JP2011165963A - Organic dye and organic thin-film solar cell - Google Patents

Organic dye and organic thin-film solar cell Download PDF

Info

Publication number
JP2011165963A
JP2011165963A JP2010027927A JP2010027927A JP2011165963A JP 2011165963 A JP2011165963 A JP 2011165963A JP 2010027927 A JP2010027927 A JP 2010027927A JP 2010027927 A JP2010027927 A JP 2010027927A JP 2011165963 A JP2011165963 A JP 2011165963A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
hydrocarbon group
formula
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010027927A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakasumi
博行 中澄
Soshi Maeda
壮志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University
Original Assignee
Osaka University NUC
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University filed Critical Osaka University NUC
Priority to JP2010027927A priority Critical patent/JP2011165963A/en
Publication of JP2011165963A publication Critical patent/JP2011165963A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensitizing dye material with a wide absorption wavelength range in a new conjugated copolymer oligomer and a conjugated compound having a donor property. <P>SOLUTION: The conjugated copolymer oligomer has a squarylium (SQ) frame and a benzodithiophene (BD) frame as a main chain. The conjugated compound has the squarylium (SQ) frame and the benzodithiophene (BD) frame. A bulk heterojunction type organic thin-film solar cell has a photoelectric conversion layer containing a donor-nature substance and a fullerene derivative (PCBM). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子受容体としてのフラーレン誘導体と組み合わせてバルクヘテロ接合型有機薄膜太陽電池として用いられるスクアリリウム含有オリゴマー及びスクアリリウム含有化合物の提供、並びに該有機薄膜太陽電池の提供に関する。本発明はまた、スクアリリウム含有オリゴマー及びスクアリリウム含有化合物を含んでなる有機色素の提供に関する。   The present invention relates to the provision of squarylium-containing oligomers and squarylium-containing compounds used as bulk heterojunction organic thin-film solar cells in combination with fullerene derivatives as electron acceptors, and the provision of the organic thin-film solar cells. The invention also relates to the provision of an organic dye comprising a squarylium-containing oligomer and a squarylium-containing compound.

地球温暖化やエネルギー問題を考えると、低コストでクリーンな代替エネルギーの開発が急務である。そのなかで太陽エネルギーは事実上無尽蔵で、環境に負担をかけない点で代替エネルギーとして期待され様々な材料の研究開発が行われている。   Considering global warming and energy problems, there is an urgent need to develop clean alternative energy at low cost. Among them, solar energy is practically inexhaustible, and various materials are being researched and developed because it is expected to be an alternative energy because it does not place a burden on the environment.

太陽エネルギーを利用する太陽電池は既に実用化の段階に入っており、そこではアモルファスシリコンに代表される無機系光電変換素子が利用されている。この無機系光電変換素子は十数パーセントの高い光電変換効率を示し、優れたものであるが、加工性の改良要求やシリコン資源の問題が潜在する。   Solar cells that use solar energy have already entered the stage of practical use, where inorganic photoelectric conversion elements typified by amorphous silicon are used. This inorganic photoelectric conversion element exhibits a photoelectric conversion efficiency as high as several tens of percent and is excellent, but there is a potential for improvement in workability and a problem of silicon resources.

かかる問題を解決するため、少なくとも一方が透明である一対の電極間に、光増感色素を吸着させた多孔質半導体層を設け、そこに電解質を注入した色素増感型太陽電池が開発されているが、この太陽電池は経時的に電池ケースが劣化し、中に注入してあった電解液が漏れるという問題を抱え、さらに量産性に劣り集光部分の大面積化も困難である。   In order to solve such a problem, a dye-sensitized solar cell in which a porous semiconductor layer on which a photosensitizing dye is adsorbed is provided between a pair of electrodes, at least one of which is transparent, and an electrolyte is injected therein has been developed. However, this solar cell has a problem that the battery case deteriorates with time and the electrolyte injected therein leaks, and further, it is inferior in mass productivity and it is difficult to increase the area of the condensing part.

電解液を用いない方法として、バルクヘテロ接合(BHJ)型(または、有機薄膜)太陽電池が提案されている。この太陽電池は、印刷技術を用いて製造するため安価で大面積化が可能であり、かつ軽量で柔軟な太陽電池を得ることができる点で開発が待たれている。   As a method not using an electrolytic solution, a bulk heterojunction (BHJ) type (or organic thin film) solar cell has been proposed. Since this solar cell is manufactured using a printing technique, development is awaited because it is inexpensive and can be increased in area, and a lightweight and flexible solar cell can be obtained.

BHJ型太陽電池は、p型及びn型材料をブレンドすることで広い接触界面を確保し、界面における励起子の迅速な解離と解離した電荷の効率的な輸送を促して、エネルギー変換効率の向上が期待される。   BHJ-type solar cells ensure a wide contact interface by blending p-type and n-type materials, improve the energy conversion efficiency by promoting rapid exciton dissociation and efficient transport of dissociated charges at the interface There is expected.

ここで、BHJ型太陽電池の光電変換過程は、(1) 光吸収による励起子発生、(2) 励起子の拡散、(3) 励起子の解離による電荷発生、および(4) 電荷輸送と電荷集積の4段階から成る。高いエネルギー変換効率(η:power conversion efficiency)を実現するためには、(1)〜(4)の各段階の効率をそれぞれ高める必要がある。   Here, the photoelectric conversion process of the BHJ solar cell consists of (1) exciton generation by light absorption, (2) exciton diffusion, (3) charge generation by exciton dissociation, and (4) charge transport and charge It consists of four stages of integration. In order to realize high power conversion efficiency (η), it is necessary to increase the efficiency of each stage of (1) to (4).

BHJ型薄膜太陽電池の光電変換物質としては、電子ドナーとしてのポリ(3−ヘキシルチオフェン)(P3HT)と電子アクセプターとしてのフラーレン誘導体である[6,6]−フェニル−C61−酪酸メチルエステル(PC61BM)との組合せが代表例に挙げられる。このP3HT/PCBM系のエネルギー変換効率は5%である(W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617-1622)。 As photoelectric conversion materials for BHJ-type thin film solar cells, poly (3-hexylthiophene) (P3HT) as an electron donor and [6,6] -phenyl-C 61 -butyric acid methyl ester which is a fullerene derivative as an electron acceptor ( A combination with PC 61 BM) is a typical example. The energy conversion efficiency of this P3HT / PCBM system is 5% (W. Ma, C. Yang, X. Gong, K. Lee, AJ Heeger, Adv. Funct. Mater. 2005, 15, 1617-1622).

光エネルギー変換効率の更なる向上を実現するためには、前述の(1)〜(4)の各段階の効率を上げる必要があり、より具体的に言えば、ドナーポリマー分子とアクセプター(フラーレン誘導体)分子との間の、[1]電子相互作用の改良及び[2]接触界面の理想的モルフォロジー(形態)の実現が必要となる。   In order to realize further improvement in light energy conversion efficiency, it is necessary to increase the efficiency of each step (1) to (4) described above. More specifically, donor polymer molecules and acceptors (fullerene derivatives) are required. ) [1] Improvement of electronic interaction with molecules and [2] Realization of ideal morphology (form) of contact interface is necessary.

[2]の理想的モルフォロジーとは、B. C. Thompsonらによれば、BHJ型太陽電池はドナー材料とアクセプター材料との物理的混合物であることから、イ)励起子の迅速な解離と解離電荷の効率的な輸送を促す接触界面領域の極大化、並びにロ)電荷パスの欠損と解離電荷の再結合による失活を招かない程度の励起子拡散長(5-10 nm)に見合った平均領域サイズとすること、の二要件を満足し得る様な、ドナー材料とアクセプター材料との二連続相組成物を云うとされる(B. C. Thompson et. al., Angw. Chem. Int. Ed. 2008, 47, pp.64)。   According to BC Thompson et al., The ideal morphology of [2] is that BHJ solar cells are a physical mixture of donor and acceptor materials. Maximization of the contact interface region that promotes efficient transport, and b) an average region size that is commensurate with exciton diffusion length (5-10 nm) that does not result in deactivation due to charge path loss and dissociation charge recombination It is said to be a bicontinuous composition of a donor material and an acceptor material that can satisfy the two requirements (BC Thompson et. Al., Angw. Chem. Int. Ed. 2008, 47, pp.64).

一方、[1]の電子相互作用の改良を目指した研究の主流は、P3HTに代わるドナー性ポリマーの改良に注がれてきた。なぜなら、アクセプターとしてはPCBM等のフラーレン誘導体が最も優れているとの見解が当業者間に定着してきたからである。   On the other hand, the mainstream of research aimed at improving the electronic interaction of [1] has been focused on improving donor polymers that replace P3HT. This is because the opinion that fullerene derivatives such as PCBM are the best acceptors has been established among those skilled in the art.

ドナー性ポリマーの改良に当たって、2つのポイントが指摘されてきた(B. C. Thompson et. al., Angw. Chem. Int. Ed. 2008, 47, 58-77)。1つは、3PHTの吸収スペクトル幅が狭く、太陽光の有効吸収率が低い点である。太陽光の光束の最大吸収スペクトルは約1.8 ev (700 nm) であるのに対して、3PHTのバンド幅はEg=1.9 evであり、太陽光を350-650 nmの範囲だけで、しかもその範囲の利用可能な光子の約46%しか吸収できない。これを改良するためには、P3HT/PCBM系の吸収スペクトルの幅を拡大(シフト)すること、即ち近赤外領域まで吸収スペクトルを拡大することが考えられる。即ち、低バンド幅のドナー性ポリマーを開発することである。このための分子設計は、ドナー・アクセプターアプローチである。即ち、ドナー性ポリマー主鎖中に、ドナー性構造とアクセプター性構造を交互に導入することによって、低バンド幅のドナー性ポリマーが得られるという仮説である(H. A. M. van Mullekom et. al., Mater. Sci. Eng. R2001, 32, 1-40)。   Two points have been pointed out in improving donor polymers (B. C. Thompson et. Al., Angw. Chem. Int. Ed. 2008, 47, 58-77). One is that the absorption spectrum width of 3PHT is narrow and the effective absorption rate of sunlight is low. The maximum absorption spectrum of the luminous flux of sunlight is about 1.8 ev (700 nm), whereas the bandwidth of 3PHT is Eg = 1.9 ev, and sunlight is only in the range of 350-650 nm, and that range Only about 46% of the available photons can be absorbed. In order to improve this, it is conceivable to expand (shift) the width of the absorption spectrum of the P3HT / PCBM system, that is, to expand the absorption spectrum to the near infrared region. That is, to develop a low-bandwidth donor polymer. The molecular design for this is a donor-acceptor approach. That is, it is a hypothesis that a donor polymer having a low bandwidth can be obtained by alternately introducing a donor structure and an acceptor structure into the donor polymer main chain (HAM van Mullekom et. Al., Mater. Sci. Eng. R2001, 32, 1-40).

もう一つのポイントは、エネルギー変換効率ηが、開放電圧(Voc)、短絡電流密度(Jsc)及びフィルファクター(FF)の3因子の積に比例するところ、P3HT/PCBM系のエネルギー変換効率が5%に止まっているのは、Vocが約0.6Vと低いことによる。これを改良するためにはVocを高める必要がある。Vocは電子ドナー性ポリマーの最高被占軌道(HOMO)と電子アクセプターとしてのフラーレン誘導体の最低空軌道(LUMO)との差に比例するい云われていることから(Sharber, M. C. et. al., J. Adv. Mater., 2006, 18, 789)、高いVocを得るために、より深いHOMOエネルギーレベルを持つドナー性ポリマーを開発しようとする仮説である。   Another point is that the energy conversion efficiency η is proportional to the product of the three factors of open circuit voltage (Voc), short circuit current density (Jsc) and fill factor (FF), and the energy conversion efficiency of P3HT / PCBM system is 5 The reason why it stays at% is that Voc is as low as about 0.6V. To improve this, Voc needs to be increased. Voc is said to be proportional to the difference between the highest occupied orbital (HOMO) of an electron donor polymer and the lowest empty orbital (LUMO) of a fullerene derivative as an electron acceptor (Sharber, MC et. Al., J. Adv. Mater., 2006, 18, 789), is a hypothesis to develop a donor polymer with a deeper HOMO energy level in order to obtain high Voc.

即ち、理想的なドナー性ポリマーは、狭いバンド幅のみならず、深いHOMO準位をも有するポリマーであるとの仮説が成り立つ。   That is, it is hypothesized that an ideal donor polymer is a polymer having not only a narrow bandwidth but also a deep HOMO level.

最近、Luping Yuらは、この仮設の基にドナー性ポリマーの分子設計を進め、アクセプター骨格としてチエノ[3,4‐b]チオフェン骨格、ドナー骨格としてベンゾジチオフェン骨格を交互に主鎖中に有するポリマー(PBT1〜6)(式1)を合成した(Luping Yu , et al., J. Am. Chem. Soc., 2009, 131, 7792-7799)。   Recently, Luping Yu et al. Proceeded with molecular design of donor polymer based on this hypothetical group, and have thieno [3,4-b] thiophene skeleton as acceptor skeleton and benzodithiophene skeleton as donor skeleton alternately in the main chain. Polymers (PBT1-6) (Formula 1) were synthesized (Luping Yu, et al., J. Am. Chem. Soc., 2009, 131, 7792-7799).

Figure 2011165963
Figure 2011165963

このPBTを、アクセプターとしてのフラーレン誘導体PC61BM(式2)と組み合わせてBHJ型太陽電池を作成し、その性能を検討した。その結果、PBTポリマー中のアクセプター骨格であるチエノ[3,4‐b]チオフェンの3位の置換基Xが陰性基のフッ素原子、2位の置換基がカルボン酸オクチルエステル基であって(PBT4)、ドナー骨格であるベンゾジチオフェンの4位及び8位の置換基が2‐エチルヘキシルオキシ基の場合に、エネルギー変換効率η=5.91〜6.1 %、Voc=0.74 v、Jsc=13.0 mA/cm2、FF=61.4 %という高い性能を得た(Y. Liang, L. Yu et. al., J. Am. Chem. Soc. 2009, 131, 7792-7799)。電子相互作用の観点及びモルフォロジーの観点から、ドナー性ポリマーの分子設計が成功を収めた稀有な例であろう。 A BHJ solar cell was fabricated by combining this PBT with the fullerene derivative PC 61 BM (Formula 2) as an acceptor, and its performance was examined. As a result, the 3-position substituent X of the thieno [3,4-b] thiophene, which is the acceptor skeleton in the PBT polymer, is a negative fluorine atom, and the 2-position substituent is a carboxylic acid octyl ester group (PBT4 ), Energy conversion efficiency η = 5.91-6.1%, Voc = 0.74 v, Jsc = 13.0 mA / cm 2 when the 4-position and 8-position substituents of benzodithiophene which is a donor skeleton are 2-ethylhexyloxy groups FF = 61.4% (Y. Liang, L. Yu et. Al., J. Am. Chem. Soc. 2009, 131, 7792-7799). From the viewpoint of electron interaction and morphology, molecular design of donor polymer will be a rare example of success.

さらに、J. HouらはLuping Yuらの研究を一歩進めて、ドナー性ポリマーPBTのHOMO準位を更に下げるべく、アクセプター骨格であるチエノ[3,4‐b]チオフェンの2位の置換基のカルボン酸オクチルエステル基を、より電子吸引性の強いケトン基の2‐エチルヘキシルカルボニル基に変えたドナー性ポリマー(PBT-K)(式3)を合成した。アクセプターとしてのフラーレン誘導体PC61BM(式2)と組み合わせてBHJ型太陽電池を作成し、エネルギー変換効率η=6.3 %、Voc=0.70 v、Jsc=14.7 mA/cm2、FF=64 %という高い性能を得た(Jianhui Hou et. al., J. Am. Chem. Soc. 2009, 131, 15586-15587)。 In addition, J. Hou et al. Proceeded further with Luping Yu et al. To further reduce the HOMO level of the donor polymer PBT by the substitution of the 2-position substituent of thieno [3,4-b] thiophene, which is an acceptor skeleton. A donor polymer (PBT-K) (formula 3) was synthesized in which the carboxylic acid octyl ester group was changed to a 2-ethylhexylcarbonyl group, which is a more electron-attracting ketone group. A BHJ type solar cell was created by combining with the fullerene derivative PC61BM (Formula 2) as an acceptor, and high performance of energy conversion efficiency η = 6.3%, Voc = 0.70v, Jsc = 14.7 mA / cm 2 , FF = 64% (Jianhui Hou et. Al., J. Am. Chem. Soc. 2009, 131, 15586-15587).

Figure 2011165963
Figure 2011165963

一方、PBTに代わるべく、光導電材料や感光体用電子ドナーとして用いられ電子ドナーとして知られているスクアリリウム系化合物を構成単位に有するドナー性ポリマーの開発も試みられている。Ajayaghoshらは、スチルベン型のジピリルモノマーを2当量のスクアリック酸と縮合することにより、スクアリリウム骨格を有するπ共役ポリマー4a〜4g(式4)を得た(Lucjan Strekowski, Heterocyclic Polymethine Dyes: Synthesis, Properties and Applications, Springer; 1版 (2008/8/27), pp. 167)。このポリマーは可視〜近赤外領域に幅広の吸収帯を示し、低バンド幅の光電導材料であるが、BHJ型太陽電池において、PBTに代替し得るドナー性を有するか否かについては言及されていない。   On the other hand, in place of PBT, development of a donor polymer having as a constituent unit a squarylium compound that is used as a photoconductive material or an electron donor for a photoreceptor and is known as an electron donor has been attempted. Ajayaghosh et al. Obtained π-conjugated polymers 4a to 4g (Formula 4) having a squarylium skeleton by condensing a stilbene-type dipyryl monomer with 2 equivalents of squalic acid (Lucjan Strekowski, Heterocyclic Polymethine Dyes: Synthesis, Properties and Applications). , Springer; 1st edition (2008/8/27), pp. 167). This polymer shows a wide absorption band in the visible to near-infrared region and is a low-bandwidth photoconductive material, but it is mentioned whether it has a donor property that can replace PBT in BHJ solar cells. Not.

Figure 2011165963
Figure 2011165963

また、中澄らは、電子ドナーの一種であるスクアリリウム系化合物の末端に、電子アクセプターの一種であるフラーレン誘導体を結合させることで、光励起されたスクアリリウム系化合物からフラーレン基に分子内電子移動が生じて長寿命の電荷分離状態の維持が可能な化合物(式5)を提案している(特開2007−67074号公報)。この化合物のクロロホルム溶液(5.0 μmol濃度)の蛍光発光スペクトルは、λmax=650 nmに吸収帯を示し、低バンド幅の光電導材料であることを示している。この種の新たな観点からの材料が、新しい有機太陽電池開発への足がかりとなることが期待される。   In addition, Nakasumi et al. Generated intramolecular electron transfer from a photoexcited squarylium compound to a fullerene group by binding a fullerene derivative, which is a kind of electron acceptor, to the terminal of a squarylium compound, which is a kind of electron donor. Have proposed a compound (Formula 5) that can maintain a long-lived charge separation state (Japanese Patent Laid-Open No. 2007-67074). The fluorescence emission spectrum of a chloroform solution (5.0 μmol concentration) of this compound shows an absorption band at λmax = 650 nm, indicating that it is a low-bandwidth photoconductive material. This kind of new material is expected to provide a foothold for the development of new organic solar cells.

Figure 2011165963
Figure 2011165963

特開2007−67074号公報JP 2007-67074 A

W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617-1622.W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617-1622. B. C. Thompson et. al., Angw. Chem. Int. Ed. 2008, 47, pp. 64.B. C. Thompson et. Al., Angw. Chem. Int. Ed. 2008, 47, pp. 64. B. C. Thompson et. al., Angw. Chem. Int. Ed. 2008, 47, pp. 58-77.B. C. Thompson et. Al., Angw. Chem. Int. Ed. 2008, 47, pp. 58-77. H. A. M. van Mullekom et. al., Mater. Sci. Eng. R2001, 32, 1-40.H. A. M. van Mullekom et. Al., Mater. Sci. Eng. R2001, 32, 1-40. Sharber, M. C. et. al., J. Adv. Mater., 2006, 18, 789.Sharber, M. C. et.al., J. Adv. Mater., 2006, 18, 789. Y. Liang, Luping Yu , et al., J. Am. Chem. Soc., 2009, 131, 7792-7799.Y. Liang, Luping Yu, et al., J. Am. Chem. Soc., 2009, 131, 7792-7799. Jianhui Hou et. al., J. Am. Chem. Soc. 2009, 131, 15586-15587.Jianhui Hou et.al., J. Am. Chem. Soc. 2009, 131, 15586-15587. Lucjan Strekowski, Heterocyclic Polymethine Dyes: Synthesis, Properties and Applications, Springer; 1st ed., (2008/8/27), pp. 167Lucjan Strekowski, Heterocyclic Polymethine Dyes: Synthesis, Properties and Applications, Springer; 1st ed., (2008/8/27), pp. 167

本発明は、従来のバルクヘテロ接合型有機薄膜太陽電池の限界を打破すべく、新規なドナー性共役系化合物の提供を課題とする。本発明はまた、太陽光のより一層の有効利用を図るべく、狭いバンドギャップを有し広い吸収波長領域を持つ共役系化合物の提供を課題とする。 An object of the present invention is to provide a novel donor-conjugated compound in order to overcome the limitations of conventional bulk heterojunction organic thin-film solar cells. Another object of the present invention is to provide a conjugated compound having a narrow band gap and a wide absorption wavelength region in order to achieve more effective use of sunlight.

本発明者は、上記の課題を解決すべく鋭意研究を行った結果、狭いバンドギャップを有し広い吸収波長領域を持つ材料として電子ドナー性の新規な共役系共重合体オリゴマー及び共役系化合物を見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventor has developed a novel conjugated copolymer oligomer and conjugated compound having an electron donor property as a material having a narrow band gap and a wide absorption wavelength region. The headline and the present invention were completed.

即ち、本発明が提供する共役系共重合体オリゴマーは、一般式A:

Figure 2011165963

(式中、R、Rはそれぞれ独立に、炭素数1〜16の炭化水素基を表し、R、Rはそれぞれ独立に、炭素数1〜16の炭化水素基、炭素数1〜16の炭化水素基が少なくとも1つ置換しているアミノ基、炭素数1〜16の炭化水素基で置換されていてもよいオキシ基又は水素原子を表し、*印は1価の結合点、**印は2価の結合点を表し、nは1〜10の整数であり、Pは式N5又はN6:
Figure 2011165963

(式中、R、R13はそれぞれ独立に炭素数1〜16の炭化水素基を表し、R、R、R〜R10、R11、R12、R14〜R16はそれぞれ独立に、炭素数1〜16の炭化水素基、炭素数1〜16の炭化水素基が少なくとも1つ置換しているアミノ基、炭素数1〜16の炭化水素基で置換されていてもよいオキシ基又は水素原子を表し、*印は1価の結合点を表す。)で表される含窒素複素環を表し、Qは式N5′又はN6′:
Figure 2011165963

(式中、R′、R13′はそれぞれ独立に炭素数1〜16の炭化水素基を表し、R′、R′、R′〜R10′、R11′、R12′、R14′〜R16′はそれぞれ独立に、炭素数1〜16の炭化水素基、炭素数1〜16の炭化水素基が少なくとも1つ置換しているアミノ基、炭素数1〜16の炭化水素基で置換されていてもよいオキシ基又は水素原子を表し、*印は1価の結合点、**印は2価の結合点を表す。)で表される含窒素複素環を表す。)で表わされる、スクアリウム(SQ)骨格及びベンゾジチオフェン(BD)骨格を主鎖に有してなる。 That is, the conjugated copolymer oligomer provided by the present invention has a general formula A:
Figure 2011165963

(In the formula, R 1 and R 2 each independently represent a hydrocarbon group having 1 to 16 carbon atoms; R 3 and R 4 each independently represent a hydrocarbon group having 1 to 16 carbon atoms; 16 represents an amino group substituted with at least one hydrocarbon group, an oxy group optionally substituted with a hydrocarbon group having 1 to 16 carbon atoms, or a hydrogen atom, * represents a monovalent bonding point, * * Represents a divalent bonding point, n is an integer of 1 to 10, and P is a formula N5 or N6:
Figure 2011165963

(In formula, R < 7 >, R < 13 > represents a C1-C16 hydrocarbon group each independently, R < 5 >, R < 6 >, R < 8 > -R < 10 >, R < 11 >, R < 12 >, R < 14 > -R < 16 > is respectively Independently, a hydrocarbon group having 1 to 16 carbon atoms, an amino group in which at least one hydrocarbon group having 1 to 16 carbon atoms is substituted, and an oxy group optionally substituted with a hydrocarbon group having 1 to 16 carbon atoms Represents a group or a hydrogen atom, and * represents a monovalent point of attachment.) Represents a nitrogen-containing heterocyclic ring represented by the formula: N5 ′ or N6 ′:
Figure 2011165963

(In the formula, R 7 ′ and R 13 ′ each independently represent a hydrocarbon group having 1 to 16 carbon atoms, and R 5 ′, R 6 ′, R 8 ′ to R 10 ′, R 11 ′, R 12 ′ R 14 ′ to R 16 ′ are each independently a hydrocarbon group having 1 to 16 carbon atoms, an amino group substituted with at least one hydrocarbon group having 1 to 16 carbon atoms, or a carbon group having 1 to 16 carbon atoms. It represents an oxy group or a hydrogen atom which may be substituted with a hydrogen group, * represents a monovalent bonding point, and ** represents a divalent bonding point. The main chain has a squalium (SQ) skeleton and a benzodithiophene (BD) skeleton represented by

本発明の提供する共役系化合物は、一般式B(5):

Figure 2011165963

(式中、R、R、R、R′は上記と同義である。R17、R17′は炭素数1〜16の炭化水素基、炭素数1〜16の炭化水素基が少なくとも1つ置換しているアミノ基、炭素数1〜16の炭化水素基で置換されていてもよいオキシ基又は水素原子を表し、mは1〜4の整数である。)で表わされるスクアリウム(SQ)骨格及びベンゾジチオフェン(BD)骨格を有してなる。 The conjugated compound provided by the present invention has a general formula B (5):
Figure 2011165963

(Wherein R 1 , R 2 , R 7 and R 7 ′ have the same meanings as above. R 17 and R 17 ′ represent a hydrocarbon group having 1 to 16 carbon atoms and a hydrocarbon group having 1 to 16 carbon atoms. An amino group substituted with at least one, an oxy group optionally substituted with a hydrocarbon group having 1 to 16 carbon atoms or a hydrogen atom, and m is an integer of 1 to 4). SQ) skeleton and benzodithiophene (BD) skeleton.

本発明の提供する更なる共役系化合物は、一般式C(5):

Figure 2011165963

(式中、R、R、Rは上記と同義であり、Arは炭素数1〜16の炭化水素基、炭素数1〜16の炭化水素基が少なくとも1つ置換しているアミノ基、又は炭素数1〜16の炭化水素基で置換されていてもよいアリール基を表し、R18、R18′は炭素数1〜16の炭化水素基を表す。)で表わされるスクアリウム(SQ)骨格及びベンゾジチオフェン(BD)骨格を有してなる。 Further conjugated compounds provided by the present invention have the general formula C (5):
Figure 2011165963

(Wherein R 1 , R 2 and R 7 are as defined above, Ar is a hydrocarbon group having 1 to 16 carbon atoms and an amino group substituted with at least one hydrocarbon group having 1 to 16 carbon atoms) Or an aryl group which may be substituted with a hydrocarbon group having 1 to 16 carbon atoms, and R 18 and R 18 ′ represent a hydrocarbon group having 1 to 16 carbon atoms.) It has a skeleton and a benzodithiophene (BD) skeleton.

本発明の前記共役系共重合体オリゴマー及び共役系化合物は、スクアリウム(SQ)骨格及びベンゾジチオフェン(BD)骨格を主鎖に有し、且つ、SQ骨格とBD骨格が含窒素複素環共役系を通じて連結されているという化学構造上の共通する技術的特徴を有する。   The conjugated copolymer oligomer and conjugated compound of the present invention have a squalium (SQ) skeleton and a benzodithiophene (BD) skeleton in the main chain, and the SQ skeleton and BD skeleton are nitrogen-containing heterocyclic conjugated systems. It has a common technical feature on the chemical structure of being linked through.

本発明はまた、前記共役系共重合体オリゴマー及び/又は共役系化合物を電子ドナーとし、フラーレン誘導体を電子アクセプターとして含む光電変換層を有して成るバルクヘテロ接合(BHJ)型有機薄膜太陽電池を提供する。   The present invention also provides a bulk heterojunction (BHJ) type organic thin film solar cell comprising a photoelectric conversion layer containing the conjugated copolymer oligomer and / or conjugated compound as an electron donor and a fullerene derivative as an electron acceptor. To do.

本発明はまた、前記共役系共重合体オリゴマー及び/又は共役系化合物を含む有機色素を提供する。本発明の有機色素は、600〜800nmに亙る赤外〜近赤外の幅広い領域で強い吸収を示す。 The present invention also provides an organic dye containing the conjugated copolymer oligomer and / or conjugated compound. The organic dye of the present invention exhibits strong absorption in a wide range from infrared to near infrared over 600 to 800 nm.

本発明は、赤外領域〜近赤外領域に吸収極大を有する新規な共役系共重合体オリゴマー及び共役系化合物を提供することによって、新規な有機色素物質を提供すると共に、広い吸収波長領域を持つ新たな有機薄膜太陽電池用材料を提供し、以ってバルクヘテロ接合(BHJ)型有機薄膜太陽電池の高効率化のための新たな可能性を提供する。   The present invention provides a novel organic dye substance and a wide absorption wavelength region by providing a novel conjugated copolymer oligomer and a conjugated compound having an absorption maximum in the infrared region to the near infrared region. The new organic thin film solar cell material has a new possibility for improving the efficiency of the bulk heterojunction (BHJ) type organic thin film solar cell.

図1は、バルクヘテロ接合(BHJ)型有機薄膜太陽電池の模式図を示す(実施例4参照)。FIG. 1 shows a schematic diagram of a bulk heterojunction (BHJ) type organic thin film solar cell (see Example 4). 図2は、共役系共重合体オリゴマーA(5)‐C121H-NMRスペクトルを示す(300 Hz, CDCl3, 25℃)。FIG. 2 shows the 1 H-NMR spectrum of conjugated copolymer oligomer A (5) -C 12 (300 Hz, CDCl 3 , 25 ° C.). 図3は、共役系共重合体オリゴマーA(5)‐C12のMALDI-TOF MSスペクトル(マトリックス支援レーザー脱離イオン化 飛行時間型質量分析計)((Matrix CHCA)を示す。Figure 3 shows a conjugated copolymer oligomer A (5) MALDI-TOF MS spectrum of -C 12 (matrix-assisted laser desorption ionization time-of-flight mass spectrometer) ((Matrix CHCA). 図4は、共役系共重合体オリゴマーA(5)‐C12のIPCE(光電子変換効率)スペクトルを示す。Figure 4 shows the IPCE (photoelectric conversion efficiency) spectrum of conjugated copolymer oligomer A (5) -C 12.

本発明の一般式Aで表わされる共役系共重合体オリゴマー又は一般式B(5)もしくは一般式C(5)で表わされる共役系化合物は、その主鎖骨格中にスクアリリウム骨格及びベンゾジチオフェン骨格を有してなることを共通の化学構造上の特徴とする。そしてスクアリリウム(SQ)骨格とベンゾジチオフェン(BD)骨格の間に、P及びQで表わされる含窒素複素環を有し、該窒素含有複素環はインドール骨格及び/又はキノリン骨格を有してなり、分子全体として大きなπ電子共役系を形成している。このため、最高被占分子軌道(HOMO)と最低空軌道(LUMO)間のバンド幅は低下すると推測されるが、本発明はその理論に囚われるものではなく、結果的に赤外領域〜近赤外領域に強い吸収極大を示す。その点で、有機色素の範疇に入る物質である。   The conjugated copolymer oligomer represented by the general formula A of the present invention or the conjugated compound represented by the general formula B (5) or the general formula C (5) includes a squarylium skeleton and a benzodithiophene skeleton in the main chain skeleton. It has a common chemical structural feature. And a nitrogen-containing heterocycle represented by P and Q between the squarylium (SQ) skeleton and the benzodithiophene (BD) skeleton, the nitrogen-containing heterocycle having an indole skeleton and / or a quinoline skeleton. A large π-electron conjugated system is formed as a whole molecule. For this reason, it is estimated that the bandwidth between the highest occupied molecular orbital (HOMO) and the lowest unoccupied orbital (LUMO) is reduced, but the present invention is not bound by the theory, and as a result, the infrared region to the near red Strong absorption maximum in the outer region. In that respect, it is a substance that falls into the category of organic dyes.

一般式Aで表わされる共役系共重合体オリゴマーの重合度nは1〜10の範囲であってよい。nが11以上では、分子量が高いために溶媒への溶解性が低下し、スピンコート等の塗装方法による薄膜形成が困難となることがある。共役系の広がり、溶媒への溶解性、及び得られる薄膜の強度や柔軟性等の機械物性を勘案すれば、重合度nは、好ましくは2〜8、さらに好ましくは、2〜5の範囲が好適である。   The degree of polymerization n of the conjugated copolymer oligomer represented by Formula A may be in the range of 1-10. When n is 11 or more, since the molecular weight is high, the solubility in a solvent is lowered, and it may be difficult to form a thin film by a coating method such as spin coating. Taking into account mechanical properties such as the spread of the conjugated system, the solubility in the solvent, and the strength and flexibility of the resulting thin film, the degree of polymerization n is preferably in the range of 2-8, more preferably in the range of 2-5. Is preferred.

一般式AにおけるPは式N5又はN6で表されるインドール誘導体又はキノリン誘導体である含窒素複素環を表し、*印の2つの1価の結合点によってスクアリリウム骨格及びベンゾジチオフェン骨格とそれぞれ単結合を形成して共役系を形成し、QはN5’又はN6’で表されるインドール誘導体又はキノリン誘導体である含窒素複素環を表し、**印の2価の結合点及び*印の1価の結合点によってスクアリリウム骨格及びベンゾジチオフェン骨格とそれぞれ単結合及び二重結合を形成して共役系を形成している。
一般式Aにおける置換基R、Rは炭素数1〜16の炭化水素基を表し、具体的には、炭素数1〜16のアルキル基、炭素数2〜16のアルケニル基、炭素数5〜16のしくロアルキル基、炭素数6〜16のアリール基を表す。
アルキル基の例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ペンチル基、オクチル基、2−エチルヘキシル基、ドデシル基等が挙げられる。アルケニル基の例としては、ビニル基、アリル基等が挙げられる。シクロアルキル基の例としては、シクロペンチル基、シクロヘキシル基等が挙げられる。アリール基としては、フェニル基、ナフチル基等が挙げられる。
P in the general formula A represents a nitrogen-containing heterocyclic ring which is an indole derivative or a quinoline derivative represented by the formula N5 or N6, and is a single bond with a squarylium skeleton and a benzodithiophene skeleton respectively by two monovalent points of attachment To form a conjugated system, Q represents a nitrogen-containing heterocycle which is an indole derivative or a quinoline derivative represented by N5 ′ or N6 ′, a divalent bonding point indicated by ** and a monovalent value indicated by * A conjugated system is formed by forming a single bond and a double bond with the squarylium skeleton and the benzodithiophene skeleton, respectively, according to the bonding points.
The substituents R 1 and R 2 in the general formula A represent a hydrocarbon group having 1 to 16 carbon atoms, specifically, an alkyl group having 1 to 16 carbon atoms, an alkenyl group having 2 to 16 carbon atoms, and 5 carbon atoms. Represents a ˜16 alkyl group and an aryl group having 6 to 16 carbon atoms.
Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, hexyl group, pentyl group, octyl group, 2-ethylhexyl group, dodecyl group and the like. Examples of alkenyl groups include vinyl and allyl groups. Examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group. Examples of the aryl group include a phenyl group and a naphthyl group.

式N5、N6、N5’、N6’中のR、R13、R’、R13’はそれぞれ独立に炭素1〜16の炭化水素基を表し、具体的には、炭素数1〜16のアルキル基、炭素数2〜16のアルケニル基、炭素数5〜16のシクロアルキル基、炭素数6〜16のアリール基を表す。
アルキル基の例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ペンチル基、オクチル基、2−エチルヘキシル基、ドデシル基等が挙げられる。アルケニル基の例としては、ビニル基、アリル基等が挙げられる。シクロアルキル基の例としては、シクロペンチル基、シクロヘキシル基等が挙げられる。アリール基としては、フェニル基、ナフチル基等が挙げられる。
R 7 , R 13 , R 7 ′ and R 13 ′ in the formulas N5, N6, N5 ′ and N6 ′ each independently represent a hydrocarbon group having 1 to 16 carbon atoms, specifically, 1 to 16 carbon atoms. An alkyl group having 2 to 16 carbon atoms, a cycloalkyl group having 5 to 16 carbon atoms, and an aryl group having 6 to 16 carbon atoms.
Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, hexyl group, pentyl group, octyl group, 2-ethylhexyl group, dodecyl group and the like. Examples of alkenyl groups include vinyl and allyl groups. Examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group. Examples of the aryl group include a phenyl group and a naphthyl group.

式N5、N6、N5’、N6’中のR、R、R〜R10、R11、R12、R14〜R16、R’、R’、R’〜R10’、R11’、R12’、R14’〜R16’はそれぞれ独立に、炭素数1〜16の炭化水素基、炭素数1〜16の炭化水素基が少なくとも1つ置換しているアミノ基、炭素数1〜16の炭化水素基で置換されていてもよいオキシ基又は水素原子を表す。
炭素数1〜16の炭化水素基としては、具体的には、炭素数1〜16のアルキル基、炭素数2〜16のアルケニル基、炭素数5〜16のシクロアルキル基、炭素数6〜16のアリール基を表す。アルキル基の例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ペンチル基、オクチル基、2−エチルヘキシル基、ドデシル基等が挙げられる。アルケニル基の例としては、ビニル基、アリル基等が挙げられる。シクロアルキル基の例としては、シクロペンチル基、シクロヘキシル基等が挙げられる。アリール基としては、フェニル基、ナフチル基等が挙げられる。
炭素数1〜16の炭化水素基が少なくとも1つ置換しているアミノ基としては、プロピルアミノ基、ブチルアミノ基、ヘキシルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基等の直鎖状又は分岐状のアルキル基を含むアミノ基;ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、メチルエチルアミノ基、メチルヘキシルアミノ基、メチルオクチルアミノ基等の直鎖状又は分岐状のアルキル基を含むアミノ基;フェニルアミノ基、ナフチルアミノ基等の芳香族アミノ基;ベンジルアミノ基等のアラルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基等のジ芳香族アミノ基;ジベンジルアミノ基等のジアラルキルアミノ基等が挙げられる。
炭化水素基が結合していてもよいオキシ基の例としては、プロピルオキシ基、ブチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ドデシルオキシ基等の直鎖状又は分岐状のアルキル基を含むアルキルオキシ基、フェニルオキシ基、ナフチルオキシ基等の芳香族オキシ基、ベンジルオキシ基等のアラルキルオキシ基等が挙げられる。
Wherein N5, N6, N5 ', N6 ' R 5 in, R 6, R 8 ~R 10 , R 11, R 12, R 14 ~R 16, R 5 ', R 6', R 8 '~R 10 ′, R 11 ′, R 12 ′, R 14 ′ to R 16 ′ are each independently an amino group substituted with at least one hydrocarbon group having 1 to 16 carbon atoms or a hydrocarbon group having 1 to 16 carbon atoms. Group, an oxy group which may be substituted with a hydrocarbon group having 1 to 16 carbon atoms or a hydrogen atom.
Specific examples of the hydrocarbon group having 1 to 16 carbon atoms include an alkyl group having 1 to 16 carbon atoms, an alkenyl group having 2 to 16 carbon atoms, a cycloalkyl group having 5 to 16 carbon atoms, and 6 to 16 carbon atoms. Represents an aryl group. Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, hexyl group, pentyl group, octyl group, 2-ethylhexyl group, dodecyl group and the like. Examples of alkenyl groups include vinyl and allyl groups. Examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group. Examples of the aryl group include a phenyl group and a naphthyl group.
Examples of the amino group substituted with at least one hydrocarbon group having 1 to 16 carbon atoms include propylamino group, butylamino group, hexylamino group, octylamino group, 2-ethylhexylamino group, and dodecylamino group. Amino group containing a chain or branched alkyl group; linear or branched alkyl group such as dimethylamino group, diethylamino group, dipropylamino group, methylethylamino group, methylhexylamino group, methyloctylamino group, etc. An amino group including: an aromatic amino group such as a phenylamino group or a naphthylamino group; an aralkylamino group such as a benzylamino group; a diaromatic amino group such as a diphenylamino group or a dinaphthylamino group; Diaralkylamino groups and the like can be mentioned.
Examples of oxy groups to which a hydrocarbon group may be bonded include linear or branched propyloxy groups, butyloxy groups, hexyloxy groups, octyloxy groups, 2-ethylhexyloxy groups, dodecyloxy groups, and the like. Examples thereof include an alkyloxy group containing an alkyl group, an aromatic oxy group such as a phenyloxy group and a naphthyloxy group, and an aralkyloxy group such as a benzyloxy group.

本発明における共役系共重合オリゴマーのある実施態様において、前記一般式Aは、例えば、一般式A(5)又はA(6):   In one embodiment of the conjugated copolymer oligomer in the present invention, the general formula A is, for example, the general formula A (5) or A (6):

Figure 2011165963
Figure 2011165963

Figure 2011165963

(式中、R、R、R、R13、R′、R13′、R〜R、R〜R12、R14〜R16、R′〜R′、R′〜R12′、R14′〜R16′及びnは上記と同義である。)であるオリゴマーであってよく、また、別の実施態様において、一般式A(5)‐1:
Figure 2011165963

(In the formula, R 1 , R 2 , R 7 , R 13 , R 7 ′, R 13 ′, R 3 to R 6 , R 8 to R 12 , R 14 to R 16 , R 3 ′ to R 6 ′, R 8 ′ to R 12 ′, R 14 ′ to R 16 ′ and n are as defined above.), And in another embodiment, in the general formula A (5) -1:

Figure 2011165963

(式中、R、R、R、R′及びnは上記と同義である。)であるオリゴマーであってよい。
Figure 2011165963

(Wherein R 1 , R 2 , R 7 , R 7 ′ and n are as defined above).

本発明の共役系共重合体オリゴマーの他の実施態様においては、前記A(5)−1のR、R、R、R′がC1225基である下式A(5)−C12In another embodiment of the conjugated copolymer oligomer of the present invention, R 1 , R 2 , R 7 , R 7 ′ of A (5) -1 is a C 12 H 25 group represented by the following formula A (5 ) -C 12:

Figure 2011165963

(式中、nは上記と同義である。)で表されるオリゴマーであってよい。
Figure 2011165963

(Wherein n is as defined above).

本発明の共役系化合物において、一般式B(5)における実施態様の例は、R、R、R、R′がC1225基であり、R17、R17′が水素原子である式B(5)−1: In the conjugated compound of the present invention, examples of the embodiment in the general formula B (5) are as follows: R 1 , R 2 , R 7 , R 7 ′ are C 12 H 25 groups, and R 17 , R 17 ′ are hydrogen Formula B (5) -1 which is an atom:

Figure 2011165963

で表わされる化合物であってよい。
Figure 2011165963

The compound represented by these may be sufficient.

本発明の共役系化合物の他の実施態様の例は、一般式C(5)において、R、RがC1225基であり、Rがブチル基であり、Ar基が4−アミノフェニル基であり、R18、R18′がブチル基である式C(5)−1:

Figure 2011165963

で表わされる化合物であってよい。 An example of another embodiment of the conjugated compound of the present invention is as follows. In general formula C (5), R 1 and R 2 are C 12 H 25 groups, R 7 is a butyl group, and Ar group is 4- Formula C (5) -1 which is an aminophenyl group and R 18 and R 18 ′ are butyl groups:
Figure 2011165963

The compound represented by these may be sufficient.

本発明のスクアリウム(SQ)骨格及びベンゾジチオフェン(BD)骨格を有してなる共役系共重合体オリゴマー及び共役系化合物は、例えば、ベンゾジチオフェンの有機錫誘導体とハロゲン等の脱離基を有するスクアリリウム系色素とのStilleカップリング反応を鍵反応として合成することができる。この反応は、テトラキストリフェニルホスフィンパラジウム(Pd(PPh)とハロゲン化第一銅(CuX)からなる触媒を用いて、通常、DMF等のアプロティック溶媒中で行われる。 The conjugated copolymer oligomer and conjugated compound having a squalium (SQ) skeleton and a benzodithiophene (BD) skeleton of the present invention include, for example, an organotin derivative of benzodithiophene and a leaving group such as halogen. The Stille coupling reaction with the squarylium-based dye can be synthesized as a key reaction. This reaction is usually performed in an aprotic solvent such as DMF, using a catalyst composed of tetrakistriphenylphosphine palladium (Pd (PPh 3 ) 4 ) and cuprous halide (CuX).

具体例として、ジアルコキシ基を有するベンゾジチオフェンのジトリメチル錫誘導体(BD−Sn)とスクアリリウムの対称誘導体であるビスインドールスクアリリウムジヨード誘導体(INSQIN−I)とのStilleカップリング反応による共役系共重合体オリゴマー(A(5)−C12)の合成反応式を下式(I)に示す。 As a specific example, a conjugated system by a Stille coupling reaction between a ditrimethyltin derivative (BD-Sn) of benzodithiophene having a dialkoxy group and a bisindole squarylium diiodo derivative (INSQIN-I) which is a symmetric derivative of squarylium A synthetic reaction formula of the polymer oligomer (A (5) -C 12 ) is shown in the following formula (I).

Figure 2011165963
Figure 2011165963

ここで、共役オリゴマーA(5)−C12は、その極限構造式として、例えばスクアリリウム骨格とその両端のインドール骨格との間の、以下の式(I)及び(I’)間の共鳴構造として表すことができる。勿論、オリゴマー全体としては、ベンゾジチオフェン骨格も含むより広範な共鳴構造式間の極限構造として表すことができる。 Here, the conjugated oligomer A (5) -C 12 has, as its limiting structure, for example between the squarylium skeleton indole skeleton of its ends, a resonance structure between the following formula (I) and (I ') Can be represented. Of course, the whole oligomer can be expressed as a limit structure between a wider range of resonance structural formulas including a benzodithiophene skeleton.

Figure 2011165963
Figure 2011165963

同様に、共役系化合物(B(5)−1及びC(5)−1)も、パラジウム触媒を用いるStilleカップリング反応((II)式)に従って合成することができる。   Similarly, conjugated compounds (B (5) -1 and C (5) -1) can also be synthesized according to a Stille coupling reaction (formula (II)) using a palladium catalyst.

Figure 2011165963
Figure 2011165963

上記の各反応式における出発原料は、既知の方法によって製造することができる。
例えば、BD−Snの合成方法としては、以下の反応例を挙げることができる7−8

Figure 2011165963
The starting material in each of the above reaction formulas can be produced by a known method.
For example, as a method for synthesizing BD-Sn, the following reaction examples can be given: 7-8 :
Figure 2011165963

7)Y. Liang, Y. Wu, D. Feng, S.-T. Tsai, H.-J. Son, G. Li, L. Yu, J. Am. Chem. Soc. 2009, 131, 56-57;
8)Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, L. Yu, J. Am. Chem. Soc. 2009, 131, 7792-7799.)
7) Y. Liang, Y. Wu, D. Feng, S.-T. Tsai, H.-J. Son, G. Li, L. Yu, J. Am. Chem. Soc. 2009, 131, 56- 57;
8) Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, L. Yu, J. Am. Chem. Soc. 2009, 131, 7792-7799.)

スクアリリウムの対称誘導体INSQIN−Iの合成方法としては、以下の反応例を挙げることができる4−6

Figure 2011165963
Examples of the method for synthesizing the symmetric derivative INSQIN-I of squarylium include the following reaction examples 4-6 :
Figure 2011165963

4)K.Y. Law, Chem. Rev. 1993, 93, 449;
5)S. Yagi, Y. Hyodo, S. Matsumoto, N. Takahashi, H. Kono, H. Nakazumi, J. Chem. Soc., Perkin Trans., 2000, 1, 599;
6)Grehard Kobmehl, Chem. Ber., 1986, 119, 3198)
4) KY Law, Chem. Rev. 1993, 93, 449;
5) S. Yagi, Y. Hyodo, S. Matsumoto, N. Takahashi, H. Kono, H. Nakazumi, J. Chem. Soc., Perkin Trans., 2000, 1, 599;
6) Grehard Kobmehl, Chem. Ber., 1986, 119, 3198)

スクアリリウムの非対称誘導体SQIN−Cの合成方法としては、以下の反応例を挙げることができる4−6

Figure 2011165963
Examples of the method for synthesizing the asymmetric derivative of squarylium SQIN-C include the following reaction examples 4-6 :
Figure 2011165963

本発明のスクアリウム(SQ)骨格及びベンゾジチオフェン(BD)骨格を有してなる共役系共重合体オリゴマー又は共役系化合物は赤外〜近赤外領域に吸収極大値有する低バンドギャップ化合物であり、光励起によって優れた光電変換素子を構成することができる。   The conjugated copolymer oligomer or conjugated compound having a squalium (SQ) skeleton and a benzodithiophene (BD) skeleton of the present invention is a low band gap compound having an absorption maximum in the infrared to near infrared region. An excellent photoelectric conversion element can be configured by photoexcitation.

これらの共役系共重合体オリゴマー又は共役系化合物を電子ドナーとし、フラーレン誘導体を電子アクセプターとしてバルクヘテロ接合型有機薄膜太陽電池を構成することができる。フラーレン誘導体としては、例えば、[6,6]−フェニル−C61−酪酸メチルエステル(PCBM又はPC61BM)及び[6,6]−フェニル−C71−酪酸メチルエステル(PC71BM)等を用いることができる。 A bulk heterojunction organic thin-film solar cell can be constructed using these conjugated copolymer oligomers or conjugated compounds as electron donors and fullerene derivatives as electron acceptors. Examples of fullerene derivatives include [6,6] -phenyl-C 61 -butyric acid methyl ester (PCBM or PC 61 BM) and [6,6] -phenyl-C 71 -butyric acid methyl ester (PC 71 BM). Can be used.

図1はバルクヘテロ接合(BHJ)型有機薄膜太陽電池の1例としての模式図を示す。図1のBHJ型有機薄膜太陽電池の層構成は、太陽光照射側から順に、(1)ガラス基板層、(2)カソードとしての透明電極層(ITO(インジウム錫酸化物)、FTO(フッ素ドープ錫酸化物)など)、(3)ホール移動層(PEDOT・PSS:ポリエチレンジオキシオルトチオフェン・ポリスチレンスルホン酸会合体など)、(4)光電変換層、(5)電子移動層(LiFなど)及び(6)アノード層(Alなど)から成っている。   FIG. 1 shows a schematic diagram as an example of a bulk heterojunction (BHJ) type organic thin film solar cell. The layer structure of the BHJ type organic thin film solar cell in FIG. 1 is as follows: (1) glass substrate layer, (2) transparent electrode layer (ITO (indium tin oxide) as cathode), FTO (fluorine doped) Tin oxide)), (3) hole transfer layer (PEDOT / PSS: polyethylenedioxyorthothiophene / polystyrenesulfonic acid aggregate, etc.), (4) photoelectric conversion layer, (5) electron transfer layer (LiF, etc.) and (6) It consists of an anode layer (such as Al).

光電変換層(4)には、本発明の共役系共重合体オリゴマー又は共役系化合物が電子ドナー性成分として含まれ、フラーレン誘導体が電子アクセプター性成分として含まれる。光電変換層では、太陽光によってドナー性成分の電子がHOMOからLUMOへ励起されてドナー励起子が発生する。このドナー励起子の励起電子が拡散によってアクセプター性フラーレン誘導体のLUMOへ電荷移動してアクセプターラジカルアニオン電荷キャリアーを生ずると共に、ドナーラジカルカチオン電荷キャリアーを発生して、電荷分離が達成される。   The photoelectric conversion layer (4) contains the conjugated copolymer oligomer or conjugated compound of the present invention as an electron donor component and a fullerene derivative as an electron acceptor component. In the photoelectric conversion layer, the donor component electrons are excited from HOMO to LUMO by sunlight to generate donor excitons. The excited electrons of the donor exciton are transferred to LUMO of the acceptor fullerene derivative by diffusion to generate an acceptor radical anion charge carrier and a donor radical cation charge carrier to generate charge separation.

フラーレン誘導体と、共役系共重合体オリゴマーもしくは共役系化合物との2成分から光電変換層を構成する場合、両者の配合割合は限定的ではないが、通常、フラーレン誘導体:共役系共重合体オリゴマー又は共役系化合物(重量比)=1:0.1〜1:10、好ましくは、1:0.5〜1:5、より好ましくは、1:0.6〜1:2、更に好ましくは、1:0.8〜1.2の範囲であってよい。光電変換層にはフラーレン誘導体及び共役系共重合体オリゴマー又は共役系化合物以外にも、他の光電変換作用を有する導電材料や色素等を更に含んでもよい。   When a photoelectric conversion layer is composed of two components of a fullerene derivative and a conjugated copolymer oligomer or conjugated compound, the blending ratio of the two is not limited, but usually a fullerene derivative: a conjugated copolymer oligomer or Conjugated compound (weight ratio) = 1: 0.1 to 1:10, preferably 1: 0.5 to 1: 5, more preferably 1: 0.6 to 1: 2, more preferably 1. : It may be in the range of 0.8 to 1.2. In addition to the fullerene derivative, the conjugated copolymer oligomer, or the conjugated compound, the photoelectric conversion layer may further include other conductive materials or dyes having a photoelectric conversion action.

光電変換層の形成方法は特に限定されるものではないが、例えば、フラーレン誘導体と共役系共重合体オリゴマー又は共役系化合物との混合物を溶媒に溶解した溶液を透明電極上のホール移動層上に塗布する方法又はフラーレン誘導体と共役系共重合体オリゴマー又は共役系化合物との混合物を真空蒸着する方法が挙げられる。このうち、塗布する方法が好ましい。
塗布法における溶媒としては、通常、トルエン、クロロホルム、クロルベンゼン又はオルトジクロルベンゼン等を用いることができ、クロロホルム、クロルベンゼン又はオルトジクロルベンゼンが好ましい。
塗布する方法は特に限定されるものではないが、例えば、スピンコーティング、インクジェット印刷、ローラーキャスティング等の方法が挙げられる。このうち、スピンコーティングが好ましい。
The method for forming the photoelectric conversion layer is not particularly limited. For example, a solution in which a mixture of a fullerene derivative and a conjugated copolymer oligomer or a conjugated compound is dissolved in a solvent is placed on the hole transfer layer on the transparent electrode. Examples thereof include a method of coating or a method of vacuum-depositing a mixture of a fullerene derivative and a conjugated copolymer oligomer or a conjugated compound. Among these, the method of apply | coating is preferable.
As the solvent in the coating method, toluene, chloroform, chlorobenzene or orthodichlorobenzene can be usually used, and chloroform, chlorobenzene or orthodichlorobenzene is preferable.
Although the method of apply | coating is not specifically limited, For example, methods, such as spin coating, inkjet printing, and roller casting, are mentioned. Of these, spin coating is preferred.

光電変換層の厚さは限定的ではないが、通常、10〜500nm、好ましくは50〜300nm、より好ましくは100〜200nm程度である。   Although the thickness of a photoelectric converting layer is not limited, Usually, it is 10-500 nm, Preferably it is 50-300 nm, More preferably, it is about 100-200 nm.

カソードとしての透明電極(2)は、例えばITO(インジウム錫酸化物)又はFTO(フッ素ドープ錫酸化物)等が好ましいが、特にITOが好ましい。透明電極層の厚さは限定的ではないが、1〜1000nm、好ましくは5〜500nm、より好ましくは10〜300nm程度であってよい。透明電極層の形成は、例えば、真空蒸着、イオンスパッタリング等の方法で行うことができる。   For example, ITO (indium tin oxide) or FTO (fluorine-doped tin oxide) is preferable as the transparent electrode (2) as the cathode, and ITO is particularly preferable. The thickness of the transparent electrode layer is not limited, but may be about 1 to 1000 nm, preferably 5 to 500 nm, more preferably about 10 to 300 nm. Formation of a transparent electrode layer can be performed by methods, such as vacuum evaporation and ion sputtering, for example.

ホール移動層(3)には、例えばポリエチレンジオキシオルトチオフェン(PEDOT)・ポリスチレンスルホン酸(PSS)会合体(PEDOT・PSS)などホール輸送性のある物質であって、HOMOのエネルギー準位が真空準位から比較して透明電極よりも低いレベルであれば特に制限はない。ホール移動層の形成方法は限定されないが、例えば、透明電極層にPEDOT・PSSの水分散液、例えば市販の1.3重量%水分散液(Aldrich製)等をスピンコートすることによって形成することができる。ホール移動層の厚さは限定的ではないが、10〜300nm、好ましくは20〜200nm、より好ましくは30〜100nm程度であってよい。   The hole transport layer (3) is a material having hole transport properties such as polyethylenedioxyorthothiophene (PEDOT) / polystyrene sulfonic acid (PSS) aggregates (PEDOT / PSS), and the HOMO energy level is vacuum. There is no particular limitation as long as the level is lower than that of the transparent electrode as compared with the level. The method of forming the hole transfer layer is not limited, but, for example, it is formed by spin coating a PEDOT / PSS aqueous dispersion such as a commercially available 1.3 wt% aqueous dispersion (Aldrich) on the transparent electrode layer. Can do. The thickness of the hole transport layer is not limited, but may be about 10 to 300 nm, preferably about 20 to 200 nm, more preferably about 30 to 100 nm.

電子移動層(5)はフッ化リチウム(LiF)、カルシウム、リチウム、マグネシウム等の仕事関数の小さな材料を用いることができる。例えば、LiFが好ましい。電子移動層の厚さは限定的ではないが、通常、1〜300nm、好ましくは5〜200nm、より好ましくは10〜100nm程度であってよい。電子移動層の形成は、例えば、真空蒸着、イオンスパッタリング等の方法で行うことができる。   The electron transfer layer (5) can be made of a material having a small work function such as lithium fluoride (LiF), calcium, lithium, or magnesium. For example, LiF is preferable. The thickness of the electron transfer layer is not limited, but may be generally 1 to 300 nm, preferably 5 to 200 nm, more preferably about 10 to 100 nm. The electron transfer layer can be formed by, for example, a method such as vacuum deposition or ion sputtering.

アノード層(6)には仕事関数の小さな材料であるアルミニウム(Al)やインジウム(In)等を用いることができる。アノード層の厚さは限定的ではないが、通常、1〜300nm、好ましくは5〜200nm、より好ましくは10〜100nm程度であってよい。アノード層の形成は、例えば、真空蒸着、イオンスパッタリング等の方法で行うことができる。   Aluminum (Al), indium (In), or the like, which is a material having a small work function, can be used for the anode layer (6). Although the thickness of an anode layer is not limited, Usually, it may be 1-300 nm, Preferably it is 5-200 nm, More preferably, it may be about 10-100 nm. The anode layer can be formed by a method such as vacuum deposition or ion sputtering, for example.

BHJ型有機薄膜太陽電池の光電変換効率(η)は、図1の模式図に基づいて式(1), (2)によって算出される。
η=Pout/Pin = [FF(Jsc)(Voc)]/Pin (1)
FF=[(Jm)(Vm)]/[(Jsc)(Voc)] (2)
ここで、Pout:出力、Pin:入力、FF:フィルファクター、Jsc:短絡電流密度、Voc:開放電圧、Jm:極大出力点での電流、Vm:極大出力点での電圧を表す。
The photoelectric conversion efficiency (η) of the BHJ type organic thin film solar cell is calculated by the formulas (1) and (2) based on the schematic diagram of FIG.
η = Pout / Pin = [FF (Jsc) (Voc)] / Pin (1)
FF = [(Jm) (Vm)] / [(Jsc) (Voc)] (2)
Here, Pout: output, Pin: input, FF: fill factor, Jsc: short-circuit current density, Voc: open circuit voltage, Jm: current at the maximum output point, Vm: voltage at the maximum output point.

以下に本発明を、実施例をもって具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1 「共役系共重合体オリゴマーA(5)‐C12の合成」
下記の反応式(I)に従って、スクアリリウム骨格とベンゾジチオフェン骨格を併せ持つ共役系共重合体オリゴマーA(5)‐C12を、対応するヨウ素体と錫誘導体とのStilleクロスカップリング反応(I)により、以下の通り合成した。
Example 1 "Synthesis of conjugated copolymer oligomer A (5) -C 12"
According to the following reaction formula (I), the squarylium skeleton and benzodithiophene skeleton both conjugated copolymer oligomer A (5) a -C 12, Stille cross-coupling reaction of the corresponding iodide element and the tin derivative (I) Was synthesized as follows.

Figure 2011165963
Figure 2011165963

窒素雰囲気下において、二つ口ナス型フラスコにスクアリリウム色素INSQIN‐I4−6 (30 mg, 3.1×10-2 mmol)、ジアルコキシ基を有するベンゾジチオフェンのビストリメチル錫誘導体(BD−Sn)7,8 (24 mg, 3.1×10-2 mmol)、テトラキストリフェニルホスフィンパラジウム(0) (1.5 mg, 1.3×10-3 mmol)、ヨウ化銅(I) (0.3 mg, 1.4×10-3 mmol)を入れ、DMF(0.125 mL)、トルエン(0 .500 mL)を加え、50℃で21時間撹拌した。溶媒を減圧留去後、残渣をカラムクロマトグラフィー (SiO2カラム、展開溶媒 クロロホルム)にて精製した。さらに得られた固体をクロロホルムに溶解させ、メタノールを貧溶媒として再沈殿を行い、目的物である共役系共重合体オリゴマーA(5)‐C12を回収率47 %で得た。1H-NMR(図2)により分子構造を確認し、MALDI-TOF MS(マトリックス支援レーザー脱離イオン化 飛行時間型質量分析計)(図3)によりオリゴマーの生成を確認した。
なお、出発原料のスクアリリウム色素INSQIN‐Iは、前記文献4)〜6)の記載に準じて合成し、ベンゾジチオフェンのビストリメチル錫誘導体(BD−Sn)は、前記文献7)及び8)の記載に準じて合成した。
Under nitrogen atmosphere, bistrimethyltin derivative of benzodithiophene (BD-Sn) with squarylium dye INSQIN-I 4-6 (30 mg, 3.1 × 10 -2 mmol) and dialkoxy group in a two-necked eggplant type flask 7,8 (24 mg, 3.1 × 10 −2 mmol), tetrakistriphenylphosphine palladium (0) (1.5 mg, 1.3 × 10 −3 mmol), copper (I) iodide (0.3 mg, 1.4 × 10 −3 mmol) was added, DMF (0.125 mL) and toluene (0.500 mL) were added, and the mixture was stirred at 50 ° C. for 21 hours. After evaporating the solvent under reduced pressure, the residue was purified by column chromatography (SiO 2 column, developing solvent chloroform). Dissolved further resulting solid in chloroform, reprecipitated with methanol as a poor solvent, to obtain a conjugated copolymer oligomer A (5) -C 12 as the target compound at a recovery rate of 47%. The molecular structure was confirmed by 1 H-NMR (FIG. 2), and the formation of oligomers was confirmed by MALDI-TOF MS (Matrix Assisted Laser Desorption / Ionization Time-of-Flight Mass Spectrometer) (FIG. 3).
The starting material squarylium dye INSQIN-I was synthesized according to the description in the above-mentioned documents 4) to 6), and the bistrimethyltin derivative (BD-Sn) of benzodithiophene was synthesized from the documents 7) and 8). Synthesized according to the description.

オリゴマーA(5)‐C12のUV-Vis スペクトル及び1H NMRの分析結果を位下に示す:
オリゴマーA(5)‐C12:UV-Vis スペクトル (CHCl3): λmax : 696 nm,
(ε=5.82×105 M-1 cm-1). [1H NMR (300 Hz)] (CDCl3 :δ)0.84〜0.96 (m, 12H), 1.11〜1.41(m, 40H) 1.74〜2.01 (m, 24H) 3.86〜4.14 (m, 4H), 4.28〜4.42(m, 4H), 5.93〜6.09 (m, 2H), 6.71〜6.78 (m, 1H), 6.98〜7.11 (m, 2H), 7.58〜7.78 (m, 5H).
Oligomer A (5) -C analysis of UV-Vis spectra and 1 H NMR of 12 are shown in position under:
Oligomer A (5) -C 12 : UV-Vis spectrum (CHCl 3 ): λ max : 696 nm,
(ε = 5.82 × 10 5 M -1 cm -1 ). [ 1 H NMR (300 Hz)] (CDCl 3 : δ) 0.84 to 0.96 (m, 12H), 1.11 to 1.41 (m, 40H) 1.74 to 2.01 (m, 24H) 3.86 to 4.14 (m, 4H), 4.28 to 4.42 (m, 4H), 5.93 to 6.09 (m, 2H), 6.71 to 6.78 (m, 1H), 6.98 to 7.11 (m, 2H), 7.58-7.78 (m, 5H).

図3から、オリゴマーとしては、BD/SQ比が、1/1、2/1、1/2、2/2、3/2、2/3、及び3/3の混合物であることが判った。即ち、n=1〜3の分布を有するオリゴマーが得られたことになる。このオリゴマーのクロロホルム溶液中のλmaxは696nmを示した。   From FIG. 3, it was found that the oligomer was a mixture having a BD / SQ ratio of 1/1, 2/1, 1/2, 2/2, 3/2, 2/3, and 3/3. . That is, an oligomer having a distribution of n = 1 to 3 was obtained. Λmax in the chloroform solution of this oligomer was 696 nm.

実施例2及び3 「共役系化合物B(5)‐1及びC(5)‐1の合成」
スクアリリウム骨格とベンゾジチオフェン骨格を併せ持つ共役系化合物B(5)‐1及びC(5)‐1を、対応するヨウ素体と錫誘導体とのStilleクロスカップリング反応により、以下の反応式(II)に従って合成した。
Examples 2 and 3 “Synthesis of Conjugated Compounds B (5) -1 and C (5) -1”
Conjugated compounds B (5) -1 and C (5) -1 having both a squarylium skeleton and a benzodithiophene skeleton are subjected to the following reaction formula (II) by a Stille cross-coupling reaction between the corresponding iodine form and a tin derivative. Was synthesized according to

Figure 2011165963
Figure 2011165963

窒素置換下において化合物BD‐Sn7,8を25 mg (4.0×10-2 mmol)、化合物SQIN‐B4−6を10 mg (1.3×10-2 mmol)、テトラキストリフェニルホスフィンパラジウム(0) (0.5 mg, 0.43×10-3 mmol)、ヨウ化銅(I) (0.1 mg, 0.53×10-3 mmol)を入れ、DMF (1.0 mL)を加え、50 ℃で48時間撹拌した。溶媒を減圧留去後、残渣をカラムクロマトグラフィー (SiO2カラム、展開溶媒 酢酸エチル/ヘキサン=2/1 (v/v))にて精製した。さらに得られた固体をクロロホルムに溶解させ、ヘキサンを貧溶媒として再結晶を行い、目的物である化合物B(5)‐1を収率28%で得た。同様にして、スクアリリウム色素SQIN‐C4−6から化合物C(5)‐1を収率69%で得た。
なお、出発原料のBD‐Snは前記の文献7)及び8)の記載に準じて合成し、SQIN‐Bは前記の文献4)〜6)の記載に準じて合成した。
Under nitrogen substitution, 25 mg (4.0 × 10 −2 mmol) of the compound BD-Sn 7,8 , 10 mg (1.3 × 10 −2 mmol) of the compound SQIN-B 4-6 , tetrakistriphenylphosphine palladium (0) (0.5 mg, 0.43 × 10 −3 mmol) and copper iodide (I) (0.1 mg, 0.53 × 10 −3 mmol) were added, DMF (1.0 mL) was added, and the mixture was stirred at 50 ° C. for 48 hours. After the solvent was distilled off under reduced pressure, the residue was purified by column chromatography (SiO 2 column, developing solvent ethyl acetate / hexane = 2/1 (v / v)). Further, the obtained solid was dissolved in chloroform and recrystallized using hexane as a poor solvent to obtain the target compound B (5) -1 in a yield of 28%. Similarly, the compound C (5) -1 was obtained in 69% yield from the squarylium dye SQIN-C 4-6 .
The starting material BD-Sn was synthesized according to the descriptions in the above-mentioned documents 7) and 8), and SQIN-B was synthesized according to the descriptions in the above-mentioned documents 4) to 6).

化合物B(5)‐1のMALDI TOF-MS及び1H NMRの分析結果を以下に示す:
B(5)‐1:MALDI TOF-MS (positive): Calcd for C92H118N4O6S2 [B(5)‐1]+: m/z = 1438.9. Found: m/z =1439.0. [1H NMR (300 Hz)] (CDCl3 :δ)0.80〜1.08 (m, 24H), 1.15〜1.98 (m, 48H), 3.39 (m, 8H), 4.11 (m, 4H), 4.36 (m, 4H), 6.15 (s, 2H), 6.64 (m, 4H), 7.16 (m, 2H), 7.61〜 7.78 (m, 6H), 8.26 (m, 4H).
The results of MALDI TOF-MS and 1 H NMR analysis of Compound B (5) -1 are shown below:
B (5) -1: MALDI TOF-MS (positive): Calcd for C 92 H 118 N 4 O 6 S 2 [B (5) -1] + : m / z = 1438.9. Found: m / z = 1439.0 [ 1 H NMR (300 Hz)] (CDCl 3 : δ) 0.80 to 1.08 (m, 24H), 1.15 to 1.98 (m, 48H), 3.39 (m, 8H), 4.11 (m, 4H), 4.36 ( m, 4H), 6.15 (s, 2H), 6.64 (m, 4H), 7.16 (m, 2H), 7.61-7.78 (m, 6H), 8.26 (m, 4H).

化合物C(5)‐1:UV-Vis スペクトル、MALDI TOF-MS及び1H NMRの分析結果を以下に示す:
C(5)‐1:UV-Vis スペクトル (CHCl3): λmax : 674 nm
(ε=1.97×105 M-1 cm-1). MALDI TOF-MS (positive): Calcd for C126H178N4O6S2 [C(5)‐1+H+]+: m/z = 1908.3. Found: m/z =1908.0. [1H NMR (300 Hz)] (CDCl3 :δ)0.76〜0.86 (m, 18H),1.11〜1.41(m, 66H) 1.68〜1.93 (m, 38H) 3.85〜4.00 (m, 8H), 4.25〜4.31(t, J = 6.1 Hz, 4H), 5.89〜5.96 (m, 4H), 6.94 (d, J = 8 Hz, 4H), 7.10 (t, J = 7.2 Hz, 2H), 7.25 (t, J = 7.2 Hz, 2H), 7.31 (d, J = 7.2 Hz, 2H), 7.57 (s, 2H), 7.59〜7.65 (m, 4H) .
Compound C (5) -1: UV-Vis spectrum, MALDI TOF-MS and 1 H NMR analysis results are shown below:
C (5) -1: UV-Vis spectrum (CHCl 3 ): λ max : 674 nm
(ε = 1.97 × 10 5 M -1 cm -1 ). MALDI TOF-MS (positive): Calcd for C 126 H 178 N 4 O 6 S 2 [C (5) -1 + H + ] + : m / z = 1908.3. Found: m / z = 1908.0. [ 1 H NMR (300 Hz)] (CDCl 3 : δ) 0.76 to 0.86 (m, 18H), 1.11 to 1.41 (m, 66H) 1.68 to 1.93 (m, 38H) 3.85 to 4.00 (m, 8H), 4.25 to 4.31 (t, J = 6.1 Hz, 4H), 5.89 to 5.96 (m, 4H), 6.94 (d, J = 8 Hz, 4H), 7.10 (t, J = 7.2 Hz, 2H), 7.25 (t, J = 7.2 Hz, 2H), 7.31 (d, J = 7.2 Hz, 2H), 7.57 (s, 2H), 7.59 to 7.65 (m, 4H).

実施例4 「BHJ型有機薄膜太陽電池セルの作成(図1参照)及び太陽電池特性の測定」
ガラス基板層(1)上に透明電極層(2)としてのITO層が形成されたITO基板をH型にエッチングし、初めに、ホール移動層(3)としての導電性高分子PEDOT-PSS(ナガセケムテック製, Denatron P NHC)の溶液をITO基板(ジオマテック製, 〜10 Ω/cm2)上にスピンコート法(回転速度7000 rpm, 時間60 s)で塗布し、110℃で60分間焼成した。次に、合成したオリゴマーA(5)‐C12または化合物B(5)‐1もしくはC(5)‐1とフラーレン誘導体PC61BMとの50:50(重量比)混合物のクロロベンゼン溶液またはクロロホルム溶液を調製し、PEDOT-PSS膜上にスピンコート法(回転速度1000 rpm, 時間100 s)で塗布し、110℃で60分間焼成または室温放置して光電変換層(4)を形成し、フッ化リチウム(電子移動層(5))、およびアルミニウム(アノード層(6))を真空(約10-6 Torr)蒸着し、BHJ型有機薄膜太陽電池を得た(図1)。
このようにして作製した照射面積が0.16 cm2である有機薄膜太陽電池の特性について、分光感度測定装置CEP−2000型(分光計器製)を用いてI-V測定からそれぞれの変換効率の最大値を測定した。AM1.5、100mW/cm2の擬似太陽光照射下における形状因子、変換効率を測定した。得られた結果を表1に示す。図4にはオリゴマーA(5)‐C12のIPCE(光電子変換効率スペクトル)を示す。
Example 4 “Preparation of BHJ-type organic thin-film solar cells (see FIG. 1) and measurement of solar cell characteristics”
An ITO substrate in which an ITO layer as a transparent electrode layer (2) is formed on a glass substrate layer (1) is etched into an H-shape. First, a conductive polymer PEDOT-PSS (hole transfer layer (3)) A solution of Nagase ChemteX, Denatron P NHC) was applied onto an ITO substrate (Geomatic, ~ 10 Ω / cm 2 ) by spin coating (rotation speed 7000 rpm, time 60 s) and baked at 110 ° C for 60 minutes did. Next, the synthesized oligomer A (5) -C 12 or Compound B (5) -1 or C (5) -1 and 50:50 (weight ratio) of the fullerene derivative PC 61 BM chlorobenzene solution or chloroform solution of a mixture Was applied to the PEDOT-PSS film by spin coating (rotation speed 1000 rpm, time 100 s), baked at 110 ° C. for 60 minutes or left at room temperature to form a photoelectric conversion layer (4), and then fluorinated. Lithium (electron transfer layer (5)) and aluminum (anode layer (6)) were vacuum-deposited (about 10 −6 Torr) to obtain a BHJ type organic thin film solar cell (FIG. 1).
For the characteristics of the organic thin-film solar cell with an irradiation area of 0.16 cm 2 produced in this way, the maximum value of each conversion efficiency is measured from the IV measurement using the spectral sensitivity measuring device CEP-2000 (manufactured by Spectrometer). did. The shape factor and conversion efficiency under irradiation of simulated sunlight at AM 1.5 and 100 mW / cm 2 were measured. The obtained results are shown in Table 1. The Figure 4 shows the IPCE (photoelectric conversion efficiency spectra) of the oligomer A (5) -C 12.

Figure 2011165963
Figure 2011165963

表1中のBHJ型有機薄膜太陽電池の光電変換効率(η)は式(1), (2)によって算出した。
η=Pout/Pin = [FF(Jsc)(Voc)]/Pin (1)
FF=[(Jm)(Vm)]/[(Jsc)(Voc)] (2)
ここで、Pout:出力、Pin:入力、FF:フィルファクター、Jsc:短絡電流密度、Voc:開放電圧、Jm:極大出力点での電流、Vm:極大出力点での電圧を表す。
The photoelectric conversion efficiency (η) of the BHJ-type organic thin film solar cell in Table 1 was calculated by the formulas (1) and (2).
η = Pout / Pin = [FF (Jsc) (Voc)] / Pin (1)
FF = [(Jm) (Vm)] / [(Jsc) (Voc)] (2)
Here, Pout: output, Pin: input, FF: fill factor, Jsc: short-circuit current density, Voc: open circuit voltage, Jm: current at the maximum output point, Vm: voltage at the maximum output point.

以上のとおり、オリゴマーA(5)‐C12及び化合物B(5)‐1、C(5)‐1のいずれにおいても、光電流が観測され、それらの化合物がPCBMとともに光電変換活性層として機能している。また、薄膜状態でのオリゴマーA(5)‐C12の吸収極大値は、726nmで観測され、実際のIPCEスペクトルでもオリゴマーA(5)‐C12は700-800 nmの近赤外波長領域において、変換効率が1.31%に達している(表1および図4)。
また、化合物C(5)‐1でも薄膜状態で吸収極大値は、717 nmにあり、実際のIPCEスペクトルでも700 nm以上の長波長領域においても光電変換されている。
As described above, the oligomer A (5) -C 12 and Compound B (5) -1, C ( 5) In any -1 also, the photocurrent is observed, functions as a photoelectric conversion active layer these compounds with PCBM is doing. Further, the absorption maxima of the oligomer A (5) -C 12 in a thin film state is observed at 726 nm, oligomer A (5) in real IPCE spectrum -C 12 is in the near infrared wavelength region of 700-800 nm The conversion efficiency has reached 1.31% (Table 1 and FIG. 4).
Further, even in the compound C (5) -1, the absorption maximum value in a thin film state is 717 nm, and the actual IPCE spectrum is also photoelectrically converted in a long wavelength region of 700 nm or more.

合成した共役系共重合体オリゴマー及び共役系化合物はいずれも電子ドナーとして働き、良好な太陽電池特性を発揮した。さらに、P3HT/PCBMに代表される既存のバルクへテロ接合型太陽電池では十分に利用できない近赤外領域においても、光電変換を達成できた。従って、本発明で開発した共役系共重合体オリゴマー及び共役系化合物はいずれも有機薄膜太陽電池の光電変換層として有効であり、かつこれまで利用の進んでいない近赤外領域で作動する太陽電池の可能性を拡大した。   The synthesized conjugated copolymer oligomer and conjugated compound both acted as electron donors and exhibited good solar cell characteristics. Furthermore, photoelectric conversion could be achieved even in the near-infrared region, which cannot be fully used with existing bulk heterojunction solar cells represented by P3HT / PCBM. Therefore, the conjugated copolymer oligomer and the conjugated compound developed in the present invention are both effective as a photoelectric conversion layer of an organic thin film solar cell and operate in the near-infrared region that has not been used so far. Expanded the possibilities.

Claims (10)

一般式A:
Figure 2011165963

(式中、R、Rはそれぞれ独立に、炭素数1〜16の炭化水素基を表し、R、Rはそれぞれ独立に、炭素数1〜16の炭化水素基、炭素数1〜16の炭化水素基が少なくとも1つ置換しているアミノ基、炭素数1〜16の炭化水素基で置換されていてもよいオキシ基又は水素原子を表し、*印は1価の結合点、**印は2価の結合点を表し、nは1〜10の整数であり、Pは式N5又はN6:
Figure 2011165963

(式中、R、R13はそれぞれ独立に炭素数1〜16の炭化水素基を表し、R、R、R〜R10、R11、R12、R14〜R16はそれぞれ独立に、炭素数1〜16の炭化水素基、炭素数1〜16の炭化水素基が少なくとも1つ置換しているアミノ基、炭素数1〜16の炭化水素基で置換されていてもよいオキシ基又は水素原子を表し、*印は1価の結合点を表す。)で表される含窒素複素環を表し、Qは式N5′又はN6′:
Figure 2011165963

(式中、R′、R13′はそれぞれ独立に炭素数1〜16の炭化水素基を表し、R′、R′、R′〜R10′、R11′、R12′、R14′〜R16′はそれぞれ独立に、炭素数1〜16の炭化水素基、炭素数1〜16の炭化水素基が少なくとも1つ置換しているアミノ基、炭素数1〜16の炭化水素基で置換されていてもよいオキシ基又は水素原子を表し、*印は1価の結合点、**印は2価の結合点を表す。)で表される含窒素複素環を表す。)で表わされる、スクアリウム骨格及びベンゾジチオフェン骨格を主鎖に有してなる共役系共重合体オリゴマー。
General formula A:
Figure 2011165963

(In the formula, R 1 and R 2 each independently represent a hydrocarbon group having 1 to 16 carbon atoms; R 3 and R 4 each independently represent a hydrocarbon group having 1 to 16 carbon atoms; 16 represents an amino group substituted with at least one hydrocarbon group, an oxy group optionally substituted with a hydrocarbon group having 1 to 16 carbon atoms, or a hydrogen atom, * represents a monovalent bonding point, * * Represents a divalent bonding point, n is an integer of 1 to 10, and P is a formula N5 or N6:
Figure 2011165963

(In formula, R < 7 >, R < 13 > represents a C1-C16 hydrocarbon group each independently, R < 5 >, R < 6 >, R < 8 > -R < 10 >, R < 11 >, R < 12 >, R < 14 > -R < 16 > is respectively Independently, a hydrocarbon group having 1 to 16 carbon atoms, an amino group in which at least one hydrocarbon group having 1 to 16 carbon atoms is substituted, and an oxy group optionally substituted with a hydrocarbon group having 1 to 16 carbon atoms Represents a group or a hydrogen atom, and * represents a monovalent point of attachment.) Represents a nitrogen-containing heterocyclic ring represented by the formula: N5 ′ or N6 ′:
Figure 2011165963

(In the formula, R 7 ′ and R 13 ′ each independently represent a hydrocarbon group having 1 to 16 carbon atoms, and R 5 ′, R 6 ′, R 8 ′ to R 10 ′, R 11 ′, R 12 ′ R 14 ′ to R 16 ′ are each independently a hydrocarbon group having 1 to 16 carbon atoms, an amino group substituted with at least one hydrocarbon group having 1 to 16 carbon atoms, or a carbon group having 1 to 16 carbon atoms. It represents an oxy group or a hydrogen atom which may be substituted with a hydrogen group, * represents a monovalent bonding point, and ** represents a divalent bonding point. And a conjugated copolymer oligomer having a squalium skeleton and a benzodithiophene skeleton in the main chain.
前記一般式Aが、一般式A(5)又はA(6):
Figure 2011165963

Figure 2011165963

(式中、R、R、R、R13、R′、R13′、R〜R、R〜R12、R14〜R16、R′〜R′、R′〜R12′、R14′〜R16′及びnは上記と同義である。)である、請求項1に記載のオリゴマー。
The general formula A is the general formula A (5) or A (6):
Figure 2011165963

Figure 2011165963

(In the formula, R 1 , R 2 , R 7 , R 13 , R 7 ′, R 13 ′, R 3 to R 6 , R 8 to R 12 , R 14 to R 16 , R 3 ′ to R 6 ′, R 8 '~R 12', R 14 '~R 16' and n are as defined above.) the oligomer according to claim 1.
前記一般式A(5)が、一般式A(5)‐1:
Figure 2011165963

(式中、R、R、R、R′及びnは上記と同義である。)である、請求項2に記載のオリゴマー。
The general formula A (5) is represented by the general formula A (5) -1:
Figure 2011165963

The oligomer according to claim 2, wherein R 1 , R 2 , R 7 , R 7 'and n are as defined above.
一般式B(5):
Figure 2011165963
(式中、R、R、R、R′は上記と同義である。R17、R17′は炭素数1〜16の炭化水素基、炭素数1〜16の炭化水素基が少なくとも1つ置換しているアミノ基、炭素数1〜16の炭化水素基で置換されていてもよいオキシ基又は水素原子を表し、mは1〜4の整数である。)で表わされるスクアリウム骨格及びベンゾジチオフェン骨格を有してなる共役系化合物。
Formula B (5):
Figure 2011165963
(Wherein R 1 , R 2 , R 7 and R 7 ′ have the same meanings as above. R 17 and R 17 ′ represent a hydrocarbon group having 1 to 16 carbon atoms and a hydrocarbon group having 1 to 16 carbon atoms. An at least one substituted amino group, an oxy group which may be substituted with a hydrocarbon group having 1 to 16 carbon atoms, or a hydrogen atom, and m is an integer of 1 to 4.) And a conjugated compound having a benzodithiophene skeleton.
前記一般式B(5)において、R、R、R、R′がC1225基であり、R17、R17′が水素原子である式B(5)−1:
Figure 2011165963

で表わされる、請求項4に記載の化合物。
Formula B (5) -1 in which R 1 , R 2 , R 7 , R 7 ′ is a C 12 H 25 group and R 17 , R 17 ′ is a hydrogen atom in the general formula B (5):
Figure 2011165963

The compound of Claim 4 represented by these.
一般式C(5):
Figure 2011165963

(式中、R、R、Rは上記と同義であり、Arは炭素数1〜16の炭化水素基、炭素数1〜16の炭化水素基が少なくとも1つ置換しているアミノ基、又は炭素数1〜16の炭化水素基で置換されていてもよいアリール基を表し、R18、R18′は炭素数1〜16の炭化水素基を表す。)で表わされるスクアリウム骨格及びベンゾジチオフェン骨格を有してなる共役系化合物。
Formula C (5):
Figure 2011165963

(Wherein R 1 , R 2 and R 7 are as defined above, Ar is a hydrocarbon group having 1 to 16 carbon atoms and an amino group substituted with at least one hydrocarbon group having 1 to 16 carbon atoms) Or an aryl group which may be substituted with a hydrocarbon group having 1 to 16 carbon atoms, and R 18 and R 18 ′ represent a hydrocarbon group having 1 to 16 carbon atoms.) A conjugated compound having a dithiophene skeleton.
前記一般式C(5)において、R、RがC1225基であり、Rがブチル基であり、Ar基が4−アミノフェニル基であり、R18、R18′がブチル基である式C(5)−1:
Figure 2011165963

で表わされる、請求項6に記載の化合物。
In the general formula C (5), R 1 and R 2 are C 12 H 25 groups, R 7 is a butyl group, Ar group is a 4-aminophenyl group, and R 18 and R 18 ′ are butyl. Formula C (5) -1 being a group:
Figure 2011165963

The compound of Claim 6 represented by these.
請求項1〜3の少なくとも1つに記載のオリゴマー及び/又は請求項4〜7の少なくとも1つに記載の化合物を電子ドナーとし、フラーレン誘導体を電子アクセプターとして含む光電変換層を有してなる、バルクヘテロ接合型有機薄膜太陽電池。   It has a photoelectric conversion layer containing the oligomer according to at least one of claims 1 to 3 and / or the compound according to at least one of claims 4 to 7 as an electron donor and a fullerene derivative as an electron acceptor. Bulk heterojunction organic thin film solar cell. 前記フラーレン誘導体が[6,6]−フェニル−C61−酪酸メチルエステル(PC61BM)である、請求項8に記載の太陽電池。 The solar cell according to claim 8, wherein the fullerene derivative is [6,6] -phenyl-C 61 -butyric acid methyl ester (PC 61 BM). 請求項1〜3の少なくとも1つに記載のオリゴマー又は請求項4〜7の少なくとも1つに記載の化合物を含んでなる有機色素。   An organic dye comprising the oligomer according to at least one of claims 1 to 3 or the compound according to at least one of claims 4 to 7.
JP2010027927A 2010-02-10 2010-02-10 Organic dye and organic thin-film solar cell Pending JP2011165963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027927A JP2011165963A (en) 2010-02-10 2010-02-10 Organic dye and organic thin-film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027927A JP2011165963A (en) 2010-02-10 2010-02-10 Organic dye and organic thin-film solar cell

Publications (1)

Publication Number Publication Date
JP2011165963A true JP2011165963A (en) 2011-08-25

Family

ID=44596281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027927A Pending JP2011165963A (en) 2010-02-10 2010-02-10 Organic dye and organic thin-film solar cell

Country Status (1)

Country Link
JP (1) JP2011165963A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168470A (en) * 2012-02-15 2013-08-29 Idemitsu Kosan Co Ltd Organic thin film solar cell material including dipyrrin compound and organic thin film solar cell manufactured using the same
JP2013199541A (en) * 2012-03-23 2013-10-03 Osaka Prefecture Univ Squarylium compound, thin film including the same, and organic thin-film solar cell
CN104919614A (en) * 2012-10-11 2015-09-16 密歇根大学董事会 Polymer photovoltaics employing a squaraine donor additive
WO2018020518A1 (en) * 2016-07-28 2018-02-01 Council Of Scientific And Industrial Research Squaraine dyes and applications thereof
JP2018043943A (en) * 2016-09-14 2018-03-22 国立大学法人山形大学 Novel squarylium derivative and organic thin film solar battery using the same
JP2020013879A (en) * 2018-07-18 2020-01-23 国立大学法人山形大学 Translucent organic thin-film solar cell
CN114456197A (en) * 2021-12-13 2022-05-10 中南大学 Quasi-polymer non-fullerene acceptor material and preparation method and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168470A (en) * 2012-02-15 2013-08-29 Idemitsu Kosan Co Ltd Organic thin film solar cell material including dipyrrin compound and organic thin film solar cell manufactured using the same
JP2013199541A (en) * 2012-03-23 2013-10-03 Osaka Prefecture Univ Squarylium compound, thin film including the same, and organic thin-film solar cell
CN104919614A (en) * 2012-10-11 2015-09-16 密歇根大学董事会 Polymer photovoltaics employing a squaraine donor additive
WO2018020518A1 (en) * 2016-07-28 2018-02-01 Council Of Scientific And Industrial Research Squaraine dyes and applications thereof
US11377562B2 (en) 2016-07-28 2022-07-05 Council Of Scientific & Industrial Research Squaraine dyes and applications thereof
JP2018043943A (en) * 2016-09-14 2018-03-22 国立大学法人山形大学 Novel squarylium derivative and organic thin film solar battery using the same
JP2020013879A (en) * 2018-07-18 2020-01-23 国立大学法人山形大学 Translucent organic thin-film solar cell
CN114456197A (en) * 2021-12-13 2022-05-10 中南大学 Quasi-polymer non-fullerene acceptor material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Li et al. Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%
KR101688222B1 (en) Hole transport layer composition for solar cell, preparation method thereof and solar cell comprising the same
EP3287452B1 (en) Heterocyclic compound and organic solar cell comprising same
Luo et al. A universal nonfullerene electron acceptor matching with different band-gap polymer donors for high-performance polymer solar cells
JP6150732B2 (en) Photovoltaic element
JP2016164128A (en) Organic compound, organic material thin film, photoelectric conversion layer, solution for forming photoelectric conversion layer, and photoelectric conversion element
CN105210205B (en) Fullerene derivative and n-type semiconductor material
JP2011165963A (en) Organic dye and organic thin-film solar cell
Li et al. A facilely synthesized ‘spiro’hole-transporting material based on spiro [3.3] heptane-2, 6-dispirofluorene for efficient planar perovskite solar cells
WO2012011642A1 (en) Quasi-solid polymer electrolyte for dye-sensitized solar cell, hole transport material contained in same, and dye-sensitized solar cell containing the electrolyte
Zhang et al. Two dimethoxyphenylamine-substituted carbazole derivatives as hole-transporting materials for efficient inorganic-organic hybrid perovskite solar cells
Wang et al. Perylene diimide arrays: promising candidates for non-fullerene organic solar cells
Liu et al. A rational design and synthesis of cross-conjugated small molecule acceptors approaching high-performance fullerene-free polymer solar cells
Wu et al. Star-Shaped Fused-Ring Electron Acceptors with a C 3 h-Symmetric and Electron-Rich Benzotri (cyclopentadithiophene) Core for Efficient Nonfullerene Organic Solar Cells
Wang et al. Influence of dimethoxytriphenylamine groups on carbazole-based hole transporting materials for perovskite solar cells
Abdullah et al. Highly stable bulk heterojunction organic solar cells based on asymmetric benzoselenadiazole‐oriented organic chromophores
Ohshita et al. Synthesis of spirodithienogermole with triphenylamine units as a dopant-free hole-transporting material for perovskite solar cells
KR101760492B1 (en) Novel compounds, method of preparation thereof and organic solar cell comprising the same
CN114349771B (en) Hexabenzocoronene-based non-fullerene acceptor material and preparation and application thereof
KR101660086B1 (en) Aromatic compound and organic solar cell comprising the same
Wang et al. Low-cost planar organic small molecules as hole transport materials for high efficient perovskite solar cells
Liu et al. Dopant-free hole-transporting materials based on a simple nonfused core with noncovalent conformational locking for efficient perovskite solar cells
KR101303083B1 (en) Novel fullerene derivatives and photovoltaic device using the same
JP2011246594A (en) Polymer compound, and photoelectric conversion element using the same
KR101760493B1 (en) Benzobisoxazole derivatives, method of preparation thereof and organic solar cell comprising the same