前記固体電解コンデンサの陽極に用いる金属(弁金属)表面に誘電体皮膜とする薄い酸化皮膜を形成した後に、誘電体皮膜と陰極との電気的なコンタクトを得るために形成された導電性物質のことをいう。
【0018】
本発明の固体電解コンデンサに用いる弁作用金属は、アルミニウム、タンタル、ニオブ、バナジウム、チタン、ジルコニウム等あげられるが、誘電率や酸化皮膜の形成し易さ等の点から、拡面化したアルミニウム箔又はタンタル焼結体が好ましい。
【0019】
本発明における弁作用金属表面に酸化皮膜を形成する方法は、通常、電解コンデンサ製造時に使用される方法であれば特に制限無く用いることができ、例えば、エッチングによって拡面したアルミニウム箔をアジピン酸アンモニウム水溶液中で電圧をかけることによって酸化皮膜を形成する、タンタル微粉末焼結体ペレットを硝酸水溶液中で電圧をかけることによって酸化皮膜を形成する、等の公知方法が用いられる。
【0020】
本発明の固体電解コンデンサの好ましい作製方法は、例えば、弁作用金属上に酸化皮膜を形成した箔又は素子に、化学酸化重合、電解重合等で電解質層である導電性高分子層を形成した後、導電性高分子層の上にカーボンペースト層及び銀ペースト層の順で形成し、この素子をリードフレーム等に導電性の接着剤で接着し、さらに必要であれば封止材で封止して外装する。又は、例えば、弁作用金属上に酸化皮膜を形成した箔又は素子に、導電性高分子の溶液を導入し、素子を乾燥させる工程を1回から数十回繰り返した後に、さらに乾燥して水分等を揮散させ、電解質層である導電性高分子層を形成した後、導電性高分子層の上にカーボンペースト層及び銀ペースト層の順で形成し、この素子をリードフレーム等に導電性の接着剤で接着し、さらに必要であれば封止材で封止して外装する等の手段がある。ここで電解質層の厚さは好ましくは5〜500μm、カーボンペーストの厚さは好ましくは0.1〜10μm、銀ペースト層の厚さは好ましくは0.1〜100μmである。
本発明においては、上記の方法により、電子共役系高分子に第一のプロトン酸を含む導電性高分子層を形成した後、この導電性高分子層に含まれる第一のプロトン酸より耐熱性の高い導電性高分子層を形成することができる第二のプロトン酸を含む溶液に浸漬することにより、前記導電性高分子層の第一のプロトン酸を第二のプロトン酸に交換する。溶液への浸漬時間は、0.5〜50分間行うことが好ましい。
導電性高分子は、ポリアセチレンやポリパラフェニレン、ポリピロール、ポリ−p−フェニレンビニレン、ポリアニリン、ポリチオフェン、ポリイミダゾール、ポリチアゾール、ポリフラン、これらの誘導体等の電子共役系高分子にドーパントを付与する物質として前記第一のプロトン酸を含んでいる。導電性高分子層の形成方法は、モノマー溶液の導入による化学酸化重合が好ましく、公知の方法で製造される。導電性高分子としては安価、高耐熱性の点でポリアニリン又はそのアルキル置換体等の誘導体が好ましく、また、耐湿性の点でポリチオフェン又はポリ(3,4−エチレンジオキシチオフェン)等のポリチオフェンの誘導体が好ましい。
【0021】
【実施例】
以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
【0022】
比較例1
真空蒸留した後、30分間窒素でパブリングして得た脱気したアニリン3mmol、ペルオキソ二硫酸アンモニウム3mmol、亜リン酸3mmol、脱気したイオン交換水30ml、及び脱気したエタノール30mlを0℃に保持して酸化剤溶液を得た。
第1図はタンタルを弁作用金属にした本発明の実施例の断面図である。
硝酸水溶液中20Vで酸化皮膜を形成した長さ1mm、奥行き1mm、高さ1mmの角柱状のタンタル微粉末焼結体ペレット(空隙率60%、設計容量3.3μF)を使用し、次に、作製したタンタル6の表面に酸化タンタル5の酸化皮膜を形成したタンタルペレット3に、上記の酸化剤溶液を含浸し、熱風乾燥機で80℃、20分の乾燥をおこない、その後、室温で10分放置した後、80℃、20分の乾燥をおこなった。この含浸工程を15回繰り返して、ポリアニリンからなる電解質9(厚さ50μm)を形成した。更にカーボンペースト層7(厚さ5μm)、銀ペースト層8(厚さ50μm)を順次形成して、この銀ペースト層8に、銀ペーストを用いて陰極リード2を接続し、タンタルペレット3に接続した陽極リード4と共に封止材1で封止し、固体電解コンデンサを得た。
【0023】
実施例1
比較例1と同様にしてポリアニリンからなる電解質を形成した後、ドデシルベンゼンスルホン酸の10wt%水溶液に10分間浸漬し、比較例1と同様にしてカーボンペースト層、銀ペースト層を形成し、モールド外装して本発明の固体電解コンデンサを得た。ドーパントが交換されたかどうかの確認は、XMAを用いてPとSとの比により確認した。
【0024】
実施例2
比較例1と同様にしてポリアニリンからなる電解質を形成した後、ナフタレンスルホン酸の10wt%水溶液に10分間浸漬し、比較例1と同様にしてカーボンペースト層、銀ペースト層を形成し、モールド外装して本発明の固体電解コンデンサを得た。
【0025】
実施例3
比較例1と同様にしてポリアニリンからなる電解質を形成した後、フェノールスルホン酸の10wt%水溶液に10分間浸漬し、比較例1と同様にしてカーボンペースト層、銀ペースト層を形成し、モールド外装して本発明の固体電解コンデンサを得た。
【0026】
実施例4
亜リン酸のかわりにカンファースルホン酸を用いた以外は比較例1と同様にしてポリアニリンからなる電解質を形成した後、ドデシルベンゼンスルホン酸の10wt%水溶液に10分間浸漬し、比較例1と同様にしてカーボンペースト層、銀ペースト層を形成し、モールド外装して本発明の固体電解コンデンサを得た。
【0027】
比較例2
亜リン酸のかわりにドデシルベンゼンスルホン酸を用いた以外は比較例1と同様にして固体電解コンデンサを得た。
【0028】
比較例3
重合溶液として0℃に冷却した14mmolの3,4−エチレンジオキシチオフェン、16mmolのパラトルエンスルホン酸第二鉄のブタノール溶液50mlを使用した以外は比較例1と同様にしてポリ(3,4−エチレンジオキシチオフェン)からなる電解質を形成し、固体電解コンデンサを得た。
【0029】
実施例5
比較例3と同様にしてポリ(3,4−エチレンジオキシチオフェン)からなる電解質を形成した後、ドデシルベンゼンスルホン酸の10wt%水溶液に10分間浸漬し、比較例1と同様にしてカーボンペースト層、銀ペースト層を形成し、モールド外装して本発明の固体電解コンデンサを得た。
【0030】
実施例6
比較例3と同様にしてポリ(3,4−エチレンジオキシチオフェン)からなる電解質を形成した後、ナフタレンスルホン酸の10wt%水溶液に10分間浸漬し、比較例1と同様にしてカーボンペースト層、銀ペースト層を形成し、モールド外装して本発明の固体電解コンデンサを得た。
【0031】
実施例7
比較例3と同様にしてポリ(3,4−エチレンジオキシチオフェン)からなる電解質を形成した後、フェノールスルホン酸の10wt%水溶液に10分間浸漬し、比較例1と同様にしてカーボンペースト層、銀ペースト層を形成し、モールド外装して本発明の固体電解コンデンサを得た。
【0032】
比較例4
パラトルエンスルホン酸第二鉄のかわりにドデシルベンゼンスルホン酸第二鉄を用いた以外は比較例3と同様にして固体電解コンデンサを得た。
【0033】
(プロトン酸の分析)
プロトン酸の分析にはXMA又はHPLCを使用した。実施例1〜7及び比較例1〜4について、プロトン酸の分析結果を表1に示す。表1からわかるように、本発明の手法により、導電性高分子に含まれる第一のプロトン酸が該プロトン酸とは異なる第二のプロトン酸を含む溶液に浸漬することにより交換することがわかった。
【0034】
実施例1〜7及び比較例1〜4について、得られたコンデンサの製造直後、及び240℃ハンダリフロー後の100kHzのインピーダンスを表2に示す。表2からわかるように、本発明によるコンデンサは製造直後のインピーダンスが小さく、240℃ハンダリフロー後でも安定な耐熱性に優れたものであることがわかった。
【0035】
【表1】

Figure 0004035639
【0036】
【表2】
Figure 0004035639
【0037】
【発明の効果】
本発明の固体電解コンデンサの製造方法は、低周波数から高周波数までの容量、インピーダンスが優れしかもハンダリフロー等の熱処理工程を通しても特性の劣化が無い固体電解コンデンサの提供に好適である。
本発明の固体電解コンデンサの製造方法は、上記の効果を奏し、固体電解質の形成が簡便な固体電解コンデンサの提供に好適である。
本発明の固体電解コンデンサの製造方法は、上記の効果を奏し、低コストで固体電解質の形成が簡便な固体電解コンデンサの提供に好適である

本発明の固体電解コンデンサの製造方法は、上記の効果を奏し、耐熱性、耐湿性に優れ固体電解質の形成が簡便な固体電解コンデンサの提供に好適である。
本発明の固体電解コンデンサは、上記の製造方法を用いて、低周波数から高周波数までの容量、インピーダンスが優れしかもハンダリフロー等の熱処理工程を通しても特性の劣化が無いところが優れる。
【図面の簡単な説明】
【図1】本発明の固体電解コンデンサの一例の断面図である。
【符号の説明】
1 封止材
2 陰極リード
3 タンタルペレット
4 陽極リード
5 酸化タンタル
6 タンタル
7 カーボンペースト
8 銀ペースト
9 電解質[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer as a solid electrolyte.
[0002]
[Prior art]
A solid electrolytic capacitor uses a foil or porous molded body of valve action metal such as aluminum, niobium or tantalum as an anode, a dielectric of the metal oxide on the surface thereof, and a solid electrolyte, carbon or silver as a cathode on the surface thereof. It has a structure to do. The solid electrolyte has a role of taking a lead from the dielectric and a role of repairing when the dielectric is damaged by heat or physical impact. Conventionally, manganese dioxide, 7,7 ', 8,8'-tetracyanoquinodimethane complex salt (TCNQ) or the like has been used as a solid electrolyte. However, manganese dioxide has problems such as low electrical conductivity and weak repair ability of the dielectric. In particular, the low conductivity is a cause of large impedance in the high frequency region of the solid electrolytic capacitor. Moreover, what used TCNQ as an electrolyte layer was inferior in heat resistance, since TCNQ melt | dissolves at the temperature below a solder temperature. In addition, since the electrical conductivity of TCNQ is limited to about 1 S / cm, it has not been able to respond to the demand for a capacitor with better high frequency characteristics. Recently, conductive polymers such as polypyrrole, polyaniline, polythiophene, and derivatives thereof have been proposed as solid electrolytes that replace these. These conductive polymers have advantages such as higher conductivity and higher dielectric repair ability than manganese dioxide. There are a solution method, a chemical oxidative polymerization method, an electrolytic polymerization method, and the like to form a conductive polymer. However, the solution method requires that the polymer be soluble, so that the type of the conductive polymer is limited. Since the polymer is dissolved, there is a problem that the solution viscosity is high and the dielectric coating surface of the solid electrolytic capacitor cannot be sufficiently coated. In addition, in the electrolytic polymerization method, since the dielectric film is insulative, it cannot be energized, and a conductive polymer must first be formed by manganese dioxide or chemical oxidative polymerization method. It becomes complicated. The chemical oxidative polymerization method is a process for forming a conductive polymer that has been widely studied because of its simple process. However, since the chemical oxidative polymerization method introduces a monomer solution onto the dielectric surface and the control of the reaction is difficult, the electrical conductivity greatly depends on the type of protonic acid contained in the monomer solution at the time of polymerization. In addition, since the heat resistance of the conductive polymer greatly depends on the type of proton acid, the proton acid whose conductivity is increased during the polymerization is not necessarily a proton acid having high heat resistance. It is difficult to satisfy the characteristics at the same time.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a simple method for producing a solid electrolytic capacitor excellent in heat resistance and having excellent capacity and impedance from low frequency to high frequency and having no deterioration in characteristics even through a heat treatment step such as solder reflow. is there.
[0004]
Another object of the present invention is to provide a method for producing a solid electrolytic capacitor in which a solid electrolyte can be easily formed in addition to the above-described invention.
[0005]
Another object of the present invention is to provide a method for producing a solid electrolytic capacitor in addition to the above-described invention, which is easy to form a solid electrolyte at low cost.
[0006]
Another object of the present invention is to provide a method for producing a solid electrolytic capacitor that is excellent in heat resistance and moisture resistance and in which a solid electrolyte can be easily formed in addition to the above-described invention.
[0007]
Another object of the present invention is to provide a solid electrolytic capacitor that has excellent capacitance and impedance from low frequency to high frequency and has no deterioration in characteristics even through a heat treatment process such as solder reflow, using the manufacturing method of the present invention. May be offered.
[0008]
[Means for Solving the Problems]
In the present invention, an oxide film which is a dielectric is formed on the valve action metal, and then a conductive polymer layer containing a first protonic acid is formed on the electron conjugated polymer which is a solid electrolyte layer on the oxide film. Thereafter, the conductive polymer layer is immersed in a solution containing a second proton acid capable of forming a conductive polymer layer having higher heat resistance than the first proton acid contained in the conductive polymer layer. The present invention relates to a method for producing a solid electrolytic capacitor, wherein the first protonic acid of the conductive polymer layer is replaced with a second protonic acid, and then dried, and then a cathode layer is laminated on the surface thereof. .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
As the first protonic acid in the present invention, those that can be easily subjected to chemical oxidative polymerization and provide a conductive polymer that is excellent in conductivity are used, and any known one can be used without particular limitation. In terms of conductivity, for example, hydrochloric acid, sulfuric acid, phosphoric acid and esters thereof, phosphorous acid and esters thereof, hypophosphorous acid and esters thereof, inorganic acids such as benzenesulfonic acid, paratoluenesulfonic acid, n-hexanesulfonic acid, n-octylsulfonic acid, dodecylbenzenesulfonic acid such as 4-dodecylbenzenesulfonic acid, cetylsulfonic acid, camphorsulfonic acid, poly (vinyl) sulfonic acid, dinonylnaphthalenesulfonic acid, naphthalenesulfonic acid, p-chlorobenzenesulfonic acid, phenolsulfonic acid, phenoldisulfonic acid, trichlorobenzenes Phosphonic acid, phenolsulfonic acid, 4-nitrotoluene-2-sulfonic acid, 1-octanesulfonic acid, sulfonated polystyrene, sulfonated polyethylene, nitrobenzenesulfonic acid, 2-sulfobenzoic acid, 3-nitrobenzenesulfonic acid, 4-octylbenzene Sulfonic acid, 2-methyl-5-isopropylbenzenesulfonic acid, sulfosuccinic acid and the like are preferable. These compounds can be used alone or in admixture of two or more.
[0014]
As the second protonic acid of the present invention, a protonic acid capable of forming a conductive polymer layer having higher heat resistance than the first protonic acid used for polymerization of the conductive polymer is used. The heat resistance can be determined by the deterioration rate of the impedance of 100 kHz immediately after the manufacture of the capacitor and after the solder reflow at 240 ° C. As the second protonic acid of the present invention, a known one can be used without particular limitation as long as the above conditions are satisfied. However, in terms of heat resistance and conductivity of the conductive polymer, benzenesulfonic acid, toluenesulfone Acid, n-hexanesulfonic acid, n-octylsulfonic acid, 4-dodecylbenzenesulfonic acid and other dodecylbenzenesulfonic acid, cetylsulfonic acid, camphorsulfonic acid, poly (vinyl) sulfonic acid, dinonylnaphthalenesulfonic acid, naphthalenesulfone Acid, p-chlorobenzenesulfonic acid, phenolsulfonic acid, phenoldisulfonic acid, tochlorobenzenesulfonic acid, phenolsulfonic acid, 4-nitrotoluene-2-sulfonic acid, 1-octanesulfonic acid, sulfonated polystyrene, sulfonated polyethylene, nitrobenzenesulfone Acid, 2-s Preference is given to benzoic acid, 3-nitrobenzenesulfonic acid, 4-octylbenzenesulfonic acid, 2-methyl-5-isopropylbenzenesulfonic acid, sulfosuccinic acid, etc. Among these, the heat resistance and conductivity of the conductive polymer And toluenesulfonic acid, dodecylbenzenesulfonic acid, camphorsulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, phenoldisulfonic acid, sulfosuccinic acid, and 3-nitrobenzenesulfonic acid are more preferable. These compounds can be used alone or in admixture of two or more.
[0015]
In the present invention, the solution containing the second protonic acid used for exchanging the first protonic acid for the second protonic acid is preferably used as a solution having a concentration of 1.5 to 50% by weight. The solvent is preferably an organic solvent that needs to be able to dissolve the second protonic acid and is miscible with water and / or water in a free ratio. Examples of such an organic solvent include lower alkyl alcohols such as methanol, ethanol, propanol and isopropanol, glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol and tripropylene glycol, and methyl Monoethers such as cellosolve, ethyl cellosolve, methyl carbitol, ethyl carbitol, butyl carbitol, triethylene glycol monomethyl ether, triethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monomethyl ether And ethylene glycol dimethyl ether, ethylene glycol diethyl ether Le, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diglyme, triglyme, diethers, such as tetraethylene glycol dimethyl ether, acetonitrile, there are sulfolane, can be used in combination of two or three kinds of them. Of these solvents, monoethers or diethers of alcohols and glycols are preferred in view of the solubility of the first protonic acid. Acetonitrile and sulfolane are preferred because they are not easily affected by the oxidizing agent. Of course, the organic solvent in the present invention is not limited to the above.
[0016]
The solid electrolytic capacitor of the present invention uses a metal (valve action metal) that becomes a dielectric when oxidized, such as tantalum, aluminum, or niobium, as an anode, and after forming a thin oxide film as a dielectric film on the surface of the anode metal A capacitor is generally referred to as a capacitor formed by forming a conductive material for obtaining an electrical contact between a dielectric film and a cathode, connecting it to the cathode, and then sealing or canning.
[0017]
The solid electrolyte in the present invention is used to obtain an electrical contact between the dielectric film and the cathode after forming a thin oxide film as a dielectric film on the surface of the metal (valve metal) used for the anode of the solid electrolytic capacitor. It refers to the formed conductive material.
[0018]
Examples of the valve metal used in the solid electrolytic capacitor of the present invention include aluminum, tantalum, niobium, vanadium, titanium, zirconium, etc., but in terms of the dielectric constant and the ease of forming an oxide film, the surface-enhanced aluminum foil Or a tantalum sintered body is preferable.
[0019]
The method for forming an oxide film on the surface of the valve metal in the present invention can be used without particular limitation as long as it is a method usually used in the production of electrolytic capacitors. For example, an aluminum foil expanded by etching is added to ammonium adipate. Known methods such as forming an oxide film by applying a voltage in an aqueous solution and forming an oxide film by applying a voltage to a tantalum fine powder sintered compact pellet in an aqueous nitric acid solution are used.
[0020]
A preferred method for producing the solid electrolytic capacitor of the present invention is, for example, after forming a conductive polymer layer that is an electrolyte layer by chemical oxidation polymerization, electrolytic polymerization, or the like on a foil or element in which an oxide film is formed on a valve metal. Then, a carbon paste layer and a silver paste layer are formed in this order on the conductive polymer layer, and this element is adhered to the lead frame with a conductive adhesive, and if necessary, sealed with a sealing material. And exterior. Or, for example, a process of introducing a conductive polymer solution into a foil or element in which an oxide film is formed on a valve-acting metal and drying the element is repeated once to several tens of times, and then further dried to moisture. After forming a conductive polymer layer that is an electrolyte layer, a carbon paste layer and a silver paste layer are formed on the conductive polymer layer in this order, and this element is electrically connected to a lead frame or the like. There are means such as adhering with an adhesive and further sealing with a sealing material if necessary. Here, the thickness of the electrolyte layer is preferably 5 to 500 μm, the thickness of the carbon paste is preferably 0.1 to 10 μm, and the thickness of the silver paste layer is preferably 0.1 to 100 μm.
In the present invention, the conductive polymer layer containing the first protonic acid is formed on the electron-conjugated polymer by the above method, and then the heat resistance is higher than that of the first protonic acid contained in the conductive polymer layer. The first protonic acid of the conductive polymer layer is exchanged for the second protonic acid by immersing in a solution containing the second protonic acid that can form a conductive polymer layer having a high thickness. The immersion time in the solution is preferably 0.5 to 50 minutes.
The conductive polymer is a substance that imparts a dopant to electron conjugated polymers such as polyacetylene, polyparaphenylene, polypyrrole, poly-p-phenylene vinylene, polyaniline, polythiophene, polyimidazole, polythiazole, polyfuran, and derivatives thereof. The first protonic acid is included. The method for forming the conductive polymer layer is preferably chemical oxidative polymerization by introducing a monomer solution, and is produced by a known method. The conductive polymer is preferably a derivative such as polyaniline or an alkyl-substituted product thereof from the viewpoint of low cost and high heat resistance, and polythiophene or polythiophene such as poly (3,4-ethylenedioxythiophene) from the viewpoint of moisture resistance. Derivatives are preferred.
[0021]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to this.
[0022]
Comparative Example 1
After vacuum distillation, 3 mmol of degassed aniline, 3 mmol of ammonium peroxodisulfate, 3 mmol of phosphorous acid, 30 ml of degassed ion-exchanged water, and 30 ml of degassed ethanol obtained by publishing with nitrogen for 30 minutes were maintained at 0 ° C. Thus, an oxidant solution was obtained.
FIG. 1 is a sectional view of an embodiment of the present invention in which tantalum is used as a valve action metal.
Using a 1 mm long, 1 mm deep, prismatic tantalum fine powder sintered body pellet (porosity 60%, design capacity 3.3 μF) formed with an oxide film at 20 V in an aqueous nitric acid solution, The tantalum pellet 3 in which an oxide film of tantalum oxide 5 is formed on the surface of the produced tantalum 6 is impregnated with the above oxidant solution, dried at 80 ° C. for 20 minutes with a hot air drier, and then at room temperature for 10 minutes. After leaving it to stand, it was dried at 80 ° C. for 20 minutes. This impregnation step was repeated 15 times to form an electrolyte 9 (thickness 50 μm) made of polyaniline. Further, a carbon paste layer 7 (thickness 5 μm) and a silver paste layer 8 (thickness 50 μm) are sequentially formed, and the cathode lead 2 is connected to the silver paste layer 8 using the silver paste and connected to the tantalum pellet 3. The anode lead 4 was sealed with the sealing material 1 to obtain a solid electrolytic capacitor.
[0023]
Example 1
After forming an electrolyte made of polyaniline in the same manner as in Comparative Example 1, it was immersed in a 10 wt% aqueous solution of dodecylbenzenesulfonic acid for 10 minutes to form a carbon paste layer and a silver paste layer in the same manner as in Comparative Example 1, Thus, the solid electrolytic capacitor of the present invention was obtained. Whether or not the dopant was exchanged was confirmed by the ratio of P and S using XMA.
[0024]
Example 2
After an electrolyte made of polyaniline was formed in the same manner as in Comparative Example 1, it was immersed in a 10 wt% aqueous solution of naphthalenesulfonic acid for 10 minutes to form a carbon paste layer and a silver paste layer in the same manner as in Comparative Example 1, and the mold was packaged. Thus, a solid electrolytic capacitor of the present invention was obtained.
[0025]
Example 3
After an electrolyte composed of polyaniline was formed in the same manner as in Comparative Example 1, it was immersed in a 10 wt% aqueous solution of phenolsulfonic acid for 10 minutes to form a carbon paste layer and a silver paste layer in the same manner as in Comparative Example 1, and the mold was packaged. Thus, a solid electrolytic capacitor of the present invention was obtained.
[0026]
Example 4
An electrolyte composed of polyaniline was formed in the same manner as Comparative Example 1 except that camphorsulfonic acid was used instead of phosphorous acid, and then immersed in a 10 wt% aqueous solution of dodecylbenzenesulfonic acid for 10 minutes. Thus, a carbon paste layer and a silver paste layer were formed, and the mold was packaged to obtain the solid electrolytic capacitor of the present invention.
[0027]
Comparative Example 2
A solid electrolytic capacitor was obtained in the same manner as in Comparative Example 1 except that dodecylbenzenesulfonic acid was used instead of phosphorous acid.
[0028]
Comparative Example 3
Poly (3,4-ethylene) was synthesized in the same manner as in Comparative Example 1 except that 50 mmol of a 14 mmol 3,4-ethylenedioxythiophene cooled to 0 ° C. and 50 mmol of a butanol solution of ferric paratoluenesulfonic acid were used as the polymerization solution. An electrolyte composed of ethylenedioxythiophene) was formed to obtain a solid electrolytic capacitor.
[0029]
Example 5
An electrolyte composed of poly (3,4-ethylenedioxythiophene) was formed in the same manner as in Comparative Example 3, and then immersed in a 10 wt% aqueous solution of dodecylbenzenesulfonic acid for 10 minutes. Then, a silver paste layer was formed, and the mold was packaged to obtain the solid electrolytic capacitor of the present invention.
[0030]
Example 6
After forming an electrolyte composed of poly (3,4-ethylenedioxythiophene) in the same manner as in Comparative Example 3, it was immersed in a 10 wt% aqueous solution of naphthalenesulfonic acid for 10 minutes, and the carbon paste layer, A silver paste layer was formed and packaged with a mold to obtain a solid electrolytic capacitor of the present invention.
[0031]
Example 7
After forming an electrolyte made of poly (3,4-ethylenedioxythiophene) in the same manner as in Comparative Example 3, the carbon paste layer was immersed in a 10 wt% aqueous solution of phenolsulfonic acid for 10 minutes. A silver paste layer was formed and packaged with a mold to obtain a solid electrolytic capacitor of the present invention.
[0032]
Comparative Example 4
A solid electrolytic capacitor was obtained in the same manner as in Comparative Example 3 except that ferric dodecylbenzenesulfonate was used in place of ferric paratoluenesulfonate.
[0033]
(Protonic acid analysis)
XMA or HPLC was used for analysis of the protonic acid. Table 1 shows the analysis results of protonic acids for Examples 1 to 7 and Comparative Examples 1 to 4. As can be seen from Table 1, according to the method of the present invention, the first proton acid contained in the conductive polymer is exchanged by immersing it in a solution containing a second proton acid different from the proton acid. It was.
[0034]
For Examples 1 to 7 and Comparative Examples 1 to 4, the impedance of 100 kHz immediately after manufacturing the obtained capacitors and after 240 ° C. solder reflow is shown in Table 2. As can be seen from Table 2, it was found that the capacitor according to the present invention had a small impedance immediately after production and was excellent in stable heat resistance even after 240 ° C. solder reflow.
[0035]
[Table 1]
Figure 0004035639
[0036]
[Table 2]
Figure 0004035639
[0037]
【The invention's effect】
The method for producing a solid electrolytic capacitor of the present invention is suitable for providing a solid electrolytic capacitor having excellent capacitance and impedance from low frequency to high frequency and having no deterioration in characteristics even through a heat treatment step such as solder reflow.
The method for producing a solid electrolytic capacitor of the present invention is suitable for providing a solid electrolytic capacitor that exhibits the above-described effects and that is easy to form a solid electrolyte.
The method for producing a solid electrolytic capacitor of the present invention is suitable for providing a solid electrolytic capacitor that achieves the above-described effects and is easy to form a solid electrolyte at low cost.
The method for producing a solid electrolytic capacitor of the present invention is suitable for providing a solid electrolytic capacitor that exhibits the above-described effects, has excellent heat resistance and moisture resistance, and is easy to form a solid electrolyte.
The solid electrolytic capacitor of the present invention is excellent in that it has excellent capacitance and impedance from low frequency to high frequency using the above-described manufacturing method and does not deteriorate characteristics even through a heat treatment step such as solder reflow.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an example of a solid electrolytic capacitor of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sealing material 2 Cathode lead 3 Tantalum pellet 4 Anode lead 5 Tantalum oxide 6 Tantalum 7 Carbon paste 8 Silver paste 9 Electrolyte

Claims (2)

弁作用金属に誘電体である酸化皮膜を形成し、次いで、この酸化皮膜に固体電解質層である電子共役系高分子に第一のプロトン酸を含む導電性高分子層を形成した後、この導電性高分子層をこの導電性高分子層に含まれる第一のプロトン酸より耐熱性の高い導電性高分子層を形成することができる第二のプロトン酸を含む溶液に浸漬することにより、前記導電性高分子層の第一のプロトン酸を第二のプロトン酸に交換し、次いで、乾燥後、その表面に陰極層を積層したことを特徴とする固体電解コンデンサの製造方法。An oxide film that is a dielectric is formed on the valve action metal, and then a conductive polymer layer that contains a first protonic acid is formed on the electron conjugated polymer that is a solid electrolyte layer on the oxide film. By immersing the conductive polymer layer in a solution containing a second protonic acid capable of forming a conductive polymer layer having higher heat resistance than the first protonic acid contained in the conductive polymer layer, A method for producing a solid electrolytic capacitor, wherein the first protonic acid of the conductive polymer layer is exchanged for a second protonic acid, and then dried, and then a cathode layer is laminated on the surface thereof . 請求項1の製造方法により製造された固体電解コンデンサ。  The solid electrolytic capacitor manufactured by the manufacturing method of Claim 1.
JP2001343206A 2001-11-08 2001-11-08 Solid electrolytic capacitor and manufacturing method thereof Expired - Lifetime JP4035639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343206A JP4035639B2 (en) 2001-11-08 2001-11-08 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343206A JP4035639B2 (en) 2001-11-08 2001-11-08 Solid electrolytic capacitor and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2003142343A JP2003142343A (en) 2003-05-16
JP2003142343A5 JP2003142343A5 (en) 2005-06-23
JP4035639B2 true JP4035639B2 (en) 2008-01-23

Family

ID=19156938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343206A Expired - Lifetime JP4035639B2 (en) 2001-11-08 2001-11-08 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4035639B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5289212B2 (en) * 2009-06-29 2013-09-11 日本カーリット株式会社 Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP5667823B2 (en) 2009-09-30 2015-02-12 株式会社半導体エネルギー研究所 Power storage device
TWI412553B (en) * 2010-10-27 2013-10-21 Ind Tech Res Inst Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same
WO2012153790A1 (en) * 2011-05-12 2012-11-15 テイカ株式会社 Method for manufacturing solid electrolyte capacitor

Also Published As

Publication number Publication date
JP2003142343A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
JP3157748B2 (en) Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
EP1030324B1 (en) Sheet capacitor element and laminated solid electrolytic capacitor
JP3065286B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP4899438B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US6042740A (en) Composition for forming electrolyte for solid electrolytic capacitor and solid electrolytic capacitor
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
JP3296727B2 (en) Method for manufacturing solid electrolytic capacitor
WO2004075220A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP3228323B2 (en) Solid electrolytic capacitor and method of manufacturing the same
CN110121757B (en) Method for manufacturing solid electrolytic capacitor
JP2000068158A (en) Single plate capacitor element and laminated solid electrolytic capacitor
JP4736009B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5145940B2 (en) Solid electrolyte manufacturing method and solid electrolytic capacitor
JP4035639B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3846760B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0494110A (en) Manufacture of solid electrolytic capacitor
JPH0629159A (en) Solid electrolytic capacitor and its manufacture
JP2010161182A (en) Solid-state electrolytic capacitor and manufacturing method thereof
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007180260A (en) Manufacturing method of solid electrolytic capacitor
JP5029937B2 (en) Solid electrolytic capacitor and manufacturing method thereof
WO2000060620A1 (en) Solid electrolytic capacitor and method for producing the same
JPH10298427A (en) Composition for forming electrolyte of solid electrolyte capacitor and solid electrolyte capacitor
JP4730654B2 (en) Solid electrolyte layer forming method and composite material produced using the method
JP2007305684A (en) Solid electrolytic capacitor and method for manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040916

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

R150 Certificate of patent or registration of utility model

Ref document number: 4035639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term