JP2010238957A - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP2010238957A
JP2010238957A JP2009086023A JP2009086023A JP2010238957A JP 2010238957 A JP2010238957 A JP 2010238957A JP 2009086023 A JP2009086023 A JP 2009086023A JP 2009086023 A JP2009086023 A JP 2009086023A JP 2010238957 A JP2010238957 A JP 2010238957A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
group
conversion element
layer
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009086023A
Other languages
Japanese (ja)
Inventor
Azusahei Motofuji
梓平 元藤
Fumiyuki Tanabe
史行 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2009086023A priority Critical patent/JP2010238957A/en
Publication of JP2010238957A publication Critical patent/JP2010238957A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element having a superior photoelectric conversion efficiency. <P>SOLUTION: The photoelectric conversion element P has a photoelectric conversion layer E that contains a conductive polymer d and an electron acceptor a between two electrodes Y formed on a substrate T. By using the photoelectric conversion element that has the conductive polymer d containing a polyselenophene derivative represented by a general formula (1), the superior photoelectric conversion efficiency is attained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光電変換素子に関する。詳しくは、例えば、太陽電池素子や光センサー素子に使用される光電変換素子に関する。   The present invention relates to a photoelectric conversion element. Specifically, for example, the present invention relates to a photoelectric conversion element used for a solar cell element or an optical sensor element.

光電変換素子を利用したデバイスの代表例として太陽電池素子が挙げられる。光電変換素子は、太陽電池素子において光電変換層と呼ばれ、光電変換層を根拠として大別すると、Si、GaAs 等の無機物を用いた無機太陽電池と、導電性高分子等の有機物を用いた有機太陽電池に分類される。   A solar cell element is mentioned as a typical example of a device using a photoelectric conversion element. A photoelectric conversion element is called a photoelectric conversion layer in a solar cell element, and when classified roughly on the basis of a photoelectric conversion layer, an inorganic solar cell using an inorganic material such as Si or GaAs and an organic material such as a conductive polymer are used. Classified as organic solar cells.

無機太陽電池素子としては、シリコン太陽電池素子等が挙げられるが、その製造過程における環境負荷が大きく、無機であるが為に、多様性に欠ける事、高コスト等、多数の問題点を抱えている。それと比較し、有機太陽電池素子は低環境負荷、多様性、低コスト等、無機太陽電池素子の問題点を解決出来得る事から、注目を浴びている。   Examples of inorganic solar cell elements include silicon solar cell elements, etc., but they have a large number of problems such as lack of diversity and high cost because they are inorganic and have a large environmental load in the manufacturing process. Yes. In comparison, organic solar cell elements are attracting attention because they can solve the problems of inorganic solar cell elements such as low environmental load, diversity, and low cost.

有機太陽電池素子としては、有機半導体と金属薄膜間で生じるショットキー障壁を利用したショットキー障壁型太陽電池素子や、TiO上にRu等の色素を担持させ、これに電解質を満たした色素増感太陽電池素子、光電変換層として電子受容体(以降、電子輸送層と呼ぶ)と正孔受容体(以降、正孔輸送層と呼ぶ)を使用した有機薄膜太陽電池素子等が挙げられる。 Examples of organic solar cell elements include Schottky barrier solar cell elements that use a Schottky barrier generated between an organic semiconductor and a metal thin film, and dyes such as Ru supported on TiO 2 , and dye increases with an electrolyte. Examples thereof include an organic thin-film solar cell element using an electron acceptor (hereinafter referred to as an electron transport layer) and a hole acceptor (hereinafter referred to as a hole transport layer) as a photovoltaic cell element and a photoelectric conversion layer.

ショットキー障壁型太陽電池素子とは、有機半導体と金属薄膜を接合させる事で、半導体部分に、金属の仕事関数と半導体の持つ電子親和力の差が、障壁(ショットキー障壁)として現れ、これに光照射する事で、電化分離が発生する素子の事である。しかし、ショットキー障壁型太陽電池素子は光電変換効率が0.1%以下と非常に低く、実用的ではない。   With a Schottky barrier solar cell element, an organic semiconductor and a metal thin film are joined together, and the difference between the work function of the metal and the electron affinity of the semiconductor appears in the semiconductor portion as a barrier (Schottky barrier). An element that undergoes electrification and separation when irradiated with light. However, the Schottky barrier solar cell element has a very low photoelectric conversion efficiency of 0.1% or less and is not practical.

また、色素増感太陽電池素子とは、光照射により色素が励起状態となり、電子を放出する事で電化分離が発生する素子の事である。色素増感太陽電池素子は10%という高い光電変換効率を達成しているが、高効率を得る為にはRu色素やPt電極等の高価な材料が必要である。最近、非Ru色素が検討されており、例えば、本発明のポリセレノフェン誘導体と同様、又は類似の構造も見受けられる(特許文献1)が、Ru色素以外では高い変換効率が得られていない。また、液体電解質を用いている為にその長期安定性も優れているとは言えない。   The dye-sensitized solar cell element is an element that undergoes electrification separation when the dye is excited by light irradiation and emits electrons. The dye-sensitized solar cell element achieves a photoelectric conversion efficiency as high as 10%, but expensive materials such as Ru dye and Pt electrode are required to obtain high efficiency. Recently, non-Ru dyes have been studied. For example, a structure similar to or similar to that of the polyselenophene derivative of the present invention can be seen (Patent Document 1), but high conversion efficiency is not obtained except for Ru dyes. Moreover, since a liquid electrolyte is used, it cannot be said that its long-term stability is excellent.

一方、有機薄膜太陽電池素子は、他の太陽電池素子に比べて、特に製造工程が容易、かつ低コストである事から注目されている。例えば、電子輸送層と正孔輸送層を兼ねた導電性高分子を積層したバイレイヤー型有機薄膜太陽電池素子、電子輸送層と正孔輸送層を兼ねた導電性高分子の配合液を塗布したバルクへテロ接合型有機薄膜太陽電池素子等が挙げられる。   On the other hand, organic thin-film solar cell elements are attracting attention because they are particularly easy to manufacture and low-cost compared to other solar cell elements. For example, a bilayer organic thin-film solar cell element in which a conductive polymer that also serves as an electron transporting layer and a hole transporting layer is laminated, and a conductive polymer compound that also serves as an electron transporting layer and a hole transporting layer are applied. Examples include bulk heterojunction type organic thin film solar cell elements.

バイレイヤー型有機薄膜太陽電池素子は、電子輸送層と、正孔輸送層を兼ねた導電性高分子とを接合させる事により、2層の界面でpn接合を形成させ、光電変換を起こすものである。例えば、電子輸送層としてペリレン誘導体を用い、正孔輸送層として銅フタロシアニンを用いたもの等が挙げられる。
しかし、キャリアの再結合を防ぎ、電流を観測する為には膜厚を約20nm 程度とする必要があり、この膜厚では光吸収が不充分で、光電変換効率は1%以下となる。
Bilayer organic thin-film solar cell elements are those that cause photoelectric conversion by forming a pn junction at the interface between two layers by bonding an electron transport layer and a conductive polymer that also serves as a hole transport layer. is there. For example, a perylene derivative is used for the electron transport layer and copper phthalocyanine is used for the hole transport layer.
However, in order to prevent the recombination of carriers and observe the current, the film thickness needs to be about 20 nm. At this film thickness, light absorption is insufficient and the photoelectric conversion efficiency is 1% or less.

一方、バルクへテロ接合型有機薄膜太陽電池素子では、電子輸送層と、正孔輸送層を兼ねた導電性高分子が混在した電子正孔輸送層という単一層構造となっており、光電変換層中に於いて、分子レベルでのpn接合となる事で、光電変換に関与する体積の増加が可能である。例えば、導電性高分子(正孔輸送層)としてポリチオフェン誘導体(ポリ−3−ヘキシルチオフェン−2,5−ジイル(以下、P3HTと呼ぶ))を用い、電子輸送層としてフラーレン誘導体[6,6]−フェニル−C61ブチリックアシッドメチルエステル(以下、PCBMと呼ぶ)を用いたもの等が挙げられる(特許文献2)。これにより光電変換効率は大幅に改善されたが、P3HTの正孔輸送能が低い為、未だその変換効率は不充分であった。   On the other hand, the bulk heterojunction organic thin film solar cell element has a single layer structure of an electron transport layer and an electron hole transport layer in which a conductive polymer that also serves as a hole transport layer is mixed. Among them, the volume involved in photoelectric conversion can be increased by forming a pn junction at the molecular level. For example, a polythiophene derivative (poly-3-hexylthiophene-2,5-diyl (hereinafter referred to as P3HT)) is used as a conductive polymer (hole transport layer), and a fullerene derivative [6, 6] as an electron transport layer. Examples thereof include those using -phenyl-C61 butyric acid methyl ester (hereinafter referred to as PCBM) (Patent Document 2). This greatly improved the photoelectric conversion efficiency, but the conversion efficiency was still insufficient due to the low hole transport capability of P3HT.

特開2005−135656号公報JP 2005-135656 A 特開2006−245073号公報JP 2006-245073 A

上記の様に、有機薄膜太陽電池素子として、様々な検討が行われているが、P3HT以降、良好な特性を持つ導電性高分子(正孔輸送層)が見受けられず、電子輸送能が不足している太陽電池では、高い光電変換効率を得る事が期待出来ない。つまり、高い正孔輸送能を有する導電性高分子(正孔輸送層)を開発する事が、有機薄膜太陽電池素子の光電変換効率を向上させる為には不可欠である。
本発明の目的は高い正孔輸送能を有する導電性高分子を有することにより、光電変換効率が向上した光電変換素子を提供することである。
As described above, various studies have been made as organic thin-film solar cell elements. However, since P3HT, no conductive polymer (hole transport layer) with good characteristics was found, and electron transport ability was insufficient. It is not possible to expect a high photoelectric conversion efficiency with a solar cell. That is, it is indispensable to develop a conductive polymer (hole transport layer) having a high hole transport ability in order to improve the photoelectric conversion efficiency of the organic thin film solar cell element.
An object of the present invention is to provide a photoelectric conversion element having improved photoelectric conversion efficiency by having a conductive polymer having a high hole transport ability.

本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
すなわち、本発明は、基板(T)上に形成された2つの電極(Y)間に、導電性高分子(d)と電子受容体(a)を含有する光電変換層(E)を有する光電変換素子(P)であって、該導電性高分子(d)が、下記一般式(1)で示されるポリセレノフェン誘導体(D)を含有することを特徴とする、光電変換素子(P)。

Figure 2010238957
[式中nは5以上の整数を表す。Rはヒドロキシル基、シアノ基、リン酸基、スルホン酸基、ハロゲン原子からなる群より選ばれ、Rは置換基を有してもよい脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基、ポリオキシアルキレンアルキル(アリ−ル)エーテル基からなる群より選ばれる基であって、炭素数が1〜20である基である。] The inventors of the present invention have reached the present invention as a result of studies to achieve the above object.
That is, the present invention provides a photoelectric conversion layer having a photoelectric conversion layer (E) containing a conductive polymer (d) and an electron acceptor (a) between two electrodes (Y) formed on a substrate (T). It is a conversion element (P), Comprising: This electroconductive polymer (d) contains the polyselenophene derivative (D) shown by following General formula (1), The photoelectric conversion element (P) characterized by the above-mentioned. .
Figure 2010238957
[Wherein n represents an integer of 5 or more. R 1 is selected from the group consisting of a hydroxyl group, a cyano group, a phosphoric acid group, a sulfonic acid group, and a halogen atom, and R 2 may have an aliphatic hydrocarbon group that may have a substituent or a substituent. It is a group selected from the group consisting of a good aromatic hydrocarbon group and polyoxyalkylene alkyl (aryl) ether group, and a group having 1 to 20 carbon atoms. ]

本発明においては、導電性高分子(正孔輸送層)として、ポリセレノフェン誘導体を用いる事で、正孔輸送性が向上し、高い光電変換効率を達成することができる。   In the present invention, by using a polyselenophene derivative as the conductive polymer (hole transport layer), the hole transport property is improved and high photoelectric conversion efficiency can be achieved.

本発明の光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the photoelectric conversion element of this invention.

(T) 基板
(Y) 電極
(i−1) 正孔取出し層
(E) 光電変換層
(i−2) 電子取出し層
(T) Substrate (Y) Electrode (i-1) Hole extraction layer (E) Photoelectric conversion layer (i-2) Electron extraction layer

本発明の光電変換素子は、基板上に形成された二つの電極の間にポリセレノフェン誘導体(D)を含有する導電性高分子と電子受容体とを含有する光電変換層を設けた光電変換素子である。   The photoelectric conversion element of the present invention is a photoelectric conversion in which a photoelectric conversion layer containing a conductive polymer containing a polyselenophene derivative (D) and an electron acceptor is provided between two electrodes formed on a substrate. It is an element.

ポリセレノフェン誘導体(D)は上記一般式(1)で示される。
このポリセレノフェン誘導体(D)は正孔輸送性の観点から、式中n(重合度)は5以上が好ましく、5〜1000がより好ましく、100〜500がさらに好ましい。
はヒドロキシル基、シアノ基、リン酸基、スルホン酸基、ハロゲン原子で示される基であり、Rは炭素数が1〜20である基であって、置換基を有してもよい脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基、ポリオキシアルキレンアルキル(アリ−ル)エーテル基である。ここで芳香族炭化水素基とは、フェニル基以外の芳香族環を有する基、および、複素環である芳香族環を有する基も含むものとする。ポリオキシアルキレンアルキル(アリ−ル)エーテル基とは、ポリオキシアルキレンアルキルエーテル基、又はポリオキシアルキレンアリ−ルエーテル基をいうものとする。
置換基を有しても良い脂肪族炭化水素基としては、例えばn−ブチル基、n−ヘキシル基、n−オクチル基、n−ノニル基、2−エチルヘキシル基、2−エチルオクチル基、3−シアノオクチル基、9−スルホニルノニル基等が挙げられる。
置換基を有してもよい芳香族炭化水素基としては、フェニル基、ナフチル基、ピレン基、4−メトキシフェニル基等が挙げられる。
ポリオキシアルキレンアルキル(アリ−ル)エーテル基としては、トリエチレングリコールメチルエーテル基、テトラプロピレングリコールエチルエーテル基等が挙げられる。
なお、リン酸基、スルホン酸基とは、各々以下の一般式(2)〜(3)で示される基である。
The polyselenophene derivative (D) is represented by the general formula (1).
In the polyselenophene derivative (D), from the viewpoint of hole transportability, n (degree of polymerization) is preferably 5 or more, more preferably 5 to 1000, and still more preferably 100 to 500.
R 1 is a group represented by a hydroxyl group, a cyano group, a phosphoric acid group, a sulfonic acid group, or a halogen atom, and R 2 is a group having 1 to 20 carbon atoms and may have a substituent. They are an aliphatic hydrocarbon group, an aromatic hydrocarbon group which may have a substituent, and a polyoxyalkylene alkyl (aryl) ether group. Here, the aromatic hydrocarbon group includes a group having an aromatic ring other than a phenyl group and a group having an aromatic ring which is a heterocyclic ring. The polyoxyalkylene alkyl (aryl) ether group means a polyoxyalkylene alkyl ether group or a polyoxyalkylene aryl ether group.
Examples of the aliphatic hydrocarbon group which may have a substituent include n-butyl group, n-hexyl group, n-octyl group, n-nonyl group, 2-ethylhexyl group, 2-ethyloctyl group, 3- A cyanooctyl group, a 9-sulfonylnonyl group, etc. are mentioned.
Examples of the aromatic hydrocarbon group which may have a substituent include a phenyl group, a naphthyl group, a pyrene group, and a 4-methoxyphenyl group.
Examples of the polyoxyalkylene alkyl (aryl) ether group include a triethylene glycol methyl ether group and a tetrapropylene glycol ethyl ether group.
The phosphoric acid group and the sulfonic acid group are groups represented by the following general formulas (2) to (3), respectively.

Figure 2010238957
Figure 2010238957

上記の中でRはハロゲン原子が好ましく、ハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
上記の中でRは置換基を有してもよい脂肪族炭化水素基が好ましい。
式中n(重合度)が5未満であると、またはR、Rが上記以外の有機基であると、又は主鎖芳香五員環のヘテロ原子がSe以外では、ポリセレノフェン誘導体(D)の正孔輸送性が低下する為、好ましくない。
Among these, R 1 is preferably a halogen atom, and examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Among the above, R 2 is preferably an aliphatic hydrocarbon group which may have a substituent.
In the formula, when n (degree of polymerization) is less than 5, or R 1 and R 2 are organic groups other than the above, or the hetero atom of the main chain aromatic five-membered ring is other than Se, a polyselenophene derivative ( This is not preferable because the hole transport property of D) is lowered.

ポリセレノフェン誘導体(D)の好ましい具体例としては、例えば、以下の実施例に記載した一般式(4)〜一般式(8)で示される化合物が挙げられる。   Preferable specific examples of the polyselenophene derivative (D) include, for example, compounds represented by the general formulas (4) to (8) described in the following examples.

ポリセレノフェン誘導体(D)の製造方法
セレノフェン1当量に対して、臭素を例えば4当量を加えた溶液(例えばクロロホルム溶液)を、例えば12時間、25℃で攪拌する事でテトラブロモセレノフェンを得る事ができ、このテトラブロモセレノフェン1当量に還元試薬(例えば亜鉛粉末)を例えば2当量加えた溶液(例えば酢酸水溶液)を、例えば12時間、還流する事で、3,4−ジブロモセレノフェンを得る事ができる。
この3,4−ジブロモセレノフェンの3位と4位を別個に、例えばグリニヤー反応、ウィリアムソンエーテル合成法、フッ素置換反応を行う事で3,4−置換セレノフェンを得る事ができる。
この3,4−置換セレノフェン1当量に対して、グリニヤー試薬を例えば1当量、及びニッケル触媒(例えばNi(dppp)Cl)を例えば0.02等量を加えた溶液(例えばテトラヒドロフラン溶液)を、例えば12時間、還流する事で、ポリセレノフェン誘導体(D)を得る事ができる。
具体的な製造方法は、Chemistry of Materials,2005年,17号,3317−3319頁、または、Journal of the American Chemical Society,1995年,117号,233−244頁等に記載の方法で行なう事ができる。
Production Method of Polyselenophene Derivative (D) Tetrabromoselenophene is obtained by stirring a solution (for example, chloroform solution) containing 4 equivalents of bromine, for example, for 12 hours at 25 ° C. with respect to 1 equivalent of selenophene. A solution obtained by adding, for example, 2 equivalents of a reducing reagent (for example, zinc powder) to 1 equivalent of tetrabromoselenophene, for example, by refluxing for 12 hours, 3,4-dibromoselenophene is obtained. I can get it.
A 3,4-substituted selenophene can be obtained by separately performing the 3rd and 4th positions of this 3,4-dibromoselenophene, for example, by Grignard reaction, Williamson ether synthesis method, and fluorine substitution reaction.
A solution (for example, a tetrahydrofuran solution) in which 1 equivalent of a Grignard reagent and 0.02 equivalent of a nickel catalyst (for example, Ni (dppp) Cl 2 ) is added to 1 equivalent of the 3,4-substituted selenophene, For example, the polyselenophene derivative (D) can be obtained by refluxing for 12 hours.
A specific manufacturing method may be performed by the method described in Chemistry of Materials, 2005, No. 17, pp. 3317-3319, or Journal of the American Chemical Society, 1995, No. 117, pp. 233-244. it can.

本発明の光電変換素子は、基板(T)上に形成された2つの電極(Y)間に、導電性高分子(d)と電子受容体(a)を含有する光電変換層(E)を有する光電変換素子(P)である。1例として図1にその代表的な構造の概略断面図を示す。以下に各構成部位についてその詳細を説明する。   The photoelectric conversion element of the present invention comprises a photoelectric conversion layer (E) containing a conductive polymer (d) and an electron acceptor (a) between two electrodes (Y) formed on a substrate (T). A photoelectric conversion element (P). As an example, FIG. 1 shows a schematic sectional view of a typical structure thereof. Details of each component will be described below.

(1)基板(T)
本発明における基板について説明する。基板は透明、不透明いずれでも良いが、基板面が受光体となる場合には透明基板が望ましい。この透明基板としては、光電変換素子外部から侵入する水分やガスの遮断性、耐溶剤性、耐候性等に優れているものが望ましく、例えば、石英ガラスなどの剛直板、透明樹脂フィルム等のフレキシブル基板が挙げられる。更に、優れた加工性、低コスト、軽量化といった観点から、本発明においては、フレキシブル基板である事が望ましい。透明樹脂フィルムとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリスチレン、ポリエチレン、ポリフッ化ビニリデン、ポリイミド、ポリメチルメタクリレート等が挙げられる。
(1) Substrate (T)
The substrate in the present invention will be described. The substrate may be either transparent or opaque, but a transparent substrate is desirable when the substrate surface is a photoreceptor. As this transparent substrate, a substrate excellent in moisture and gas barrier properties, solvent resistance, weather resistance and the like entering from the outside of the photoelectric conversion element is desirable. For example, a rigid plate such as quartz glass, a flexible resin such as a transparent resin film, etc. A substrate is mentioned. Furthermore, in the present invention, a flexible substrate is desirable from the viewpoint of excellent workability, low cost, and light weight. Examples of the transparent resin film include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polyvinylidene fluoride, polyimide, and polymethyl methacrylate.

(2)電極(Y)
続いて、本発明における電極について説明する。
電極は基板(T)上に層状をなしていても、層状をなしていなくてもよいが、層状であることが好ましい。電極は必ずしも透光性を有する必要はないが、基板(T)上に層状をなしている場合は、少なくとも一方が透光性を有することが好ましい。電極は二つからなり、二つの層状を成していることが好ましい。電極は導電性を有するものであればいずれでも良く、スパッタリング法、イオンプレーティング法等により形成される。光透過性電極としては、インジウム−スズ複合酸化物(ITO)、フッ素ドープSnO(FTO)、SnO等の導電性透明材料からなる金属薄膜が好ましく、光遮光性電極としては、アルカリ金属、アルカリ土類金属等の金属薄膜が好ましい。この電極の厚さは、特に限定されないが、例えば80〜100nm程度である。
(2) Electrode (Y)
Then, the electrode in this invention is demonstrated.
The electrode may or may not be layered on the substrate (T), but is preferably layered. The electrode does not necessarily have translucency, but when the electrode is layered on the substrate (T), it is preferable that at least one of the electrodes has translucency. It is preferable that the electrode is composed of two layers and has two layers. Any electrode may be used as long as it has conductivity, and it is formed by sputtering, ion plating, or the like. As the light transmissive electrode, a metal thin film made of a conductive transparent material such as indium-tin composite oxide (ITO), fluorine-doped SnO 2 (FTO), SnO 2 is preferable, and as the light shielding electrode, an alkali metal, Metal thin films such as alkaline earth metals are preferred. Although the thickness of this electrode is not specifically limited, For example, it is about 80-100 nm.

(3)光電変換層(E)
続いて、本発明に用いられる光電変換層について説明する。本発明における光電変換層は、導電性高分子(d)及び電子輸送層(電子受容体)(a)を含有しており、好ましくは正孔輸送層(正孔受容体)(s)を兼ねた導電性高分子(d)、及び電子輸送層(電子受容体)(a)を含有している。
上記、含有される導電性高分子(正孔輸送層、正孔受容体)と電子輸送層(電子受容体)の形態は特に限定されるものではないが、好ましくは両者が混在した電子正孔輸送層という単一層構造、つまり、バルクヘテロ接合である。この構造をとることにより分子レベルでのpn接合が可能となり、このため光電変換に関与する体積の増加が可能となるという効果が得られる。
上述のような光電変換層(E)は、導電性高分子(d)と電子受容体(a)の混合溶液から溶媒を除去する事で得る事ができる。
(3) Photoelectric conversion layer (E)
Then, the photoelectric converting layer used for this invention is demonstrated. The photoelectric conversion layer in the present invention contains a conductive polymer (d) and an electron transport layer (electron acceptor) (a), and preferably also serves as a hole transport layer (hole acceptor) (s). A conductive polymer (d) and an electron transport layer (electron acceptor) (a).
The form of the conductive polymer (hole transport layer, hole acceptor) and electron transport layer (electron acceptor) contained is not particularly limited, but preferably an electron hole in which both are mixed. A single layer structure called a transport layer, that is, a bulk heterojunction. By adopting this structure, a pn junction at the molecular level becomes possible, and thus an effect of increasing the volume involved in photoelectric conversion can be obtained.
The photoelectric conversion layer (E) as described above can be obtained by removing the solvent from the mixed solution of the conductive polymer (d) and the electron acceptor (a).

本発明においては、導電性高分子(d)(正孔輸送層、正孔受容体)として少なくともポリセレノフェン誘導体(D)を含むものである。これを用いる事で、正孔輸送性が向上し、高い光電変換効率が得られる。
この理由として、以下のことが推定される。
(i)本発明の導電性高分子(d)(正孔輸送層、正孔受容体)は、フロンティア軌道の観点から、導電性高分子のHOMO−LUMOギャップが小さく、正孔の移動速度が十分大きい。
(ii)本発明の導電性高分子(d)(正孔輸送層、正孔受容体)は、電子輸送層との相溶性が良く、バルクへテロ接合の緻密さが十分である。
In the present invention, the conductive polymer (d) (hole transport layer, hole acceptor) contains at least the polyselenophene derivative (D). By using this, hole transportability is improved, and high photoelectric conversion efficiency is obtained.
The reason is estimated as follows.
(I) The conductive polymer (d) (hole transport layer, hole acceptor) of the present invention has a small HOMO-LUMO gap of the conductive polymer from the viewpoint of the frontier orbit, and has a hole transfer speed. Big enough.
(Ii) The conductive polymer (d) (hole transport layer, hole acceptor) of the present invention has good compatibility with the electron transport layer and has sufficient bulk heterojunction.

上記で説明したように、導電性高分子(d)としては、正孔輸送層(正孔受容体)(s)として機能するものが好ましく、ポリセレノフェン誘導体が好ましい。一方、電子輸送層(電子受容体(a))に関しては、例えば[6,6]−フェニル−C61ブチリックアシッドメチルエステル(以下PCBMと呼ぶ)等のフラーレン誘導体等が挙げられる。   As explained above, the conductive polymer (d) is preferably one that functions as a hole transport layer (hole acceptor) (s), and a polyselenophene derivative is preferred. On the other hand, for the electron transport layer (electron acceptor (a)), fullerene derivatives such as [6,6] -phenyl-C61 butyric acid methyl ester (hereinafter referred to as PCBM) are exemplified.

本発明において、上述した光電変換層に用いる導電性高分子(d)と電子輸送層(電子受容体)(a)の重量比率としては、良好な電子輸送能を有する電子正孔輸送層を形成すれば特に限定されるものでは無いが、例えば(d)/(a)=1/10〜1/0.4が好ましく、他の各構成材料種の組み合わせによって、最適な混合比に適宜変更する事が好ましい。   In the present invention, as the weight ratio of the conductive polymer (d) and the electron transport layer (electron acceptor) (a) used in the above-described photoelectric conversion layer, an electron hole transport layer having good electron transport ability is formed. Although not particularly limited, for example, (d) / (a) = 1/10 to 1 / 0.4 is preferable, and the mixing ratio is appropriately changed depending on the combination of other constituent material types. Things are preferable.

導電性高分子(d)が、更にポリセレノフェン誘導体(D)以外の導電性高分子(d’)を含有してもよい。導電性高分子(d’)としては、例えば、ポリチオフェン、ポリフルオレン等が挙げられ、ポリセレノフェン誘導体(D)と導電性高分子(d’)の重量比率としては、良好な電子輸送能を有する電子正孔輸送層を形成すれば特に限定されるものでは無いが、例えば(D)/(d’)=20/0〜16/4が好ましく、18/2〜17/3がより好ましく、他の各構成材料種の組み合わせによって、最適な混合比に適宜変更する事が好ましい。   The conductive polymer (d) may further contain a conductive polymer (d ′) other than the polyselenophene derivative (D). Examples of the conductive polymer (d ′) include polythiophene, polyfluorene, and the like. The weight ratio of the polyselenophene derivative (D) and the conductive polymer (d ′) is excellent in electron transport ability. Although it will not specifically limit if the electron hole transport layer which has has is formed, For example, (D) / (d ') = 20 / 0-16 / 4 is preferable, 18 / 2-17 / 3 is more preferable, It is preferable that the mixing ratio is appropriately changed depending on the combination of other constituent material types.

本発明において、上述した光電変換層の膜厚は特に限定されるものでは無く、いずれでも良い。ただし、膜厚が薄過ぎると短絡し、厚過ぎると、膜抵抗が高くなる為、一般的な光電変換素子に用いられている膜厚が好ましく、例えば、20〜800nmである。   In the present invention, the film thickness of the above-described photoelectric conversion layer is not particularly limited, and any film thickness may be used. However, if the film thickness is too thin, the film is short-circuited, and if it is too thick, the film resistance becomes high. Therefore, the film thickness used for a general photoelectric conversion element is preferable, for example, 20 to 800 nm.

本発明において、上述した光電変換層の形成法は、所定の膜厚に均一に形成する事が出来る方法であれば特に限定されるものでは無く、いずれでも良い。例えば、スピンコート法またはダイコート法等が挙げられる。   In the present invention, the method for forming the photoelectric conversion layer described above is not particularly limited as long as it can be uniformly formed in a predetermined film thickness, and any method may be used. For example, a spin coating method or a die coating method can be used.

本発明において、上述した光電変換層の数は、一層でも複数層でも良く、特に限定されるものでは無いが、例えば1〜5層が好ましい。   In the present invention, the number of the photoelectric conversion layers described above may be one layer or a plurality of layers, and is not particularly limited. For example, 1 to 5 layers are preferable.

(5)その他の構成
本発明に用いられるその他の構成について説明する。本発明の光電変換素子内部に、電荷の移動を促進する目的で、電荷取出し層(i)を形成しても良い。
構成する化合物、層数は特に限定されるものでは無いが、例えば、正孔取り出し層(i−1)としては、ポリ(スチレンスルホン酸塩)/ポリ(2,3−ジヒドロチエノ[3,4−b]−1,4−ダイオキシン)(以下「PEDOT/PSS」と呼ぶ)、電子取り出し層(i−2)としては二酸化チタン(以下TiOと呼ぶ)等が挙げられる。
(5) Other structure The other structure used for this invention is demonstrated. A charge extraction layer (i) may be formed in the photoelectric conversion element of the present invention for the purpose of promoting the movement of charges.
The compound and the number of layers are not particularly limited. For example, as the hole extraction layer (i-1), poly (styrene sulfonate) / poly (2,3-dihydrothieno [3,4- b] -1,4-dioxin) (hereinafter referred to as “PEDOT / PSS”) and the electron extraction layer (i-2) include titanium dioxide (hereinafter referred to as TiO x ).

本発明の光電変換素子(P)を太陽電池素子(S)として使用する場合は、基板(T)上に形成された2つの電極(Y)間に、導電性高分子(d)と電子受容体(a)を含有する光電変換層(E)を有する太陽電池素子(S)であり、それらの構成等は、上記光電変換素子(P)で説明したものが好ましい。   When the photoelectric conversion element (P) of the present invention is used as a solar cell element (S), a conductive polymer (d) and an electron acceptor are interposed between two electrodes (Y) formed on the substrate (T). It is a solar cell element (S) which has the photoelectric converting layer (E) containing a body (a), and those structures etc. which were demonstrated by the said photoelectric converting element (P) are preferable.

本発明の太陽電池素子(S)をタンデム型太陽電池素子(S1)として使用する場合は、それらの構成等は、上記太陽電池素子(S)で説明したものが好ましい。また、その積層数は特に限定されるものではなく、例えば、1〜5層程度であり、各々の太陽電池素子(S)の接続様態は並列、直列いずれでも良いが、取り出す電流を大きくしたい場合には並列が好ましく、取り出す電圧を大きくしたい場合には直列が好ましい。   When the solar cell element (S) of the present invention is used as a tandem solar cell element (S1), those described for the solar cell element (S) are preferable. In addition, the number of stacked layers is not particularly limited. For example, the number of stacked layers is about 1 to 5, and the connection state of each solar cell element (S) may be either parallel or series. Are preferably in parallel, and in order to increase the voltage to be extracted, series is preferable.

本発明の光電変換素子(P)を光センサー素子(U)として使用する場合は、基板(T)上に形成された2つの電極(Y)間に、導電性高分子(d)と電子受容体(a)を含有する光電変換層(E)を有する光センサー素子(U)であり、それらの構成等は、上記光電変換素子(P)で説明したものが好ましい。   When the photoelectric conversion element (P) of the present invention is used as an optical sensor element (U), a conductive polymer (d) and an electron acceptor are interposed between two electrodes (Y) formed on a substrate (T). It is an optical sensor element (U) which has a photoelectric conversion layer (E) containing a body (a), and those structures etc. which were demonstrated by the said photoelectric conversion element (P) are preferable.

以下、実施例により本発明を更に詳しく説明するが、本発明はこれに限定されるものではない。
以下、特に記載のないかぎり、「部」「wt」は「重量部」、%は重量%を意味する。
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to this.
Hereinafter, unless otherwise specified, “parts” and “wt” mean “parts by weight” and% means% by weight.

(製造例1)
ポリセレノフェン誘導体として、ポリ−3−シアノ−4−(2−メトキシエトキシ)セレノフェン−2,5−ジイル[以降、PC(MOEO)Sと呼ぶ。一般式(4)で示される化合物]を合成した。
(Production Example 1)
As a polyselenophene derivative, poly-3-cyano-4- (2-methoxyethoxy) selenophene-2,5-diyl [hereinafter referred to as PC (MOEO) S. Compound represented by general formula (4)] was synthesized.

Figure 2010238957
Figure 2010238957

PC(MOEO)S[一般式(4)]の合成
セレノフェン2.5g(アルドリッチ(株)製)をクロロホルム4mlに溶解させた後、臭素4.32ml(和光純薬(株)製)を30分かけて滴下し、この溶液を50℃で24時間攪拌した。クロロホルム50mlを加え、濃度1Mの水酸化ナトリウム水溶液で有機層を3回洗浄した後、濃度1Mのチオ硫酸ナトリウム水溶液で有機層を2回洗浄した。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン)で精製し、2,3,4,5−トリブロモセレノフェン(以降、TriBSと呼ぶ)6.57gを得た。この合成法はOrganic Syntheses,1973年,5号,149−151頁記載の方法に準拠した。
Synthesis of PC (MOEO) S [general formula (4)] After 2.5 g of selenophene (manufactured by Aldrich Co.) was dissolved in 4 ml of chloroform, 4.32 ml of bromine (manufactured by Wako Pure Chemical Industries, Ltd.) was added for 30 minutes. And the solution was stirred at 50 ° C. for 24 hours. After adding 50 ml of chloroform and washing the organic layer three times with a 1 M sodium hydroxide aqueous solution, the organic layer was washed twice with a 1 M sodium thiosulfate aqueous solution. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure and purified by silica gel column chromatography (developing solvent; n-hexane) to obtain 2,3,4,5-tribromoselenophene (hereinafter referred to as TriBS). 6.57 g was obtained. This synthesis method was based on the method described in Organic Synthesis, 1973, No. 5, pages 149-151.

亜鉛粉末2.50g(和光純薬(株)製)を水2.7mlと氷酢酸11.0ml(和光純薬(株)製)の混合溶液に懸濁させた後、この溶液を100℃で2時間攪拌した。25℃まで冷却した後、TriBS 6.57gをクロロホルム10mlの溶解させたものを加え、100℃で6時間攪拌した。クロロホルム50mlを加え、濃度1Mの炭酸水素カリウム水溶液で有機層を3回洗浄した。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン)で精製し、3,4−ジブロモセレノフェン(以降、DBSと呼ぶ)4.90gを得た。   After suspending 2.50 g of zinc powder (manufactured by Wako Pure Chemical Industries, Ltd.) in a mixed solution of 2.7 ml of water and 11.0 ml of glacial acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.), the solution was heated at 100 ° C. Stir for 2 hours. After cooling to 25 ° C., TriBS 6.57 g dissolved in 10 ml of chloroform was added and stirred at 100 ° C. for 6 hours. 50 ml of chloroform was added, and the organic layer was washed three times with a 1M aqueous potassium hydrogen carbonate solution. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent: n-hexane) to obtain 4.90 g of 3,4-dibromoselenophene (hereinafter referred to as DBS). It was.

DBS 2.10gと、Zn(CN) 1.18g(和光純薬(株)製)、Pd(PPh 0.35g(和光純薬(株)製)をDMF 50mlに加え、反応容器内を窒素置換し、100℃で24s時間攪拌した。酢酸エチル60mlを加え、水で有機層を3回洗浄した。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン)で精製し、3−ブロモ−4−シアノセレノフェン(以降、BCSと呼ぶ)1.55gを得た。この合成法はJournal of Organic Chemistry,2000年,65号,7984−7989頁記載の方法に準拠した。 DBS 2.10 g, Zn (CN) 2 1.18 g (manufactured by Wako Pure Chemical Industries, Ltd.), Pd (PPh 3 ) 4 0.35 g (manufactured by Wako Pure Chemical Industries, Ltd.) were added to 50 ml of DMF, and a reaction vessel was added. The inside was purged with nitrogen and stirred at 100 ° C. for 24 s. 60 ml of ethyl acetate was added, and the organic layer was washed 3 times with water. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent; n-hexane) to give 1.55 g of 3-bromo-4-cyanoselenophene (hereinafter referred to as BCS). Got. This synthesis method was based on the method described in Journal of Organic Chemistry, 2000, No. 65, pages 7984-7899.

NaH 0.6g(和光純薬(株)製)をDMF2.5mlに懸濁させた後、反応容器内を窒素置換し、0℃まで冷却した。2−メトキシエタノール3.65ml(和光純薬(株)製)を30分かけて滴下し、1時間攪拌した。BCS 2.35gとCuBr 0.14g(和光純薬(株)製)を反応溶液に加え、110℃で30分攪拌した。濃度1Mの塩化アンモニウム水溶液を加え、ジエチルエーテルで抽出し、濃度1Mの塩化アンモニウム水溶液で有機層を3回洗浄した。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン)で精製し、3−シアノ−4(2−メトキシエトキシ)セレノフェン(以降、C(MOEO)Sと呼ぶ)1.33gを得た。この合成法はChemistry of Materials,2005年,17号,3317−3319頁記載の方法に準拠した。   After 0.6 g of NaH (manufactured by Wako Pure Chemical Industries, Ltd.) was suspended in 2.5 ml of DMF, the inside of the reaction vessel was purged with nitrogen and cooled to 0 ° C. 2.65 ml of 2-methoxyethanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 30 minutes and stirred for 1 hour. 2.35 g of BCS and 0.14 g of CuBr (manufactured by Wako Pure Chemical Industries, Ltd.) were added to the reaction solution and stirred at 110 ° C. for 30 minutes. A 1M ammonium chloride aqueous solution was added, extracted with diethyl ether, and the organic layer was washed three times with a 1M ammonium chloride aqueous solution. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent; n-hexane) to give 3-cyano-4 (2-methoxyethoxy) selenophene (hereinafter referred to as C (MOEO)). 1.33 g was obtained. This synthesis method was based on the method described in Chemistry of Materials, 2005, No. 17, pages 3317-3319.

C(MOEO)S 1.58gをテトラヒドロフラン70mlに溶解させた後、反応容器内を窒素置換し、0℃まで冷却した。N−ブロモスクシンイミド2.44g(和光純薬(株)製)をテトラヒドロフラン7mlに溶解させたものを5分かけて滴下した後、0℃で1時間攪拌した。n−ヘキサン50mlを加え、濃度1Mのチオ硫酸ナトリウム水溶液で有機層を2回洗浄し、飽和食塩水で有機層を2回洗浄した。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン)で精製し、2,5−ジブロモ−3−シアノ−4−(2−メトキシエトキシ)セレノフェン(以降、DBC(MOEO)Sと呼ぶ)1.98gを得た。この合成法はJournal of American chemical Society,2006年,128号,10930−10933頁記載の方法に準拠した。   After 1.58 g of C (MOEO) S was dissolved in 70 ml of tetrahydrofuran, the inside of the reaction vessel was purged with nitrogen and cooled to 0 ° C. A solution prepared by dissolving 2.44 g of N-bromosuccinimide (manufactured by Wako Pure Chemical Industries, Ltd.) in 7 ml of tetrahydrofuran was added dropwise over 5 minutes, followed by stirring at 0 ° C. for 1 hour. 50 ml of n-hexane was added, the organic layer was washed twice with a 1 M sodium thiosulfate aqueous solution, and the organic layer was washed twice with saturated brine. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent; n-hexane), and 2,5-dibromo-3-cyano-4- (2-methoxyethoxy) selenophene. 1.98 g (hereinafter referred to as DBC (MOEO) S) was obtained. This synthesis method was based on the method described in Journal of American chemical Society, 2006, No. 128, pages 10930-10933.

DBC(MOEO)S 2.39gをテトラヒドロフラン70mlに溶解させた後、反応容器内を窒素置換し、メチルマグネシウムブロミド(1M n−ヘキサン溶液)6.16ml(東京化成(株)製)を30分かけて滴下した後、室温で30分攪拌した。Ni(dppp)Cl 10mgをテトラヒドロフラン10mlに懸濁させたものを5分かけて滴下し、還流条件下、12時間攪拌した。25℃まで冷却し、濃度1Mの塩酸12mlとメタノール247mlの混合溶液を加え、析出物を濾取した。ソックスレー抽出器を用いて、ヘキサン、メタノールの順に洗浄し、クロロホルムで抽出した。メタノールを加え、析出物を濾取し、ポリ−3−シアノ−4−(2−メトキシエトキシ)セレノフェン−2,5−ジイル(以降、PC(MOEO)Sと呼ぶ)1.3gを得た。この合成法はChemistry of Materials,2005年,17号,3317−3319頁、及びJournal of American chemical Society,1995年,117号,233−244頁、及びAdvanced Materials,1999年,11号,250−253頁、及びMacromolecules,2001年,34号,4324−4333頁記載の方法に準拠した。 After dissolving 2.39 g of DBC (MOEO) S in 70 ml of tetrahydrofuran, the inside of the reaction vessel was purged with nitrogen, and 6.16 ml of methylmagnesium bromide (1M n-hexane solution) (manufactured by Tokyo Chemical Industry Co., Ltd.) was taken over 30 minutes. Then, the mixture was stirred at room temperature for 30 minutes. A suspension of 10 mg of Ni (dppp) Cl 2 in 10 ml of tetrahydrofuran was added dropwise over 5 minutes, and the mixture was stirred under reflux conditions for 12 hours. The mixture was cooled to 25 ° C., a mixed solution of 12 ml of 1M hydrochloric acid and 247 ml of methanol was added, and the precipitate was collected by filtration. Using a Soxhlet extractor, hexane and methanol were washed in this order and extracted with chloroform. Methanol was added, and the precipitate was collected by filtration to obtain 1.3 g of poly-3-cyano-4- (2-methoxyethoxy) selenophene-2,5-diyl (hereinafter referred to as PC (MOEO) S). This synthesis method is described in Chemistry of Materials, 2005, 17, pages 3317-3319, and Journal of American chemical Society, 1995, 117, 233-244, and Advanced Materials 11, 1999-2, 1999-2. And the method described in Macromolecules, 2001, 34, 4324-4333.

(製造例2)
ポリセレノフェン誘導体として、ポリ−3−ホスフォニル−4−(3−ピリジニル)セレノフェン−2,5−ジイル(以降、PPPSと呼ぶ。一般式(5)で示される化合物)を合成した。
(Production Example 2)
As a polyselenophene derivative, poly-3-phosphonyl-4- (3-pyridinyl) selenophene-2,5-diyl (hereinafter referred to as PPPS, a compound represented by the general formula (5)) was synthesized.

Figure 2010238957
Figure 2010238957

PPPS(一般式(5))の合成
DBS(製造例1の中間体)4.04gをテトラヒドロフラン5mlに溶解させた後、[1,3−ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)クロリド(以降、Ni(dppp)Clと呼ぶ)0.152g(和光純薬(株)製)を懸濁させ、反応容器内を窒素置換した後、ピリジンマグネシウムブロミド(1M THF溶液)50ml(3−ブロモピリジン7.90g(和光純薬(株)製)とマグネシウム1.21g(和光純薬(株)製)をTHF溶液41mlに加え、室温で20時間攪拌した溶液)を30分かけて滴下した後、室温で40時間攪拌した。n−ヘキサン50mlを加え、3M 塩酸50mlで中和した後、硫酸マグネシウムで水溶液を飽和させる事で水層と有機層を分離させ、分液により有機層を得た。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン)で精製し、3−ブロモ−4−(3−ピリジニル)セレノフェン(以降、BPSと呼ぶ)0.79gを得た。この合成法はThin Solid Films,2008年,516号,3978−3988頁、及びChemistry of Materials,1994年,6号,640−649頁記載の方法に準拠した。
Synthesis of PPPS (General Formula (5)) After 4.04 g of DBS (intermediate of Production Example 1) was dissolved in 5 ml of tetrahydrofuran, [1,3-bis (diphenylphosphino) propane] nickel (II) chloride ( In the following, 0.152 g (referred to as Ni (dppp) Cl 2 ) (manufactured by Wako Pure Chemical Industries, Ltd.) was suspended, the inside of the reaction vessel was purged with nitrogen, and then 50 ml of pyridine magnesium bromide (1M THF solution) (3-bromo After dropwise adding 7.90 g of pyridine (manufactured by Wako Pure Chemical Industries, Ltd.) and 1.21 g of magnesium (manufactured by Wako Pure Chemical Industries, Ltd.) to 41 ml of THF solution and stirring for 20 hours at room temperature over 30 minutes. And stirred at room temperature for 40 hours. After adding 50 ml of n-hexane and neutralizing with 50 ml of 3M hydrochloric acid, the aqueous layer and the organic layer were separated by saturating the aqueous solution with magnesium sulfate, and an organic layer was obtained by liquid separation. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent; n-hexane) to give 3-bromo-4- (3-pyridinyl) selenophene (hereinafter referred to as BPS). 0.79 g was obtained. This synthesis method was based on the methods described in Thin Solid Films, 2008, No. 516, pages 3978-3988, and Chemistry of Materials, 1994, No. 6, pages 640-649.

BPS 2.87gと亜りん酸トリエチル2.49g(和光純薬(株)製)を混合し、100℃で20時間攪拌した。25℃まで冷却し、シリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製し、3−ジエチルホスフォニル−4−(3−ピリジニル)セレノフェン(以降、PEPSと呼ぶ)1.86gを得た。この合成法はSynthesis,2004年,5号,668−670頁記載の方法に準拠した。   2.87 g of BPS and 2.49 g of triethyl phosphite (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and stirred at 100 ° C. for 20 hours. The solution was cooled to 25 ° C. and purified by silica gel column chromatography (developing solvent; ethyl acetate) to obtain 1.86 g of 3-diethylphosphon-4- (3-pyridinyl) selenophene (hereinafter referred to as PEPS). This synthesis method was based on the method described in Synthesis, 2004, No. 5, pages 668-670.

PEPS 1.22gを濃度6Mの塩酸水溶液100mlに加え、100℃で10時間攪拌した。酢酸エチル100mlを加え、有機層を分取し、硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製し、3−ホスフォニル−4−(3−ピリジニル)セレノフェン(以降、PPSと呼ぶ)0.55gを得た。この合成法はTetrahedron Letters,2007年,48号,4051−4054頁記載の方法に準拠した。   1.22 g of PEPS was added to 100 ml of 6 M hydrochloric acid aqueous solution, and the mixture was stirred at 100 ° C. for 10 hours. After adding 100 ml of ethyl acetate, the organic layer was separated and dried over magnesium sulfate, the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent; ethyl acetate), and 3-phosphonyl-4- ( 0.55 g of 3-pyridinyl) selenophene (hereinafter referred to as PPS) was obtained. This synthesis method was based on the method described in Tetrahedron Letters, 2007, No. 48, pages 4051-4054.

PPS 1.98gをテトラヒドロフラン70mlに溶解させた後、反応容器内を窒素置換し、0℃まで冷却した。N−ブロモスクシンイミド2.44g(和光純薬(株)製)をテトラヒドロフラン7mlに溶解させたものを5分かけて滴下した後、0℃で1時間攪拌した。n−ヘキサン50mlを加え、濃度1Mのチオ硫酸ナトリウム水溶液で有機層を2回洗浄し、飽和食塩水で有機層を2回洗浄した。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製し、2,5−ジブロモ−3−ホスフォニル−4−(3−ピリジニル)セレノフェン(以降、DBPPSと呼ぶ)2.10gを得た。この合成法はJournal of American chemical Society,2006年,128号,10930−10933頁記載の方法に準拠した。   After dissolving 1.98 g of PPS in 70 ml of tetrahydrofuran, the reaction vessel was purged with nitrogen and cooled to 0 ° C. A solution prepared by dissolving 2.44 g of N-bromosuccinimide (manufactured by Wako Pure Chemical Industries, Ltd.) in 7 ml of tetrahydrofuran was added dropwise over 5 minutes, followed by stirring at 0 ° C. for 1 hour. 50 ml of n-hexane was added, the organic layer was washed twice with a 1 M sodium thiosulfate aqueous solution, and the organic layer was washed twice with saturated brine. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent; ethyl acetate), and 2,5-dibromo-3-phosphonyl-4- (3-pyridinyl) selenophene (hereinafter referred to as “separate”). (Referred to as DBPPS). This synthesis method was based on the method described in Journal of American chemical Society, 2006, No. 128, pages 10930-10933.

DBPPS 2.75gをテトラヒドロフラン70mlに溶解させた後、反応容器内を窒素置換し、メチルマグネシウムブロミド(1M n−ヘキサン溶液)6.16ml(東京化成(株)製)を30分かけて滴下した後、室温で30分攪拌した。Ni(dppp)Cl 10mgをテトラヒドロフラン10mlに懸濁させたものを5分かけて滴下し、還流条件下、12時間攪拌した。25℃まで冷却し、濃度1Mの塩酸12mlとメタノール247mlの混合溶液を加え、析出物を濾取した。ソックスレー抽出器を用いて、ヘキサン、メタノールの順に洗浄し、クロロホルムで抽出した。メタノールを加え、析出物を濾取し、ポリ−3−ホスフォニル−4−(3−ピリジニル)セレノフェン−2,5−ジイル(以降、PPPSと呼ぶ)1.5gを得た。この合成法はChemistry of Materials,2005年,17号,3317−3319頁、及びJournal of American chemical Society,1995年,117号,233−244頁、及びAdvanced Materials,1999年,11号,250−253頁、及びMacromolecules,2001年,34号,4324−4333頁記載の方法に準拠した。 After 2.75 g of DBPPS was dissolved in 70 ml of tetrahydrofuran, the inside of the reaction vessel was purged with nitrogen, and 6.16 ml of methylmagnesium bromide (1M n-hexane solution) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise over 30 minutes. And stirred at room temperature for 30 minutes. A suspension of 10 mg of Ni (dppp) Cl 2 in 10 ml of tetrahydrofuran was added dropwise over 5 minutes, and the mixture was stirred under reflux conditions for 12 hours. The mixture was cooled to 25 ° C., a mixed solution of 12 ml of 1M hydrochloric acid and 247 ml of methanol was added, and the precipitate was collected by filtration. Using a Soxhlet extractor, hexane and methanol were washed in this order and extracted with chloroform. Methanol was added and the precipitate was collected by filtration to obtain 1.5 g of poly-3-phosphonyl-4- (3-pyridinyl) selenophene-2,5-diyl (hereinafter referred to as PPPS). This synthesis method is described in Chemistry of Materials, 2005, 17, pages 3317-3319, and Journal of American chemical Society, 1995, 117, 233-244, and Advanced Materials 11, 1999-2, 1999-2. And the method described in Macromolecules, 2001, 34, 4324-4333.

(製造例3)
ポリセレノフェン誘導体として、ポリ−3−スルフォニル−4−フェニルセレノフェン−2,5−ジイル(以降、PSPSと呼ぶ。一般式(6)で示される化合物)を合成した。
(Production Example 3)
As a polyselenophene derivative, poly-3-sulfonyl-4-phenylselenophene-2,5-diyl (hereinafter referred to as PSPS, a compound represented by the general formula (6)) was synthesized.

Figure 2010238957
Figure 2010238957

PSPS(一般式(6))の合成
DBS(製造例1の中間体)4.04gをテトラヒドロフラン5mlに溶解させた後、[1,3−ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)クロリド(以降、Ni(dppp)Clと呼ぶ)0.152g(和光純薬(株)製)を懸濁させ、反応容器内を窒素置換した後、フェニルマグネシウムブロミド(2M THF溶液)50ml(東京化成(株)製)を30分かけて滴下した後、室温で40時間攪拌した。n−ヘキサン50mlを加え、3M 塩酸50mlで中和した後、硫酸マグネシウムで水溶液を飽和させる事で水層と有機層を分離させ、分液により有機層を得た。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン)で精製し、3−ブロモ−4−フェニルセレノフェン(以降、BPhSと呼ぶ)1.57gを得た。この合成法はThin Solid Films,2008年,516号,3978−3988頁、及びChemistry of Materials,1994年,6号,640−649頁記載の方法に準拠した。
Synthesis of PSPS (general formula (6)) After 4.04 g of DBS (intermediate of Production Example 1) was dissolved in 5 ml of tetrahydrofuran, [1,3-bis (diphenylphosphino) propane] nickel (II) chloride ( In the following, 0.152 g (referred to as Ni (dppp) Cl 2 ) (manufactured by Wako Pure Chemical Industries, Ltd.) was suspended, the inside of the reaction vessel was purged with nitrogen, and then 50 ml of phenylmagnesium bromide (2M THF solution) (Tokyo Chemical ( Co., Ltd.) was added dropwise over 30 minutes, followed by stirring at room temperature for 40 hours. After adding 50 ml of n-hexane and neutralizing with 50 ml of 3M hydrochloric acid, the aqueous layer and the organic layer were separated by saturating the aqueous solution with magnesium sulfate, and an organic layer was obtained by liquid separation. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent; n-hexane) to give 1.57 g of 3-bromo-4-phenylselenophene (hereinafter referred to as BPhS). Got. This synthesis method was based on the methods described in Thin Solid Films, 2008, No. 516, pages 3978-3988, and Chemistry of Materials, 1994, No. 6, pages 640-649.

BPhS 1.57gと亜硫酸水素ナトリウム0.22g(和光純薬(株)製)をイオン交換水4mlに溶解させた後、pH7.6になるまで濃度30%の水酸化ナトリウムを加えた。CuCl 0.045gを加えた後、140℃で16時間攪拌した。40℃まで冷却した後、沈殿物を濾去し、濃塩酸0.75mlを加えた。析出してきた未反応のBPhSを濾去した後、塩化カリウム1.2g(和光純薬(株)製)を加え、100℃で1時間攪拌した。5℃で16時間静置した後、析出物を濾取し、3−スルフォニル−4−フェニルセレノフェン(以降、SPSと呼ぶ)1.05gを得た。この合成法はJournal of Medicinal Chemistry,1987年,30号,678−682頁記載の方法に準拠した。   After 1.57 g of BPhS and 0.22 g of sodium hydrogen sulfite (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 4 ml of ion-exchanged water, sodium hydroxide having a concentration of 30% was added until the pH reached 7.6. After adding 0.045 g of CuCl, the mixture was stirred at 140 ° C. for 16 hours. After cooling to 40 ° C., the precipitate was filtered off and 0.75 ml of concentrated hydrochloric acid was added. Unreacted BPhS that had precipitated was removed by filtration, 1.2 g of potassium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was stirred at 100 ° C. for 1 hour. After standing at 5 ° C. for 16 hours, the precipitate was collected by filtration to obtain 1.05 g of 3-sulfonyl-4-phenylselenophene (hereinafter referred to as SPS). This synthesis method was based on the method described in Journal of Medicinal Chemistry, 1987, No. 30, pages 678-682.

SPS 1.97gをテトラヒドロフラン70mlに溶解させた後、反応容器内を窒素置換し、0℃まで冷却した。N−ブロモスクシンイミド2.44g(和光純薬(株)製)をテトラヒドロフラン7mlに溶解させたものを5分かけて滴下した後、0℃で1時間攪拌した。n−ヘキサン50mlを加え、濃度1Mのチオ硫酸ナトリウム水溶液で有機層を2回洗浄し、飽和食塩水で有機層を2回洗浄した。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製し、2,5−ジブロモ−3−スルフォニル−4−フェニルセレノフェン(以降、DBSPSと呼ぶ)2.06gを得た。この合成法はJournal of American chemical Society,2006年,128号,10930−10933頁記載の方法に準拠した。   After 1.97 g of SPS was dissolved in 70 ml of tetrahydrofuran, the inside of the reaction vessel was purged with nitrogen and cooled to 0 ° C. A solution prepared by dissolving 2.44 g of N-bromosuccinimide (manufactured by Wako Pure Chemical Industries, Ltd.) in 7 ml of tetrahydrofuran was added dropwise over 5 minutes, followed by stirring at 0 ° C. for 1 hour. 50 ml of n-hexane was added, the organic layer was washed twice with a 1 M sodium thiosulfate aqueous solution, and the organic layer was washed twice with saturated brine. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent; ethyl acetate), and 2,5-dibromo-3-sulfonyl-4-phenylselenophene (hereinafter referred to as DBSPS). 2.06 g was obtained. This synthesis method was based on the method described in Journal of American chemical Society, 2006, No. 128, pages 10930-10933.

DBSPS 2.74gをテトラヒドロフラン70mlに溶解させた後、反応容器内を窒素置換し、メチルマグネシウムブロミド(1M n−ヘキサン溶液)6.16ml(東京化成(株)製)を30分かけて滴下した後、室温で30分攪拌した。Ni(dppp)Cl 10mgをテトラヒドロフラン10mlに懸濁させたものを5分かけて滴下し、還流条件下、12時間攪拌した。25℃まで冷却し、濃度1Mの塩酸12mlとメタノール247mlの混合溶液を加え、析出物を濾取した。ソックスレー抽出器を用いて、ヘキサン、メタノールの順に洗浄し、クロロホルムで抽出した。メタノールを加え、析出物を濾取し、ポリ−3−スルフォニル−4−フェニルセレノフェン−2,5−ジイル(以降、PSPSと呼ぶ)1.4gを得た。この合成法はChemistry of Materials,2005年,17号,3317−3319頁、及びJournal of American chemical Society,1995年,117号,233−244頁、及びAdvanced Materials,1999年,11号,250−253頁、及びMacromolecules,2001年,34号,4324−4333頁記載の方法に準拠した。 After dissolving 2.74 g of DBSPS in 70 ml of tetrahydrofuran, the inside of the reaction vessel was purged with nitrogen, and 6.16 ml of methylmagnesium bromide (1M n-hexane solution) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise over 30 minutes. And stirred at room temperature for 30 minutes. A suspension of 10 mg of Ni (dppp) Cl 2 in 10 ml of tetrahydrofuran was added dropwise over 5 minutes, and the mixture was stirred under reflux conditions for 12 hours. The mixture was cooled to 25 ° C., a mixed solution of 12 ml of 1M hydrochloric acid and 247 ml of methanol was added, and the precipitate was collected by filtration. Using a Soxhlet extractor, hexane and methanol were washed in this order and extracted with chloroform. Methanol was added, and the precipitate was collected by filtration to obtain 1.4 g of poly-3-sulfonyl-4-phenylselenophene-2,5-diyl (hereinafter referred to as PSPS). This synthesis method is described in Chemistry of Materials, 2005, 17, pages 3317-3319, and Journal of American chemical Society, 1995, 117, 233-244, and Advanced Materials 11, 1999-2, 1999-2. And the method described in Macromolecules, 2001, 34, 4324-4333.

(製造例4)
ポリセレノフェン誘導体として、ポリ−3−ブロモ−4−(2−エチルヘキシル)セレノフェン−2,5−ジイル(以降、PBEHSと呼ぶ。一般式(7)で示される化合物)を合成した。
(Production Example 4)
As a polyselenophene derivative, poly-3-bromo-4- (2-ethylhexyl) selenophene-2,5-diyl (hereinafter referred to as PBEHS, a compound represented by the general formula (7)) was synthesized.

Figure 2010238957
Figure 2010238957

PBEHS(一般式(7))の合成
DBS(製造例1の中間体)4.04gをテトラヒドロフラン5mlに溶解させた後、[1,3−ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)クロリド(以降、Ni(dppp)Clと呼ぶ)0.152g(和光純薬(株)製)を懸濁させ、反応容器内を窒素置換した後、2−エチルヘキシルマグネシウムブロミド(1M ジエチルエーテル溶液)57ml(アルドリッチ(株)製)を30分かけて滴下した後、室温で40時間攪拌した。n−ヘキサン50mlを加え、3M 塩酸50mlで中和した後、硫酸マグネシウムで水溶液を飽和させる事で水層と有機層を分離させ、分液により有機層を得た。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン)で精製し、3−ブロモ−4−(2−エチルヘキシル)セレノフェン(以降、BEHSと呼ぶ)1.14gを得た。この合成法はThin Solid Films,2008年,516号,3978−3988頁、及びChemistry of Materials,1994年,6号,640−649頁記載の方法に準拠した。
Synthesis of PBEHS (general formula (7)) After 4.04 g of DBS (intermediate of Production Example 1) was dissolved in 5 ml of tetrahydrofuran, [1,3-bis (diphenylphosphino) propane] nickel (II) chloride ( Thereafter, 0.152 g of Ni (dppp) Cl 2 (manufactured by Wako Pure Chemical Industries, Ltd.) was suspended, the inside of the reaction vessel was purged with nitrogen, and then 57 ml of 2-ethylhexyl magnesium bromide (1M diethyl ether solution) ( Aldrich Co.) was added dropwise over 30 minutes and then stirred at room temperature for 40 hours. After adding 50 ml of n-hexane and neutralizing with 50 ml of 3M hydrochloric acid, the aqueous layer and the organic layer were separated by saturating the aqueous solution with magnesium sulfate, and an organic layer was obtained by liquid separation. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent; n-hexane), and 3-bromo-4- (2-ethylhexyl) selenophene (hereinafter referred to as BEHS). 1.14 g was obtained. This synthesis method was based on the methods described in Thin Solid Films, 2008, No. 516, pages 3978-3988, and Chemistry of Materials, 1994, No. 6, pages 640-649.

BEHS 2.21gをテトラヒドロフラン70mlに溶解させた後、反応容器内を窒素置換し、0℃まで冷却した。N−ブロモスクシンイミド2.44g(和光純薬(株)製)をテトラヒドロフラン7mlに溶解させたものを5分かけて滴下した後、0℃で1時間攪拌した。n−ヘキサン50mlを加え、濃度1Mのチオ硫酸ナトリウム水溶液で有機層を2回洗浄し、飽和食塩水で有機層を2回洗浄した。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン)で精製し、2,5−ジブロモ−3−ブロモ−4−(2−エチルヘキシル)セレノフェン(以降、TBEHSと呼ぶ)2.12gを得た。この合成法はJournal of American chemical Society,2006年,128号,10930−10933頁記載の方法に準拠した。   After dissolving BEHS (2.21 g) in tetrahydrofuran (70 ml), the reaction vessel was purged with nitrogen and cooled to 0 ° C. A solution prepared by dissolving 2.44 g of N-bromosuccinimide (manufactured by Wako Pure Chemical Industries, Ltd.) in 7 ml of tetrahydrofuran was added dropwise over 5 minutes, followed by stirring at 0 ° C. for 1 hour. 50 ml of n-hexane was added, the organic layer was washed twice with a 1 M sodium thiosulfate aqueous solution, and the organic layer was washed twice with saturated brine. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent; n-hexane), and 2,5-dibromo-3-bromo-4- (2-ethylhexyl) selenophene ( (Hereinafter referred to as TBEHS) 2.12 g was obtained. This synthesis method was based on the method described in Journal of American chemical Society, 2006, No. 128, pages 10930-10933.

TBEHS 2.96gをテトラヒドロフラン70mlに溶解させた後、反応容器内を窒素置換し、メチルマグネシウムブロミド(1M n−ヘキサン溶液)6.16ml(東京化成(株)製)を30分かけて滴下した後、室温で30分攪拌した。Ni(dppp)Cl 10mgをテトラヒドロフラン10mlに懸濁させたものを5分かけて滴下し、還流条件下、12時間攪拌した。25℃まで冷却し、濃度1Mの塩酸12mlとメタノール247mlの混合溶液を加え、析出物を濾取した。ソックスレー抽出器を用いて、ヘキサン、メタノールの順に洗浄し、クロロホルムで抽出した。メタノールを加え、析出物を濾取し、ポリ−3−ブロモ−4−(2−エチルヘキシル)セレノフェン−2,5−ジイル(以降、PBEHSと呼ぶ)1.8gを得た。この合成法はChemistry of Materials,2005年,17号,3317−3319頁、及びJournal of American chemical Society,1995年,117号,233−244頁、及びAdvanced Materials,1999年,11号,250−253頁、及びMacromolecules,2001年,34号,4324−4333頁記載の方法に準拠した。 After 2.96 g of TBEHS was dissolved in 70 ml of tetrahydrofuran, the inside of the reaction vessel was purged with nitrogen, and 6.16 ml of methylmagnesium bromide (1M n-hexane solution) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise over 30 minutes. And stirred at room temperature for 30 minutes. A suspension of 10 mg of Ni (dppp) Cl 2 in 10 ml of tetrahydrofuran was added dropwise over 5 minutes, and the mixture was stirred under reflux conditions for 12 hours. The mixture was cooled to 25 ° C., a mixed solution of 12 ml of 1M hydrochloric acid and 247 ml of methanol was added, and the precipitate was collected by filtration. Using a Soxhlet extractor, hexane and methanol were washed in this order and extracted with chloroform. Methanol was added and the precipitate was collected by filtration to obtain 1.8 g of poly-3-bromo-4- (2-ethylhexyl) selenophene-2,5-diyl (hereinafter referred to as PBEHS). This synthesis method is described in Chemistry of Materials, 2005, 17, pages 3317-3319, and Journal of American chemical Society, 1995, 117, 233-244, and Advanced Materials 11, 1999-2, 1999-2. And the method described in Macromolecules, 2001, 34, 4324-4333.

(製造例5)
ポリセレノフェン誘導体として、ポリ−3−ヒドロキシ−4−ヘキシルセレノフェン−2,5−ジイル(以降、PHHSと呼ぶ。一般式(8)で示される化合物)を合成した。
(Production Example 5)
As a polyselenophene derivative, poly-3-hydroxy-4-hexylselenophene-2,5-diyl (hereinafter referred to as PHHS, a compound represented by the general formula (8)) was synthesized.

Figure 2010238957
Figure 2010238957

PHHS(一般式(8))の合成
DBS(製造例1の中間体)4.04gをテトラヒドロフラン5mlに溶解させた後、[1,3−ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)クロリド(以降、Ni(dppp)Clと呼ぶ)0.152g(和光純薬(株)製)を懸濁させ、反応容器内を窒素置換した後、n−ヘキシルマグネシウムブロミド(1M n−ヘキサン溶液)50ml(東京化成(株)製)を30分かけて滴下した後、室温で40時間攪拌した。n−ヘキサン50mlを加え、濃度3Mの塩酸50mlで中和した後、硫酸マグネシウムで水溶液を飽和させる事で水層と有機層を分離させ、分液により有機層を得た。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン)で精製し、3−ブロモ−4−ヘキシルセレノフェン(以降、BHSと呼ぶ)1.08gを得た。この合成法はThin Solid Films,2008年,516号,3978−3988頁、及びChemistry of Materials,1994年,6号,640−649頁記載の方法に準拠した。
Synthesis of PHHS (General Formula (8)) After 4.04 g of DBS (intermediate of Production Example 1) was dissolved in 5 ml of tetrahydrofuran, [1,3-bis (diphenylphosphino) propane] nickel (II) chloride ( Hereafter, 0.152 g (referred to as Ni (dppp) Cl 2 ) (Wako Pure Chemical Industries, Ltd.) was suspended, the inside of the reaction vessel was purged with nitrogen, and then n-hexylmagnesium bromide (1M n-hexane solution) 50 ml (Tokyo Chemical Industry Co., Ltd.) was added dropwise over 30 minutes, and then stirred at room temperature for 40 hours. After adding 50 ml of n-hexane and neutralizing with 50 ml of 3M hydrochloric acid, the aqueous layer and the organic layer were separated by saturating the aqueous solution with magnesium sulfate, and the organic layer was obtained by liquid separation. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent; n-hexane), and 1.08 g of 3-bromo-4-hexylselenophene (hereinafter referred to as BHS) Got. This synthesis method was based on the methods described in Thin Solid Films, 2008, No. 516, pages 3978-3988, and Chemistry of Materials, 1994, No. 6, pages 640-649.

BHS 1.02gとマグネシウム0.11gをTHF3mlに加え、反応容器内を窒素置換した後、BH(90% SMe溶液)(アルドリッチ(株)製)0.06gを加え、還流条件下、3時間攪拌した。25℃まで冷却した後、水1ml、濃度1Mの水酸化ナトリウム水溶液1.8ml、濃度30%の過酸化水素水溶液の順に加え、10℃で1時間攪拌した。濃塩酸1ml、酢酸エチル50mlを加え、有機層を分離し、飽和食塩水で有機層を洗浄した後、硫酸マグネシウムで乾燥させ、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン/酢酸エチル)で精製し、3−ヒドロキシ−4−ヘキシルセレノフェン(以降、HHSと呼ぶ)0.45gを得た。この合成法はChemistry a European journal,2003年,9号,1922−1932頁記載の方法に準拠した。 1.02 g of BHS and 0.11 g of magnesium were added to 3 ml of THF, and the inside of the reaction vessel was purged with nitrogen. Then, 0.06 g of BH 3 (90% SMe 2 solution) (manufactured by Aldrich Co., Ltd.) was added under reflux conditions. Stir for hours. After cooling to 25 ° C., 1 ml of water, 1.8 ml of 1M sodium hydroxide aqueous solution and 30% hydrogen peroxide aqueous solution were added in this order, and the mixture was stirred at 10 ° C. for 1 hour. Concentrated hydrochloric acid (1 ml) and ethyl acetate (50 ml) were added, the organic layer was separated, the organic layer was washed with saturated brine, dried over magnesium sulfate, the solvent was distilled off under reduced pressure, and silica gel column chromatography (developing solvent; n- (Hexane / ethyl acetate) to obtain 0.45 g of 3-hydroxy-4-hexylselenophene (hereinafter referred to as HHS). This synthesis method was based on the method described in Chemistry a European journal, 2003, No. 9, pages 1922-1932.

HHS 2.02gをテトラヒドロフラン70mlに溶解させた後、反応容器内を窒素置換し、0℃まで冷却した。N−ブロモスクシンイミド1.22g(和光純薬(株)製)をテトラヒドロフラン7mlに溶解させたものを5分かけて滴下した後、0℃で1時間攪拌した。n−ヘキサン50mlを加え、濃度1Mのチオ硫酸ナトリウム水溶液で有機層を2回洗浄し、飽和食塩水で有機層を2回洗浄した。硫酸マグネシウムで乾燥させた後、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(展開溶媒;n−ヘキサン)で精製し、2,5−ジブロモ−3−ヒドロキシ−4−ヘキシルセレノフェン(以降、DBHHSと呼ぶ)2.25gを得た。この合成法はJournal of American chemical Society,2006年,128号,10930−10933頁記載の方法に準拠した。   After 2.02 g of HHS was dissolved in 70 ml of tetrahydrofuran, the inside of the reaction vessel was purged with nitrogen and cooled to 0 ° C. A solution prepared by dissolving 1.22 g of N-bromosuccinimide (manufactured by Wako Pure Chemical Industries, Ltd.) in 7 ml of tetrahydrofuran was added dropwise over 5 minutes, followed by stirring at 0 ° C. for 1 hour. 50 ml of n-hexane was added, the organic layer was washed twice with a 1 M sodium thiosulfate aqueous solution, and the organic layer was washed twice with saturated brine. After drying with magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent; n-hexane), and 2,5-dibromo-3-hydroxy-4-hexylselenophene (hereinafter referred to as DBHHS). 2.25 g was obtained. This synthesis method was based on the method described in Journal of American chemical Society, 2006, No. 128, pages 10930-10933.

DBHHS 2.40gをテトラヒドロフラン70mlに溶解させた後、反応容器内を窒素置換し、メチルマグネシウムブロミド(1M n−ヘキサン溶液)6.16ml(東京化成(株)製)を30分かけて滴下した後、室温で30分攪拌した。Ni(dppp)Cl 10mgをテトラヒドロフラン10mlに懸濁させたものを5分かけて滴下し、還流条件下、12時間攪拌した。25℃まで冷却し、濃度1Mの塩酸12mlとメタノール247mlの混合溶液を加え、析出物を濾取した。ソックスレー抽出器を用いて、ヘキサン、メタノールの順に洗浄し、クロロホルムで抽出した。メタノールを加え、析出物を濾取し、ポリ−3−ヒドロキシ−4−ヘキシルセレノフェン−2,5−ジイル(以降、PHHSと呼ぶ)0.94gを得た。この合成法はChemistry of Materials,2005年,17号,3317−3319頁、及びJournal of American chemical Society,1995年,117号,233−244頁、及びAdvanced Materials,1999年,11号,250−253頁、及びMacromolecules,2001年,34号,4324−4333頁記載の方法に準拠した。 After dissolving 2.40 g of DBHHS in 70 ml of tetrahydrofuran, the inside of the reaction vessel was purged with nitrogen, and 6.16 ml of methylmagnesium bromide (1M n-hexane solution) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise over 30 minutes. And stirred at room temperature for 30 minutes. A suspension of 10 mg of Ni (dppp) Cl 2 in 10 ml of tetrahydrofuran was added dropwise over 5 minutes, and the mixture was stirred under reflux conditions for 12 hours. The mixture was cooled to 25 ° C., a mixed solution of 12 ml of 1M hydrochloric acid and 247 ml of methanol was added, and the precipitate was collected by filtration. Using a Soxhlet extractor, hexane and methanol were washed in this order and extracted with chloroform. Methanol was added, and the precipitate was collected by filtration to obtain 0.94 g of poly-3-hydroxy-4-hexylselenophene-2,5-diyl (hereinafter referred to as PHHS). This synthesis method is described in Chemistry of Materials, 2005, 17, pages 3317-3319, and Journal of American chemical Society, 1995, 117, 233-244, and Advanced Materials 11, 1999-2, 1999-2. And the method described in Macromolecules, 2001, 34, 4324-4333.

(実施例1)
(透明電極(Y)の作成)
透明基板及び透明導電膜として、大きさが25mm角でシート抵抗が10Ω/cm−2のITO膜付きポリエチレンテレフタレート(以降、PETと呼ぶ)フィルムを用いた。そして、そのITO膜上に所定形状のマスクを形成した後、これを1N塩酸に1時間浸漬する事でITO膜のパターニングを行い、透明電極を形成した。
Example 1
(Creation of transparent electrode (Y))
As the transparent substrate and the transparent conductive film, a polyethylene terephthalate (hereinafter referred to as PET) film with an ITO film having a size of 25 mm square and a sheet resistance of 10 Ω / cm −2 was used. And after forming the mask of a predetermined shape on the ITO film | membrane, the ITO film | membrane was patterned by immersing this in 1N hydrochloric acid for 1 hour, and the transparent electrode was formed.

(正孔取出し層(i−1)の作成)
上記の様にしてITO膜からなる透明電極が形成されたPETフィルム上に1.3重量%のポリ(スチレンスルホン酸塩)/ポリ(2,3−ジヒドロチエノ[3,4−b]−1,4−ダイオキシン)(以降、「PEDOT/PSS」と呼ぶ)(バイエル社製、品名BaytronP)をスピンコートし、120℃で30分間乾燥する事で厚さが約100nmのPEDOT/PSS膜を形成し、これを正孔取出し層(i−1)とした。
(Preparation of hole extraction layer (i-1))
1.3% by weight of poly (styrene sulfonate) / poly (2,3-dihydrothieno [3,4-b] -1, on a PET film on which a transparent electrode made of an ITO film is formed as described above. 4-dioxin) (hereinafter referred to as “PEDOT / PSS”) (product name: BaytronP, manufactured by Bayer), spin-coated at 120 ° C. for 30 minutes to form a PEDOT / PSS film having a thickness of about 100 nm. This was designated as a hole extraction layer (i-1).

(光電変換層(E)の作成)
更に、PEDOT/PSS膜よりも少し大きい範囲にPC(MOEO)S(製造例1で合成したポリセレノフェン誘導体)/PCBM(フロンティアカーボン(株)製)(重量比は1/0.5)の混合溶液(5.0mLのクロロベンゼン中にPFHS:PCBM=75mg:37.5mgを溶解させたもの)を前記正孔取出し層(i−1)上にスピンコートした後、窒素気流下で6分150℃で乾燥を行い、光電変換層(E)を形成した。
(Creation of photoelectric conversion layer (E))
Furthermore, PC (MOEO) S (polyselenophene derivative synthesized in Production Example 1) / PCBM (manufactured by Frontier Carbon Co., Ltd.) (weight ratio is 1 / 0.5) is slightly larger than the PEDOT / PSS film. A mixed solution (PFHS: PCBM = 75 mg: 37.5 mg dissolved in 5.0 mL of chlorobenzene) was spin-coated on the hole extraction layer (i-1), and then, under nitrogen flow for 6 minutes 150 minutes Drying was performed at 0 ° C. to form a photoelectric conversion layer (E).

(電子取出し層(i−2)の作成)
更に光電変換層(E)の上に、電子取り出し層(i−2)としてチタンテトライソプロポキシド(和光純薬(株)製)10μLをエタノール3mLに溶解させたものをスピンコートした後、室内に30分放置する事で加水分解を起こさせ、二酸化チタン(TiO)層を形成した。
(Creation of electron extraction layer (i-2))
Furthermore, after spin-coating what melt | dissolved 10 microliters of titanium tetraisopropoxide (made by Wako Pure Chemical Industries, Ltd.) in 3 mL of ethanol as an electronic taking-out layer (i-2) on the photoelectric converting layer (E), Was allowed to stand for 30 minutes to cause hydrolysis to form a titanium dioxide (TiO x ) layer.

(対抗電極の作成)
最後に、電子取出し層(i−2)の上に、対抗電極として、厚さ125nmのAl膜を前記光電変換層上に真空蒸着により形成した。以上の様にして光電変換素子(P−1)を製造した。
(Create counter electrode)
Finally, an Al film having a thickness of 125 nm was formed as a counter electrode on the electron extraction layer (i-2) by vacuum deposition on the photoelectric conversion layer. The photoelectric conversion element (P-1) was manufactured as described above.

(実施例2)
実施例1における、PC(MOEO)S/PCBM混合溶液を、PPPS(製造例2で合成したポリセレノフェン誘導体)/PCBM混合溶液に置き換えた以外は、実施例1と同様にして光電変換素子(P−2)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にPPPS:PCBM=75mg:37.5mgを含むものを用いた。
(Example 2)
A photoelectric conversion element (same as in Example 1) except that the PC (MOEO) S / PCBM mixed solution in Example 1 was replaced with a PPPS (polyselenophene derivative synthesized in Production Example 2) / PCBM mixed solution. P-2) was formed. As a specific mixed solution, a solution containing PPPS: PCBM = 75 mg: 37.5 mg in 5.0 mL of chlorobenzene was used.

(実施例3)
実施例1における、PC(MOEO)S/PCBM混合溶液を、PSPS(製造例3で合成したポリセレノフェン誘導体)/PCBM混合溶液に置き換えた以外は、実施例1と同様にして光電変換素子(P−3)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にPSPS:PCBM=75mg:37.5mgを含むものを用いた。
Example 3
A photoelectric conversion element (same as in Example 1) except that the PC (MOEO) S / PCBM mixed solution in Example 1 was replaced with a PSPS (polyselenophene derivative synthesized in Production Example 3) / PCBM mixed solution. P-3) was formed. As a specific mixed solution, a solution containing PSPS: PCBM = 75 mg: 37.5 mg in 5.0 mL of chlorobenzene was used.

(実施例4)
実施例1における、PC(MOEO)S/PCBM混合溶液を、PBEHS(製造例4で合成したポリセレノフェン誘導体)/PCBM混合溶液に置き換えた以外は、実施例1と同様にして光電変換素子(P−4)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にPBEHS:PCBM=75mg:37.5mgを含むものを用いた。
Example 4
A photoelectric conversion element (same as in Example 1) except that the PC (MOEO) S / PCBM mixed solution in Example 1 was replaced with a PBEHS (polyselenophene derivative synthesized in Production Example 4) / PCBM mixed solution. P-4) was formed. As a specific mixed solution, a solution containing PBEHS: PCBM = 75 mg: 37.5 mg in 5.0 mL of chlorobenzene was used.

(実施例5)
実施例1における、PC(MOEO)S/PCBM混合溶液を、PHHS(製造例5で合成したポリセレノフェン誘導体)/PCBM混合溶液に置き換えた以外は、実施例1と同様にして光電変換素子(P−5)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にPHHS:PCBM=75mg:37.5mgを含むものを用いた。
(Example 5)
A photoelectric conversion element (same as in Example 1) except that the PC (MOEO) S / PCBM mixed solution in Example 1 was replaced with PHHS (polyselenophene derivative synthesized in Production Example 5) / PCBM mixed solution. P-5) was formed. As a specific mixed solution, a solution containing PHHS: PCBM = 75 mg: 37.5 mg in 5.0 mL of chlorobenzene was used.

(比較例1)
実施例1における、PFHS/PCBM混合溶液を、ポリ−3−ヘキシルチオフェン−2,5−ジイル(以降、P3HTと呼ぶ)(和光純薬株式会社製、品名044746)/PCBM混合溶液に置き換えた以外は、実施例1と同様にして光電変換素子(P’−1)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にP3HT:PCBM=75mg:37.5mgを含むものを用いた。
(Comparative Example 1)
The PFHS / PCBM mixed solution in Example 1 was replaced with poly-3-hexylthiophene-2,5-diyl (hereinafter referred to as P3HT) (manufactured by Wako Pure Chemical Industries, Ltd., product name 0447746) / PCBM mixed solution. Formed a photoelectric conversion element (P′-1) in the same manner as in Example 1. As a specific mixed solution, a solution containing P3HT: PCBM = 75 mg: 37.5 mg in 5.0 mL of chlorobenzene was used.

(光電変換素子の評価方法)
ソーラーシュミレーター(関西科学機械(株)製:XES−502S)の擬似光(空気通過量AM1.5G、入射エネルギー100mW/cm)を光電変換素子に照射し、光電変換素子特性を測定した。照射条件:温度25℃
(Evaluation method of photoelectric conversion element)
The photoelectric conversion element was measured by irradiating the photoelectric conversion element with simulated light (air passage amount AM1.5G, incident energy 100 mW / cm 2 ) of a solar simulator (manufactured by Kansai Scientific Machinery Co., Ltd .: XES-502S). Irradiation conditions: Temperature 25 ° C

KEITHLEY MODEL2400ソースメーターを使用して、I(電流)−V(電圧)曲線を測定し、Isc(短絡電流)、Voc(開放電圧)、IMAX(最大出力点における電流)、VMAX(最大出力点における電圧)を得た。
一般に光電変換素子の光電変換効率は次式で示される。
光電変換効率η=Jsc(短絡電流密度)×Voc(開放電圧)×ff(形状因子)/入射エネルギー
ここで、Jsc(短絡電流密度)、およびff(形状因子)は次式で求めた。
形状因子ff=(IMAX×VMAX)/(Isc×Voc
短絡電流密度Jsc=Isc/S(有効受光面積)
ただし、S=2.5cm×2.5cm=6.25cm
測定結果を表1に示した。
Using a KEITHLEY MODEL 2400 source meter, an I (current) -V (voltage) curve was measured, and I sc (short circuit current), V oc (open voltage), I MAX (current at the maximum output point), V MAX ( Voltage at the maximum output point).
Generally, the photoelectric conversion efficiency of a photoelectric conversion element is represented by the following formula.
Photoelectric conversion efficiency η = J sc (short circuit current density) × V oc (open circuit voltage) × ff (form factor) / incident energy Here, J sc (short circuit current density) and ff (form factor) are obtained by the following equations. It was.
Form factor ff = (I MAX × V MAX ) / (I sc × V oc )
Short-circuit current density J sc = I sc / S (effective light receiving area)
However, S = 2.5 cm × 2.5 cm = 6.25 cm 2
The measurement results are shown in Table 1.

Figure 2010238957
Figure 2010238957

前記評価結果より、本発明における、導電性高分子(正孔受容体、正孔輸送層)としてのポリセレノフェン誘導体は、従来の導電性高分子(正孔受容体、正孔輸送層)と比較し、優れた光電変換効率を示す事が立証された。   From the above evaluation results, the polyselenophene derivative as the conductive polymer (hole acceptor, hole transport layer) in the present invention is different from the conventional conductive polymer (hole acceptor, hole transport layer). In comparison, it was proved to show excellent photoelectric conversion efficiency.

本発明は、太陽電池やカラーセンサー等としての利用に限らず、光電変換素子を備える電子機器、電子部品に広く適用する事ができる。   The present invention is not limited to use as a solar cell, a color sensor, and the like, but can be widely applied to electronic devices and electronic components that include photoelectric conversion elements.

Claims (5)

基板(T)上に形成された2つの電極(Y)間に、導電性高分子(d)と電子受容体(a)を含有する光電変換層(E)を有する光電変換素子(P)であって、該導電性高分子(d)が、下記一般式(1)で示されるポリセレノフェン誘導体(D)を含有することを特徴とする、光電変換素子(P)。
Figure 2010238957
[式中nは5以上の整数を表す。Rはヒドロキシル基、シアノ基、リン酸基、スルホン酸基、及びハロゲン原子からなる群より選ばれ、Rは置換基を有してもよい脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基、ポリオキシアルキレンアルキル(アリ−ル)エーテル基からなる群より選ばれる基であって、炭素数が1〜20である基である。]
A photoelectric conversion element (P) having a photoelectric conversion layer (E) containing a conductive polymer (d) and an electron acceptor (a) between two electrodes (Y) formed on a substrate (T). Then, the conductive polymer (d) contains a polyselenophene derivative (D) represented by the following general formula (1), a photoelectric conversion element (P).
Figure 2010238957
[Wherein n represents an integer of 5 or more. R 1 is selected from the group consisting of a hydroxyl group, a cyano group, a phosphoric acid group, a sulfonic acid group, and a halogen atom, and R 2 has an aliphatic hydrocarbon group that may have a substituent and a substituent. It is a group selected from the group consisting of a good aromatic hydrocarbon group and a polyoxyalkylene alkyl (aryl) ether group, and a group having 1 to 20 carbon atoms. ]
一般式(1)において、Rはハロゲン原子、Rは置換基を有してもよい脂肪族炭化水素基である、請求項1に記載の光電変換素子(P)。 2. The photoelectric conversion element (P) according to claim 1, wherein in general formula (1), R 1 is a halogen atom, and R 2 is an aliphatic hydrocarbon group which may have a substituent. 太陽電池素子(S)である請求項1又は2に記載の光電変換素子(P)。   It is a solar cell element (S), The photoelectric conversion element (P) of Claim 1 or 2. 太陽電池素子(S)がタンデム型太陽電池素子(S1)である請求項3に記載の光電変換素子(P)。   The photoelectric conversion element (P) according to claim 3, wherein the solar cell element (S) is a tandem solar cell element (S1). 光センサー素子(U)である請求項1〜4のいずれか1項に記載の光電変換素子(P)。
It is a photo sensor element (U), The photoelectric conversion element (P) of any one of Claims 1-4.
JP2009086023A 2009-03-31 2009-03-31 Photoelectric conversion element Pending JP2010238957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086023A JP2010238957A (en) 2009-03-31 2009-03-31 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086023A JP2010238957A (en) 2009-03-31 2009-03-31 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2010238957A true JP2010238957A (en) 2010-10-21

Family

ID=43093022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086023A Pending JP2010238957A (en) 2009-03-31 2009-03-31 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2010238957A (en)

Similar Documents

Publication Publication Date Title
Li et al. Synthesis and photovoltaic properties of a series of narrow bandgap organic semiconductor acceptors with their absorption edge reaching 900 nm
JP6280208B2 (en) Polymer and solar cell using the same
JP5920341B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL
KR101815755B1 (en) Phenazine derivatives with the extended conjugated structure and applied to the organic photovoltaic polymers
JP4126019B2 (en) Photoelectric conversion element
JP5344432B2 (en) Photoelectric conversion element
JP2011165963A (en) Organic dye and organic thin-film solar cell
JP2012182439A (en) Organic photoelectric conversion element
KR20110008187A (en) Organic photoelectric conversion element
JP2015220331A (en) Photoelectric conversion element
Zhang et al. Synthesis and photovoltaic properties of polymeric metal complexes containing 8-hydroxyquinoline as dye sensitizers for dye-sensitized solar cells
JP5238898B1 (en) Organic thin film solar cell
JPWO2016063781A1 (en) Organic photoelectric conversion element and manufacturing method thereof
JP2010073730A (en) Tandem type photoelectric conversion element
JP2012230992A (en) Photoelectric conversion element having multijunction structure and method for manufacturing the same
KR20130038548A (en) The organic photovoltaic polymer containing phenazine derivative and manufacturing method thereof
JP2014003255A (en) Organic thin film and photoelectric conversion element using the same
KR101930279B1 (en) Preparation of phenazine derivatives with increased solubility and conjugated polymers consisting of phenazine derivatives for organo photoelectric conversion device
JP2010238957A (en) Photoelectric conversion element
JP5957563B1 (en) Polymer and solar cell using the same
JP2015183032A (en) Polymer having condensed ring type cyclopenta-dithiophene skeleton and organic thin-film solar battery material using the same
US9634252B2 (en) Polymer and solar cell using the same
KR101306070B1 (en) Conductive Polymer Compound and Organic Solar Cells with the Same
KR102319359B1 (en) Inorganic-organic hybrid solar cell
JP2011171380A (en) Photoelectric conversion element