JP2010242117A - Electrical contact and method for manufacturing the same - Google Patents

Electrical contact and method for manufacturing the same Download PDF

Info

Publication number
JP2010242117A
JP2010242117A JP2009089212A JP2009089212A JP2010242117A JP 2010242117 A JP2010242117 A JP 2010242117A JP 2009089212 A JP2009089212 A JP 2009089212A JP 2009089212 A JP2009089212 A JP 2009089212A JP 2010242117 A JP2010242117 A JP 2010242117A
Authority
JP
Japan
Prior art keywords
plating
stress
plating layer
layer
electrical contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009089212A
Other languages
Japanese (ja)
Inventor
Shinichi Nagano
真一 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2009089212A priority Critical patent/JP2010242117A/en
Publication of JP2010242117A publication Critical patent/JP2010242117A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrical contact which prevents stress corrosion particularly because of having a plated layer with a reduced residual stress formed thereon, is superior in corrosion resistance and is stable in its performance. <P>SOLUTION: The plated layer is formed by stacked plated films of a tensile-stress plated layer 3a and a compressive-stress plated layer 3b, to constitute an underlayer 3 or a precious metal layer 4. Further, a plated structure is formed by stacking a plurality of the tensile-stress plated layers 3a and the compressive-stress plated layers 3b. Thereby, the plated layer having the reduced residual stress inside the plated layer is obtained, and the residual stress can be removed by heat-treating the plated layer. The tensile-stress plated layer and the compressive-stress plated layer can be formed by varying a type of a plating bath to be used in plating treatment, a type of a brightener to be added to the plating bath or a current density during the plating treatment. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は母材上に下地層と貴金属層とが積層めっきされたスイッチやコネクタなどの電気接点に係る。   The present invention relates to electrical contacts such as switches and connectors in which a base layer and a noble metal layer are laminated and plated on a base material.

従来より、母材表面にAuやAgなどの貴金属膜を有する電気接点では、前記貴金属膜の下地としてNi(ニッケル)やNiを含む合金めっきが用いられてきた。従来では、生産性を向上させるべく電気接点を、高速めっきで形成した。このとき、めっき時の電流密度を高くすることにより高速めっきを促進でき、また、析出する結晶粒の粒度を小さくでき、緻密なめっき膜に形成できた。   Conventionally, in an electrical contact having a noble metal film such as Au or Ag on the surface of a base material, Ni (nickel) or alloy plating containing Ni has been used as a base for the noble metal film. In the past, electrical contacts were formed by high-speed plating in order to improve productivity. At this time, high-speed plating could be promoted by increasing the current density during plating, and the grain size of the precipitated crystal grains could be reduced, thereby forming a dense plating film.

特開2005−248269号公報JP 2005-248269 A

このように、電解めっきにおいて、電流密度を高くすると緻密なめっき膜が得られるが、めっき膜中での残留応力(内部応力)が大きくなり、これが原因でめっき密着性が悪くめっき剥がれが生じたり、経時変化により残留応力が開放されて、応力腐食と呼ばれる腐食や変色不良を起こすことが問題であった。   As described above, in electrolytic plating, a dense plating film can be obtained when the current density is increased, but the residual stress (internal stress) in the plating film increases, which causes poor plating adhesion and causes peeling of the plating. The problem is that the residual stress is released due to changes over time, causing corrosion and discoloration failure called stress corrosion.

上記特許文献1には、ワット浴あるいはスルファミン浴を用いることにより、Niめっき膜の電着応力を緩和させることが開示されているが、めっき中の残留応力をなくすものではない。   Patent Document 1 discloses that the electrodeposition stress of the Ni plating film can be reduced by using a watt bath or a sulfamine bath, but it does not eliminate the residual stress during plating.

そこで、本発明は、上記従来の問題を解決するものであり、特に、従来に比べてめっき層内部の残留応力を効果的に低減でき、良好な密着性等を確保できる電気接点、およびその製造方法を提供することを目的とする。   Accordingly, the present invention solves the above-described conventional problems, and in particular, an electrical contact that can effectively reduce the residual stress inside the plating layer and ensure good adhesion, and the manufacture thereof, compared to the prior art. It aims to provide a method.

本発明は、母材上にめっき形成されためっき層を備える電気接点において、
前記めっき層が、引張り応力めっき層と圧縮応力めっき層をそれぞれ少なくとも1層含んで積層した積層めっき膜で形成されることを特徴とするものである。
The present invention is an electrical contact comprising a plating layer formed by plating on a base material,
The plating layer is formed of a laminated plating film including at least one tensile stress plating layer and a compressive stress plating layer.

これにより、めっき層全体の残留応力(内部応力)を、引張り応力めっき層と圧縮応力めっき層との間で相殺して、適切且つ簡単に低減でき、めっき密着性と耐食性等に優れた電気接点とすることができる。   As a result, the residual stress (internal stress) of the entire plating layer can be offset between the tensile stress plating layer and the compressive stress plating layer, and can be reduced appropriately and easily, and electrical contacts with excellent plating adhesion, corrosion resistance, etc. It can be.

また、前記積層めっき膜は熱処理されたものであることが好ましい。引張り応力めっき層及び圧縮応力めっき層の個々の層内での残留応力を小さくでき、より効果的に、めっき層内部の残留応力をゼロに近づけることができる。   Moreover, it is preferable that the said multilayer plating film is heat-processed. The residual stress in the individual layers of the tensile stress plating layer and the compressive stress plating layer can be reduced, and the residual stress inside the plating layer can be brought closer to zero more effectively.

本発明では、前記母材上にめっき形成された下地層と、前記下地層の表面に貴金属がめっきされた貴金属層とを有して構成され、前記下地層が前記積層めっき膜で形成されることが好ましい。これにより、下地層と母材間、及び下地層と貴金属層間の密着性を向上させることができ、また下地層の溶出に基づくめっき内部の空洞化や析出を抑制でき耐食性等に優れた電気接点にできる。また、本発明では、前記下地層は、Ni、あるいは、Niを含む合金で形成されることが好適である。後述する実験でも、良好な密着性及び耐食性が得られることが確認されている。   In the present invention, the base layer is formed by plating on the base material, and a noble metal layer in which a noble metal is plated on the surface of the base layer, and the base layer is formed by the multilayer plating film. It is preferable. This improves the adhesion between the base layer and the base material, and between the base layer and the noble metal layer, and also prevents cavitation and precipitation inside the plating based on the elution of the base layer and has excellent corrosion resistance. Can be. In the present invention, it is preferable that the underlayer is formed of Ni or an alloy containing Ni. It has been confirmed that good adhesion and corrosion resistance can also be obtained in experiments to be described later.

また本発明は、母材上にめっき形成されためっき層を備える電気接点の製造方法において、
前記めっき層を、引張り応力めっき層と圧縮応力めっき層をそれぞれ少なくとも1層積層した積層めっき膜で形成することを特徴とする。
Further, the present invention provides a method for producing an electrical contact comprising a plating layer formed by plating on a base material.
The plating layer is formed of a multilayer plating film in which at least one tensile stress plating layer and at least one compression stress plating layer are stacked.

これにより、めっき層内部の残留応力を、引張り応力めっき層と圧縮応力めっき層との間で相殺して、適切且つ簡単に低減でき、めっき密着性と耐食性等に優れた電気接点を製造できる。また、本発明の電気接点の製造方法では、めっき時の電流密度を高くしても従来に比べてめっき層内部の残留応力を低減できるため、高速めっきが可能となり、生産性を向上させて電気接点を製造することができる。   Thereby, the residual stress inside the plating layer can be offset between the tensile stress plating layer and the compression stress plating layer, and can be appropriately and easily reduced, and an electrical contact excellent in plating adhesion and corrosion resistance can be manufactured. In addition, according to the method for producing an electrical contact of the present invention, even if the current density at the time of plating is increased, the residual stress inside the plating layer can be reduced as compared with the conventional case, so that high-speed plating is possible, and productivity is improved and electricity is improved. Contacts can be manufactured.

本発明の電気接点の製造方法では、めっき浴中の光沢剤の種類を変えることにより、引張り応力めっき層と圧縮応力めっき層を積層することができる。   In the electrical contact manufacturing method of the present invention, the tensile stress plating layer and the compression stress plating layer can be laminated by changing the type of brightener in the plating bath.

あるいは本発明の電気接点の製造方法では、めっき浴中の電流密度を変えて、引張り応力めっき層と圧縮応力めっき層を積層することができる。これにより、めっき浴を代えることなく、引張り応力めっき層と圧縮応力めっき層を積層することができる。   Or in the manufacturing method of the electrical contact of this invention, the current density in a plating bath can be changed and a tensile stress plating layer and a compression stress plating layer can be laminated | stacked. Thereby, the tensile stress plating layer and the compression stress plating layer can be laminated without changing the plating bath.

さらに、前記引張り応力めっき層と圧縮応力めっき層を積層した後、熱処理を行うことが好ましい。   Furthermore, it is preferable to heat-treat after laminating the tensile stress plating layer and the compressive stress plating layer.

また本発明では、前記母材上にめっき形成された下地層と、前記下地層の表面に貴金属がめっきされた貴金属層とを有して構成し、前記下地層を、前記積層めっき膜で形成することが好ましい。   Further, in the present invention, a base layer plated on the base material and a noble metal layer plated with a noble metal on the surface of the base layer are formed, and the base layer is formed of the multilayer plating film. It is preferable to do.

本発明の電気接点は、めっき層内部の残留応力を適切且つ容易に低減でき、めっき密着性と耐食性等を向上させることができる。また、本発明の電気接点の製造方法では、めっき時の電流密度を高くしても残留応力を従来に比べて低減できるため、高速めっきが可能となり、生産性を向上させて電気接点を製造することができる。   The electrical contact of the present invention can appropriately and easily reduce the residual stress inside the plating layer, and can improve the plating adhesion and corrosion resistance. Further, in the method for manufacturing an electrical contact according to the present invention, even if the current density during plating is increased, the residual stress can be reduced as compared with the conventional method, so that high-speed plating is possible, and the electrical contact is manufactured with improved productivity. be able to.

第1の実施形態の電気接点の断面図、Sectional drawing of the electrical contact of 1st Embodiment, 第2の実施形態の電気接点の断面図、Sectional drawing of the electrical contact of 2nd Embodiment, 光沢剤およびめっき浴の種類によるめっき内部の応力の違いを示すグラフ、A graph showing the difference in stress inside the plating depending on the type of brightener and plating bath, 比較例1におけるNiめっき内部の状態を示すSEM写真、SEM photograph showing the state of Ni plating in Comparative Example 1,

図1は、本発明の第1の実施形態における電気接点の断面図、図2は、本発明の第2の実施形態における電気接点の部分断面図、である。   FIG. 1 is a sectional view of an electrical contact according to the first embodiment of the present invention, and FIG. 2 is a partial sectional view of the electrical contact according to the second embodiment of the present invention.

図1に示す電気接点1は、母材2と、母材2の表面にめっきされた下地層3と、下地層3の表面にめっきされた貴金属層4を備えて構成される。   An electrical contact 1 shown in FIG. 1 includes a base material 2, a base layer 3 plated on the surface of the base material 2, and a noble metal layer 4 plated on the surface of the base layer 3.

第1の実施形態の電気接点は、図1に示すように、下地層3は引張り応力めっき層3aと、その表面にめっきされた圧縮応力めっき層3bとの積層めっき膜である。下地層3は、引張り応力めっき層3aと圧縮応力めっき層3bが積層されていれば、圧縮応力めっき層3bの表面に引張り応力めっき層3aが積層された積層めっき膜でもよい。   As shown in FIG. 1, the electrical contact of the first embodiment is a multilayer plating film in which the underlayer 3 is composed of a tensile stress plating layer 3a and a compressive stress plating layer 3b plated on the surface thereof. As long as the tensile stress plating layer 3a and the compression stress plating layer 3b are laminated, the underlayer 3 may be a laminated plating film in which the tensile stress plating layer 3a is laminated on the surface of the compression stress plating layer 3b.

引張り応力めっき層3a内部には引張り応力が働き、圧縮応力めっき層3b内部には圧縮応力が働く。引張り応力と圧縮応力は互いに逆向きに働く力であるため、引張り応力めっき層3aと圧縮応力めっき層3bとが積層されると、これらのめっき層の間で応力が相殺され、下地層3全体としての残留応力(内部応力)を低減でき、より好ましくはゼロにできる。これにより、下地層3の経時的な応力腐食を効果的に防止し、下地層3表面にめっきされる貴金属層4との密着性及び母材2との密着性を良好にでき、安定した接点特性を備えた長寿命の電気接点が得られる。   A tensile stress acts inside the tensile stress plating layer 3a, and a compressive stress acts inside the compressive stress plating layer 3b. Since the tensile stress and the compressive stress are forces acting in opposite directions, when the tensile stress plating layer 3a and the compressive stress plating layer 3b are laminated, the stress is canceled between these plating layers, and the entire underlayer 3 is formed. Residual stress (internal stress) can be reduced, more preferably zero. As a result, stress corrosion over time of the underlayer 3 can be effectively prevented, the adhesion with the noble metal layer 4 plated on the surface of the underlayer 3 and the adhesion with the base material 2 can be improved, and a stable contact A long-life electrical contact with properties is obtained.

従って、図1のように、引張り応力めっき層3aと圧縮応力めっき層3bとが1層づつ設けられるとき、引張り応力めっき層3aの引張り応力と、圧縮応力めっき層3bの圧縮応力は、応力の絶対値が等しい、あるいはほぼ等しいことが好ましい。応力の絶対値が等しいと、引張り応力めっき層3aと圧縮応力めっき層3bとを積層したときに層内部の応力が完全に相殺されて、下地層3の応力はゼロとなる。また、応力の絶対値がほぼ等しい場合でも、層内部の応力はほぼ相殺されるので、下地層3の応力をほぼゼロとすることができる。   Therefore, as shown in FIG. 1, when the tensile stress plating layer 3a and the compressive stress plating layer 3b are provided one by one, the tensile stress of the tensile stress plating layer 3a and the compressive stress of the compressive stress plating layer 3b The absolute values are preferably equal or nearly equal. When the absolute values of the stress are equal, the stress in the layer is completely canceled when the tensile stress plating layer 3a and the compression stress plating layer 3b are laminated, and the stress of the underlayer 3 becomes zero. Even when the absolute values of the stresses are almost equal, the stress inside the layer is almost canceled out, so that the stress of the underlayer 3 can be made substantially zero.

また例えば、引張り応力めっき層3aと、圧縮応力めっき層3bとが同じ材料で形成される場合、めっき浴の電流密度を変えたり、めっき浴に添加する光沢剤の種類を変えることで、引張り応力あるいは圧縮応力のどちらかに調整できる。また、めっき浴の種類や電流密度の強さ、めっき厚等により、応力の値を変えることができる。   For example, when the tensile stress plating layer 3a and the compressive stress plating layer 3b are formed of the same material, the tensile stress can be changed by changing the current density of the plating bath or changing the type of brightener added to the plating bath. Alternatively, it can be adjusted to either compressive stress. The stress value can be changed depending on the type of plating bath, the strength of current density, the plating thickness, and the like.

母材2は、導電性の高い金属で形成され、例えば黄銅またはリン青銅が好適に用いられる。   The base material 2 is formed of a highly conductive metal, and for example, brass or phosphor bronze is preferably used.

下地層3を形成する引張り応力めっき層3aまたは圧縮応力めっき層3bは、めっき層を形成する金属または金属合金であれば特に制限はないが、Ni、Sn、Zn,Cuなどの金属あるいはこれらの金属を含む合金が好適に用いられ、例えば、特にNiまたはNi合金が好適に用いられる。引張り応力めっき層3aと圧縮応力めっき層3bは、同じ金属または金属合金で形成されることが好ましいが、異なる金属または金属合金で形成されてもよい。また、貴金属層4は、例えばAu、Agなどの貴金属が好適に用いられる。   The tensile stress plating layer 3a or the compressive stress plating layer 3b that forms the base layer 3 is not particularly limited as long as it is a metal or metal alloy that forms the plating layer, but a metal such as Ni, Sn, Zn, Cu, or the like. An alloy containing a metal is preferably used. For example, Ni or a Ni alloy is particularly preferably used. The tensile stress plating layer 3a and the compressive stress plating layer 3b are preferably formed of the same metal or metal alloy, but may be formed of different metals or metal alloys. The noble metal layer 4 is preferably made of a noble metal such as Au or Ag.

例えば、下地層3の膜厚は1〜2μm、貴金属層4の膜厚は0.2〜0.4μmとすることができる。この場合、下地層3を形成する引張り応力めっき層3aおよび圧縮応力めっき層3bは、それぞれ0.5〜1μmとほぼ同じ膜厚で形成されるが、膜厚が異なっていてもよい。   For example, the film thickness of the underlayer 3 can be 1 to 2 μm, and the film thickness of the noble metal layer 4 can be 0.2 to 0.4 μm. In this case, the tensile stress plating layer 3a and the compressive stress plating layer 3b that form the base layer 3 are each formed with substantially the same film thickness as 0.5 to 1 μm, but the film thickness may be different.

また、図1に示される電気接点1では、引張り応力めっき層3aおよび圧縮応力めっき層3bのうち表面側に形成される層が、貴金属で形成されてもよい。   In the electrical contact 1 shown in FIG. 1, the layer formed on the surface side of the tensile stress plating layer 3a and the compressive stress plating layer 3b may be formed of a noble metal.

例えば、引張り応力めっき層3aがNi、Sn、Zn,Cuなどの金属あるいは金属合金で形成され、圧縮応力めっき層3bがAuまたはAgなどの貴金属で形成され、さらに圧縮応力めっき層3bの表面に貴金属層4がめっきされる構成にすることができる。この場合も、引張り応力めっき層3aと圧縮応力めっき層3bとの間で残留応力が相殺され、めっき層内部の残留応力がゼロ、あるいはほぼゼロとなる。なお、引張応力めっき層3bが貴金属でめっき形成されているため、その表面に貴金属層4が形成されなくても、電気接点が得られる。   For example, the tensile stress plating layer 3a is formed of a metal or metal alloy such as Ni, Sn, Zn, or Cu, the compressive stress plating layer 3b is formed of a noble metal such as Au or Ag, and is further formed on the surface of the compressive stress plating layer 3b. The noble metal layer 4 can be plated. Also in this case, the residual stress is offset between the tensile stress plating layer 3a and the compression stress plating layer 3b, and the residual stress inside the plating layer becomes zero or almost zero. Since the tensile stress plating layer 3b is formed by plating with a noble metal, an electrical contact can be obtained even if the noble metal layer 4 is not formed on the surface.

さらに、図示されないが、母材2表面に圧縮応力めっき層3bがめっきされ、圧縮応力めっき層3b表面に引張り応力めっき層3aがめっきされる、引張り応力めっき層3aと圧縮応力めっき層3bの積層順が図1と逆の場合において、圧縮応力めっき層3bがNi、Sn、Zn,Cuなどの金属あるいは金属合金で形成され、引張り応力めっき層3aがAuまたはAgなどの貴金属で形成されることもできる。この場合、引張り応力めっき層3aの表面に貴金属層4がめっきされても、めっきされなくてもよい。   Furthermore, although not shown in the drawing, the compression stress plating layer 3b is plated on the surface of the base material 2, and the tensile stress plating layer 3a is plated on the surface of the compression stress plating layer 3b, and the lamination of the tensile stress plating layer 3a and the compression stress plating layer 3b. When the order is the reverse of FIG. 1, the compressive stress plating layer 3b is formed of a metal or metal alloy such as Ni, Sn, Zn, or Cu, and the tensile stress plating layer 3a is formed of a noble metal such as Au or Ag. You can also. In this case, the noble metal layer 4 may or may not be plated on the surface of the tensile stress plating layer 3a.

また例えば、引張り応力めっき層3aおよび圧縮応力めっき層3bいずれもが、AuまたはAgなどの貴金属でめっき形成されることができる。この場合、圧縮応力めっき層3bの表面に貴金属層4がめっきされてもよいし、貴金属層4がめっきされなくてもよい。また、母材2と引張り応力めっき層3aとの間に他の金属または金属合金めっき層が形成されることもできる。なお、引張り応力めっき層3aおよび圧縮応力めっき層3bいずれもが、AuまたはAgなどの貴金属でめっき形成される場合も、母材2表面に圧縮応力めっき層3bがめっきされ、圧縮応力めっき層3bの表面に引張り応力めっき層3aがめっきされる積層めっき膜であってもよい。   Further, for example, both the tensile stress plating layer 3a and the compression stress plating layer 3b can be formed by plating with a noble metal such as Au or Ag. In this case, the noble metal layer 4 may be plated on the surface of the compressive stress plating layer 3b, or the noble metal layer 4 may not be plated. Further, another metal or metal alloy plating layer may be formed between the base material 2 and the tensile stress plating layer 3a. Even when both the tensile stress plating layer 3a and the compression stress plating layer 3b are formed by plating with a noble metal such as Au or Ag, the surface of the base material 2 is plated with the compression stress plating layer 3b, and the compression stress plating layer 3b. A multilayer plating film in which a tensile stress plating layer 3a is plated on the surface of the film may be used.

すなわち、引張り応力めっき層3aまたは圧縮応力めっき層3bは、内部に引張り応力または圧縮応力が働くめっき層であれば、積層したときにめっき層内部の残留応力が相殺されるので、金属の種類に制限はなく、Ni、Sn、Zn,Cuなどの金属あるいはこれらの金属合金など下地として好適に用いられる金属だけでなく、AuあるいはAgなどの貴金属も好適に用いられる。また、引張り応力めっき層3aおよび圧縮応力めっき層3bの積層順にも制限はない。   That is, if the tensile stress plating layer 3a or the compressive stress plating layer 3b is a plating layer in which a tensile stress or a compressive stress works, the residual stress inside the plating layer is offset when the layers are stacked, so that There is no limitation, and not only metals such as Ni, Sn, Zn, and Cu, or metals such as these, but also metals such as Au or Ag are preferably used. Moreover, there is no restriction | limiting also in the lamination | stacking order of the tensile stress plating layer 3a and the compression stress plating layer 3b.

ただし、図1に示すように、母材2上にNiやNi合金の下地層3が形成され、さらにAuやAg等の貴金属層4が積層される構成では、下地層3は貴金属層4に比べて剛性(硬度)が高く、この結果、下地層3に残留応力が蓄積されやすいので、下地層3を図1に示すように、引張り応力めっき層3aと圧縮応力めっき層3bとの積層めっき膜にすることが、より効果的に残留応力の低減を図ることができて好適である。   However, as shown in FIG. 1, in a configuration in which a base layer 3 of Ni or Ni alloy is formed on a base material 2 and a noble metal layer 4 such as Au or Ag is laminated, the base layer 3 is formed on the noble metal layer 4. As compared with this, the rigidity (hardness) is high, and as a result, residual stress is likely to be accumulated in the underlayer 3, so that the underlayer 3 is laminated with a tensile stress plating layer 3a and a compressive stress plating layer 3b as shown in FIG. It is preferable to use a film because the residual stress can be reduced more effectively.

電気接点1は、さらに熱処理されることが好ましい。例えば、下地層3がめっきされた後、または下地層3および貴金属層4がめっきされた後に熱処理されると、下地層3を構成する引張り応力めっき層3aおよび圧縮応力めっき層3bのそれぞれの残留応力をゼロに近づけることができ、より効果的に、下地層3全体の残留応力をゼロに近づけることができる(好ましくはゼロにできる)。熱処理の温度は80℃以上300℃未満で行われることが好ましい。熱処理温度が80℃より低いと残留応力を完全に緩和することができず、また300℃程度以上であると、結晶粒の粗大化が促進され、また、下地層3と母材2間、及び下地層3と貴金属層4間での拡散反応が生じやすくなるので、いずれも好ましくない。また熱処理は不活性ガス雰囲気中で行われることが好ましい。   The electrical contact 1 is preferably further heat-treated. For example, after the base layer 3 is plated, or after the base layer 3 and the noble metal layer 4 are plated, the residual of the tensile stress plating layer 3a and the compressive stress plating layer 3b constituting the base layer 3 are retained. The stress can be brought close to zero, and the residual stress of the entire underlayer 3 can be brought closer to zero (preferably can be made zero) more effectively. The heat treatment is preferably performed at a temperature of 80 ° C. or higher and lower than 300 ° C. If the heat treatment temperature is lower than 80 ° C., the residual stress cannot be completely relaxed, and if it is about 300 ° C. or higher, the coarsening of the crystal grains is promoted, and between the underlayer 3 and the base material 2, and Since a diffusion reaction between the underlayer 3 and the noble metal layer 4 is likely to occur, neither is preferable. The heat treatment is preferably performed in an inert gas atmosphere.

図2に示す第2の実施形態の電気接点5は、母材2と、母材2の表面にめっきされた下地層3と、下地層3の表面にめっきされた貴金属層4を備えて構成される点は図1に示す電気接点1と同じであるが、下地層3がそれぞれ複数の引張り応力めっき層3aと圧縮応力めっき層3bが交互に積層されて構成されている。   The electrical contact 5 of the second embodiment shown in FIG. 2 includes a base material 2, a base layer 3 plated on the surface of the base material 2, and a noble metal layer 4 plated on the surface of the base layer 3. 1 is the same as the electrical contact 1 shown in FIG. 1, but the underlayer 3 is configured by alternately laminating a plurality of tensile stress plating layers 3a and compressive stress plating layers 3b.

図2の電気接点5においても、引張り応力めっき層3aと圧縮応力めっき層3bとが積層され、これらのめっき層の間で応力が相殺されるので、下地層3全体として内部の残留応力がゼロ、あるいはほぼゼロに等しくなる。これにより、下地層3の経時的な応力腐食を効果的に防止し、下地層3表面にめっきされる貴金属層4との密着性や母材2との密着性を良好にでき、安定した接点特性を備えた長寿命の電気接点が得られる。また図2のように、複数の引張り応力めっき層3aと圧縮応力めっき層3bを交互に積層した構成にすることで、個々の引張り応力めっき層3aと圧縮応力めっき層3bを従来よりも十分に薄く形成し、下地層3全体としての膜厚を薄くしつつ、下地層3全体の残留応力の微調整を行いやすい。   Also in the electrical contact 5 of FIG. 2, the tensile stress plating layer 3a and the compressive stress plating layer 3b are laminated, and the stress is canceled between these plating layers. Or nearly equal to zero. As a result, stress corrosion over time of the underlayer 3 can be effectively prevented, the adhesion with the noble metal layer 4 plated on the surface of the underlayer 3 and the adhesion with the base material 2 can be improved, and the stable contact A long-life electrical contact with properties is obtained. In addition, as shown in FIG. 2, a plurality of tensile stress plating layers 3a and compressive stress plating layers 3b are alternately stacked, so that each of the tensile stress plating layers 3a and the compressive stress plating layers 3b is more sufficiently than conventional. It is easy to finely adjust the residual stress of the entire underlayer 3 while forming it thin and reducing the film thickness of the entire underlayer 3.

図2に示す電気接点5も、引張り応力めっき層3aと圧縮応力めっき層3bの積層順に特に制限はなく、圧縮応力めっき層3bが母材2表面にめっきされ、圧縮応力めっき層3bの表面に引張り応力めっき層3aがめっきされて、さらに圧縮応力めっき層3bと引張り応力めっき層3aとが交互に積層されることができる。   The electrical contact 5 shown in FIG. 2 is also not particularly limited in the stacking order of the tensile stress plating layer 3a and the compressive stress plating layer 3b. The compressive stress plating layer 3b is plated on the surface of the base material 2, and the surface of the compressive stress plating layer 3b. The tensile stress plating layer 3a is plated, and the compressive stress plating layer 3b and the tensile stress plating layer 3a can be alternately stacked.

例えば、図2では、引張り応力めっき層3aと圧縮応力めっき層3bはそれぞれ3層が交互に積層されるが、引張り応力めっき層3aと圧縮応力めっき層3bはそれぞれ複数であれば、その数に特に制限はない。また、引張り応力めっき層3aと圧縮応力めっき層3bは交互に積層されることが好ましいが、引張り応力めっき層3aの表面に引張り応力めっき層3aが、あるいは圧縮応力めっき層3bの表面に圧縮応力めっき層3bが、積層されるものであってもよい。複数の引張り応力めっき層3aと圧縮応力めっき層3bが交互に積層される場合、それぞれのめっき層は同数であることが好ましい。ただし、引張り応力めっき層3aと圧縮応力めっき層3bのいずれかのめっき層が他のめっき層に比べ少なくてもよい。   For example, in FIG. 2, three layers of the tensile stress plating layer 3a and the compression stress plating layer 3b are alternately laminated, but if there are a plurality of the tensile stress plating layers 3a and a plurality of the compression stress plating layers 3b, the number thereof is increased. There is no particular limitation. The tensile stress plating layer 3a and the compressive stress plating layer 3b are preferably laminated alternately. However, the tensile stress plating layer 3a is formed on the surface of the tensile stress plating layer 3a or the compressive stress is applied on the surface of the compression stress plating layer 3b. The plating layer 3b may be laminated. When a plurality of tensile stress plating layers 3a and compression stress plating layers 3b are alternately laminated, the number of plating layers is preferably the same. However, any of the tensile stress plating layer 3a and the compressive stress plating layer 3b may be smaller than the other plating layers.

また、引張り応力めっき層3aと圧縮応力めっき層3bが同数である場合、引張り応力めっき層3aの引張り応力と、圧縮応力めっき層3bの圧縮応力はそれぞれの応力の絶対値が等しい、あるいはほぼ等しいことが好ましい。それぞれの応力の絶対値が等しいと、引張り応力めっき層3aと圧縮応力めっき層3bを複数積層したときに層内部の応力が完全に相殺されて、下地層3の残留応力はゼロとなる。それぞれの応力の絶対値がほぼ等しい場合は、層内部の応力はほぼ相殺されるので、下地層3の残留応力をほぼゼロとすることができる。   When the tensile stress plating layer 3a and the compressive stress plating layer 3b are the same number, the tensile stress of the tensile stress plating layer 3a and the compressive stress of the compressive stress plating layer 3b are equal or nearly equal to each other. It is preferable. When the absolute value of each stress is equal, when a plurality of tensile stress plating layers 3a and compressive stress plating layers 3b are stacked, the stress inside the layers is completely offset, and the residual stress of the underlayer 3 becomes zero. When the absolute values of the respective stresses are substantially equal, the stress inside the layer is almost canceled out, so that the residual stress of the underlayer 3 can be made substantially zero.

また、図1の電気接点1と同様、母材2は、例えば黄銅またはリン青銅などの導電性の高い金属で形成される。また、貴金属層4は、例えばAu、Agなどの貴金属が好適に用いられる。引張り応力めっき層3aまたは圧縮応力めっき層3bは、めっき層を形成することができるNi、Sn、Zn,Cuなどの金属または金属合金が好適に用いられる。あるいは、複数の引張り応力めっき層3aまたは圧縮応力めっき層3bの一部が、AuまたはAgなどの貴金属で形成されてもよい。なお、最も上側に形成される引張り応力めっき層3aまたは圧縮応力めっき層3bがAu、Agなどの貴金属で形成される場合、貴金属層4を形成しないこともできる。   In addition, similar to the electrical contact 1 of FIG. 1, the base material 2 is formed of a highly conductive metal such as brass or phosphor bronze. The noble metal layer 4 is preferably made of a noble metal such as Au or Ag. As the tensile stress plating layer 3a or the compression stress plating layer 3b, a metal or a metal alloy such as Ni, Sn, Zn, or Cu that can form a plating layer is preferably used. Alternatively, some of the plurality of tensile stress plating layers 3a or compressive stress plating layers 3b may be formed of a noble metal such as Au or Ag. In addition, when the tensile stress plating layer 3a or the compressive stress plating layer 3b formed on the uppermost side is formed of a noble metal such as Au or Ag, the noble metal layer 4 may not be formed.

例えば、下地層3の膜厚は0.6〜1μm、貴金属層4の膜厚は0.2〜0.4μmとすることができる。下地層3を形成する引張り応力めっき層3aおよび圧縮応力めっき層3bは総和で、それぞれ0.3〜0.5μmと図1の電気接点1に比べて薄く形成される。また、それぞれの引張り応力めっき層3aおよび圧縮応力めっき層3bはほぼ同じ膜厚で形成されるが、引張り応力めっき層3aおよび圧縮応力めっき層3bの一部の膜厚が異なってもよい。   For example, the film thickness of the underlayer 3 can be 0.6 to 1 μm, and the film thickness of the noble metal layer 4 can be 0.2 to 0.4 μm. The tensile stress plating layer 3a and the compressive stress plating layer 3b that form the base layer 3 are formed with a total thickness of 0.3 to 0.5 μm, which is thinner than the electrical contact 1 of FIG. The tensile stress plating layer 3a and the compressive stress plating layer 3b are formed with substantially the same film thickness, but the tensile stress plating layer 3a and the compression stress plating layer 3b may have different film thicknesses.

図2に示す第2の実施形態の電気接点5も、さらに熱処理されることが好ましい。熱処理により、引張り応力めっき層3aおよび圧縮応力めっき層3bのそれぞれの残留応力をゼロに近づけることができ、より効果的に、下地層3全体の残留応力をゼロに近づけることができる(好ましくはゼロにできる)。熱処理の温度は80℃以上300℃未満で行われることが好ましい。熱処理温度が80℃より低いと残留応力を完全に緩和することができず、また300℃以上であると、結晶粒の粗大化が促進され、また、下地層3と母材2間、及び下地層3と貴金属層4間での拡散反応が生じやすくなるので、いずれも好ましくない。また熱処理は不活性ガス雰囲気中で行われることが好ましい。   It is preferable that the electrical contact 5 of the second embodiment shown in FIG. By the heat treatment, the residual stress of each of the tensile stress plating layer 3a and the compressive stress plating layer 3b can be brought close to zero, and the residual stress of the entire underlayer 3 can be brought closer to zero (preferably zero). Can be). The heat treatment is preferably performed at a temperature of 80 ° C. or higher and lower than 300 ° C. If the heat treatment temperature is lower than 80 ° C., the residual stress cannot be completely relaxed, and if it is 300 ° C. or higher, the coarsening of crystal grains is promoted, and between the underlayer 3 and the base material 2 and below Since diffusion reaction between the formation 3 and the noble metal layer 4 is likely to occur, neither is preferable. The heat treatment is preferably performed in an inert gas atmosphere.

図1、図2の実施形態では、引張り応力めっき層3aと圧縮応力めっき層3bとが同じ層数であるが異なる層数であってもよい。かかる場合、層数が少ないほうの各めっき層の応力の絶対値を、層数が多いほうの各めっき層の応力の絶対値よりも大きくしてめっき層内部の残留応力がゼロに近づくように調整することが好ましい。   In the embodiment shown in FIGS. 1 and 2, the tensile stress plating layer 3a and the compressive stress plating layer 3b have the same number of layers, but may have different numbers of layers. In such a case, the absolute value of the stress of each plating layer with the smaller number of layers is made larger than the absolute value of the stress of each plating layer with the larger number of layers so that the residual stress inside the plating layer approaches zero. It is preferable to adjust.

図1および図2に示す第1および第2の実施形態の電気接点1、5の製造方法について説明する。   A method of manufacturing the electrical contacts 1 and 5 according to the first and second embodiments shown in FIGS. 1 and 2 will be described.

第1の実施形態の電気接点1では、母材2上に、引張り応力めっき層3aを形成し、引張り応力めっき層3a上に圧縮応力めっき層3bを形成する。さらに、圧縮応力めっき層3b上に、貴金属層4をめっき形成する。めっきは電解めっきまたは無電解めっきのいずれでもよい。   In the electrical contact 1 of the first embodiment, the tensile stress plating layer 3a is formed on the base material 2, and the compressive stress plating layer 3b is formed on the tensile stress plating layer 3a. Further, the noble metal layer 4 is formed by plating on the compressive stress plating layer 3b. The plating may be either electrolytic plating or electroless plating.

あるいは、母材2上に、圧縮応力めっき層3bを形成し、さらに引張り応力めっき層3aを形成し、引張り応力めっき層3a上に貴金属層4をめっき形成してもよい。この場合も、めっきは電解めっきまたは無電解めっきのいずれであってもよい。   Alternatively, the compressive stress plating layer 3b may be formed on the base material 2, the tensile stress plating layer 3a may be further formed, and the noble metal layer 4 may be formed by plating on the tensile stress plating layer 3a. In this case, the plating may be either electrolytic plating or electroless plating.

例えば、下地層3は、1〜2μm、貴金属層4は0.2〜0.4μmの膜厚でめっきされる。   For example, the base layer 3 is plated with a thickness of 1 to 2 μm, and the noble metal layer 4 is plated with a thickness of 0.2 to 0.4 μm.

第2の実施形態の電気接点5は、母材2上に、引張り応力めっき層3aを形成し、引張り応力めっき層3a上に圧縮応力めっき層3bを形成した後、さらに引張り応力めっき層3aと圧縮応力めっき層3bのめっき形成が繰り返し行われる。そして、最表面に貴金属層4がめっきされる。なお、この場合も、母材2上に、圧縮応力めっき層3bを形成し、さらに引張り応力めっき層3aがめっきされ、これらが繰り返され、最表面に貴金属層4がめっきされてもよい。   In the electrical contact 5 of the second embodiment, the tensile stress plating layer 3a is formed on the base material 2, the compression stress plating layer 3b is formed on the tensile stress plating layer 3a, and then the tensile stress plating layer 3a and The plating formation of the compressive stress plating layer 3b is repeated. And the noble metal layer 4 is plated on the outermost surface. In this case as well, the compressive stress plating layer 3b may be formed on the base material 2, the tensile stress plating layer 3a may be further plated, and these may be repeated, and the noble metal layer 4 may be plated on the outermost surface.

図3に、Ni金属を、めっき浴、めっき浴に添加する光沢剤の種類、およびめっき厚を変えて電解めっきしたときのめっき残留応力を示す。   FIG. 3 shows plating residual stress when Ni metal is electroplated by changing the plating bath, the type of brightener added to the plating bath, and the plating thickness.

実験は、母材となる銅板表面に、ワット浴またはスルファミン浴中に、吸着タイプの光沢剤および共析タイプの光沢剤をそれぞれ添加した場合、および光沢剤無添加の場合について、1〜21μmの厚さでNiを電解めっきし、めっきされた母材のひずみを測定することにより行った。残留応力が正の値を示すときめっき内部には引張り応力が働き、負の値を示すときには圧縮応力が働く。なお、めっきは、めっき浴の温度を50℃とし、電流密度20A/dm2で行った。吸着タイプの光沢剤は、例えば、クマリンであり、共析タイプの光沢剤は、例えば、サッカリン、ナフタレンスルフォン酸ソーダが用いられる。 The experiment was conducted on the surface of the copper plate as a base material when the adsorption type brightener and the eutectoid type brightener were added to the Watt bath or the sulfamine bath, respectively, and when no brightener was added. This was performed by electroplating Ni with a thickness and measuring the strain of the plated base material. When the residual stress shows a positive value, tensile stress acts inside the plating, and when it shows a negative value, compressive stress works. The plating was carried out at a plating bath temperature of 50 ° C. and a current density of 20 A / dm 2 . The adsorption type brightener is, for example, coumarin, and the eutectoid type brightener is, for example, saccharin or sodium naphthalene sulfonate.

図3に示されるように、共析タイプの光沢剤を添加した場合には、ワット浴、スルファミン浴ともに内部に圧縮応力が働き、また浴の種類によって生じる応力の値に大きな差はない。光沢剤を添加しない場合、または吸着タイプの光沢剤を添加した場合には、ワット浴、スルファミン浴ともに、内部に引張り応力が働き、またワット浴を用いるほうが、スルファミン浴中でめっきする場合に比べて、引張り応力の値が大きい。   As shown in FIG. 3, when a eutectoid type brightener is added, compressive stress acts inside both the Watt bath and the sulfamine bath, and there is no significant difference in the value of the stress caused by the type of bath. When no brightener is added, or when an adsorption-type brightener is added, tensile stress acts inside the watt bath and sulfamine bath, and the watt bath uses the watt bath compared to plating in the sulfamine bath. The value of tensile stress is large.

図3のグラフより、Niイオンを含むめっき浴中に吸着タイプの光沢剤を添加したもの、あるいは光沢剤を添加しないめっき浴−1と、Niイオンを含むめっき浴中に共析タイプの光沢剤を添加しためっき浴−2とを用意し、めっき浴−1とめっき浴−2とを用いて交互にNi層を積層めっきすれば、適切且つ簡単に引張り応力めっき層と圧縮応力めっき層とを積層めっきすることができる。   From the graph of FIG. 3, a plating bath 1 containing an adsorption type brightener in a plating bath containing Ni ions, or a plating bath-1 not containing a brightener, and a eutectoid type brightener in a plating bath containing Ni ions. If the Ni layer is alternately laminated using the plating bath-1 and the plating bath-2, the tensile stress plating layer and the compression stress plating layer can be appropriately and easily formed. Multi-layer plating can be performed.

また、共析タイプの光沢剤を添加したときのめっきはワット浴、スルファミン浴共に、スルファミン浴に吸着タイプの光沢剤を添加した場合、あるいは光沢剤無添加の場合のめっきと、残留応力の絶対値がほぼ等しい。よって、下地層3をNiで形成する場合であって、引張り応力めっき層3aと圧縮応力めっき層3bとを同数積層する場合、引張り応力めっき層3aをスルファミン浴(光沢剤無添加)、あるいはスルファミン浴に吸着タイプの光沢剤を添加して形成しためっき膜、圧縮応力めっき層3bを共析タイプの光沢剤を添加して形成しためっき膜とすれば、下地層3全体の残留応力をゼロ、あるいはほぼゼロにできる。   In addition, plating when adding a eutectoid type brightener is applied to both the Watt bath and the sulfamine bath, when the adsorption type brightener is added to the sulfamine bath, or when no brightener is added. The values are almost equal. Therefore, when the underlying layer 3 is formed of Ni and the same number of the tensile stress plating layer 3a and the compressive stress plating layer 3b are laminated, the tensile stress plating layer 3a is formed with a sulfamine bath (no brightener added) or sulfamine. If the plating film formed by adding an adsorption type brightener to the bath and the plating film formed by adding the eutectoid type brightener to the compression stress plating layer 3b, the residual stress of the entire underlayer 3 is zero. Or it can be almost zero.

まためっき浴の電流密度によっても、引張り応力めっき層3a及び圧縮応力めっき層3bのそれぞれを得ることができる。よって、同一のめっき浴を用い、引張り応力めっき層が得られる電流密度と、圧縮応力めっき層が得られる電流密度とを交互に変化させれば、引張り応力めっき層3aと圧縮応力めっき層3bとを積層めっきすることができる。かかる製造方法では、引張り応力めっき層3aと圧縮応力めっき層3bとを得るために、わざわざ浴を変えることが必要なく、簡単な製造方法を実現できる。   Moreover, each of the tensile stress plating layer 3a and the compressive stress plating layer 3b can be obtained also by the current density of the plating bath. Therefore, if the current density for obtaining the tensile stress plating layer and the current density for obtaining the compression stress plating layer are alternately changed using the same plating bath, the tensile stress plating layer 3a and the compression stress plating layer 3b Can be laminated and plated. In this manufacturing method, in order to obtain the tensile stress plating layer 3a and the compression stress plating layer 3b, it is not necessary to change the bath, and a simple manufacturing method can be realized.

下地層3および貴金属層4を積層した後、あるいは下地層3をめっきした後、熱処理することが好ましい。熱処理の温度は80℃以上300℃未満で行われることが好ましい。熱処理温度が80℃より低いと残留応力を完全に緩和することができず、また300℃程度以上であると、結晶粒の粗大化が促進され、また、下地層3と母材2間、及び下地層3と貴金属層4間での拡散反応が生じやすくなるので、いずれも好ましくない。また熱処理は不活性ガス雰囲気中で行われることが好ましい。   It is preferable to heat-treat after laminating the underlayer 3 and the noble metal layer 4 or after plating the underlayer 3. The heat treatment is preferably performed at a temperature of 80 ° C. or higher and lower than 300 ° C. If the heat treatment temperature is lower than 80 ° C., the residual stress cannot be completely relaxed, and if it is about 300 ° C. or higher, the coarsening of the crystal grains is promoted, and between the underlayer 3 and the base material 2, and Since a diffusion reaction between the underlayer 3 and the noble metal layer 4 is likely to occur, neither is preferable. The heat treatment is preferably performed in an inert gas atmosphere.

以上により、簡単且つ適切に下地層3全体の残留応力をゼロ、あるいはほぼゼロにすることができ、下地層3と母材2間及び下地層3と貴金属層4間を密着性良く形成することができる。また本実施形態の電気接点の製造方法では、めっき時の電流密度を高くしても従来に比べてめっき層内部の残留応力を低減できるため、高速めっきが可能となり、生産性を向上させて電気接点を製造することができる。   As described above, the residual stress of the entire base layer 3 can be made zero or almost zero easily and appropriately, and the base layer 3 and the base material 2 and the base layer 3 and the noble metal layer 4 can be formed with good adhesion. Can do. In addition, the electrical contact manufacturing method of the present embodiment can reduce the residual stress inside the plating layer compared to the conventional case even if the current density during plating is increased, thereby enabling high-speed plating, improving productivity, and Contacts can be manufactured.

Ni金属めっきを下地層3として、図1に示す電気接点を作成し、耐食試験を行った。
(実施例1)
黄銅を母材2とし、母材2表面に2種類のNiめっき浴A,Bを用いてNiをそれぞれ1μmめっきして下地層3とし、さらに下地層3表面にAuを0.2μmめっきして、図1に示すめっき積層構造を有する電気接点を得た。
An electrical contact shown in FIG. 1 was prepared using Ni metal plating as the underlayer 3 and a corrosion resistance test was performed.
Example 1
Brass is used as the base material 2, Ni is plated on the surface of the base material 2 using 1 type of Ni plating baths A and B, respectively, to form the base layer 3, and Au is further plated on the surface of the base layer 3 to 0.2 μm. As a result, an electrical contact having a plated laminated structure shown in FIG. 1 was obtained.

ここで、Niめっき浴Aは、スルファミン酸ニッケル300g/L、ホウ酸30g/L、塩化ニッケル10g/L、クマリン0.005mol/L、を含み、このNiめっき浴Aを用いることにより引張り応力めっき層3aを得た。Niめっき浴Bは、スルファミン酸ニッケル300g/L、ホウ酸30g/L、塩化ニッケル10g/L、ナフタレンスルフォン酸ソーダ3g/Lを含み、このNiめっき浴Bを用いることにより圧縮応力めっき層3bを得た。Niめっき浴AおよびBの浴温は50℃とし、電流密度10A/dm2でNiめっきを行った。 Here, the Ni plating bath A includes nickel sulfamate 300 g / L, boric acid 30 g / L, nickel chloride 10 g / L, and coumarin 0.005 mol / L. By using this Ni plating bath A, tensile stress plating is performed. Layer 3a was obtained. The Ni plating bath B includes nickel sulfamate 300 g / L, boric acid 30 g / L, nickel chloride 10 g / L, and sodium naphthalene sulfonate 3 g / L. By using this Ni plating bath B, the compression stress plating layer 3b is formed. Obtained. Ni plating baths A and B were 50 ° C., and Ni plating was performed at a current density of 10 A / dm 2 .

(実施例2)
実施例1の電気接点を、さらに温度200℃で30分間熱処理を行った。
(Example 2)
The electrical contact of Example 1 was further heat-treated at a temperature of 200 ° C. for 30 minutes.

(比較例1)
黄銅を母材2とし、母材2表面にNiめっき浴Bを用いて、Niを2μmめっきして下地層3とし、さらに下地層3表面にAuを0.2μmめっきした。ここで、Niめっき浴Bは実施例1で用いたNiめっき浴Bと同じ組成を有し、また浴温および電流密度も実施例1と同じとしてNiめっきを行った。
(Comparative Example 1)
Brass was used as the base material 2, Ni was plated on the surface of the base material 2 using Ni plating bath B, and Ni was plated by 2 μm to form the base layer 3. Further, Au was plated on the surface of the base layer 3 by 0.2 μm. Here, Ni plating bath B has the same composition as Ni plating bath B used in Example 1, and Ni plating was performed with the same bath temperature and current density as in Example 1.

これら実施例1、実施例2、および比較例1の電気接点について、耐湿試験および硝酸曝気試験の2種類の耐食試験を行った。   For these electrical contacts of Example 1, Example 2, and Comparative Example 1, two types of corrosion resistance tests, a moisture resistance test and a nitric acid aeration test, were performed.

耐湿試験は、温度85℃、湿度95%RH中に、各電気接点を120時間放置することにより行い、放置後の電気接点の様子を観察した。   The moisture resistance test was performed by leaving each electrical contact for 120 hours in a temperature of 85 ° C. and a humidity of 95% RH, and the state of the electrical contact after being left was observed.

硝酸曝気試験は、各電気接点を濃硝酸50mlとともにデシケータ中で密閉し、1時間曝露することにより行い、曝露後の電気接点の様子を観察した。   The nitric acid aeration test was performed by sealing each electrical contact with 50 ml of concentrated nitric acid in a desiccator and exposing for 1 hour, and the state of the electrical contact after exposure was observed.

(耐食試験の結果)
比較例1の電気接点は、耐湿試験後めっき剥離が発生していた。図4は比較例1における電気接点の断面のSEM写真である。図4に示すように、Niが溶出して、Niが表面に析出し、また内部が空洞化していることがわかった。硝酸曝気試験後の電気接点では、Auめっき表面のほとんどを覆うように青色生成物が生成していた。
(Results of corrosion resistance test)
The electrical contact of Comparative Example 1 had plating peeling after the moisture resistance test. FIG. 4 is an SEM photograph of a cross section of the electrical contact in Comparative Example 1. As shown in FIG. 4, it was found that Ni was eluted, Ni was deposited on the surface, and the inside was hollow. In the electrical contact after the nitric acid aeration test, a blue product was formed so as to cover most of the Au plating surface.

実施例1の電気接点では、耐湿試験後、めっき剥離が発生していなかった。断面SEM観察でも剥離は確認されなかった。また、硝酸曝気試験後の電気接点では、Auめっき表面に青色生成物が斑点状に生成しているのが認められたが、表面のほとんどはAuめっきのままであった。   In the electrical contact of Example 1, plating peeling did not occur after the moisture resistance test. No peeling was confirmed even by cross-sectional SEM observation. Moreover, in the electrical contact after the nitric acid aeration test, it was recognized that a blue product was generated in spots on the Au plating surface, but most of the surface remained as Au plating.

実施例2の電気接点では、耐湿試験後、めっき剥離が発生していなかった。断面SEM観察でも剥離は確認されなかった。また、硝酸曝気試験後の電気接点でも、Auめっき表面に変化は認められなかった。   In the electrical contact of Example 2, plating peeling did not occur after the moisture resistance test. No peeling was confirmed even by cross-sectional SEM observation. In addition, no change was observed on the Au plating surface even at the electrical contact after the nitric acid aeration test.

以上より、Ni下地層が1層(圧縮応力めっき層1層)のみからなる比較例1では応力腐食が発生したが、実施例1および実施例2の電気接点では、経時変化による応力腐食が発生していないことがわかる。これは、引張り応力めっき層と圧縮応力めっき層が積層されてNi下地層が形成されることにより、下地層全体の残留応力をゼロ、またはほぼゼロにできたためと考えられる。   As described above, stress corrosion occurred in Comparative Example 1 in which the Ni underlayer is composed of only one layer (one compression stress plating layer). However, stress corrosion due to aging occurred in the electrical contacts of Examples 1 and 2. You can see that they are not. This is presumably because the residual stress of the entire underlayer was made zero or almost zero by forming the Ni underlayer by laminating the tensile stress plating layer and the compressive stress plating layer.

1、5 電気接点
2 母材
3 下地層
3a 引張り応力めっき層
3b 圧縮応力めっき層
4 貴金属層
1, 5 Electric contact 2 Base material 3 Underlayer 3a Tensile stress plating layer 3b Compressive stress plating layer 4 Noble metal layer

Claims (9)

母材上にめっき形成されためっき層を備える電気接点において、
前記めっき層が、引張り応力めっき層と圧縮応力めっき層をそれぞれ少なくとも1層含んで積層した積層めっき膜で形成されることを特徴とする電気接点。
In an electrical contact provided with a plating layer formed by plating on a base material,
The electrical contact, wherein the plating layer is formed of a laminated plating film including at least one tensile stress plating layer and a compressive stress plating layer.
前記積層めっき膜は熱処理されたものである請求項1記載の電気接点。   The electrical contact according to claim 1, wherein the multilayer plating film is heat-treated. 前記母材上にめっき形成された下地層と、前記下地層の表面に貴金属がめっきされた貴金属層とを有して構成され、前記下地層が前記積層めっき膜で形成される請求項1又は2に記載の電気接点。   The underlayer formed by plating on the base material and a noble metal layer obtained by plating a noble metal on the surface of the underlayer, and the underlayer is formed of the multilayer plating film. 2. The electrical contact according to 2. 前記下地層は、Ni、あるいは、Niを含む合金で形成される請求項3記載の電気接点。   The electrical contact according to claim 3, wherein the underlayer is formed of Ni or an alloy containing Ni. 母材上にめっき形成されためっき層を備える電気接点の製造方法において、
前記めっき層を、引張り応力めっき層と圧縮応力めっき層をそれぞれ少なくとも1層積層した積層めっき膜で形成することを特徴とする電気接点の製造方法。
In a method for producing an electrical contact comprising a plating layer formed by plating on a base material,
The method of manufacturing an electrical contact, wherein the plating layer is formed of a laminated plating film in which at least one tensile stress plating layer and compressive stress plating layer are laminated.
めっき浴中の光沢剤の種類を変えて、引張り応力めっき層と圧縮応力めっき層を積層する請求項5記載の電気接点の製造方法。   6. The method for producing an electrical contact according to claim 5, wherein the tensile stress plating layer and the compressive stress plating layer are laminated by changing the type of the brightener in the plating bath. めっき浴中の電流密度を変えて、引張り応力めっき層と圧縮応力めっき層を積層する請求項5記載の電気接点の製造方法。   The method for producing an electrical contact according to claim 5, wherein the tensile stress plating layer and the compressive stress plating layer are laminated while changing the current density in the plating bath. 前記引張り応力めっき層と圧縮応力めっき層を積層した後、熱処理を行う請求項5ないし7のいずれか1項に記載の電気接点の製造方法。   The method for manufacturing an electrical contact according to claim 5, wherein heat treatment is performed after the tensile stress plating layer and the compressive stress plating layer are laminated. 前記母材上にめっき形成された下地層と、前記下地層の表面に貴金属がめっきされた貴金属層とを有して構成し、前記下地層を、前記積層めっき膜で形成する請求項5ないし8のいずれか1項に記載の電気接点の製造方法。   6. An underlayer formed by plating on the base material and a noble metal layer in which a noble metal is plated on the surface of the underlayer, and the underlayer is formed of the laminated plating film. 9. The method for producing an electrical contact according to any one of 8 above.
JP2009089212A 2009-04-01 2009-04-01 Electrical contact and method for manufacturing the same Withdrawn JP2010242117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089212A JP2010242117A (en) 2009-04-01 2009-04-01 Electrical contact and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089212A JP2010242117A (en) 2009-04-01 2009-04-01 Electrical contact and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010242117A true JP2010242117A (en) 2010-10-28

Family

ID=43095454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089212A Withdrawn JP2010242117A (en) 2009-04-01 2009-04-01 Electrical contact and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010242117A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211441A (en) * 2012-03-30 2013-10-10 Seiko Epson Corp Package, manufacturing method of the same, electronic device and electronic apparatus
JP2014019948A (en) * 2012-07-18 2014-02-03 Envirochem Technology Ltd Composite multilayer nickel electroplating layer and electroplating method therefor
JP2015048483A (en) * 2013-08-29 2015-03-16 株式会社オートネットワーク技術研究所 Plated member, plated terminal for connector, method for producing plated member, and method for producing plated terminal for connector
JP2015117424A (en) * 2013-12-19 2015-06-25 古河電気工業株式会社 Material for movable contact component and method for manufacturing the same
US20200006001A1 (en) * 2018-06-29 2020-01-02 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152372A (en) * 1991-10-02 1993-06-18 Yamaha Corp Forming method of bonding pad
JP2003073883A (en) * 2001-09-06 2003-03-12 Totoku Electric Co Ltd Electrodeposited iron film for high-frequency, insulated wire for high-frequency coil, and manufacturing method for these
JP2004145063A (en) * 2002-10-25 2004-05-20 Nikko Materials Co Ltd Copper foil for plasma display panel and method for manufacturing the same
JP2005248268A (en) * 2004-03-05 2005-09-15 Dowa Mining Co Ltd Metallic member and electric contact using the same
JP2006295109A (en) * 2005-03-14 2006-10-26 Citizen Watch Co Ltd Semiconductor device and manufacturing method thereof
JP2007177311A (en) * 2005-12-28 2007-07-12 Fujitsu Ltd Plated coating, method for forming the same, and electronic component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152372A (en) * 1991-10-02 1993-06-18 Yamaha Corp Forming method of bonding pad
JP2003073883A (en) * 2001-09-06 2003-03-12 Totoku Electric Co Ltd Electrodeposited iron film for high-frequency, insulated wire for high-frequency coil, and manufacturing method for these
JP2004145063A (en) * 2002-10-25 2004-05-20 Nikko Materials Co Ltd Copper foil for plasma display panel and method for manufacturing the same
JP2005248268A (en) * 2004-03-05 2005-09-15 Dowa Mining Co Ltd Metallic member and electric contact using the same
JP2006295109A (en) * 2005-03-14 2006-10-26 Citizen Watch Co Ltd Semiconductor device and manufacturing method thereof
JP2007177311A (en) * 2005-12-28 2007-07-12 Fujitsu Ltd Plated coating, method for forming the same, and electronic component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211441A (en) * 2012-03-30 2013-10-10 Seiko Epson Corp Package, manufacturing method of the same, electronic device and electronic apparatus
JP2014019948A (en) * 2012-07-18 2014-02-03 Envirochem Technology Ltd Composite multilayer nickel electroplating layer and electroplating method therefor
JP2015048483A (en) * 2013-08-29 2015-03-16 株式会社オートネットワーク技術研究所 Plated member, plated terminal for connector, method for producing plated member, and method for producing plated terminal for connector
JP2015117424A (en) * 2013-12-19 2015-06-25 古河電気工業株式会社 Material for movable contact component and method for manufacturing the same
US20200006001A1 (en) * 2018-06-29 2020-01-02 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor
US10886066B2 (en) * 2018-06-29 2021-01-05 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor including external electrode having tin-plated layers alternately stacked with nickel-plated layer(s)

Similar Documents

Publication Publication Date Title
JP5871206B2 (en) Manufacturing method of electrical contact material for connector
US20130098665A1 (en) Flexible printed circuit board and production method of same
JP2009295656A (en) Substrate for flexible wiring board and method for manufacturing the same
KR101549251B1 (en) Electrolysis copper foil and circuit board
WO2015045856A1 (en) Electric contact material for connector, and method for producing same
JP5460585B2 (en) Sliding member manufacturing method, sliding member and sliding member base material
JP2010242117A (en) Electrical contact and method for manufacturing the same
JPWO2009157456A1 (en) Composite material for electric and electronic parts and electric and electronic parts using the same
WO2015002130A1 (en) Metal foil for electromagnetic shielding, electromagnetic shielding member, and shielded cable
JP5532706B2 (en) Method for producing flexible copper-clad laminate
JP2012038823A (en) Wiring circuit board
JP3562719B2 (en) Terminal
JP5621570B2 (en) Conductive material with Sn plating and manufacturing method thereof
WO2014148201A1 (en) Silver-plated material
JP2009076322A (en) Flexible flat cable, and manufacturing method thereof
WO2022123818A1 (en) Ag-coated material, ag-coated material manufacturing method, and terminal component
JP2014095139A (en) Silver plated laminate
JP7281970B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP4128715B2 (en) Method for producing multilayer copper alloy material
JP2008196010A (en) Plating material for connector terminal
JP4427044B2 (en) Conductor for flexible substrate, method for producing the same, and flexible substrate
JP7353928B2 (en) Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components
JP2004307954A (en) Plating forming member
JP2010153537A (en) Flexible wiring board
JP6230732B2 (en) Conductive strip and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Effective date: 20130806

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20130911

Free format text: JAPANESE INTERMEDIATE CODE: A761