JP5344432B2 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP5344432B2
JP5344432B2 JP2009178521A JP2009178521A JP5344432B2 JP 5344432 B2 JP5344432 B2 JP 5344432B2 JP 2009178521 A JP2009178521 A JP 2009178521A JP 2009178521 A JP2009178521 A JP 2009178521A JP 5344432 B2 JP5344432 B2 JP 5344432B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
group
conversion element
general formula
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009178521A
Other languages
Japanese (ja)
Other versions
JP2010239104A (en
Inventor
芳明 小夫家
暹 吉川
梓平 元藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Sanyo Chemical Industries Ltd
Original Assignee
Kyoto University
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Sanyo Chemical Industries Ltd filed Critical Kyoto University
Priority to JP2009178521A priority Critical patent/JP5344432B2/en
Publication of JP2010239104A publication Critical patent/JP2010239104A/en
Application granted granted Critical
Publication of JP5344432B2 publication Critical patent/JP5344432B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Indole Compounds (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、光電変換素子に関する。詳しくは、例えば、太陽電池素子や光センサー素子に使用される光電変換素子に関する。   The present invention relates to a photoelectric conversion element. Specifically, for example, the present invention relates to a photoelectric conversion element used for a solar cell element or an optical sensor element.

光電変換素子を利用したデバイスの代表例として太陽電池素子が挙げられる。光電変換素子は、太陽電池素子において光電変換層と呼ばれ、光電変換層を根拠として大別すると、Si、GaAs 等の無機物を用いた無機太陽電池と、導電性高分子等の有機物を用いた有機太陽電池に分類される。   A solar cell element is mentioned as a typical example of a device using a photoelectric conversion element. A photoelectric conversion element is called a photoelectric conversion layer in a solar cell element, and when classified roughly on the basis of a photoelectric conversion layer, an inorganic solar cell using an inorganic material such as Si or GaAs and an organic material such as a conductive polymer are used. Classified as organic solar cells.

無機太陽電池素子としては、シリコン太陽電池素子等が挙げられるが、その製造過程における環境負荷が大きく、無機であるが為に、多様性に欠ける事、高コスト等、多数の問題点を抱えている。それと比較し、有機太陽電池素子は低環境負荷、多様性、低コスト等、無機太陽電池素子の問題点を解決出来得る事から、注目を浴びている。   Examples of inorganic solar cell elements include silicon solar cell elements, etc., but they have a large number of problems such as lack of diversity and high cost because they are inorganic and have a large environmental load in the manufacturing process. Yes. In comparison, organic solar cell elements are attracting attention because they can solve the problems of inorganic solar cell elements such as low environmental load, diversity, and low cost.

有機太陽電池素子としては、有機半導体と金属薄膜間で生じるショットキー障壁を利用したショットキー障壁型太陽電池素子や、TiO上にRu等の色素を担持させ、これに電解質を満たした色素増感太陽電池素子、光電変換層として電子受容体(以降、電子輸送層と呼ぶ)と正孔受容体(以降、正孔輸送層と呼ぶ)を使用した有機薄膜太陽電池素子等が挙げられる。 Examples of organic solar cell elements include Schottky barrier solar cell elements that use a Schottky barrier generated between an organic semiconductor and a metal thin film, and dyes such as Ru supported on TiO 2 , and dye increases with an electrolyte. Examples thereof include an organic thin-film solar cell element using an electron acceptor (hereinafter referred to as an electron transport layer) and a hole acceptor (hereinafter referred to as a hole transport layer) as a photovoltaic cell element and a photoelectric conversion layer.

ショットキー障壁型太陽電池素子とは、有機半導体と金属薄膜を接合させる事で、半導体部分に、金属の仕事関数と半導体の持つ電子親和力の差が、障壁(ショットキー障壁)として現れ、これに光照射する事で、電化分離が発生する素子の事である。しかし、ショットキー障壁型太陽電池素子は光電変換効率が0.1%以下と非常に低く、実用的ではない。   With a Schottky barrier solar cell element, an organic semiconductor and a metal thin film are joined together, and the difference between the work function of the metal and the electron affinity of the semiconductor appears in the semiconductor portion as a barrier (Schottky barrier). An element that undergoes electrification and separation when irradiated with light. However, the Schottky barrier solar cell element has a very low photoelectric conversion efficiency of 0.1% or less and is not practical.

また、色素増感太陽電池素子とは、光照射により色素が励起状態となり、電子を放出する事で電化分離が発生する素子の事である。色素増感太陽電池素子は10%という高い光電変換効率を達成しているが、高効率を得る為にはRu色素やPt電極等の高価な材料が必要であり、また、液体電解質を用いている為にその長期安定性も優れているとは言えない。   The dye-sensitized solar cell element is an element that undergoes electrification separation when the dye is excited by light irradiation and emits electrons. The dye-sensitized solar cell element achieves a high photoelectric conversion efficiency of 10%. However, in order to obtain high efficiency, an expensive material such as a Ru dye or a Pt electrode is necessary, and a liquid electrolyte is used. Therefore, it cannot be said that its long-term stability is excellent.

一方、有機薄膜太陽電池素子は、他の太陽電池素子に比べて、特に製造工程が容易、かつ低コストである事から注目されている。例えば、電子輸送層と正孔輸送層を兼ねた導電性高分子を積層したバイレイヤー型有機薄膜太陽電池素子、電子輸送層と正孔輸送層を兼ねた導電性高分子の配合液を塗布したバルクへテロ接合型有機薄膜太陽電池素子等が挙げられる。   On the other hand, organic thin-film solar cell elements are attracting attention because they are particularly easy to manufacture and low-cost compared to other solar cell elements. For example, a bilayer organic thin-film solar cell element in which a conductive polymer that also serves as an electron transporting layer and a hole transporting layer is laminated, and a conductive polymer compound that also serves as an electron transporting layer and a hole transporting layer are applied. Examples include bulk heterojunction type organic thin film solar cell elements.

バイレイヤー型有機薄膜太陽電池素子は、電子輸送層と正孔輸送層を兼ねた導電性高分子とを接合させる事により、2層の界面でpn接合を形成させ、光電変換を起こすものである。例えば、電子輸送層としてペリレン誘導体を用い、正孔輸送層として銅フタロシアニンを用いたもの等が挙げられる(特許文献1)。しかし、キャリアの再結合を防ぎ、電流を観測する為には膜厚を約20nm 程度とする必要があり、この膜厚では光吸収が不充分で、光電変換効率は1%以下となる。   A bilayer organic thin film solar cell element is one in which a pn junction is formed at the interface between two layers by bonding a conductive polymer that also serves as an electron transport layer and a hole transport layer, thereby causing photoelectric conversion. . For example, the thing using a perylene derivative as an electron carrying layer and using copper phthalocyanine as a hole carrying layer is mentioned (patent document 1). However, in order to prevent the recombination of carriers and observe the current, the film thickness needs to be about 20 nm. At this film thickness, light absorption is insufficient and the photoelectric conversion efficiency is 1% or less.

一方、バルクへテロ接合型有機薄膜太陽電池素子では、電子輸送層と正孔輸送層を兼ねた導電性高分子が混在した電子正孔輸送層という単一層構造となっており、光電変換層中に於いて、分子レベルでのpn接合となる事で、光電変換に関与する体積の増加が可能である。例えば、ポリチオフェン系の共役高分子を用い、電子輸送層としてフラーレン誘導体[6,6]−フェニル−C61ブチリックアシッドメチルエステル(PCBM)を用いたもの等が挙げられる(特許文献2)。これにより光電変換効率は大幅に改善されたが、より光吸収量を高めるために更に膜厚を厚くすると、キャリアの再結合等により消滅する確率が高くなり未だその変換効率は不充分であった。   On the other hand, the bulk heterojunction organic thin-film solar cell element has a single-layer structure of an electron-hole transport layer in which a conductive polymer serving as both an electron transport layer and a hole transport layer is mixed. In this case, the pn junction at the molecular level can increase the volume involved in photoelectric conversion. For example, a polythiophene-based conjugated polymer is used, and a fullerene derivative [6,6] -phenyl-C61 butyric acid methyl ester (PCBM) is used as an electron transport layer (Patent Document 2). This greatly improved the photoelectric conversion efficiency, but if the film thickness was increased to increase the amount of light absorption, the probability of disappearance due to carrier recombination increased, and the conversion efficiency was still insufficient. .

また、光電変換素子の電子輸送層として、フラーロピロリジン誘導体が用いられているものとしては、例えば、N−アルキル−2−フェニル[60]フラーロピロリジン(特許文献3、4、5)、N−フェニル−2−アルキル[60]フラーロピロリジン(特許文献6、7)、N−アルキル−2−(チオフェニル、ピローリニル、フラニル等電解重合可能な置換基)[60]フラーロピロリジン(特許文献8、9)、N-ポリエチレンオキサイド−2−フェニル[60]フラーロピロリジン(特許文献10)等が挙げられるが、いずれも十分な光電変換効率は有していない。   In addition, as the electron transport layer of the photoelectric conversion element, as the one in which a fulleropyrrolidine derivative is used, for example, N-alkyl-2-phenyl [60] fulleropyrrolidine (Patent Documents 3, 4, and 5), N -Phenyl-2-alkyl [60] fulleropyrrolidine (Patent Documents 6 and 7), N-alkyl-2- (Substituent capable of electrolytic polymerization such as thiophenyl, pyrrolinyl, furanyl) [60] Fulleropyrrolidine (Patent Document 8) 9), N-polyethylene oxide-2-phenyl [60] fulleropyrrolidine (Patent Document 10), etc., but none of them has sufficient photoelectric conversion efficiency.

上記の様に、有機薄膜太陽電池素子として、様々な検討が行われているが、PCBM以降、良好な特性を持つ電子輸送層が見受けられず、電子輸送能が不足な太陽電池では、高い光電変換効率を得る事が期待出来ない。つまり、高い電子輸送能を有する電子受容体を開発する事が、有機薄膜太陽電池素子の光電変換効率を向上させる為には不可欠である。   As described above, various studies have been made as organic thin-film solar cell elements. However, since no electron transport layer having good characteristics has been found since PCBM, and a solar cell having insufficient electron transport capability, I can't expect conversion efficiency. That is, development of an electron acceptor having a high electron transport capability is indispensable for improving the photoelectric conversion efficiency of the organic thin film solar cell element.

特開2006−302925号公報JP 2006-302925 A 特開2006−245073号公報JP 2006-245073 A 特開2008−135479号公報JP 2008-135479 A 特開2007−251086号公報JP 2007-251086 A 特開2009−067708号公報JP 2009-067708 A 特開2008−247943号公報JP 2008-247934 A 特開2007−202029号公報JP 2007-202029 A 特開2007−258079号公報JP 2007-258079 A 特開2007−067115号公報JP 2007-0671115 A 特開2009−084264号公報JP 2009-084264 A

本発明は高い電子輸送能を有する電子受容体を有することにより光電変換効率が向上した光電変換素子を提供することである。   This invention is providing the photoelectric conversion element which the photoelectric conversion efficiency improved by having an electron acceptor which has high electron transport ability.

本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
すなわち、本発明は、基板(T)上に形成された2つの電極(Y)間に、導電性高分子(d)と電子受容体(a)を含有する光電変換層(E)を有する光電変換素子(P)であって、該電子受容体(a)が、下記一般式(1)または下記一般式(2)で示されるフラーロピロリジン誘導体(F1)を含有することを特徴とする、光電変換素子(P)である。

Figure 0005344432
[Rは下記一般式(7)〜(14)に示される基からなる群より選ばれる基であって、Rは芳香環を1つ含んでなる炭素数6〜16の有機基である。また、フラーレン部位はC60、C70、C76およびC84からなる群より選ばれるフラーレン類である。]
Figure 0005344432
[式中、Rは炭素数1〜16の直鎖もしくは分枝鎖の2価の脂肪族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された脂肪族(セミ)パーフルオロ炭化水素基、及び炭素数6〜16の2価の芳香族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された芳香族(セミ)パーフルオロ炭化水素基からなる群より選ばれる基であり、R10は炭素数1〜16の直鎖もしくは分枝鎖の1価の脂肪族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された脂肪族(セミ)パーフルオロ炭化水素基、及び炭素数6〜16の1価の芳香族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された芳香族(セミ)パーフルオロ炭化水素基からなる群より選ばれる基であり、Rは水素原子、及び炭素数1〜16の直鎖もしくは分枝鎖の1価の脂肪族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された脂肪族(セミ)パーフルオロ炭化水素基、及び炭素数6〜16の1価の芳香族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された芳香族(セミ)パーフルオロ炭化水素基からなる群より選ばれる基であり、R11及びR12は炭素数2〜4の直鎖もしくは分枝鎖の2価の脂肪族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された脂肪族(セミ)パーフルオロ炭化水素基からなる群より選ばれる基であり、R13は水素原子、及び炭素数2〜4の直鎖もしくは分枝鎖の1価の脂肪族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された脂肪族(セミ)パーフルオロ炭化水素基からなる群より選ばれる基である。mおよびaは1〜3の整数を示し、nおよびbは0〜3の整数を示す。]
また、本発明は、基板(T)上に形成された2つの電極(Y)間に、導電性高分子(d)と電子受容体(a)を含有する光電変換層(E)を有する光電変換素子(P)であって、該電子受容体(a)が、下記一般式(3)または下記一般式(4)で示されるフラーロピロリジン誘導体(F2)を含有することを特徴とする、光電変換素子(P)である。
Figure 0005344432
[式中、Rは一般式(25)で示される基であって、R〜Rはそれらのうち少なくとも一つが一般式(15)〜(26)で示される基からなる群より選ばれる基であり、それ以外は水素原子である。また、フラーレン部位はC60、C70、C76及びC84からなる群より選ばれるフラーレン類である。]
Figure 0005344432
[式中、R14〜R18は炭素数1〜16の直鎖もしくは分枝鎖の2価の脂肪族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された脂肪族(セミ)パーフルオロ炭化水素基、及び炭素数6〜16の2価の芳香族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された芳香族(セミ)パーフルオロ炭化水素基からなる群より選ばれる基であり、R19〜R22は炭素数2〜4の直鎖もしくは分枝鎖の2価の脂肪族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された脂肪族(セミ)パーフルオロ炭化水素基からなる群より選ばれる基であり、R23〜R36は水素原子、または炭素数1〜16の直鎖もしくは分枝鎖の1価の脂肪族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された脂肪族(セミ)パーフルオロ炭化水素基、及び1価の炭素数6〜16の芳香族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された芳香族(セミ)パーフルオロ炭化水素基からなる群より選ばれる基である。m’およびa’は1〜3の整数を示し、n’およびb’は0〜3の整数を示す。]
また、本発明は、基板(T)上に形成された2つの電極(Y)間に、導電性高分子(d)と電子受容体(a)を含有する光電変換層(E)を有する光電変換素子(P)であって、該電子受容体(a)が、下記一般式(5)または下記一般式(6)で示されるフラーロピロリジン誘導体(F3)を含有することを特徴とする、光電変換素子(P)である。
Figure 0005344432
[Rは下記一般式(27)に示される基からなる群より選ばれる基であって、Rは芳香環を1つ含んでなる炭素数6〜16の有機基である。また、フラーレン部位はC60である。]
Figure 0005344432
[R37は炭素数2〜16の直鎖もしくは分枝鎖の1価の脂肪族炭化水素基、及びその一部または全部の水素原子がフッ素原子で置換された脂肪族(セミ)パーフルオロ炭化水素基、及び炭素数6〜16の1価の芳香族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された芳香族(セミ)パーフルオロ炭化水素基からなる群より選ばれる基である。] The inventors of the present invention have reached the present invention as a result of studies to achieve the above object.
That is, the present invention provides a photoelectric conversion layer having a photoelectric conversion layer (E) containing a conductive polymer (d) and an electron acceptor (a) between two electrodes (Y) formed on a substrate (T). A conversion element (P), wherein the electron acceptor (a) contains a fulleropyrrolidine derivative (F1) represented by the following general formula (1) or the following general formula (2): It is a photoelectric conversion element (P).
Figure 0005344432
[R 1 is a group selected from the group consisting of groups represented by the following general formulas (7) to (14), and R 2 is an organic group having 6 to 16 carbon atoms including one aromatic ring. . The fullerene moiety is a fullerene selected from the group consisting of C 60 , C 70 , C 76 and C 84 . ]
Figure 0005344432
[In the formula, R 8 represents an aliphatic (semi) par in which a linear or branched divalent aliphatic hydrocarbon group having 1 to 16 carbon atoms and a part or all of its hydrogen atoms are substituted with fluorine atoms. A group consisting of a fluorohydrocarbon group, a divalent aromatic hydrocarbon group having 6 to 16 carbon atoms, and an aromatic (semi) perfluorohydrocarbon group in which part or all of the hydrogen atoms are substituted with fluorine atoms R 10 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms and an aliphatic group in which part or all of the hydrogen atoms are substituted with fluorine atoms (semi ) A perfluorohydrocarbon group, a monovalent aromatic hydrocarbon group having 6 to 16 carbon atoms, and an aromatic (semi) perfluorohydrocarbon group in which part or all of the hydrogen atoms are substituted with fluorine atoms a group selected from the group, R 9 is A C1-C16 linear or branched monovalent aliphatic hydrocarbon group and an aliphatic (semi) perfluorohydrocarbon in which part or all of the hydrogen atoms are substituted with fluorine atoms And a group selected from the group consisting of a monovalent aromatic hydrocarbon group having 6 to 16 carbon atoms and an aromatic (semi) perfluorohydrocarbon group in which part or all of the hydrogen atoms are substituted with fluorine atoms R 11 and R 12 are each an aliphatic (semi-carbon) having a linear or branched divalent aliphatic hydrocarbon group having 2 to 4 carbon atoms and part or all of the hydrogen atoms substituted with fluorine atoms. ) R 13 is a group selected from the group consisting of perfluorohydrocarbon groups, and R 13 is a hydrogen atom, a linear or branched monovalent aliphatic hydrocarbon group having 2 to 4 carbon atoms, and part or all thereof. Hydrogen atom was replaced by fluorine atom Aliphatic (semi) a group selected from the group consisting of perfluoro hydrocarbon group. m and a show the integer of 1-3, n and b show the integer of 0-3. ]
The present invention also provides a photoelectric conversion layer (E) having a conductive polymer (d) and an electron acceptor (a) between two electrodes (Y) formed on a substrate (T). A conversion element (P), wherein the electron acceptor (a) contains a fulleropyrrolidine derivative (F2) represented by the following general formula (3) or the following general formula (4): It is a photoelectric conversion element (P).
Figure 0005344432
[Wherein, R 1 is a group represented by the general formula (25), and R 3 to R 7 are selected from the group consisting of at least one of the groups represented by the general formulas (15) to (26). The other group is a hydrogen atom. The fullerene moiety is a fullerene selected from the group consisting of C 60 , C 70 , C 76 and C 84 . ]
Figure 0005344432
[Wherein, R 14 to R 18 represent a linear or branched divalent aliphatic hydrocarbon group having 1 to 16 carbon atoms and an aliphatic group in which part or all of the hydrogen atoms are substituted with fluorine atoms ( From a semi) perfluorohydrocarbon group, a divalent aromatic hydrocarbon group having 6 to 16 carbon atoms and an aromatic (semi) perfluorohydrocarbon group in which part or all of the hydrogen atoms are substituted with fluorine atoms. R 19 to R 22 are groups selected from the group consisting of C 2-4 linear or branched divalent aliphatic hydrocarbon groups and part or all of the hydrogen atoms are substituted with fluorine atoms Is a group selected from the group consisting of an aliphatic (semi) perfluorohydrocarbon group, and R 23 to R 36 are a hydrogen atom, or a linear or branched monovalent aliphatic group having 1 to 16 carbon atoms. A hydrocarbon group and some or all of its hydrogen atoms Aliphatic (semi) perfluorohydrocarbon groups substituted with fluorine atoms, monovalent aromatic hydrocarbon groups having 6 to 16 carbon atoms, and aromatics in which part or all of the hydrogen atoms are substituted with fluorine atoms It is a group selected from the group consisting of (semi) perfluorohydrocarbon groups. m ′ and a ′ represent an integer of 1 to 3, and n ′ and b ′ represent an integer of 0 to 3. ]
The present invention also provides a photoelectric conversion layer (E) having a conductive polymer (d) and an electron acceptor (a) between two electrodes (Y) formed on a substrate (T). In the conversion element (P), the electron acceptor (a) contains a fulleropyrrolidine derivative (F3) represented by the following general formula (5) or the following general formula (6): It is a photoelectric conversion element (P).
Figure 0005344432
[R 1 is a group selected from the group consisting of groups represented by the following general formula (27), and R 2 is an organic group having 6 to 16 carbon atoms containing one aromatic ring. Furthermore, the fullerene part is C 60. ]
Figure 0005344432
[R 37 is a linear or branched monovalent aliphatic hydrocarbon group having 2 to 16 carbon atoms, and an aliphatic (semi) perfluorocarbonized carbon in which part or all of the hydrogen atoms are substituted with fluorine atoms. Selected from the group consisting of a hydrogen group, a monovalent aromatic hydrocarbon group having 6 to 16 carbon atoms, and an aromatic (semi) perfluorohydrocarbon group in which part or all of the hydrogen atoms are substituted with fluorine atoms. It is a group. ]

本発明においては、電子受容体(電子輸送層)として、フラーロピロリジン誘導体を用いる事で、電子輸送性が向上し、高い光電変換効率を達成することができる。   In the present invention, by using a fulleropyrrolidine derivative as the electron acceptor (electron transport layer), the electron transport property is improved and high photoelectric conversion efficiency can be achieved.

本発明の光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the photoelectric conversion element of this invention.

(T) 基板
(Y) 電極
(i−1) 正孔取出し層
(E) 光電変換層
(i−2) 電子取出し層
(T) Substrate (Y) Electrode (i-1) Hole extraction layer (E) Photoelectric conversion layer (i-2) Electron extraction layer

本発明の光電変換素子は、基板上に形成された二つの電極の間に導電性高分子とフラーロピロリジン誘導体(F)を含有する電子受容体とを含有する光電変換層を設けた光電変換素子である。フラーロピロリジン誘導体(F)としては以下に説明する(F1)、(F2)及び(F3)である。   The photoelectric conversion element of the present invention is a photoelectric conversion in which a photoelectric conversion layer containing a conductive polymer and an electron acceptor containing a fulleropyrrolidine derivative (F) is provided between two electrodes formed on a substrate. It is an element. The fulleropyrrolidine derivative (F) includes (F1), (F2), and (F3) described below.

フラーロピロリジン誘導体(F1)は上記一般式(1)または一般式(2)で示される。   The fulleropyrrolidine derivative (F1) is represented by the above general formula (1) or general formula (2).

(F1)において、Rは上記の一般式(7)〜(14)で示される基であり、これらの中で一般式(7)〜(9)が好ましく、なかでも一般式(7)が特に好ましい。一般式(7)において、Rは炭素数1〜8の脂肪族基が好ましく、Rは炭素数1〜8の脂肪族基が好ましい。 In (F1), R 1 is a group represented by the above general formulas (7) to (14). Among these, general formulas (7) to (9) are preferable, and among these, general formula (7) is preferable. Particularly preferred. In General Formula (7), R 8 is preferably an aliphatic group having 1 to 8 carbon atoms, and R 9 is preferably an aliphatic group having 1 to 8 carbon atoms.

は芳香環を1つ含んでなる炭素数6〜16の有機基である。炭素数が17以上ではフラーレン誘導体の電子輸送能が低下するため、好ましくない。 R 2 is an organic group having 6 to 16 carbon atoms containing one aromatic ring. When the number of carbon atoms is 17 or more, the electron transport ability of the fullerene derivative is lowered, which is not preferable.

フェニルフラーロピロリジン誘導体(F1)中のフラーレン部位は、C60、C70、C76およびC84からなる群より選ばれるフラーレン類であるが、フロンティア軌道の観点から及び電子輸送能の観点からC60がより好ましい。 The fullerene moiety in the phenylfulleropyrrolidine derivative (F1) is a fullerene selected from the group consisting of C 60 , C 70 , C 76 and C 84. From the viewpoint of the frontier orbital and the viewpoint of the electron transport ability, 60 is more preferable.

フラーロピロリジン誘導体(F2)は上記一般式(3)および一般式(4)で示される。   The fulleropyrrolidine derivative (F2) is represented by the above general formula (3) and general formula (4).

(F2)において、Rは上記の一般式(25)で示される基である。m’は1〜3の整数を示し、好ましくは1であり、n’は0〜3の整数を示し、好ましくは1である。m’が4以上であると電子輸送能が低下するため好ましくなく、またn’が4以上であっても電子輸送能が低下するため好ましくない。
〜Rはそれらのうち少なくとも一つが上記一般式(15)〜(26)で示される基からなる群より選ばれる基であり、このうち電子輸送能の観点から(24)が好ましい。それ以外は水素原子である。
フェニルフラーロピロリジン誘導体(F2)中のフラーレン部位は、C60、C70、C76およびC84からなる群より選ばれるフラーレン類であるが、フロンティア軌道の観点から及び電子輸送能の観点からC60がより好ましい。
In (F2), R 1 is a group represented by the general formula (25). m ′ represents an integer of 1 to 3, preferably 1, and n ′ represents an integer of 0 to 3, preferably 1. When m ′ is 4 or more, the electron transport ability is lowered, which is not preferable. When n ′ is 4 or more, the electron transport ability is lowered, which is not preferable.
R 3 to R 7 are groups in which at least one of them is selected from the group consisting of the groups represented by the general formulas (15) to (26), and among these, (24) is preferable from the viewpoint of electron transport ability. The rest are hydrogen atoms.
The fullerene moiety in the phenylfulleropyrrolidine derivative (F2) is a fullerene selected from the group consisting of C 60 , C 70 , C 76 and C 84. From the viewpoint of frontier orbital and from the viewpoint of electron transport ability, C 60 is more preferable.

フラーロピロリジン誘導体(F3)は上記一般式(5)及び一般式(6)で示される。   The fulleropyrrolidine derivative (F3) is represented by the above general formula (5) and general formula (6).

(F3)において、Rは上記一般式(27)で示される基である。一般式(27)において、R37は炭素数2〜16の直鎖もしくは分枝鎖の1価の脂肪族炭化水素基、及びその一部または全部の水素原子がフッ素原子で置換された脂肪族(セミ)パーフルオロ炭化水素基、及び炭素数6〜16の1価の芳香族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された芳香族(セミ)パーフルオロ炭化水素基からなる群より選ばれる基であるが、このうち溶媒への溶解性の観点から炭素数4〜8の脂肪族炭化水素基が好ましい。
は芳香環を1つ含んでなる炭素数6〜16の有機基であるが、下記一般式(28)に示される基であることが好ましい。一般式(28)において、R〜Rは水素原子、上記一般式(15)〜(26)、一般式(27)または下記一般式(29)で示される基からなる群より選ばれる基が好ましい。
また、(F3)のフラーレン部位はC60である。
In (F3), R 1 is a group represented by the general formula (27). In the general formula (27), R 37 is a monovalent aliphatic hydrocarbon group, and aliphatic its some or all hydrogen atoms are substituted with fluorine atoms, straight-chain or branched-chain having 2 to 16 carbon atoms (Semi) perfluorohydrocarbon group, monovalent aromatic hydrocarbon group having 6 to 16 carbon atoms, and aromatic (semi) perfluorohydrocarbon group in which part or all of the hydrogen atoms are substituted with fluorine atoms Among them, an aliphatic hydrocarbon group having 4 to 8 carbon atoms is preferable from the viewpoint of solubility in a solvent.
R 2 is an organic group having 6 to 16 carbon atoms containing one aromatic ring, and is preferably a group represented by the following general formula (28). In the general formula (28), R 3 to R 7 are hydrogen atoms, groups selected from the group consisting of groups represented by the above general formulas (15) to (26), general formula (27) or the following general formula (29). Is preferred.
Further, the fullerene part of the (F3) is C 60.

Figure 0005344432
[式中、R〜Rは水素原子、上記一般式(15)〜(26)、一般式(27)または下記一般式(29)で示される基からなる群より選ばれる基である。]
Figure 0005344432
[Wherein, R 3 to R 7 are a hydrogen atom, a group selected from the group consisting of groups represented by the general formulas (15) to (26), the general formula (27), or the following general formula (29). ]

Figure 0005344432
[式中、R38は水素原子、または炭素数1〜16の直鎖もしくは分枝鎖の1価の脂肪族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された脂肪族(セミ)パーフルオロ炭化水素基、及び1価の炭素数6〜16の芳香族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された芳香族(セミ)パーフルオロ炭化水素基からなる群より選ばれる基である。]
Figure 0005344432
[In the formula, R 38 represents a hydrogen atom, or a linear or branched monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms and an aliphatic group in which part or all of the hydrogen atoms are substituted with fluorine atoms. (Semi) perfluorohydrocarbon group, monovalent aromatic hydrocarbon group having 6 to 16 carbon atoms, and aromatic (semi) perfluorohydrocarbon group in which part or all of the hydrogen atoms are substituted with fluorine atoms A group selected from the group consisting of ]

上記フラーロピロリジン誘導体(F)のうち、好ましく用いられるものは(F1)であり、そのうちRが一般式(28)で表されるフラーロピロリジン誘導体(F11)がより好ましい。 Among the above-mentioned fulleropyrrolidine derivatives (F), one that is preferably used is (F1), and among them, the fulleropyrrolidine derivative (F11) in which R 2 is represented by the general formula (28) is more preferable.

フラーロピロリジン誘導体(F11)の置換基のうち、R1として好ましく用いられるものは、一般式(7)〜(9)で示される基からなる群から選ばれる基であり、R〜Rとして好ましくは水素原子、一般式(25)〜(26)、および一般式(29)より選ばれる基であり、R〜Rのうち少なくとも2つが水素原子であることが好ましい。 Of the substituents of the fulleropyrrolidine derivative (F11), those preferably used as R1 are groups selected from the group consisting of groups represented by the general formulas (7) to (9), and R 3 to R 7 A group selected from a hydrogen atom, general formulas (25) to (26), and general formula (29) is preferred, and at least two of R 3 to R 7 are preferably hydrogen atoms.

フラーロピロリジン誘導体(F11)のフラーレン部位はフロンティア軌道の観点からC60がより好ましい。 The fullerene part of the fulleropyrrolidine derivative (F11) is more preferably C 60 from the viewpoint of frontier orbitals.

フラーロピロリジン誘導体(F)の製造方法
N−置換グリシン1等量に対して、置換ベンズアルデヒドを例えば2〜3等量、及びフラーレンを例えば1〜2等量を加えた溶液(たとえばトルエン溶液)を、例えば16〜35時間、還流することで、フェニルフラーロピロリジン誘導体(F)を得ることができる。
具体的な製造方法は、Journal of Organic Chemistry,2001年,66号,5033−5041頁、または、Journal of the American Chemical Society,2003年,125号,15093−15100頁等に記載の方法で行なうことができる。
Method for Producing Fulleropyrrolidine Derivative (F) A solution (for example, a toluene solution) in which, for example, 2-3 equivalents of substituted benzaldehyde and 1-2 equivalents of fullerene are added to 1 equivalent of N-substituted glycine. For example, the phenyl fulleropyrrolidine derivative (F) can be obtained by refluxing for 16 to 35 hours.
The specific production method is performed by the method described in Journal of Organic Chemistry, 2001, 66, 5033-5041, or Journal of the American Chemical Society, 2003, 125, 15093-15100. Can do.

本発明の光電変換素子は、基板(T)上に形成された2つの電極(Y)間に、導電性高分子(d)と電子受容体(a)を含有する光電変換層(E)を有する光電変換素子(P)である。1例として図1にその代表的な構造の概略断面図を示す。以下に各構成部位についてその詳細を説明する。   The photoelectric conversion element of the present invention comprises a photoelectric conversion layer (E) containing a conductive polymer (d) and an electron acceptor (a) between two electrodes (Y) formed on a substrate (T). A photoelectric conversion element (P). As an example, FIG. 1 shows a schematic sectional view of a typical structure thereof. Details of each component will be described below.

(1)基板(T)
本発明における基板について説明する。基板は透明、不透明いずれでも良いが、基板面が受光体となる場合には透明基板が望ましい。この透明基板としては、光電変換素子外部から侵入する水分やガスの遮断性、耐溶剤性、耐候性等に優れているものが望ましく、例えば、石英ガラスなどの剛直板、透明樹脂フィルム等のフレキシブル基板が挙げられる。更に、優れた加工性、低コスト、軽量化といった観点から、本発明においては、フレキシブル基板である事が望ましい。透明樹脂フィルムとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリスチレン、ポリエチレン、ポリフッ化ビニリデン、ポリイミド、ポリメチルメタクリレート等が挙げられる。
(1) Substrate (T)
The substrate in the present invention will be described. The substrate may be either transparent or opaque, but a transparent substrate is desirable when the substrate surface is a photoreceptor. As this transparent substrate, a substrate excellent in moisture and gas barrier properties, solvent resistance, weather resistance and the like entering from the outside of the photoelectric conversion element is desirable. For example, a rigid plate such as quartz glass, a flexible resin such as a transparent resin film, etc. A substrate is mentioned. Furthermore, in the present invention, a flexible substrate is desirable from the viewpoint of excellent workability, low cost, and light weight. Examples of the transparent resin film include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, polyethylene, polyvinylidene fluoride, polyimide, and polymethyl methacrylate.

(2)電極(Y)
続いて、本発明における電極について説明する。
電極は基板(T)上に層状をなしていても、層状をなしていなくてもよいが、層状であることが好ましい。電極は必ずしも透光性を有する必要はないが、基板(T)上に層状をなしている場合は、少なくとも一方が透光性を有することが好ましい。電極は二つからなり、二つの層状を成していることが好ましい。電極は導電性を有するものであればいずれでも良く、スパッタリング法、イオンプレーティング法等により形成される。光透過性電極としては、インジウム−スズ複合酸化物(ITO)、フッ素ドープSnO(FTO)、SnO等の導電性透明材料からなる金属薄膜が好ましく、光遮光性電極としては、アルカリ金属、アルカリ土類金属等の金属薄膜が好ましい。この電極の厚さは、特に限定されないが、例えば80〜100nm程度である。
(2) Electrode (Y)
Then, the electrode in this invention is demonstrated.
The electrode may or may not be layered on the substrate (T), but is preferably layered. The electrode does not necessarily have translucency, but when the electrode is layered on the substrate (T), it is preferable that at least one of the electrodes has translucency. It is preferable that the electrode is composed of two layers and has two layers. Any electrode may be used as long as it has conductivity, and it is formed by sputtering, ion plating, or the like. As the light transmissive electrode, a metal thin film made of a conductive transparent material such as indium-tin composite oxide (ITO), fluorine-doped SnO 2 (FTO), SnO 2 is preferable, and as the light shielding electrode, an alkali metal, Metal thin films such as alkaline earth metals are preferred. Although the thickness of this electrode is not specifically limited, For example, it is about 80-100 nm.

(3)光電変換層(E)
続いて、本発明に用いられる光電変換層について説明する。本発明における光電変換層は、導電性高分子(d)及び電子輸送層(電子受容体)(a)を含有しており、好ましくは正孔輸送層(正孔受容体)(s)を兼ねた導電性高分子(d)、及び電子輸送層(電子受容体)(a)を含有している。
上記、含有される導電性高分子と電子輸送層(電子受容体)の形態は特に限定されるものではないが、好ましくは両者が混在した電子正孔輸送層という単一層構造、つまり、バルクヘテロ接合である。この構造をとることにより分子レベルでのpn接合が可能となり、このため光電変換に関与する体積の増加が可能となるという効果が得られる。
上述のような光電変換層(E)は、導電性高分子(d)と電子受容体(a)の混合溶液から溶媒を除去することで得ることができる。
(3) Photoelectric conversion layer (E)
Then, the photoelectric converting layer used for this invention is demonstrated. The photoelectric conversion layer in the present invention contains a conductive polymer (d) and an electron transport layer (electron acceptor) (a), and preferably also serves as a hole transport layer (hole acceptor) (s). A conductive polymer (d) and an electron transport layer (electron acceptor) (a).
The form of the conductive polymer and the electron transport layer (electron acceptor) contained is not particularly limited, but is preferably a single layer structure of an electron hole transport layer in which both are mixed, that is, a bulk heterojunction. It is. By adopting this structure, a pn junction at the molecular level becomes possible, and thus an effect of increasing the volume involved in photoelectric conversion can be obtained.
The photoelectric conversion layer (E) as described above can be obtained by removing the solvent from the mixed solution of the conductive polymer (d) and the electron acceptor (a).

本発明においては、電子輸送層(電子受容体)として少なくともフラーロピロリジン誘導体(F)を含むものである。これを用いる事で、電子輸送性が向上し、高い光電変換効率が得られる。
この理由として、以下のことが推定される。
(i)本発明の電子受容体(電子輸送層)は、フロンティア軌道の観点から、導電性高分子とのLUMOギャップが小さく、電子の移動速度が十分大きい。
(ii)本発明の電子受容体(電子輸送層)は、導電性高分子との相溶性が良く、バルクへテロ接合の緻密さが十分である。
In the present invention, the electron transport layer (electron acceptor) contains at least the fulleropyrrolidine derivative (F). By using this, electron transport property improves and high photoelectric conversion efficiency is obtained.
The reason is estimated as follows.
(I) The electron acceptor (electron transport layer) of the present invention has a small LUMO gap with a conductive polymer and a sufficiently high electron movement speed from the viewpoint of frontier orbitals.
(Ii) The electron acceptor (electron transport layer) of the present invention has good compatibility with the conductive polymer and sufficient bulk heterojunction density.

上記で説明したように、導電性高分子(d)としては、正孔輸送層(正孔受容体)(s)として機能するものが好ましく、例えば、ポリチオフェン、ポリフルオレン等が挙げられる。一方、電子輸送層(電子受容体)に関してはフラーロピロリジン誘導体、もしくはフラーロピロリジン誘導体と任意の電子輸送層(電子受容体)との2種類以上の混合物等が好ましく、混合可能な電子輸送層として、フラーレン誘導体等が挙げられる。   As described above, the conductive polymer (d) preferably functions as a hole transport layer (hole acceptor) (s), and examples thereof include polythiophene and polyfluorene. On the other hand, the electron transport layer (electron acceptor) is preferably a fulleropyrrolidine derivative, or a mixture of two or more of a fulleropyrrolidine derivative and an arbitrary electron transport layer (electron acceptor). As a fullerene derivative.

本発明において、上述した光電変換層に用いる導電性高分子(d)と電子輸送層(電子受容体)(a)の重量比率としては、良好な電子輸送能を有する電子正孔輸送層を形成すれば特に限定されるものでは無いが、例えば(d)/(a)=1/10〜1/0.4が好ましく、他の各構成材料種の組み合わせによって、最適な混合比に適宜変更する事が好ましい。   In the present invention, as the weight ratio of the conductive polymer (d) and the electron transport layer (electron acceptor) (a) used in the above-described photoelectric conversion layer, an electron hole transport layer having good electron transport ability is formed. Although not particularly limited, for example, (d) / (a) = 1/10 to 1 / 0.4 is preferable, and the mixing ratio is appropriately changed depending on the combination of other constituent material types. Things are preferable.

電子受容体(a)が、さらにフラーロピロリジン誘導体(F)以外のフラーレン誘導体(G)を含有してもよい。フラーレン誘導体(G)としては、フラーレン、PCBM等が挙げられ、フラーロピロリジン誘導体(F)とフラーレン誘導体(G)の重量比率としては、良好な電子輸送能を有する電子正孔輸送層を形成すれば特に限定されるものでは無いが、例えば(F)/(G)=5/0〜4/1が好ましく、他の各構成材料種の組み合わせによって、最適な混合比に適宜変更する事が好ましい。   The electron acceptor (a) may further contain a fullerene derivative (G) other than the fulleropyrrolidine derivative (F). The fullerene derivative (G) includes fullerene, PCBM, etc. The weight ratio of the fulleropyrrolidine derivative (F) and the fullerene derivative (G) is to form an electron hole transport layer having a good electron transport ability. Although it is not particularly limited, for example, (F) / (G) = 5/0 to 4/1 is preferable, and it is preferable to appropriately change to an optimal mixing ratio depending on the combination of other constituent material types. .

本発明において、上述した光電変換層の膜厚は特に限定されるものでは無く、いずれでも良い。ただし、膜厚が薄過ぎると短絡し、厚過ぎると、膜抵抗が高くなる為、一般的な光電変換素子に用いられている膜厚が好ましく、例えば、20〜800nmである。   In the present invention, the film thickness of the above-described photoelectric conversion layer is not particularly limited, and any film thickness may be used. However, if the film thickness is too thin, the film is short-circuited, and if it is too thick, the film resistance becomes high. Therefore, the film thickness used for a general photoelectric conversion element is preferable, for example, 20 to 800 nm.

本発明において、上述した光電変換層の形成法は、所定の膜厚に均一に形成する事が出来る方法であれば特に限定されるものでは無く、いずれでも良い。例えば、スピンコート法またはダイコート法等が挙げられる。   In the present invention, the method for forming the photoelectric conversion layer described above is not particularly limited as long as it can be uniformly formed in a predetermined film thickness, and any method may be used. For example, a spin coating method or a die coating method can be used.

本発明において、上述した光電変換層の数は、一層でも複数層でも良く、特に限定されるものでは無いが、例えば1〜5層が好ましい。   In the present invention, the number of the photoelectric conversion layers described above may be one layer or a plurality of layers, and is not particularly limited. For example, 1 to 5 layers are preferable.

(5)その他の構成
本発明に用いられるその他の構成について説明する。本発明の光電変換素子内部に、電荷の移動を促進する目的で、電荷取出し層(i)を形成しても良い。
構成する化合物、層数は特に限定されるものでは無いが、例えば、正孔取り出し層(i−1)としては、ポリ(スチレンスルホン酸塩)/ポリ(2,3−ジヒドロチエノ[3,4−b]−1,4−ダイオキシン)(以下「PEDOT/PSS」と呼ぶ)、電子取り出し層(i−2)としては二酸化チタン(以下TiOと呼ぶ)等が挙げられる。
(5) Other structure The other structure used for this invention is demonstrated. A charge extraction layer (i) may be formed in the photoelectric conversion element of the present invention for the purpose of promoting the movement of charges.
The compound and the number of layers are not particularly limited. For example, as the hole extraction layer (i-1), poly (styrene sulfonate) / poly (2,3-dihydrothieno [3,4- b] -1,4-dioxin) (hereinafter referred to as “PEDOT / PSS”) and the electron extraction layer (i-2) include titanium dioxide (hereinafter referred to as TiO x ).

本発明の光電変換素子(P)を太陽電池素子(S)として使用する場合は、基板(T)上に形成された2つの電極(Y)間に、導電性高分子(d)と電子受容体(a)を含有する光電変換層(E)を有する太陽電池素子(S)であり、それらの構成等は、上記光電変換素子(P)で説明したものが好ましい。   When the photoelectric conversion element (P) of the present invention is used as a solar cell element (S), a conductive polymer (d) and an electron acceptor are interposed between two electrodes (Y) formed on the substrate (T). It is a solar cell element (S) which has the photoelectric converting layer (E) containing a body (a), The structure etc. which were demonstrated by the said photoelectric converting element (P) are preferable.

本発明の太陽電池素子(S)をタンデム型太陽電池素子(S1)として使用する場合は、それらの構成等は、上記太陽電池素子(S)で説明したものが好ましい。また、その積層数は特に限定されるものではなく、例えば、1〜5層程度であり、各々の太陽電池素子(S)の接続様態は並列、直列いずれでも良いが、取り出す電流を大きくしたい場合には並列が好ましく、取り出す電圧を大きくしたい場合には直列が好ましい。   When the solar cell element (S) of the present invention is used as a tandem solar cell element (S1), those described for the solar cell element (S) are preferable. In addition, the number of stacked layers is not particularly limited. For example, the number of stacked layers is about 1 to 5, and the connection state of each solar cell element (S) may be either parallel or series. Are preferably in parallel, and in order to increase the voltage to be extracted, series is preferable.

本発明の光電変換素子(P)を光センサー素子(U)として使用する場合は基板(T)上に形成された2つの電極(Y)間に、導電性高分子(d)と電子受容体(a)を含有する光電変換層(E)を有する光センサー素子(U)であり、それらの構成等は、上記光電変換素子(P)で説明したものが好ましい。   When the photoelectric conversion element (P) of the present invention is used as an optical sensor element (U), a conductive polymer (d) and an electron acceptor are disposed between two electrodes (Y) formed on a substrate (T). It is an optical sensor element (U) having a photoelectric conversion layer (E) containing (a), and those described in the above-mentioned photoelectric conversion element (P) are preferable.

以下、実施例により本発明を更に詳しく説明するが、本発明はこれに限定されるものではない。
以下、特に記載のないかぎり、「部」「wt」は「重量部」、%は重量%を意味する。
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to this.
Hereinafter, unless otherwise specified, “parts” and “wt” mean “parts by weight” and% means% by weight.

(製造例1)
フラーロピロリジン誘導体として、N−(ヘキシル)−2−(パラ(ジメチルアミノ))フェニル[60]フラーロピロリジン(以降、HPmaPFPと呼ぶ。一般式(30)で示される化合物)(F3−1)を合成した。
(Production Example 1)
As a fulleropyrrolidine derivative, N- (hexyl) -2- (para (dimethylamino)) phenyl [60] fulleropyrrolidine (hereinafter referred to as HPmaPFP; compound represented by the general formula (30)) (F3-1) Was synthesized.

Figure 0005344432
Figure 0005344432

HPmaPFP(一般式(30))の合成
グリシン1.50g(和光純薬(株)製)と水酸化ナトリウム1.21g、二炭酸ジ−t−ブチル(以降、BocOと呼ぶ)6.55g(和光純薬(株)製)をジオキサン/水=1/1(容積比)溶液60mlに溶解させた後、この溶液を25℃で24時間攪拌し、ジオキサンを減圧留去した。残渣に濃度1Mの硫酸水素カリウム水溶液を加え、pH=3とし、水層を酢酸エチルで抽出し、Boc化グリシン(以降、Boc−Glyと呼ぶ)3.32gを得た。この合成法はJournal of Organic Chemistry,2006年,71号,2014−2020頁記載の方法に準拠した。
Boc−Gly 3.32gとBocO 8.53g、4−ジメチルアミノピリジン(以降、DMAPと呼ぶ)0.695g(和光純薬(株)製)をt−ブチルアルコール70mlに溶解させた後、この溶液を25℃で5時間攪拌した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製し、Boc化グリシンのt−ブチルエステル(以降、Boc−Gly−OBuと呼ぶ)4.21gを得た。この合成法はSynthesis,1994年,1063−1066頁記載の方法に準拠した。
Synthesis of HPmaPFP (general formula (30)) 1.50 g of glycine (manufactured by Wako Pure Chemical Industries, Ltd.), 1.21 g of sodium hydroxide, di-t-butyl dicarbonate (hereinafter referred to as Boc 2 O) 6.55 g (Wako Pure Chemical Industries, Ltd.) was dissolved in 60 ml of a dioxane / water = 1/1 (volume ratio) solution, and the solution was stirred at 25 ° C. for 24 hours, and dioxane was distilled off under reduced pressure. A 1M aqueous potassium hydrogen sulfate solution was added to the residue to adjust the pH to 3, and the aqueous layer was extracted with ethyl acetate to obtain 3.32 g of Boc-glycine (hereinafter referred to as Boc-Gly). This synthesis method was based on the method described in Journal of Organic Chemistry, 2006, No. 71, pages 2014-2020.
Boc-Gly 3.32 g, Boc 2 O 8.53 g, 4-dimethylaminopyridine (hereinafter referred to as DMAP) 0.695 g (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 70 ml of t-butyl alcohol, The solution was stirred at 25 ° C. for 5 hours. After the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent; ethyl acetate) to obtain 4.21 g of t -butyl ester of Boc-glycine (hereinafter referred to as Boc-Gly-O t Bu). . This synthesis method was based on the method described in Synthesis, 1994, pp. 1063-1066.

Boc−Gly−OBu 2.50gと、水素化ナトリウム0.389g(和光純薬(株)製)、1−ブロモヘキサン2.68g(和光純薬(株)製)をジメチルホルムアミド27mlに加えた後、この溶液を55℃で1時間半攪拌した。飽和塩化アンモニウム水溶液50mlを加えた後に、水層を酢酸エチルで抽出し、溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製し、N−(ヘキシル)Boc化グリシン−t−ブチルエステル(以降、H−Boc−Gly−OBuと呼ぶ)2.22gを得た。この合成法はBioorganic & medicinal chemistry,2007年,15号,2092−2105頁記載の方法に準拠した。 2.50 g of Boc-Gly-O t Bu, 0.389 g of sodium hydride (manufactured by Wako Pure Chemical Industries, Ltd.), 2.68 g of 1-bromohexane (manufactured by Wako Pure Chemical Industries, Ltd.) are added to 27 ml of dimethylformamide. After that, the solution was stirred at 55 ° C. for 1.5 hours. After adding 50 ml of saturated aqueous ammonium chloride solution, the aqueous layer was extracted with ethyl acetate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent; ethyl acetate), and N- (hexyl) Boc glycine. 2.22 g of t-butyl ester (hereinafter referred to as H-Boc-Gly-O t Bu) was obtained. This synthesis method was based on the method described in Bioorganic & medicinal chemistry, 2007, No. 15, pp. 2092-2105.

H−Boc−Gly−OBu 2.22gをトリフルオロ酢酸/クロロホルム=1/1(容積比)100mlに溶解させた後、この溶液を25℃で20時間攪拌した。溶媒を減圧留去し、N−(ヘキシル)グリシン−トリフルオロ酢酸塩(以降、H−Gly・TFAと呼ぶ)1.90gを得た。この合成法はJournal of Organic Chemistry,1990年,55号,5017−5025頁記載の方法に準拠した。
H−Gly・TFA 153mgとトリエチルアミン64mg(和光純薬(株)製)、4−ジメチルアミノベンズアルデヒド209mg(和光純薬(株)製)、フラーレン[C60]500mg(和光純薬(株)製)をトルエン200mlに溶解させた後、この溶液を120℃で16時間攪拌した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;クロロホルム)で精製し、フェニルフラーロピロリジン誘導体HPmaPFPを102mg得た。この合成法はJournal of Organic Chemistry,2001年,66号,5033−5041頁、または、Journal of the American Chemical Society,2003年,125号,15093−15100頁記載の方法に準拠した。
After dissolving 2.22 g of H-Boc-Gly-O t Bu in 100 ml of trifluoroacetic acid / chloroform = 1/1 (volume ratio), the solution was stirred at 25 ° C. for 20 hours. The solvent was distilled off under reduced pressure to obtain 1.90 g of N- (hexyl) glycine-trifluoroacetate (hereinafter referred to as H-Gly · TFA). This synthesis method was based on the method described in Journal of Organic Chemistry, 1990, No. 55, pages 5017-5025.
153 mg of H-Gly.TFA, 64 mg of triethylamine (manufactured by Wako Pure Chemical Industries, Ltd.), 209 mg of 4-dimethylaminobenzaldehyde (manufactured by Wako Pure Chemical Industries, Ltd.), 500 mg of fullerene [C60] (manufactured by Wako Pure Chemical Industries, Ltd.) After dissolving in 200 ml of toluene, the solution was stirred at 120 ° C. for 16 hours. After the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent: chloroform) to obtain 102 mg of phenylfulleropyrrolidine derivative HPmaPFP. This synthesis method was based on the method described in Journal of Organic Chemistry, 2001, 66, pages 5033-5041, or Journal of the American Chemical Society, 2003, 125, 15093-15100.

(製造例2)
フラーロピロリジン誘導体として、N−(2−(2−メトキシエトキシ)エチル)−2−(パラN−アセトアミド)フェニル[60]フラーロピロリジン(以降、MeeAaPFPと呼ぶ。一般式(31)で示される化合物)(F2−1)を合成した。
(Production Example 2)
As a fulleropyrrolidine derivative, N- (2- (2-methoxyethoxy) ethyl) -2- (para-N-acetamido) phenyl [60] fulleropyrrolidine (hereinafter referred to as MeeAaPFP, represented by the general formula (31) Compound) (F2-1) was synthesized.

Figure 0005344432
Figure 0005344432

MeeAaPFP(一般式(31))の合成
製造例1における、Boc−Gly−OBuの合成までは同様である。
Boc−Gly−OBu 2.50gと、水素化ナトリウム0.389g(和光純薬(株)製)、1−ブロモ−2−(2−メトキシエトキシ)エタン2.97g(シグマアルドリッチジャパン(株)製)をジメチルホルムアミド27mlに溶解させた後、この溶液を55℃で1時間半攪拌した。飽和塩化アンモニウム水溶液50mlを加えた後に、水層を酢酸エチルで抽出し、溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製し、N−(2−(2−メトキシエトキシ)エチル)Boc化グリシン−t−ブチルエステル(以降、Mee−Boc−Gly−OBuと呼ぶ)2.81gを得た。この合成法はBioorganic & medicinal chemistry,2007年,15号,2092−2105頁記載の方法に準拠した。
Synthesis of MeeAaPFP (general formula (31)) The same applies until the synthesis of Boc-Gly-O t Bu in Production Example 1.
2.50 g of Boc-Gly-O t Bu, 0.389 g of sodium hydride (manufactured by Wako Pure Chemical Industries, Ltd.), 2.97 g of 1-bromo-2- (2-methoxyethoxy) ethane (Sigma Aldrich Japan Co., Ltd.) ) Was dissolved in 27 ml of dimethylformamide, and the solution was stirred at 55 ° C. for 1.5 hours. After adding 50 ml of saturated aqueous ammonium chloride solution, the aqueous layer was extracted with ethyl acetate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent; ethyl acetate), and N- (2- (2- 2.81 g of methoxyethoxy) ethyl) Bocated glycine-t-butyl ester (hereinafter referred to as Mee-Boc-Gly-O t Bu) was obtained. This synthesis method was based on the method described in Bioorganic & medicinal chemistry, 2007, No. 15, pp. 2092-2105.

Mee−Boc−Gly−OBu 2.81gをトリフルオロ酢酸/クロロホルム=1/1(容積比)100mlに溶解させた後、この溶液を25℃で20時間攪拌した。溶媒を減圧留去し、N−(2−(2−メトキシエトキシ)エチル)グリシン−トリフルオロ酢酸塩(以降、Mee−Gly・TFAと呼ぶ)2.02gを得た。この合成法はJournal of Organic Chemistry,1990年,55号,5017−5025頁記載の方法に準拠した。
Mee−Gly・TFA 163mgとトリエチルアミン64mg(和光純薬(株)製)、4−(アセトアミド)ベンズアルデヒド229mg(和光純薬(株)製)、フラーレン[C60]500mg(和光純薬(株)製)をトルエン200mlに溶解させた後、この溶液を120℃で16時間攪拌した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;クロロホルム)で精製し、フェニルフラーロピロリジン誘導体MeeAaPFPを130mg得た。この合成法はJournal of Organic Chemistry,2001年,66号,5033−5041頁、または、Journal of the American Chemical Society,2003年,125号,15093−15100頁記載の方法に準拠した。
After dissolving 2.81 g of Mee-Boc-Gly-O t Bu in 100 ml of trifluoroacetic acid / chloroform = 1/1 (volume ratio), the solution was stirred at 25 ° C. for 20 hours. The solvent was distilled off under reduced pressure to obtain 2.02 g of N- (2- (2-methoxyethoxy) ethyl) glycine-trifluoroacetate (hereinafter referred to as Mee-Gly · TFA). This synthesis method was based on the method described in Journal of Organic Chemistry, 1990, No. 55, pages 5017-5025.
Mee-Gly.TFA 163 mg and triethylamine 64 mg (manufactured by Wako Pure Chemical Industries, Ltd.), 4- (acetamido) benzaldehyde 229 mg (manufactured by Wako Pure Chemical Industries, Ltd.), fullerene [C60] 500 mg (manufactured by Wako Pure Chemical Industries, Ltd.) Was dissolved in 200 ml of toluene, and the solution was stirred at 120 ° C. for 16 hours. After the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent: chloroform) to obtain 130 mg of phenylfulleropyrrolidine derivative MeeAaPFP. This synthesis method was based on the method described in Journal of Organic Chemistry, 2001, 66, pages 5033-5041, or Journal of the American Chemical Society, 2003, 125, 15093-15100.

(製造例3)
フラーロピロリジン誘導体として、N−ベンジル−2−(パラメトキシカルボニル)フェニル[60]フラーロピロリジン(以降、BPmcPFPと呼ぶ。一般式(32)で示される化合物)(F3−2)を合成した。
(Production Example 3)
As a fulleropyrrolidine derivative, N-benzyl-2- (paramethoxycarbonyl) phenyl [60] fulleropyrrolidine (hereinafter referred to as BPmcPFP, a compound represented by the general formula (32)) (F3-2) was synthesized.

Figure 0005344432
Figure 0005344432

BPmcPFP(一般式(32))の合成
製造例1における、Boc−Gly−OBuの合成までは同様である。
Boc−Gly−OBu 2.50gと、水素化ナトリウム0.389g(和光純薬(株)製)、ベンジルブロミド2.78g(和光純薬(株)製)をジメチルホルムアミド27mlに溶解させた後、この溶液を55℃で1時間半攪拌した。飽和塩化アンモニウム水溶液50mlを加えた後に、水層を酢酸エチルで抽出し、溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル)で精製し、N−ベンジルBoc化グリシン−t−ブチルエステル(以降、B−Boc−Gly−OBuと呼ぶ)2.26gを得た。この合成法はBioorganic & medicinal chemistry,2007年,15号,2092−2105頁記載の方法に準拠した。
Synthesis of BPmcPFP (general formula (32)) The same applies until synthesis of Boc-Gly-O t Bu in Production Example 1.
2.50 g of Boc-Gly-O t Bu, 0.389 g of sodium hydride (manufactured by Wako Pure Chemical Industries, Ltd.) and 2.78 g of benzyl bromide (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 27 ml of dimethylformamide. Thereafter, the solution was stirred at 55 ° C. for 1.5 hours. After adding 50 ml of a saturated aqueous ammonium chloride solution, the aqueous layer was extracted with ethyl acetate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent; ethyl acetate), and N-benzyl Boc-glycine-t. -2.26 g of butyl ester (hereinafter referred to as B-Boc-Gly-O t Bu) was obtained. This synthesis method was based on the method described in Bioorganic & medicinal chemistry, 2007, No. 15, pp. 2092-2105.

B−Boc−Gly−OBu 2.26gをトリフルオロ酢酸/クロロホルム=1/1(容積比)100mlに溶解させた後、この溶液を25℃で20時間攪拌した。溶媒を減圧留去し、N−ベンジルグリシン−トリフルオロ酢酸塩(以降、B−Gly・TFAと呼ぶ)1.94gを得た。この合成法はJournal of Organic Chemistry,1990年,55号,5017−5025頁記載の方法に準拠した。
B−Gly・TFA 156mgとトリエチルアミン64mg(和光純薬(株)製)、4−ホルミル安息香酸メチル230mg(和光純薬(株)製)、フラーレン[C60]500mg(和光純薬(株)製)をトルエン200mlに溶解させた後、この溶液を120℃で16時間攪拌した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;クロロホルム)で精製し、フェニルフラーロピロリジン誘導体BPmcPFPを101mg得た。この合成法はJournal of Organic Chemistry,2001年,66号,5033−5041頁、または、Journal of the American Chemical Society,2003年,125号,15093−15100頁記載の方法に準拠した。
After dissolving 2.26 g of B-Boc-Gly-O t Bu in 100 ml of trifluoroacetic acid / chloroform = 1/1 (volume ratio), the solution was stirred at 25 ° C. for 20 hours. The solvent was distilled off under reduced pressure to obtain 1.94 g of N-benzylglycine-trifluoroacetate (hereinafter referred to as B-Gly · TFA). This synthesis method was based on the method described in Journal of Organic Chemistry, 1990, No. 55, pages 5017-5025.
B-Gly.TFA 156 mg, triethylamine 64 mg (manufactured by Wako Pure Chemical Industries, Ltd.), methyl 4-formylbenzoate 230 mg (manufactured by Wako Pure Chemical Industries, Ltd.), fullerene [C60] 500 mg (manufactured by Wako Pure Chemical Industries, Ltd.) Was dissolved in 200 ml of toluene, and the solution was stirred at 120 ° C. for 16 hours. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent: chloroform) to obtain 101 mg of phenylfulleropyrrolidine derivative BPmcPFP. This synthesis method was based on the method described in Journal of Organic Chemistry, 2001, 66, pages 5033-5041, or Journal of the American Chemical Society, 2003, 125, 15093-15100.

(比較製造例4)
フラーロピロリジン誘導体として、N−メチル−2−(パラメチル)フェニル[60]フラーロピロリジン(以降、MPmPFPと呼ぶ。一般式(33)で示される化合物)を合成した。
(Comparative Production Example 4)
As a fulleropyrrolidine derivative, N-methyl-2- (paramethyl) phenyl [60] fulleropyrrolidine (hereinafter referred to as MPmPFP, a compound represented by the general formula (33)) was synthesized.

Figure 0005344432
Figure 0005344432

MPmPFP(一般式(33))の合成
N−メチル−Gly 185mg(和光純薬(株)製)と4−メチルベンズアルデヒド169mg(和光純薬(株)製)、フラーレン[C60]500mg(和光純薬(株)製)をトルエン200mlに加えた後、この溶液を120℃で16時間攪拌した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;クロロホルム)で精製し、フェニルフラーロピロリジン誘導体MPmPFPを95mg得た。この合成法はJournal of Organic Chemistry,2001年,66号,5033−5041頁、または、Journal of the American Chemical Society,2003年,125号,15093−15100頁記載の方法に準拠した。
Synthesis of MPmPFP (general formula (33)) N-methyl-Gly 185 mg (manufactured by Wako Pure Chemical Industries, Ltd.) and 4-methylbenzaldehyde 169 mg (manufactured by Wako Pure Chemical Industries, Ltd.), fullerene [C60] 500 mg (Wako Pure Chemical Industries, Ltd.) Was added to 200 ml of toluene, and the solution was stirred at 120 ° C. for 16 hours. After the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent; chloroform) to obtain 95 mg of phenylfulleropyrrolidine derivative MPmPFP. This synthesis method was based on the method described in Journal of Organic Chemistry, 2001, 66, pages 5033-5041, or Journal of the American Chemical Society, 2003, 125, 15093-15100.

(製造例5)
フラーロピロリジン誘導体として、N−(n−2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9−ヘプタデカフルオロノニロキシカルボニル)メチル−2−フェニル[60]フラーロピロリジン(以降、FnNcmPFPと呼ぶ。一般式(34)で示される化合物)(F1−1)を合成した。
(Production Example 5)
As a fulleropyrrolidine derivative, N- (n-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluorononyloxy Carbonyl) methyl-2-phenyl [60] fulleropyrrolidine (hereinafter referred to as FnNcmPFP; compound represented by general formula (34)) (F1-1) was synthesized.

Figure 0005344432
Figure 0005344432

FnNcmPFP(一般式(34))の合成
グリシン2.50g(和光純薬(株)製)とp−トルエンスルホン酸・1水和物7.60g(和光純薬(株)製)を2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9−ヘプタデカフルオロ−1−ノニノール14.99g(和光純薬(株)製)とトルエン80mlの混合溶液に溶解させた後、この溶液を130℃に加熱しつつ、Dean−Stark装置を用いる共沸法により、生成水を除去しながら14時間攪拌した後、トルエンを減圧留去し、グリシン−2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9−ヘプタデカフルオロ−1−ノニルエステル p−トルエンスルホン酸塩(以降、Gly−OFNonyl・TSAと呼ぶ)23.70gを得た。この合成法はTetrahedron,1926年,71号,79−80頁記載の方法に準拠した。
Gly−OFNonyl・TSA 16.03gとN−エチルジイソプロピルアミン7.67g(和光純薬(株)製)、ブロモ酢酸ベンジル4.35g(和光純薬(株)製)をテトラヒドロフラン28mlに溶解させた後、この溶液を70℃で18時間攪拌した。酢酸エチル71mlを加え、有機層を1M硫酸水素カリウム水溶液24mlで3回、飽和食塩水で2回洗浄した後に、無水硫酸マグネシウムを加え、25℃で3時間放置した。無水硫酸マグネシウムを濾去し、溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル:ヘキサン=1:1)で精製し、N−アスパラギン酸 α2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9−ヘプタデカフルオロ−1−ノニルエステル βベンジルエステル(以降、Nasp(αOFNonyl)−βOBzlと呼ぶ)6.22gを得た。この合成法はJournal of peptide science,2004年,10号,578−587頁記載の方法に準拠した。
Synthesis of FnNcmPFP (general formula (34)) 2.50 g of glycine (manufactured by Wako Pure Chemical Industries, Ltd.) and 7.60 g of p-toluenesulfonic acid monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) , 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 9-heptadecafluoro-1-noninol 14.99 g (manufactured by Wako Pure Chemical Industries, Ltd.) After being dissolved in a mixed solution of 80 ml and toluene, the solution was heated to 130 ° C. and stirred for 14 hours while removing generated water by an azeotropic method using a Dean-Stark apparatus. Glycine-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluoro-1-nonyl ester p-toluenesulfone 23.70 g of acid salt (hereinafter referred to as Gly-OF n Nonyl · TSA) Obtained. This synthesis method was based on the method described in Tetrahedron, 1926, No. 71, pages 79-80.
Gly-OF n Nonyl / TSA 16.03 g, N-ethyldiisopropylamine 7.67 g (manufactured by Wako Pure Chemical Industries, Ltd.) and benzyl bromoacetate 4.35 g (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 28 ml of tetrahydrofuran. The solution was then stirred at 70 ° C. for 18 hours. 71 ml of ethyl acetate was added, and the organic layer was washed 3 times with 24 ml of 1M aqueous potassium hydrogen sulfate solution and twice with saturated brine, then anhydrous magnesium sulfate was added, and the mixture was allowed to stand at 25 ° C. for 3 hours. After anhydrous magnesium sulfate was filtered off and the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent; ethyl acetate: hexane = 1: 1), and N-aspartic acid α 2,2,3,3 4,4,5,5,6,6,7,7,8,8,9,9,9- heptadecafluoro-1-nonyl ester beta-benzyl ester (hereinafter, Nasp (α OF n nonyl) - β OBzl This gave 6.22 g. This synthesis method was based on the method described in Journal of peptide science, 2004, No. 10, pages 578-587.

Nasp(αOFNonyl)−βOBzl 3.00gとパラジウム−活性炭素(Pd10%)(以降、Pd/Cと呼ぶ)2.29g(和光純薬(株)製)をメタノール33mlに加えた後、この溶液を水素雰囲気下、25℃で3時間半攪拌した。溶媒を減圧留去し、N−アスパラギン酸 α2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9−ヘプタデカフルオロ−1−ノニルエステル(以降、Nasp(αOFNonyl)−OHと呼ぶ)とPd/Cの混合物4.88gを得た。この合成法はJournal of peptide science,2004年,10号,578−587頁記載の方法に準拠した。 Nasp (α OF n Nonyl) - β OBzl 3.00g and palladium - activated carbon (PD10%) (hereinafter, referred to as Pd / C) 2.29 g (manufactured by Wako Pure Chemical Co.) was added to methanol 33ml This solution was stirred at 25 ° C. for 3 and a half hours in a hydrogen atmosphere. The solvent was distilled off under reduced pressure, and N-aspartic acid α 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluoro- 4.88 g of a mixture of 1-nonyl ester (hereinafter referred to as Nasp ( α OF n Nonyl) -OH) and Pd / C was obtained. This synthesis method was based on the method described in Journal of peptide science, 2004, No. 10, pages 578-587.

Nasp(αOFNonyl)−OHと呼ぶ)とPd/Cの混合物620mgとベンズアルデヒド92mg(和光純薬(株)製)、フラーレン[C60]501mg(和光純薬(株)製)をトルエン200mlに溶解させた後、この溶液を120℃で16時間攪拌した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;トルエン:ヘキサン=1:7)で精製し、フェニルフラーロピロリジン誘導体FnNcmPFPを180mg得た。この合成法はJournal of Organic Chemistry,2001年,66号,5033−5041頁、または、Journal of the American Chemical Society,2003年,125号,15093−15100頁記載の方法に準拠した。 620 mg of a mixture of Nasp ( α OF n Nonyl) -OH) and Pd / C, 92 mg of benzaldehyde (manufactured by Wako Pure Chemical Industries, Ltd.), 501 mg of fullerene [C60] (manufactured by Wako Pure Chemical Industries, Ltd.) into 200 ml of toluene. After dissolution, the solution was stirred at 120 ° C. for 16 hours. After the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent; toluene: hexane = 1: 7) to obtain 180 mg of phenylfulleropyrrolidine derivative FnNcmPFP. This synthesis method was based on the method described in Journal of Organic Chemistry, 2001, 66, pages 5033-5041, or Journal of the American Chemical Society, 2003, 125, 15093-15100.

(製造例6)
フラーロピロリジン誘導体として、N−(n−ブチロキシカルボニル)メチル−2−フェニル[60]フラーロピロリジン(以降、nBcmPFPと呼ぶ。一般式(35)で示される化合物)(F1−2)、及びその二付加体(以降、Bis−nBcmPFPと呼ぶ。一般式(36)で示される化合物)(F1−3)を合成した。
(Production Example 6)
As a fulleropyrrolidine derivative, N- (n-butyroxycarbonyl) methyl-2-phenyl [60] fulleropyrrolidine (hereinafter referred to as nBcmPFP; compound represented by the general formula (35)) (F1-2), and The diadduct (hereinafter referred to as Bis-nBcmPFP, a compound represented by the general formula (36)) (F1-3) was synthesized.

Figure 0005344432
Figure 0005344432

Figure 0005344432
Figure 0005344432

nBcmPFP(一般式(35))及びBis−nBcmPFP(一般式(36))の合成
グリシン2.50g(和光純薬(株)製)とp−トルエンスルホン酸・1水和物7.60g(和光純薬(株)製)をn−ブチルアルコール(和光純薬(株)製)46mlとトルエン80mlの混合溶液に溶解させた後、この溶液を130℃に加熱しつつ、Dean−Stark装置を用いる共沸法により、生成水を除去しながら14時間攪拌した後、トルエン、n−ブチルアルコールを減圧留去した。残渣にヘキサンを加え、濾取する事で、グリシン−n−ブチルエステル p−トルエンスルホン酸塩(以降、Gly−OBu・TSAと呼ぶ)7.16gを得た。この合成法はTetrahedron,1926年,71号,79−80頁記載の方法に準拠した。
Gly−OBu・TSA 7.16gとN−エチルジイソプロピルアミン7.67g(和光純薬(株)製)、ブロモ酢酸ベンジル4.35g(和光純薬(株)製)をテトラヒドロフラン28mlに溶解させた後、この溶液を70℃で18時間攪拌した。酢酸エチル71mlを加え、有機層を1M硫酸水素カリウム水溶液24mlで3回、飽和食塩水で2回洗浄した後に、無水硫酸マグネシウムを加え、25℃で3時間放置した。無水硫酸マグネシウムを濾去し、溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル:ヘキサン=1:1)で精製し、N−アスパラギン酸 αn−ブチルエステル βベンジルエステル(以降、Nasp(αBu)−βOBzlと呼ぶ)4.20gを得た。この合成法はJournal of peptide science,2004年,10号,578−587頁記載の方法に準拠した。
Synthesis of nBcmPFP (general formula (35)) and Bis-nBcmPFP (general formula (36)) 2.50 g of glycine (manufactured by Wako Pure Chemical Industries, Ltd.) and 7.60 g of p-toluenesulfonic acid monohydrate (sum) After dissolving the pure water (manufactured by Kojun Pharmaceutical Co., Ltd.) in a mixed solution of 46 ml of n-butyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) and 80 ml of toluene, the Dean-Stark apparatus is used while heating the solution to 130 ° C. After stirring for 14 hours while removing generated water by an azeotropic method, toluene and n-butyl alcohol were distilled off under reduced pressure. The residue was added hexane, By filtration, glycine -n- butyl ester p- toluenesulfonic acid salt (hereinafter referred to as Gly-O n Bu · TSA) was obtained 7.16 g. This synthesis method was based on the method described in Tetrahedron, 1926, No. 71, pages 79-80.
Gly-O n Bu · TSA 7.16g and N- ethyldiisopropylamine 7.67 g (Wako Pure Chemical Co.), benzyl bromoacetate 4.35g (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in tetrahydrofuran 28ml The solution was then stirred at 70 ° C. for 18 hours. 71 ml of ethyl acetate was added, and the organic layer was washed 3 times with 24 ml of 1M aqueous potassium hydrogen sulfate solution and twice with saturated brine, then anhydrous magnesium sulfate was added, and the mixture was allowed to stand at 25 ° C. for 3 hours. After anhydrous magnesium sulfate was removed by filtration and the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent; ethyl acetate: hexane = 1: 1), and N-aspartic acid α n-butyl ester β benzyl ester ( later, Nasp (α O n Bu) - to obtain a beta OBzl called a) 4.20 g. This synthesis method was based on the method described in Journal of peptide science, 2004, No. 10, pages 578-587.

Nasp(αBu)−βOBzl 3.00gとパラジウム−活性炭素(Pd10%)(以降、Pd/Cと呼ぶ)2.29g(和光純薬(株)製)をメタノール33mlに加えた後、この溶液を水素雰囲気下、25℃で3時間半攪拌した。セライト(No.545)(和光純薬(株)製)を用いてPd/Cを濾去した後、溶媒を減圧留去した。残渣をヘキサンで洗浄し、N−アスパラギン酸 αn−ブチルエステル(以降、Nasp(αBu)−OHと呼ぶ)2.03gを得た。この合成法はJournal of peptide science,2004年,10号,578−587頁記載の方法に準拠した。 Nasp (α O n Bu) - β OBzl 3.00g and palladium - activated carbon (PD10%) (hereinafter, referred to as Pd / C) 2.29 g (manufactured by Wako Pure Chemical Co.) was added to methanol 33ml This solution was stirred at 25 ° C. for 3 and a half hours in a hydrogen atmosphere. Pd / C was filtered off using Celite (No. 545) (manufactured by Wako Pure Chemical Industries, Ltd.), and then the solvent was distilled off under reduced pressure. The residue was washed with hexane, N- aspartic acid alpha n-butyl ester (hereinafter referred to as Nasp (α O n Bu) -OH ) was obtained 2.03 g. This synthesis method was based on the method described in Journal of peptide science, 2004, No. 10, pages 578-587.

Nasp(αBu)−OH 110mgとベンズアルデヒド92mg(和光純薬(株)製)、フラーレン[C60]501mg(和光純薬(株)製)をトルエン200mlに溶解させた後、この溶液を120℃で16時間攪拌した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;トルエン:ヘキサン=1:7)で精製し、フェニルフラーロピロリジン誘導体nBcmPFPを120mg、及びその二付加体Bis−nBcmPFPを10mg得た。この合成法はJournal of Organic Chemistry,2001年,66号,5033−5041頁、または、Journal of the American Chemical Society,2003年,125号,15093−15100頁記載の方法に準拠した。 Nasp (α O n Bu) -OH 110mg benzaldehyde 92 mg (manufactured by Wako Pure Chemical Co.), after fullerene [C60] 501 mg of the (manufactured by Wako Pure Chemical Co.) was dissolved in toluene 200 ml, and this solution 120 Stir at 16 ° C. for 16 hours. After the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent; toluene: hexane = 1: 7) to obtain 120 mg of phenylfulleropyrrolidine derivative nBcmPFP and 10 mg of its diadduct Bis-nBcmPFP. This synthesis method was based on the method described in Journal of Organic Chemistry, 2001, 66, pages 5033-5041, or Journal of the American Chemical Society, 2003, 125, 15093-15100.

(製造例7)
McmPFP(一般式(37))の合成
フラーロピロリジン誘導体として、N−(n−ブチロキシカルボニル)メチル−2−フェニル[60]フラーロピロリジン(以降、McmPFPと呼ぶ。一般式(37)で示される化合物)(F1−4)を合成した。
(Production Example 7)
Synthesis of McmPFP (General Formula (37)) As a fulleropyrrolidine derivative, N- (n-butyoxycarbonyl) methyl-2-phenyl [60] fulleropyrrolidine (hereinafter referred to as McmPFP, which is represented by General Formula (37)) Compound (F1-4) was synthesized.

Figure 0005344432
Figure 0005344432

グリシン2.5gをメタノール中50mlに分散させ、5℃に冷却した。そこへチオニルクロライド10gを20分かけて滴下し、滴下終了後5hr、還流条件下加熱した。減圧条件下、未反応物などを留去し、白色固体4.5gを得た。この白色固体を全量、反応容器にしこみ、THF30ml、DMF30ml、ジイソプロピルメチルアミン7.7gおよびブロモ酢酸ベンジル4.5gを加え、還流条件下、72hr反応を行った。酢酸エチル71mlを加え、有機層を1M硫酸水素カリウム水溶液24mlで3回、飽和食塩水で2回洗浄した後に、無水硫酸マグネシウムを加え、25℃で3時間放置した。無水硫酸マグネシウムを濾去し、溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;酢酸エチル:ヘキサン=1:1)で精製し、N−アスパラギン酸 αn−メチルエステル βベンジルエステル(以降、Nasp(αMe)−βOBzlと呼ぶ)4.20gを得た。この合成法はJournal of peptide science,2004年,10号,578−587頁記載の方法に準拠した。 2.5 g of glycine was dispersed in 50 ml of methanol and cooled to 5 ° C. Thionyl chloride 10g was dripped there over 20 minutes, and it heated on recirculation | reflux conditions for 5 hr after completion | finish of dripping. Unreacted substances and the like were distilled off under reduced pressure to obtain 4.5 g of a white solid. The entire amount of this white solid was put into a reaction vessel, and 30 ml of THF, 30 ml of DMF, 7.7 g of diisopropylmethylamine and 4.5 g of benzyl bromoacetate were added, and the reaction was performed for 72 hours under reflux conditions. 71 ml of ethyl acetate was added, and the organic layer was washed 3 times with 24 ml of 1M aqueous potassium hydrogen sulfate solution and twice with saturated brine, then anhydrous magnesium sulfate was added, and the mixture was allowed to stand at 25 ° C. for 3 hours. After anhydrous magnesium sulfate was removed by filtration and the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent; ethyl acetate: hexane = 1: 1), and N-aspartic acid α n-methyl ester β benzyl ester ( later, Nasp (α O n Me) - to give the β OBzl called a) 4.20g. This synthesis method was based on the method described in Journal of peptide science, 2004, No. 10, pages 578-587.

Nasp(αBu)−βOBzl 2.68gとパラジウム−活性炭素(Pd10%)(以降、Pd/Cと呼ぶ)2.29g(和光純薬(株)製)をメタノール33mlに加えた後、この溶液を水素雰囲気下、25℃で3時間半攪拌した。セライト(No.545)(和光純薬(株)製)を用いてPd/Cを濾去した後、溶媒を減圧留去した。残渣をヘキサンで洗浄し、N−アスパラギン酸 αn−メチルエステル(以降、Nasp(αMe)−OHと呼ぶ)2.03gを得た。この合成法はJournal of peptide science,2004年,10号,578−587頁記載の方法に準拠した。 Nasp (α O n Bu) - β OBzl 2.68g and palladium - activated carbon (PD10%) (hereinafter, referred to as Pd / C) 2.29 g (manufactured by Wako Pure Chemical Co.) was added to methanol 33ml This solution was stirred at 25 ° C. for 3 and a half hours in a hydrogen atmosphere. Pd / C was filtered off using Celite (No. 545) (manufactured by Wako Pure Chemical Industries, Ltd.), and then the solvent was distilled off under reduced pressure. The residue was washed with hexane, N- aspartic acid alpha n-methyl ester (hereinafter referred to as Nasp (α O n Me) -OH ) was obtained 2.03 g. This synthesis method was based on the method described in Journal of peptide science, 2004, No. 10, pages 578-587.

Nasp(αMe)−OH 98mgとベンズアルデヒド92mg(和光純薬(株)製)、フラーレン[C60]501mg(和光純薬(株)製)をトルエン200mlに溶解させた後、この溶液を120℃で16時間攪拌した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;トルエン:ヘキサン=1:7)で精製し、フェニルフラーロピロリジン誘導体McmPFPを105mg得た。この合成法はJournal of Organic Chemistry,2001年,66号,5033−5041頁、または、Journal of the American Chemical Society,2003年,125号,15093−15100頁記載の方法に準拠した。 Nasp (α O n Me) -OH 98mg benzaldehyde 92 mg (manufactured by Wako Pure Chemical Co.), after fullerene [C60] 501 mg of the (manufactured by Wako Pure Chemical Co.) was dissolved in toluene 200 ml, and this solution 120 Stir at 16 ° C. for 16 hours. After the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent; toluene: hexane = 1: 7) to obtain 105 mg of phenylfulleropyrrolidine derivative McmPFP. This synthesis method was based on the method described in Journal of Organic Chemistry, 2001, 66, pages 5033-5041, or Journal of the American Chemical Society, 2003, 125, 15093-15100.

(製造例8)
EcmPFP(一般式(38))の合成
製造例7において、メタノール50mlのかわりにエタノール50mlを用いた以外は製造例8と同様に行い、フェニルフラーロピロリジン誘導体N−(n−エチロキシカルボニル)メチル−2−フェニル[60]フラーロピロリジン(以降、EcmPFPと呼ぶ。一般式(38)で示される化合物)(F1−5)を97mg得た。
(Production Example 8)
Synthesis of EcmPFP (General Formula (38)) The same procedure as in Production Example 8 was carried out except that 50 ml of ethanol was used instead of 50 ml of methanol in Production Example 7, and the phenylfullerpyrrolidine derivative N- (n-ethyloxycarbonyl) methyl was used. 97 mg of 2-phenyl [60] fulleropyrrolidine (hereinafter referred to as EcmPFP; compound represented by the general formula (38)) (F1-5) was obtained.

Figure 0005344432
Figure 0005344432

(製造例9)
nPcmPFP(一般式(39))の合成
製造例6において、n−ブチルアルコール46mlのかわりにn−プロピルアルコール46mlを用いた以外は製造例7と同様に行い、フェニルフラーロピロリジン誘導体N−(n−プロピロキシカルボニル)メチル−2−フェニル[60]フラーロピロリジン(以降、nPcmPFPと呼ぶ。一般式(39)で示される化合物)(F1−6)を101mg得た。
(Production Example 9)
Synthesis of nPcmPFP (General Formula (39)) In Production Example 6, the same procedure as in Production Example 7 was carried out except that 46 ml of n-propyl alcohol was used instead of 46 ml of n-butyl alcohol. -Propyloxycarbonyl) methyl-2-phenyl [60] fulleropyrrolidine (hereinafter referred to as nPcmPFP. Compound represented by the general formula (39)) (F1-6) (101 mg) was obtained.

Figure 0005344432
Figure 0005344432

(製造例10)
nOcmPFP(一般式(40))の合成
製造例6において、n−ブチルアルコール46mlのかわりにn−オクチルアルコール46mlを用いた以外は製造例7と同様に行い、フェニルフラーロピロリジン誘導体N−(n−オクチロキシカルボニル)メチル−2−フェニル[60]フラーロピロリジン(以降、nOcmPFPと呼ぶ。一般式(40)で示される化合物)(F1−7)を95mg得た。
(Production Example 10)
Synthesis of nOcmPFP (general formula (40)) In Production Example 6, except that 46 ml of n-octyl alcohol was used instead of 46 ml of n-butyl alcohol, the same was carried out as in Production Example 7 to obtain phenylfulleropyrrolidine derivative N- (n -Octyloxycarbonyl) methyl-2-phenyl [60] fulleropyrrolidine (hereinafter referred to as nOcmPFP; compound represented by general formula (40)) (F1-7) (95 mg) was obtained.

Figure 0005344432
Figure 0005344432

(実施例1)
(透明電極(Y)の作成)
透明基板及び透明導電膜として、大きさが25mm角でシート抵抗が10Ω/cm−2のITO膜付きポリエチレンテレフタレート(以降、PETと呼ぶ)フィルムを用いた。そして、そのITO膜上に所定形状のマスクを形成した後、これを1N塩酸に1時間浸漬する事でITO膜のパターニングを行い、透明電極を形成した。
Example 1
(Creation of transparent electrode (Y))
As the transparent substrate and the transparent conductive film, a polyethylene terephthalate (hereinafter referred to as PET) film with an ITO film having a size of 25 mm square and a sheet resistance of 10 Ω / cm −2 was used. And after forming the mask of a predetermined shape on the ITO film | membrane, the ITO film | membrane was patterned by immersing this in 1N hydrochloric acid for 1 hour, and the transparent electrode was formed.

[正孔取出し層(i−1)の作成]
上記の様にしてITO膜からなる透明電極が形成されたPETフィルム上に1.3重量%のポリ(スチレンスルホン酸塩)/ポリ(2,3−ジヒドロチエノ[3,4−b]−1,4−ダイオキシン)(以降、「PEDOT/PSS」と呼ぶ)(バイエル社製、品名BaytronP)をスピンコートし、120℃で30分間乾燥する事で厚さが約100nmのPEDOT/PSS膜を形成し、これを正孔取出し層(i−1)とした。
[Preparation of hole extraction layer (i-1)]
1.3% by weight of poly (styrene sulfonate) / poly (2,3-dihydrothieno [3,4-b] -1, on a PET film on which a transparent electrode made of an ITO film is formed as described above. 4-dioxin) (hereinafter referred to as “PEDOT / PSS”) (product name: BaytronP, manufactured by Bayer), spin-coated at 120 ° C. for 30 minutes to form a PEDOT / PSS film having a thickness of about 100 nm. This was designated as a hole extraction layer (i-1).

(光電変換層(E)の作成)
更に、PEDOT/PSS膜よりも少し大きい範囲にポリ−3−ヘキシルチオフェン−2,5−ジイル(以降、P3HTと呼ぶ)(和光純薬株式会社製、品名044746)/HPmaPFP[製造例1で合成したフラーロピロリジン誘導体(F3−1)](重量比は1/4)の混合溶液(5.0mLのクロロベンゼン中にP3HT:HPmaPFP=15mg:60mgを溶解させたもの。)を前記正孔取出し層(i−1)上にスピンコートした後、窒素気流下で1時間25℃で乾燥し、さらに25℃で3時間減圧乾燥を行い、光電変換層(E)を形成した。
(Creation of photoelectric conversion layer (E))
Furthermore, poly-3-hexylthiophene-2,5-diyl (hereinafter referred to as P3HT) (manufactured by Wako Pure Chemical Industries, Ltd., product name 044746) / HPmaPFP [synthesized in Production Example 1] in a slightly larger range than the PEDOT / PSS film. Of the fulleropyrrolidine derivative (F3-1)] (weight ratio is 1/4) (P3HT: HPmaPFP = 15 mg: 60 mg dissolved in 5.0 mL of chlorobenzene). After spin-coating on (i-1), it dried at 25 degreeC under nitrogen stream for 1 hour, and also dried under reduced pressure at 25 degreeC for 3 hours, and formed the photoelectric converting layer (E).

(対抗電極の作成)
最後に、対抗電極として、厚さ125nmのAl膜を前記光電変換層上に真空蒸着により形成した。以上の様にして光電変換素子(P−1)を製造した。
(Create counter electrode)
Finally, an Al film having a thickness of 125 nm was formed as a counter electrode on the photoelectric conversion layer by vacuum deposition. The photoelectric conversion element (P-1) was manufactured as described above.

(実施例2)
実施例1における、P3HT/HPmaPFP混合溶液を、P3HT/MeeAaPFP[製造例2で合成したフラーロピロリジン誘導体(F2−1)]混合溶液に置き換えた以外は、実施例1と同様にして光電変換素子(P−2)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にP3HT:MeeAaPFP=15mg:60mgを含むものを用いた。
(Example 2)
A photoelectric conversion element in the same manner as in Example 1 except that the P3HT / HPmaPFP mixed solution in Example 1 was replaced with a P3HT / MeaAaPFP [fulleropyrrolidine derivative (F2-1) synthesized in Production Example 2] mixed solution. (P-2) was formed. As a specific mixed solution, a solution containing P3HT: MeeAaPFP = 15 mg: 60 mg in 5.0 mL of chlorobenzene was used.

(実施例3)
実施例1における、P3HT/HPmaPFP混合溶液を、P3HT/BPmcPFP[製造例3で合成したフラーロピロリジン誘導体(F3−2)]混合溶液に置き換えた以外は、実施例1と同様にして光電変換素子(P−3)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にP3HT:BPmcPFP=15mg:60mgを含むものを用いた。
(Example 3)
A photoelectric conversion element was obtained in the same manner as in Example 1 except that the P3HT / HPmaPFP mixed solution in Example 1 was replaced with a P3HT / BPmcPFP [fulleropyrrolidine derivative (F3-2) synthesized in Production Example 3] mixed solution. (P-3) was formed. As a specific mixed solution, a solution containing P3HT: BPmcPFP = 15 mg: 60 mg in 5.0 mL of chlorobenzene was used.

(実施例4)
複数のフラーレン誘導体を電子受容体として含有する、光電変換素子(P−4)
実施例1における、P3HT/HPmaPFP混合溶液を、P3HT/HPmaPFP[製造例1で合成したフラーロピロリジン誘導体(F3−1)]/PCBM(フロンティアカーボン(株)製)混合溶液に置き換えた以外は、実施例1と同様にして光電変換素子(P−4)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にP3HT:HPmaPFP:PCBM=15mg:48mg:12mgを含むものを用いた。
Example 4
Photoelectric conversion element (P-4) containing a plurality of fullerene derivatives as electron acceptors
Except that the P3HT / HPmaPFP mixed solution in Example 1 was replaced with a mixed solution of P3HT / HPmaPFP [fulleropyrrolidine derivative (F3-1) synthesized in Production Example 1] / PCBM (manufactured by Frontier Carbon Co., Ltd.), In the same manner as in Example 1, a photoelectric conversion element (P-4) was formed. As a specific mixed solution, a solution containing P3HT: HPmaPFP: PCBM = 15 mg: 48 mg: 12 mg in 5.0 mL of chlorobenzene was used.

(実施例5)
実施例1における、P3HT/HPmaPFP混合溶液を、P3HT/FnNcmPFP[製造例5で合成したフラーロピロリジン誘導体(F1−1)]混合溶液に置き換えた以外は、実施例1と同様にして光電変換素子(P−5)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にP3HT:FnNcmPFP=15mg:60mgを含むものを用いた。
(Example 5)
A photoelectric conversion element in the same manner as in Example 1 except that the P3HT / HPmaPFP mixed solution in Example 1 was replaced with a P3HT / FnNcmPFP [fulleropyrrolidine derivative (F1-1) synthesized in Production Example 5] mixed solution. (P-5) was formed. As a specific mixed solution, a solution containing P3HT: FnNcmPFP = 15 mg: 60 mg in 5.0 mL of chlorobenzene was used.

(実施例6)
複数のフラーレン誘導体を電子受容体として含有する、光電変換素子(P−6)
実施例1における、P3HT/HPmaPFP混合溶液を、P3HT/FnNcmPFP[製造例5で合成したフラーロピロリジン誘導体(F1−1)]/nBcmPFP[製造例6で合成したフラーロピロリジン誘導体(F1−2)]混合溶液に置き換えた以外は、実施例1と同様にして光電変換素子(P−6)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にP3HT:FnNcmPFP:nBcmPFP=15mg:48mg:12mgを含むものを用いた。
(Example 6)
Photoelectric conversion element (P-6) containing a plurality of fullerene derivatives as electron acceptors
The mixed solution of P3HT / HPmaPFP in Example 1 was converted into P3HT / FnNcmPFP [fulleropyrrolidine derivative (F1-1) synthesized in Production Example 5] / nBcmPFP [fulleropyrrolidine derivative (F1-2) synthesized in Production Example 6]. A photoelectric conversion element (P-6) was formed in the same manner as in Example 1 except that the mixed solution was replaced. As a specific mixed solution, a solution containing P3HT: FnNcmPFP: nBcmPFP = 15 mg: 48 mg: 12 mg in 5.0 mL of chlorobenzene was used.

(実施例7)
実施例1における、P3HT/HPmaPFP混合溶液を、P3HT/Bis−nBcmPFP[製造例6で合成したフラーロピロリジン誘導体(F1−3)]混合溶液に置き換えた以外は、実施例1と同様にして光電変換素子(P−7)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にP3HT:FnNcmPFP=15mg:60mgを含むものを用いた。
(Example 7)
In the same manner as in Example 1, except that the P3HT / HPmaPFP mixed solution in Example 1 was replaced with the P3HT / Bis-nBcmPFP [fulleropyrrolidine derivative (F1-3) synthesized in Production Example 6] mixed solution. A conversion element (P-7) was formed. As a specific mixed solution, a solution containing P3HT: FnNcmPFP = 15 mg: 60 mg in 5.0 mL of chlorobenzene was used.

(実施例8)
(正孔取出し層(i−1)の作成)
実施例1において、乾燥条件「120℃、30分」を「200℃、10分」に変更した以外は、実施例1と同様にして正孔取り出し層(i−1)を形成した。
(Example 8)
(Preparation of hole extraction layer (i-1))
A hole extraction layer (i-1) was formed in the same manner as in Example 1 except that the drying condition “120 ° C., 30 minutes” was changed to “200 ° C., 10 minutes” in Example 1.

(光電変換層(E)の作成)
実施例1において、P3HT/HPmaPFP(重量比1/4)の混合溶液を、P3HT/nBcmPFP[製造例6で合成したフラーロピロリジン誘導体(F1−2)](重量比1/0.475)の混合溶液(5.0mLのクロロベンゼン中にP3HT:nBcmPFP=75mg:35.625mgを溶解させたもの)に置き換え、乾燥条件「窒素気流下で1時間25℃で乾燥し、さらに25℃で3時間減圧」を、「窒素気流下で9分140℃で乾燥」に変更した以外は、実施例1と同様にして光電変換層(E)を形成した。
(Creation of photoelectric conversion layer (E))
In Example 1, a mixed solution of P3HT / HPmaPFP (weight ratio 1/4) was mixed with P3HT / nBcmPFP [fulleropyrrolidine derivative (F1-2) synthesized in Production Example 6] (weight ratio 1 / 0.475). Replaced with a mixed solution (P3HT: nBcmPFP = 75 mg: 35.625 mg dissolved in 5.0 mL of chlorobenzene) and dried under the condition of “drying at 25 ° C. for 1 hour under a nitrogen stream and further reducing the pressure at 25 ° C. for 3 hours. Was changed to “Dry at 140 ° C. for 9 minutes under a nitrogen stream” to form a photoelectric conversion layer (E) in the same manner as in Example 1.

(電子取出し層(i−2)の作成)
更に光電変換層(E)の上に、電子取り出し層(i−2)としてチタンテトライソプロポキシド(和光純薬(株)製)10μLをエタノール3mLに溶解させたものをスピンコートした後、室内に30分放置する事で加水分解を起こさせ、二酸化チタン(TiO)層を形成した。
(Creation of electron extraction layer (i-2))
Furthermore, after spin-coating what melt | dissolved 10 microliters of titanium tetraisopropoxide (made by Wako Pure Chemical Industries, Ltd.) in 3 mL of ethanol as an electronic taking-out layer (i-2) on the photoelectric converting layer (E), Was allowed to stand for 30 minutes to cause hydrolysis to form a titanium dioxide (TiO x ) layer.

(対抗電極の作成)
電子取出し層(i−2)の上に、実施例1と同様にして対抗電極を作製し、光電変換素子(P−8)を形成した。
(Create counter electrode)
A counter electrode was produced on the electron extraction layer (i-2) in the same manner as in Example 1 to form a photoelectric conversion element (P-8).

(実施例9)
実施例8における、P3HT/nBcmPFP混合溶液を、P3HT/McmPFP[製造例7で合成したフラーロピロリジン誘導体(F1−4)]混合溶液に置き換えた以外は、実施例8と同様にして光電変換素子(P−9)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にP3HT:McmPFP=75mg:37.5mgを含むものを用いた。
Example 9
A photoelectric conversion element was obtained in the same manner as in Example 8, except that the P3HT / nBcmPFP mixed solution in Example 8 was replaced with the P3HT / McmPFP [fulleropyrrolidine derivative (F1-4) synthesized in Production Example 7] mixed solution. (P-9) was formed. As a specific mixed solution, a solution containing P3HT: McmPFP = 75 mg: 37.5 mg in 5.0 mL of chlorobenzene was used.

(実施例10)
実施例8における、P3HT/nBcmPFP混合溶液を、P3HT/EcmPFP[製造例8で合成したフラーロピロリジン誘導体(F1−5)]混合溶液に置き換えた以外は、実施例8と同様にして光電変換素子(P−10)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にP3HT:EcmPFP=75mg:37.5mgを含むものを用いた。
(Example 10)
A photoelectric conversion element was obtained in the same manner as in Example 8, except that the P3HT / nBcmPFP mixed solution in Example 8 was replaced with a P3HT / EcmPFP [fulleropyrrolidine derivative (F1-5) synthesized in Production Example 8] mixed solution. (P-10) was formed. As a specific mixed solution, a solution containing P3HT: EcmPFP = 75 mg: 37.5 mg in 5.0 mL of chlorobenzene was used.

(実施例11)
実施例8における、P3HT/nBcmPFP混合溶液を、P3HT/nPcmPFP[製造例9で合成したフラーロピロリジン誘導体(F1−6)]混合溶液に置き換えた以外は、実施例8と同様にして光電変換素子(P−11)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にP3HT:EcmPFP=75mg:37.5mgを含むものを用いた。
(Example 11)
A photoelectric conversion element in the same manner as in Example 8, except that the P3HT / nBcmPFP mixed solution in Example 8 was replaced with a P3HT / nPcmPFP [fulleropyrrolidine derivative (F1-6) synthesized in Production Example 9] mixed solution. (P-11) was formed. As a specific mixed solution, a solution containing P3HT: EcmPFP = 75 mg: 37.5 mg in 5.0 mL of chlorobenzene was used.

(実施例12)
実施例8における、P3HT/nBcmPFP混合溶液を、P3HT/nOcmPFP[製造例10で合成したフラーロピロリジン誘導体(F1−7)]混合溶液に置き換えた以外は、実施例8と同様にして光電変換素子(P−12)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にP3HT:nOcmPFP=75mg:37.5mgを含むものを用いた。
(Example 12)
A photoelectric conversion element in the same manner as in Example 8, except that the P3HT / nBcmPFP mixed solution in Example 8 was replaced with a P3HT / nOcmPFP [fulleropyrrolidine derivative (F1-7) synthesized in Production Example 10] mixed solution. (P-12) was formed. As a specific mixed solution, a solution containing P3HT: nOcmPFP = 75 mg: 37.5 mg in 5.0 mL of chlorobenzene was used.

(比較例1)
実施例1における、P3HT/HPmaPFP混合溶液を、P3HT/PCBM混合溶液に置き換えた以外は、実施例1と同様にして光電変換素子(P’−1)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にP3HT:PCBM=15mg:60mgを含むものを用いた。
(Comparative Example 1)
A photoelectric conversion element (P′-1) was formed in the same manner as in Example 1 except that the P3HT / HPmaPFP mixed solution in Example 1 was replaced with a P3HT / PCBM mixed solution. As a specific mixed solution, a solution containing P3HT: PCBM = 15 mg: 60 mg in 5.0 mL of chlorobenzene was used.

(比較例2)
実施例1における、P3HT/HPmaPFP混合溶液を、P3HT/MPmPFP(製造例4で合成したフラーロピロリジン誘導体)混合溶液に置き換えた以外は、実施例1と同様にして光電変換素子(P’−2)を形成した。具体的な混合溶液としては、5.0mLのクロロベンゼン中にP3HT:MPmPFP=15mg:60mgを含むものを用いた。
(Comparative Example 2)
A photoelectric conversion element (P′-2) was obtained in the same manner as in Example 1 except that the P3HT / HPmaPFP mixed solution in Example 1 was replaced with a P3HT / MPmPFP (fulleropyrrolidine derivative synthesized in Production Example 4) mixed solution. ) Was formed. As a specific mixed solution, a solution containing P3HT: MPmPFP = 15 mg: 60 mg in 5.0 mL of chlorobenzene was used.

(比較例3)
実施例8における、P3HT/nBcmPFP混合溶液を、P3HT/PCBM(重量比1/0.5)の混合溶液(5.0mLのクロロベンゼン中にP3HT:PCBM=75mg:37.5mgを溶解させたもの)に置き換え、乾燥条件「窒素気流下で9分140℃で乾燥」を、「窒素気流下で6分150℃で乾燥」に変更した以外は、実施例9と同様にして光電変換素子(P’−3)を形成した。
(Comparative Example 3)
The mixed solution of P3HT / nBcmPFP in Example 8 was mixed with P3HT / PCBM (weight ratio 1 / 0.5) (P3HT: PCBM = 75 mg: 37.5 mg dissolved in 5.0 mL of chlorobenzene). In the same manner as in Example 9, except that the drying condition “drying at 140 ° C. for 9 minutes under a nitrogen stream” was changed to “drying at 150 ° C. for 6 minutes under a nitrogen stream”. -3) was formed.

実施例1〜7、比較例1〜2の光電変換素子について、以下の方法で評価し、測定結果を表1に示した。
(光電変換素子の評価方法)
ソーラーシュミレーター(関西科学機械(株)製:XES−502S)の擬似光(空気通過量AM1.5G、入射エネルギー100mW/cm)を光電変換素子に照射し、光電変換素子特性を測定した。照射条件:温度25℃
The photoelectric conversion elements of Examples 1 to 7 and Comparative Examples 1 and 2 were evaluated by the following methods, and the measurement results are shown in Table 1.
(Evaluation method of photoelectric conversion element)
The photoelectric conversion element was measured by irradiating the photoelectric conversion element with simulated light (air passage amount AM1.5G, incident energy 100 mW / cm 2 ) of a solar simulator (manufactured by Kansai Scientific Machinery Co., Ltd .: XES-502S). Irradiation conditions: Temperature 25 ° C

KEITHLEY MODEL2400ソースメーターを使用して、I(電流)−V(電圧)曲線を測定し、Isc(短絡電流)、Voc(開放電圧)、IMAX(最大出力点における電流)、VMAX(最大出力点における電圧)を得た。
一般に光電変換素子の光電変換効率は次式で示される。
光電変換効率η=Jsc(短絡電流密度)×Voc(開放電圧)×ff(形状因子)/入射エネルギー
ここで、Jsc(短絡電流密度)、およびff(形状因子)は次式で求めた。
形状因子ff=(IMAX×VMAX)/(Isc×Voc
短絡電流密度Jsc=Isc/S(有効受光面積)
ただし、S=2.5cm×2.5cm=6.25cm
Using a KEITHLEY MODEL 2400 source meter, an I (current) -V (voltage) curve was measured, and I sc (short circuit current), V oc (open voltage), I MAX (current at the maximum output point), V MAX ( Voltage at the maximum output point).
Generally, the photoelectric conversion efficiency of a photoelectric conversion element is represented by the following formula.
Photoelectric conversion efficiency η = J sc (short circuit current density) × V oc (open circuit voltage) × ff (form factor) / incident energy Here, J sc (short circuit current density) and ff (form factor) are obtained by the following equations. It was.
Form factor ff = (I MAX × V MAX ) / (I sc × V oc )
Short-circuit current density J sc = I sc / S (effective light receiving area)
However, S = 2.5 cm × 2.5 cm = 6.25 cm 2

<トルエンへの溶解度>
トルエン100gにフラーロピロリジン誘導体(F)を25℃で加えて飽和させ、飽和溶液の質量x(単位:g)を測定した。トルエンへの溶解度S(単位:wt%)は次式で示される。
トルエンへの溶解度S=100 × (x−100)/x (%)
<Solubility in toluene>
The fulleropyrrolidine derivative (F) was added to 100 g of toluene at 25 ° C. for saturation, and the mass x (unit: g) of the saturated solution was measured. The solubility S (unit: wt%) in toluene is represented by the following formula.
Solubility in toluene S = 100 × (x−100) / x (%)

Figure 0005344432
Figure 0005344432

実施例8〜12、比較例3は、実施例1〜7、比較例1〜2に対して、電子取出し層(i−2)が追加された、異なる形式の光電変換素子を作成して評価を行った。このタイプの光電変換素子の評価結果を表2に示した。   In Examples 8 to 12 and Comparative Example 3, different types of photoelectric conversion elements with an electron extraction layer (i-2) added to Examples 1 to 7 and Comparative Examples 1 to 2 were evaluated and evaluated. Went. The evaluation results of this type of photoelectric conversion element are shown in Table 2.

Figure 0005344432
Figure 0005344432

前記評価結果より、本発明における、電子受容体としてのフラーロピロリジン誘導体は、従来の電子受容体と比較し、優れた光電変換効率を示すことが立証された。さらに、本発明のフラーロピロリジン誘導体は、有機溶媒溶解性に優れており、素子製造工程において、操作の簡便さ、かつ低コストも実現される。   From the above evaluation results, it was proved that the fulleropyrrolidine derivative as an electron acceptor in the present invention exhibits excellent photoelectric conversion efficiency as compared with a conventional electron acceptor. Furthermore, the fulleropyrrolidine derivative of the present invention is excellent in solubility in an organic solvent, and in the device manufacturing process, simple operation and low cost are realized.

本発明は、太陽電池やカラーセンサー等としての利用に限らず、光電変換素子を備える電子機器、電子部品に広く適用する事ができる。   The present invention is not limited to use as a solar cell, a color sensor, and the like, but can be widely applied to electronic devices and electronic components that include photoelectric conversion elements.

Claims (10)

基板(T)上に形成された2つの電極(Y)間に、導電性高分子(d)と電子受容体(a)を含有する光電変換層(E)を有する光電変換素子(P)であって、該電子受容体(a)が、下記一般式(1)または下記一般式(2)で示されるフラーロピロリジン誘導体(F1)を含有することを特徴とする、光電変換素子(P)。
Figure 0005344432
[Rは下記一般式(7) に示される基 であって、Rフェニル基である。また、フラーレン部位はC60、C70、C76およびC84からなる群より選ばれるフラーレン類である。]
Figure 0005344432
[式中、Rメチレン基であり、 炭素数1〜16の直鎖もしくは分岐鎖の1価の脂肪族炭化水素基及びその一部または全部の水素原子がフッ素原子で置換された脂肪族(セミ)パーフルオロ炭化水素基 であ
A photoelectric conversion element (P) having a photoelectric conversion layer (E) containing a conductive polymer (d) and an electron acceptor (a) between two electrodes (Y) formed on a substrate (T). The photoelectric acceptor (a) contains the fulleropyrrolidine derivative (F1) represented by the following general formula (1) or the following general formula (2): .
Figure 0005344432
[R 1 is the following general formula (7) Group shown in R 2 is a phenyl group . The fullerene moiety is a fullerene selected from the group consisting of C 60 , C 70 , C 76 and C 84 . ]
Figure 0005344432
[Wherein R 8 is a methylene group ; R 9 is C1-C16 linear or branched monovalent aliphatic hydrocarbon group and aliphatic (semi) perfluorohydrocarbon group in which part or all of the hydrogen atoms are substituted with fluorine atoms Der Ru. ]
基板上に形成された少なくとも一方が透明である2つの電極層間に光電変換層(E)を有する請求項1 に記載の光電変換素子(P)。 The photoelectric conversion layer (E) is provided between two electrode layers formed on a substrate and at least one of which is transparent. The photoelectric conversion element (P) described in 1. 光電変換層(E)が、導電性高分子(d)と電子受容体(a)の混合溶液から溶媒を除去することでバルクへテロ接合を形成してなる請求項1又は2に記載の光電変換素子(P)。 The photoelectric conversion layer according to claim 1 or 2 , wherein the photoelectric conversion layer (E) forms a bulk heterojunction by removing the solvent from the mixed solution of the conductive polymer (d) and the electron acceptor (a). Conversion element (P). さらに導電性高分子(d)が正孔受容体(s)として機能する、請求項1〜のいずれか1項に記載の光電変換素子(P)。 The photoelectric conversion element (P) according to any one of claims 1 to 3 , wherein the conductive polymer (d) functions as a hole acceptor (s). 一般式(1)または一般式(2)において、Rは一般式(7)中、Rがメチレン基、Rがn−ブチル基、つまり酢酸ブチルエステル基であり、 フラーレン部位はC60である、請求項のいずれか1項に記載の光電変換素子(P)。 In general formula (1) or general formula (2), R 1 is a general formula (7), wherein R 8 is a methylene group, R 9 is an n-butyl group, that is, an acetic acid butyl ester group, Fullerene site is C 60, the photoelectric conversion device according to any one of claims 1 ~ 4 (P). 光電変換素子内部に、電荷の移動を促進する目的で、電荷取出し層(i)を有する請求項1〜5のいずれか1項に記載の光電変換素子(P)。The photoelectric conversion element (P) according to any one of claims 1 to 5, further comprising a charge extraction layer (i) for the purpose of promoting charge movement inside the photoelectric conversion element. 電子受容体(A)が、さらにフラーロピロリジン誘導体(F)以外のフラーレン誘導体を含有する請求項1〜のいずれか1項に記載の光電変換素子(P)。 The photoelectric conversion element (P) according to any one of claims 1 to 6 , wherein the electron acceptor (A) further contains a fullerene derivative other than the fulleropyrrolidine derivative (F). 太陽電池素子(S)である請求項1〜のいずれか1項に記載の光電変換素子(P)。 The photoelectric conversion device according to any one of claims 1 to 7, which is a solar cell element (S) (P). 太陽電池素子(S)がタンデム型太陽電池素子(S1)である請求項に記載の光電変換素子(P)。 The photoelectric conversion element (P) according to claim 8 , wherein the solar cell element (S) is a tandem solar cell element (S1). 光電変換素子(P)が、光センサー素子(U)である請求項1〜のいずれか1項に記載の光電変換素子(P)。 The photoelectric conversion element (P) according to any one of claims 1 to 7 , wherein the photoelectric conversion element (P) is an optical sensor element (U).
JP2009178521A 2008-08-05 2009-07-31 Photoelectric conversion element Expired - Fee Related JP5344432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178521A JP5344432B2 (en) 2008-08-05 2009-07-31 Photoelectric conversion element

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008201428 2008-08-05
JP2008201428 2008-08-05
JP2009056908 2009-03-10
JP2009056908 2009-03-10
JP2009178521A JP5344432B2 (en) 2008-08-05 2009-07-31 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2010239104A JP2010239104A (en) 2010-10-21
JP5344432B2 true JP5344432B2 (en) 2013-11-20

Family

ID=43093137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178521A Expired - Fee Related JP5344432B2 (en) 2008-08-05 2009-07-31 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5344432B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5494491B2 (en) * 2008-11-14 2014-05-14 学校法人君が淵学園 N-type semiconductors composed of fullerene compounds
US9196843B2 (en) * 2012-07-17 2015-11-24 Ricoh Company, Ltd. Fullerene derivative, and method of preparing the same
JP6340782B2 (en) * 2013-12-11 2018-06-13 株式会社リコー Fullerene derivative and method for producing the same
JP6323869B2 (en) * 2014-07-18 2018-05-16 国立研究開発法人産業技術総合研究所 Fullerene derivative and organic photoelectric conversion device using the same
JP6697816B2 (en) * 2016-01-14 2020-05-27 住友化学株式会社 Photoelectric conversion element
CN110003087B (en) * 2019-05-10 2023-03-21 西南科技大学 Fullerene pyrrolidine aniline derivative and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2043952B1 (en) * 2006-07-06 2014-10-29 Solenne B.V. i.o. Blends of fullerene derivatives and uses thereof in electronic devices

Also Published As

Publication number Publication date
JP2010239104A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
Hu et al. Effects of heteroatom substitution in spiro-bifluorene hole transport materials
JP5344432B2 (en) Photoelectric conversion element
JP2011168747A (en) Conjugated polymer, and organic thin film solar cell using the same
Zhao et al. A water/alcohol-soluble copolymer based on fluorene and perylene diimide as a cathode interlayer for inverted polymer solar cells
JP5662916B2 (en) Organic thin film solar cell, organic semiconductor polymer and organic semiconductor material composition used therefor
JP2011165963A (en) Organic dye and organic thin-film solar cell
JP2008166339A (en) Material for photovoltaic element, and the photovoltaic element
Tsuji et al. Tripyridyltruxenes: Thermally Stable Cathode Buffer Materials for Organic Thin-Film Solar Cells
JP2012124297A (en) Organic photoelectric conversion element and solar cell
JP2012039097A (en) Photovoltaic device
JP2012049352A (en) Organic photoelectric conversion element, and solar cell and optical sensor array utilizing the same
WO2013176156A1 (en) Electron-donating organic material, material for photovoltaic power element using same, and photovoltaic power element using same
JP2013122912A (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
Liu et al. Alcohol soluble porphyrin for the cathode buffer layers of fullerene/perovskite planar heterojunction solar cells
JP2008106240A (en) Organic photoelectric conversion element and polymer useful for producing the same
JP6641692B2 (en) Photoelectric conversion element
JP6862650B2 (en) Composition for organic material layer of organic solar cell and manufacturing method of organic solar cell using this
WO2012099097A1 (en) Fullerene derivative and photoelectric transducer using same
JP2014003255A (en) Organic thin film and photoelectric conversion element using the same
Nüesch et al. Counterion effects in cyanine heterojunction photovoltaic devices
KR101930279B1 (en) Preparation of phenazine derivatives with increased solubility and conjugated polymers consisting of phenazine derivatives for organo photoelectric conversion device
JP2021114514A (en) Organic thin-film solar cell
JP2015183032A (en) Polymer having condensed ring type cyclopenta-dithiophene skeleton and organic thin-film solar battery material using the same
JP5643735B2 (en) Organic thin film solar cell, organic semiconductor polymer and organic semiconductor material composition used therefor
JP2011054947A (en) Electrode buffering material for photoelectric conversion element, and photoelectric conversion element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R150 Certificate of patent or registration of utility model

Ref document number: 5344432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees