JP2015220331A - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP2015220331A
JP2015220331A JP2014102662A JP2014102662A JP2015220331A JP 2015220331 A JP2015220331 A JP 2015220331A JP 2014102662 A JP2014102662 A JP 2014102662A JP 2014102662 A JP2014102662 A JP 2014102662A JP 2015220331 A JP2015220331 A JP 2015220331A
Authority
JP
Japan
Prior art keywords
polymer compound
electron
group
photoelectric conversion
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014102662A
Other languages
Japanese (ja)
Inventor
伊藤 紳三郎
Shinzaburo Ito
紳三郎 伊藤
英生 大北
Hideo Okita
英生 大北
宏明 辨天
Hiroaki Benten
宏明 辨天
小熊 潤
Jun Oguma
潤 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Kyoto University NUC
Original Assignee
Sumitomo Chemical Co Ltd
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Kyoto University NUC filed Critical Sumitomo Chemical Co Ltd
Priority to JP2014102662A priority Critical patent/JP2015220331A/en
Publication of JP2015220331A publication Critical patent/JP2015220331A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion element having a high photoelectric conversion efficiency.SOLUTION: In a photo electric conversion element having a first electrode, a second electrode and an active layer between the first electrode and the second electrode, the active layer is formed by coating solution of an electron-donative polymer compound and an electron-acceptable polymer compound under inert atmosphere, at least one of the electron-donative polymer compound and the electron-acceptable polymer compound is a polymer compound comprising only one or more kinds of constituent units selected from the group consisting of an arylene group which may have a substituent group and a divalent heterocyclic group which may have a substituent group, the polystyrene-converted weight average molecular weight of the electron-donative polymer compound ranges from not less than 20,000 to not more than 70,000, and the polystyrene-converted weight average molecular weight of the electron-acceptable polymer compound is equal to 70,000 or more.

Description

本発明は、所定の高分子化合物を含む活性層を有する光電変換素子及びその製造方法に関する。   The present invention relates to a photoelectric conversion element having an active layer containing a predetermined polymer compound and a method for producing the photoelectric conversion element.

光電変換素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に設けられた活性層とを備える素子である。光電変換素子の一態様である有機化合物からなる活性層を有する有機薄膜太陽電池は、シリコン等の無機化合物からなる活性層を有する無機太陽電池に比べ、製造コストを大幅に低減できる可能性があり、より安価な太陽光発電素子として注目を集めている。   A photoelectric conversion element is an element provided with a pair of electrodes composed of an anode and a cathode, and an active layer provided between the pair of electrodes. An organic thin-film solar cell having an active layer made of an organic compound, which is an embodiment of a photoelectric conversion element, may be able to significantly reduce manufacturing costs compared to an inorganic solar cell having an active layer made of an inorganic compound such as silicon. It is attracting attention as a cheaper photovoltaic power generation element.

光電変換素子としては、例えば、酸化錫が添加された酸化インジウム(ITO)からなる陽極上に、ポリ(エチレンジオキシチオフェン)(PEDOT)を含む層、下記式で表される共役高分子化合物であるポリ(3−ヘキシルチオフェン)(P3HT)とフラーレン誘導体である[6,6]−フェニルC61酪酸メチルエステル(PCBM)との混合物を含む活性層、カルシウム層とアルミニウム層とからなる陰極がこの順に積層されたバルクヘテロ接合型の光電変換素子が高い効率を示すことから広く使用されている。   As a photoelectric conversion element, for example, a layer containing poly (ethylenedioxythiophene) (PEDOT) on a positive electrode made of indium oxide (ITO) to which tin oxide is added, a conjugated polymer compound represented by the following formula: An active layer containing a mixture of a certain poly (3-hexylthiophene) (P3HT) and [6,6] -phenyl C61 butyric acid methyl ester (PCBM) which is a fullerene derivative, a cathode composed of a calcium layer and an aluminum layer in this order. Laminated bulk heterojunction photoelectric conversion elements are widely used because of their high efficiency.

また、電子供与性のP3HT及び下記式で表される電子受容性のF8TBTの2種類のポリマーの混合物(ポリマーブレンド)を活性層の材料として用いた光電変換素子が知られている(非特許文献1参照。)。   In addition, a photoelectric conversion element using a mixture (polymer blend) of two types of polymers of electron donating P3HT and electron accepting F8TBT represented by the following formula as a material of an active layer is known (non-patent document). 1).

Figure 2015220331
Figure 2015220331

APPLIED PHYSICS LETTERS 90, 193506(2007)APPLIED PHYSICS LETTERS 90, 193506 (2007)

しかしながら、前記ポリマーブレンドを活性層の材料とする光電変換素子は、光電変換効率が十分ではない。したがって、本発明の目的は、光電変換効率が高い光電変換素子を提供することにある。   However, the photoelectric conversion element using the polymer blend as a material for the active layer does not have sufficient photoelectric conversion efficiency. Accordingly, an object of the present invention is to provide a photoelectric conversion element having high photoelectric conversion efficiency.

即ち、本発明は下記[1]〜[9]を提供する。
[1]第1の電極と、第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有する光電変換素子であって、
前記活性層が電子供与性高分子化合物と電子受容性高分子化合物とを含む溶液を不活性雰囲気下で塗布して形成され、前記電子供与性高分子化合物及び前記電子受容性高分子化合物のうちの少なくとも一方が、置換基を有していてもよいアリーレン基、及び置換基を有していてもよい2価の複素環基からなる群から選ばれる1種以上の構成単位のみからなる高分子化合物であり、前記電子供与性高分子化合物のポリスチレン換算の重量平均分子量が20000以上70000以下であり、かつ前記電子受容性高分子化合物のポリスチレン換算の重量平均分子量が70000以上である、光電変換素子。
[2]前記電子供与性高分子化合物及び前記電子受容性高分子化合物の両方が、アリーレン基、及び2価の複素環基からなる群から選ばれる1種以上の構成単位のみからなる高分子化合物である、[1]に記載の光電変換素子。
[3]前記電子供与性高分子化合物及び前記電子受容性高分子化合物のうちの少なくとも一方が、チオフェン骨格を含む構成単位を含む高分子化合物である[1]又は[2]に記載の光電変換素子。
[4]前記電子供与性高分子化合物及び前記電子受容性高分子化合物のうちの少なくとも一方が、下記式(1)で表される構成単位を含む高分子化合物である、[1]〜[3]のいずれか1つに記載の光電変換素子。

Figure 2015220331
(式(1)中、R、R、R、R、R及びRは、それぞれ独立に、水素原子又は置換基を表す。R、R、R、R、R及びRのうちの2個が連結し、連結しているR、R、R、R、R及びRのうちの2個がそれぞれ結合している炭素原子とともに環状構造を形成していてもよい。X、X及びXは、それぞれ独立に、硫黄原子、酸素原子、セレン原子、−N(R)−で表される基、又は−CR=CR−で表される基を表す。R、R及びRは、それぞれ独立に、水素原子又は置換基を表す。n及びmは、それぞれ独立に、0〜5の整数を表す。Rが複数個ある場合、それらは同一であっても異なっていてもよい。Rが複数個ある場合、それらは同一であっても異なっていてもよい。Rが複数個ある場合、それらは同一であっても異なっていてもよい。Rが複数個ある場合、それらは同一であっても異なっていてもよい。Xが複数個ある場合、それらは同一であっても異なっていてもよい。Xが複数個ある場合、それらは同一であっても異なっていてもよい。)
[5]前記式(1)で表される構成単位を含む高分子化合物において、前記式(1)で表される構成単位が、該高分子化合物が有する全ての種類の構成単位の中で、前記式(1)で表される構成単位が最も多く含まれる、[4]に記載の光電変換素子。
[6][1]〜[5]のいずれか1つに記載の光電変換素子を含む太陽電池モジュール。
[7][1]〜[5]のいずれか1つに記載の光電変換素子、又は[6]に記載の太陽電池モジュールを含むイメージセンサー。
[8]第1の電極と、第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有する光電変換素子の製造方法であって、
電子供与性高分子化合物及び電子受容性高分子化合物のうちの少なくとも一方が、アリーレン基、及び2価の複素環基からなる群から選ばれる1種以上の構成単位のみからなる高分子化合物であり、ポリスチレン換算の重量平均分子量が20000以上70000以下である電子供与性高分子化合物及びポリスチレン換算の重量平均分子量が70000以上である電子受容性高分子化合物を含む溶液を不活性雰囲気下で塗布して活性層を形成する工程を含む、[1]〜[7]のいずれか1つに記載の光電変換素子の製造方法。
[9]前記活性層を形成する工程が、前記溶液を不活性雰囲気下で塗布した後に、さらに不活性雰囲気下で加熱処理することにより活性層を形成する工程である、[8]に記載の光電変換素子の製造方法。 That is, the present invention provides the following [1] to [9].
[1] A photoelectric conversion element having a first electrode and a second electrode, and having an active layer between the first electrode and the second electrode,
The active layer is formed by applying a solution containing an electron-donating polymer compound and an electron-accepting polymer compound under an inert atmosphere, and the active layer includes the electron-donating polymer compound and the electron-accepting polymer compound. A polymer comprising at least one structural unit selected from the group consisting of an arylene group which may have a substituent and a divalent heterocyclic group which may have a substituent. A photoelectric conversion element, which is a compound, wherein the electron-donating polymer compound has a polystyrene-equivalent weight average molecular weight of 20,000 or more and 70000 or less, and the electron-accepting polymer compound has a polystyrene-equivalent weight average molecular weight of 70000 or more. .
[2] A polymer compound in which both the electron-donating polymer compound and the electron-accepting polymer compound are composed only of one or more structural units selected from the group consisting of an arylene group and a divalent heterocyclic group. The photoelectric conversion element according to [1].
[3] The photoelectric conversion according to [1] or [2], wherein at least one of the electron-donating polymer compound and the electron-accepting polymer compound is a polymer compound containing a structural unit containing a thiophene skeleton. element.
[4] At least one of the electron-donating polymer compound and the electron-accepting polymer compound is a polymer compound containing a structural unit represented by the following formula (1): [1] to [3 ] The photoelectric conversion element as described in any one of.
Figure 2015220331
(In the formula (1), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represents a hydrogen atom or a substituent. R 1 , R 2 , R 3 , R 4 , 2 is connected one of R 5 and R 6, ring together with the carbon atom to which two of R 1, R 2, R 3 , R 4, R 5 and R 6 which are connected are coupled respectively X 1 , X 2 and X 3 each independently represent a sulfur atom, an oxygen atom, a selenium atom, a group represented by —N (R 7 ) —, or —CR 8 ═ CR 9 - represents a group represented by .R 7, R 8 and R 9 each independently, .n and m represents a hydrogen atom or a substituent, each independently, represent an integer of 0 to 5. When there are a plurality of R 1 s , they may be the same or different, and when there are a plurality of R 2 s , they are the same. When there are a plurality of R 5 s , they may be the same or different, and when there are a plurality of R 6 s , they may be the same or different. When there are a plurality of X 1 s , they may be the same or different.When there are a plurality of X 3 s , they may be the same or different.)
[5] In the polymer compound containing the structural unit represented by the formula (1), the structural unit represented by the formula (1) is a structural unit of all kinds of the polymer compound, The photoelectric conversion element according to [4], wherein the constitutional unit represented by the formula (1) is contained most.
[6] A solar cell module including the photoelectric conversion element according to any one of [1] to [5].
[7] An image sensor including the photoelectric conversion element according to any one of [1] to [5] or the solar cell module according to [6].
[8] A method for producing a photoelectric conversion element having a first electrode and a second electrode, and having an active layer between the first electrode and the second electrode,
At least one of the electron donating polymer compound and the electron accepting polymer compound is a polymer compound comprising only one or more structural units selected from the group consisting of an arylene group and a divalent heterocyclic group. And applying a solution containing an electron-donating polymer compound having a polystyrene-equivalent weight average molecular weight of 20000 or more and 70000 or less and an electron-accepting polymer compound having a polystyrene-equivalent weight average molecular weight of 70000 or more in an inert atmosphere. The manufacturing method of the photoelectric conversion element as described in any one of [1]-[7] including the process of forming an active layer.
[9] The method according to [8], wherein the step of forming the active layer is a step of forming the active layer by applying the solution in an inert atmosphere and then performing heat treatment in the inert atmosphere. A method for producing a photoelectric conversion element.

本発明の光電変換素子によれば、光電変換効率が高い光電変換素子を提供することができる。   According to the photoelectric conversion element of the present invention, a photoelectric conversion element having high photoelectric conversion efficiency can be provided.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

(光電変換素子の基本的形態)
本発明の光電変換素子は、第1の電極と、第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有する光電変換素子であって、活性層が電子供与性高分子化合物と電子受容性高分子化合物とを含む溶液を不活性雰囲気下で塗布して形成され、電子供与性高分子化合物及び電子受容性高分子化合物のうちの少なくとも一方が、置換基を有していてもよいアリーレン基、及び置換基を有していてもよい2価の複素環基からなる群から選ばれる1種以上の構成単位のみからなる高分子化合物であり、電子供与性高分子化合物のポリスチレン換算の重量平均分子量が20000以上70000以下であり、かつ電子受容性高分子化合物のポリスチレン換算の重量平均分子量が70000以上である。
(Basic form of photoelectric conversion element)
The photoelectric conversion element of the present invention is a photoelectric conversion element having a first electrode and a second electrode, and having an active layer between the first electrode and the second electrode, The layer is formed by applying a solution containing an electron-donating polymer compound and an electron-accepting polymer compound under an inert atmosphere, and at least one of the electron-donating polymer compound and the electron-accepting polymer compound is An arylene group which may have a substituent, and a polymer compound composed of only one or more structural units selected from the group consisting of a divalent heterocyclic group which may have a substituent, The electron-donating polymer compound has a polystyrene-equivalent weight average molecular weight of 20,000 to 70,000, and the electron-accepting polymer compound has a polystyrene-equivalent weight average molecular weight of 70,000 or more.

(基板)
本発明の光電変換素子は、通常、基板上に形成される。該基板は、電極を形成し、有機物からなる層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、及びシリコンが挙げられる。不透明な基板上に光電変換素子を形成する場合には、基板と反対側の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
(substrate)
The photoelectric conversion element of the present invention is usually formed on a substrate. The substrate may be any substrate that does not chemically change when the electrode is formed and the organic layer is formed. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. In the case where the photoelectric conversion element is formed on an opaque substrate, it is preferable that the electrode on the side opposite to the substrate (that is, the electrode far from the substrate) is transparent or translucent.

(第1の電極及び第2の電極)
第1の電極及び第2の電極(以下、電極という。)のうちの少なくとも一方は、透明又は半透明の電極であることが好ましい。
(First electrode and second electrode)
At least one of the first electrode and the second electrode (hereinafter referred to as an electrode) is preferably a transparent or translucent electrode.

透明又は半透明の電極としては、例えば、導電性の金属酸化物膜、及び半透明の金属薄膜を用いることができる。透明又は半透明の電極の材料は、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム錫オキサイド(ITO)、インジウム亜鉛オキサイド(IZO)、NESAなどの導電性金属酸化物材料、金、白金、銀、及び銅などの金属材料が挙げられ、ITO、IZO、及び酸化スズが好ましい。   As the transparent or translucent electrode, for example, a conductive metal oxide film and a translucent metal thin film can be used. Transparent or semi-transparent electrode materials include indium oxide, zinc oxide, tin oxide, and composite metal oxide materials such as indium tin oxide (ITO), indium zinc oxide (IZO), and NESA, Examples include metal materials such as gold, platinum, silver, and copper, and ITO, IZO, and tin oxide are preferable.

電極の作製方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、及びメッキ法が挙げられる。また、透明又は半透明の電極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機材料を含む透明導電膜を用いてもよい。透明又は半透明の電極は、第1の電極及び第2の電極のうちのいずれであってもよく、陽極であっても陰極であってもよい。   Examples of the electrode manufacturing method include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. In addition, as the transparent or translucent electrode, a transparent conductive film containing an organic material such as polyaniline and a derivative thereof, polythiophene and a derivative thereof may be used. The transparent or translucent electrode may be either the first electrode or the second electrode, and may be an anode or a cathode.

本発明の光電変換素子は透明又は半透明ではない電極を有していてもよく、このような電極の材料としては、例えば、金属及び導電性高分子が挙げられる。透明又は半透明ではない電極の材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、前記金属のうちの2種以上の金属の合金、1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン及び錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体が挙げられる。合金としては、例えば、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、及びカルシウム−アルミニウム合金が挙げられる。   The photoelectric conversion element of the present invention may have an electrode that is not transparent or translucent. Examples of the material of such an electrode include metals and conductive polymers. Specific examples of electrode materials that are not transparent or translucent include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium A metal such as terbium and ytterbium, an alloy of two or more of the metals, one or more of the metals, and gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin Examples thereof include alloys with one or more metals selected from the group, graphite, graphite intercalation compounds, polyaniline and derivatives thereof, and polythiophene and derivatives thereof. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.

(中間層)
本発明の光電変換素子は、光電変換効率を向上させるための手段として活性層以外の付加的な中間層(電荷輸送層など)を有していてもよい。中間層に用いられ得る材料としては、例えば、フッ化リチウム等のアルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物、アルカリ金属の酸化物、及びアルカリ土類金属の酸化物が挙げられる。
(Middle layer)
The photoelectric conversion element of the present invention may have an additional intermediate layer (such as a charge transport layer) other than the active layer as a means for improving the photoelectric conversion efficiency. Examples of the material that can be used for the intermediate layer include alkali metal halides such as lithium fluoride, alkaline earth metal halides, alkali metal oxides, and alkaline earth metal oxides.

また、酸化チタン等の無機半導体の微粒子、PEDOT(ポリ(3,4−エチレンジオキシチオフェン))とPSS(ポリ(4−スチレンスルホネート))との混合物(PEDOT:PSS)などを中間層に用いてもよい。   In addition, fine particles of inorganic semiconductor such as titanium oxide, a mixture of PEDOT (poly (3,4-ethylenedioxythiophene)) and PSS (poly (4-styrenesulfonate)) (PEDOT: PSS), etc. are used for the intermediate layer. May be.

(活性層)
本発明の光電変換素子は活性層を備えている。活性層は第1の電極と第2の電極との間に設けられており、電子供与性高分子化合物と電子受容性高分子化合物とを含む。すなわち、本発明の光電変換素子は、バルクヘテロ接合型の活性層を有している。
(Active layer)
The photoelectric conversion element of the present invention includes an active layer. The active layer is provided between the first electrode and the second electrode, and includes an electron donating polymer compound and an electron accepting polymer compound. That is, the photoelectric conversion element of the present invention has a bulk heterojunction active layer.

電子供与性高分子化合物及び電子受容性高分子化合物のうちの少なくとも一方は、アリーレン基、及び2価の複素環基からなる群から選ばれる1種以上の構成単位のみからなる高分子化合物である。電子供与性高分子化合物及び電子受容性高分子化合物の両方が、アリーレン基、及び2価の複素環基からなる群から選ばれる1種以上の構成単位のみからなる高分子化合物であることが好ましい。   At least one of the electron donating polymer compound and the electron accepting polymer compound is a polymer compound comprising only one or more structural units selected from the group consisting of an arylene group and a divalent heterocyclic group. . It is preferable that both the electron donating polymer compound and the electron accepting polymer compound are polymer compounds composed of only one or more structural units selected from the group consisting of an arylene group and a divalent heterocyclic group. .

なお、電子供与性高分子化合物であるか、又は電子受容性高分子化合物であるかは、化合物の最高占有分子軌道(HOMO)のエネルギー準位又は最低空分子軌道(LUMO)のエネルギー準位から相対的に決定される。   Whether an electron-donating polymer compound or an electron-accepting polymer compound is determined from the energy level of the highest occupied molecular orbital (HOMO) or the energy level of the lowest unoccupied molecular orbital (LUMO). Relatively determined.

本明細書において、アリーレン基とは、芳香族炭化水素化合物から芳香環に結合している水素原子2個を除いた基を意味し、芳香環を構成する炭素原子の数は通常6〜60程度であり、好ましくは6〜20である。アリーレン基は置換基を有していてもよく、置換基としては、ハロゲン原子、及び炭素原子数1〜30である基が好ましく、例えば、フッ素原子、炭素原子数が1〜30であるアルキル基、炭素原子数が1〜30であるアルコキシ基、及び炭素原子数が6〜30であるアリール基が挙げられる。アリーレン基としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、ピレンジイル基及びフルオレンジイル基が挙げられる。   In the present specification, the arylene group means a group obtained by removing two hydrogen atoms bonded to an aromatic ring from an aromatic hydrocarbon compound, and the number of carbon atoms constituting the aromatic ring is usually about 6 to 60. Preferably, it is 6-20. The arylene group may have a substituent, and the substituent is preferably a halogen atom or a group having 1 to 30 carbon atoms, such as a fluorine atom or an alkyl group having 1 to 30 carbon atoms. , An alkoxy group having 1 to 30 carbon atoms, and an aryl group having 6 to 30 carbon atoms. Examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a pyrenediyl group, and a fluorenediyl group.

また、2価の複素環基とは、複素環式化合物から複素環に結合している水素原子2個を除いた基を意味し、複素環を構成する炭素原子の数は通常4〜60程度であり、好ましくは4〜20である。2価の複素環基は置換基を有していてもよく、置換基としては、ハロゲン原子、及び炭素原子数1〜30である基が好ましく、例えば、フッ素原子、炭素原子数が1〜30であるアルキル基、炭素原子数が1〜30であるアルコキシ基、及び炭素原子数が6〜30であるアリール基が挙げられる。2価の複素環基としては、例えば、チオフェンジイル基、ベンゾチアジアゾールジイル基、フランジイル基、ピリジンジイル基及びピロールジイル基が挙げられる。2価の複素環基は、2価の芳香族複素環基が好ましい。   The divalent heterocyclic group means a group obtained by removing two hydrogen atoms bonded to the heterocyclic ring from the heterocyclic compound, and the number of carbon atoms constituting the heterocyclic ring is usually about 4 to 60. Preferably, it is 4-20. The divalent heterocyclic group may have a substituent, and the substituent is preferably a halogen atom or a group having 1 to 30 carbon atoms, such as a fluorine atom or 1 to 30 carbon atoms. And an alkyl group having 1 to 30 carbon atoms and an aryl group having 6 to 30 carbon atoms. Examples of the divalent heterocyclic group include a thiophene diyl group, a benzothiadiazole diyl group, a furandyl group, a pyridinediyl group, and a pyrrole diyl group. The divalent heterocyclic group is preferably a divalent aromatic heterocyclic group.

(電子供与性高分子化合物)
電子供与性高分子化合物は、ポリスチレン換算の重量平均分子量が20000以上70000以下であり、太陽光の波長の領域に吸収があれば特に制限されないが、最高占有分子軌道のエネルギー準位が−4.7eV以下であり、かつ最低空分子軌道のエネルギー準位が−4.0eV以上である高分子化合物が好ましい。
(Electron donating polymer)
The electron-donating polymer compound has a polystyrene-equivalent weight average molecular weight of 20,000 or more and 70,000 or less and is not particularly limited as long as it absorbs light in the wavelength region of sunlight, but the energy level of the highest occupied molecular orbital is −4. A polymer compound having an energy level of 7 eV or less and a lowest unoccupied molecular orbital of −4.0 eV or more is preferable.

電子供与性高分子化合物としては、例えば、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体が挙げられ、ポリチオフェン及びポリチオフェン誘導体が好ましく、チオフェンの2〜5量体を含む構造又はチオフェン誘導体の2〜5量体を含む構造を有する高分子化合物がより好ましい。ここで、ポリチオフェン誘導体とは、置換基を有するチオフェンジイル基を有する高分子化合物である。   Examples of the electron-donating polymer compound include polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polythiophene and polythiophene derivatives are preferable, and a structure containing 2 to 5 mers of thiophene or 2 to 5 mers of thiophene derivatives A polymer compound having a structure containing is more preferable. Here, the polythiophene derivative is a polymer compound having a thiophenediyl group having a substituent.

ポリチオフェン及びポリチオフェン誘導体は、ホモポリマーであることが好ましい。ホモポリマーとは、チオフェンジイル基及び置換基を有するチオフェンジイル基からなる群から選ばれる基のみが複数個結合してなるポリマーである。チオフェンジイル基としては、チオフェン−2,5−ジイル基が好ましく、置換基を有するチオフェンジイル基としては、アルキルチオフェン−2、5−ジイル基が好ましい。ホモポリマーであるポリチオフェン誘導体の具体例としては、ポリ(3−ヘキシルチオフェン−2,5−ジイル)(P3HT)、ポリ(3−オクチルチオフェン−2,5−ジイル)、ポリ(3−ドデシルチオフェン−2,5−ジイル)、及びポリ(3−オクタデシルチオフェン−2,5−ジイル)が挙げられる。ホモポリマーであるポリチオフェン誘導体の中では、炭素原子数6〜30のアルキル基で置換されたチオフェンジイル基からなるポリチオフェン誘導体が好ましい。   The polythiophene and the polythiophene derivative are preferably homopolymers. A homopolymer is a polymer formed by bonding only a plurality of groups selected from the group consisting of a thiophenediyl group and a substituted thiophenediyl group. The thiophene diyl group is preferably a thiophene-2,5-diyl group, and the thiophene diyl group having a substituent is preferably an alkylthiophene-2, 5-diyl group. Specific examples of polythiophene derivatives that are homopolymers include poly (3-hexylthiophene-2,5-diyl) (P3HT), poly (3-octylthiophene-2,5-diyl), poly (3-dodecylthiophene- 2,5-diyl), and poly (3-octadecylthiophene-2,5-diyl). Among the polythiophene derivatives that are homopolymers, polythiophene derivatives composed of thiophene diyl groups substituted with alkyl groups having 6 to 30 carbon atoms are preferred.

(電子受容性高分子化合物)
電子受容性高分子化合物は、ポリスチレン換算の重量平均分子量が70000以上である。電子受容性高分子化合物は、最高占有分子軌道のエネルギー準位が−5.0eV以下であり、かつ、最低空分子軌道のエネルギー準位が−4.3eV以上である高分子化合物が好ましい。電子受容性高分子化合物としては、例えば、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体及びポリチオフェン及びその誘導体が挙げられる。電子受容性高分子化合物としては、構成単位としてベンゾチアジアゾール構造を含む高分子化合物、構成単位としてキノキサリン構造を含む高分子化合物又は構造単位としてチオフェン骨格を含む高分子化合物が好ましく、構成単位としてベンゾチアジアゾール構造及びチオフェン骨格を含む高分子化合物がより好ましい。
(Electron-accepting polymer compound)
The electron-accepting polymer compound has a polystyrene-equivalent weight average molecular weight of 70000 or more. The electron accepting polymer compound is preferably a polymer compound having an energy level of the highest occupied molecular orbital of −5.0 eV or lower and an energy level of the lowest unoccupied molecular orbital of −4.3 eV or higher. Examples of the electron-accepting polymer compound include polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, and polythiophene and derivatives thereof. As the electron-accepting polymer compound, a polymer compound containing a benzothiadiazole structure as a structural unit, a polymer compound containing a quinoxaline structure as a structural unit, or a polymer compound containing a thiophene skeleton as a structural unit is preferable, and a benzothiadiazole as a structural unit A polymer compound containing a structure and a thiophene skeleton is more preferable.

構成単位としてベンゾチアジアゾール構造及びチオフェン骨格を含む高分子化合物の例としては、下記式(3)で表される高分子化合物が挙げられる。式(3)中、pは2以上の整数を表す。   Examples of the polymer compound containing a benzothiadiazole structure and a thiophene skeleton as structural units include a polymer compound represented by the following formula (3). In formula (3), p represents an integer of 2 or more.

Figure 2015220331
Figure 2015220331

活性層における、電子供与性高分子化合物の重量に対する電子受容性高分子化合物の重量は、電子供与性高分子化合物100重量部に対して、10〜1000重量部であることが好ましく、20重量部〜500重量部であることがより好ましい。   The weight of the electron-accepting polymer compound relative to the weight of the electron-donating polymer compound in the active layer is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the electron-donating polymer compound, and 20 parts by weight. More preferably, it is -500 weight part.

活性層の厚さは、1nm〜100μmが好ましく、より好ましくは2nm〜1000nmであり、さらに好ましくは5nm〜500nmであり、特に好ましくは20nm〜200nmである。   The thickness of the active layer is preferably 1 nm to 100 μm, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.

電子供与性高分子化合物及び電子受容性高分子化合物の重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)で測定される値であり、標準のポリスチレンで換算した重量平均分子量である。   The weight average molecular weight of the electron donating polymer compound and the electron accepting polymer compound is a value measured by gel permeation chromatography (GPC), and is a weight average molecular weight converted to standard polystyrene.

ポリスチレンで換算した重量平均分子量の測定は、測定対象となる化合物を溶媒に溶解させることができる温度で実施すればよい。すなわちGPCは、常温もしくはより高温のいずれの条件で測定してもよい。例えば、本発明の実施形態にかかる電子受容性高分子化合物のGPCによる測定は、溶媒に対する溶解性の観点から、140℃程度で行うことが好ましい。この場合のGPCの測定条件の例としては、測定対象のポリマー2mgを1,2-ジクロロベンゼン(ODCB)4mLに溶解させ、展開溶媒としてODCBを用いて、流量を1mL/分とする例が挙げられる。   What is necessary is just to implement the measurement of the weight average molecular weight converted with polystyrene at the temperature which can dissolve the compound used as a measuring object in a solvent. That is, GPC may be measured under either normal temperature or higher temperature conditions. For example, the GPC measurement of the electron-accepting polymer compound according to the embodiment of the present invention is preferably performed at about 140 ° C. from the viewpoint of solubility in a solvent. An example of GPC measurement conditions in this case is an example in which 2 mg of the polymer to be measured is dissolved in 4 mL of 1,2-dichlorobenzene (ODCB), ODCB is used as a developing solvent, and the flow rate is 1 mL / min. It is done.

電子供与性高分子化合物のポリスチレン換算の重量平均分子量は、光電変換効率の観点から、20000以上70000以下であることが好ましく、30000以上70000以下であることがより好ましく、40000以上70000以下であることがさらに好ましい。   The weight average molecular weight in terms of polystyrene of the electron donating polymer compound is preferably from 20,000 to 70,000, more preferably from 30,000 to 70,000, and more preferably from 40,000 to 70,000 from the viewpoint of photoelectric conversion efficiency. Is more preferable.

電子受容性高分子化合物のポリスチレン換算の重量平均分子量は、光電変換効率の観点から、70000以上であることが好ましい。また、電子受容性高分子化合物のポリスチレン換算の重量平均分子量は、合成の観点から、200000以下であることが好ましい。   The weight average molecular weight in terms of polystyrene of the electron-accepting polymer compound is preferably 70000 or more from the viewpoint of photoelectric conversion efficiency. Moreover, it is preferable that the polystyrene conversion weight average molecular weight of an electron-accepting high molecular compound is 200000 or less from a synthetic | combination viewpoint.

本発明の光電変換素子は、電子供与性高分子化合物及び電子受容性高分子化合物のうちの少なくとも一方が、チオフェン骨格を含有する構成単位を含む高分子化合物であることが好ましく、電子供与性高分子化合物及び電子受容性高分子化合物のいずれもがチオフェン骨格を含有する構成単位を含む高分子化合物であることがより好ましい。   In the photoelectric conversion element of the present invention, it is preferable that at least one of the electron donating polymer compound and the electron accepting polymer compound is a polymer compound containing a structural unit containing a thiophene skeleton. It is more preferable that both the molecular compound and the electron-accepting polymer compound are polymer compounds containing a structural unit containing a thiophene skeleton.

本発明の光電変換素子は、電子供与性高分子化合物及び電子受容性高分子化合物のうちの少なくとも一方が、下記式(1)で表される構成単位を含む高分子化合物であることが好ましく、電子受容性高分子化合物が下記式(1)で表される構成単位を含む高分子化合物であることがより好ましい。   The photoelectric conversion element of the present invention is preferably a polymer compound in which at least one of the electron donating polymer compound and the electron accepting polymer compound includes a structural unit represented by the following formula (1), The electron-accepting polymer compound is more preferably a polymer compound containing a structural unit represented by the following formula (1).

Figure 2015220331
Figure 2015220331

式(1)中、n及びmは、それぞれ独立に、0〜5の整数を表し、1〜3の整数が好ましく、1がより好ましい。   In formula (1), n and m each independently represent an integer of 0 to 5, an integer of 1 to 3 is preferable, and 1 is more preferable.

、R、R、R、R及びRは、それぞれ独立に、水素原子又は置換基を表す。Rが複数個ある場合、それらは同一であっても異なっていてもよい。Rが複数個ある場合、それらは同一であっても異なっていてもよい。Rが複数個ある場合、それらは同一であっても異なっていてもよい。Rが複数個ある場合、それらは同一であっても異なっていてもよい。 R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a substituent. When there are a plurality of R 1 s , they may be the same or different. When there are a plurality of R 2 s , they may be the same or different. When there are a plurality of R 5 , they may be the same or different. When there are a plurality of R 6 s , they may be the same or different.

、R、R、R、R及びRで表される置換基としては、フッ素原子、及び炭素原子数が1〜30である基が好ましい。置換基としては、例えば、フッ素原子、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ドデシル基などのアルキル基、メトキシ基、エトキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基などのアルコキシ基、及び、フェニル基、ナフチル基などのアリール基が挙げられる。 As the substituent represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 , a fluorine atom and a group having 1 to 30 carbon atoms are preferable. Examples of the substituent include an alkyl group such as a fluorine atom, a methyl group, an ethyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group, a methoxy group, an ethoxy group, a butoxy group, a hexyloxy group, an octyloxy group, and a dodecyl group. Examples thereof include an alkoxy group such as an oxy group, and an aryl group such as a phenyl group and a naphthyl group.

また、R、R、R、R、R及びRのうちの2個が連結し、連結するR、R、R、R、R及びRのうちの2個が結合している炭素原子とともに環状構造を形成してもよい。RとRが連結し、Rが結合している炭素原子及びRが結合している炭素原子とともに形成した環状構造、及び、RとRが連結し、Rが結合している炭素原子及びRが結合している炭素原子とともに形成した環状構造の具体例としては、下記式(4)で表される構造が挙げられる。 Further, R 1, 2 or it is connected one of R 2, R 3, R 4 , R 5 and R 6, linked to R 1, R 2, R 3 , R 4, of R 5 and R 6 You may form a cyclic structure with the carbon atom which two couple | bonded. R 1 and R 2 are linked, the cyclic structure formed together with the carbon atom to which R 1 is bonded and the carbon atom to which R 2 is bonded, and R 5 and R 6 are linked, and R 5 is bonded. As a specific example of the cyclic structure formed with the carbon atom to which R 6 is bonded and the carbon atom to which R 6 is bonded, a structure represented by the following formula (4) can be given.

Figure 2015220331
Figure 2015220331

とRが連結し、Rが結合している炭素原子及びRが結合している炭素原子とともに形成した環状構造の具体例としては、下記式(5)で表される構造及び下記式(6)で表される構造が挙げられる。 As a specific example of the cyclic structure formed together with the carbon atom to which R 3 and R 4 are connected and R 3 is bonded and the carbon atom to which R 4 is bonded, a structure represented by the following formula (5) and The structure represented by following formula (6) is mentioned.

Figure 2015220331
Figure 2015220331

式(5)中、R12及びR13は、それぞれ独立に、水素原子又は置換基を表す。 In formula (5), R 12 and R 13 each independently represents a hydrogen atom or a substituent.

12及びR13で表される置換基の具体例としては、R、R、R、R、R及びRで表される置換基の具体例と同じである。 Specific examples of the substituents represented by R 12 and R 13 are the same as the specific examples of the substituents represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 .

、R、R、R、R及びRは、水素原子及びアルキル基が好ましく、水素原子がより好ましい。 R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are preferably a hydrogen atom and an alkyl group, and more preferably a hydrogen atom.

、X及びXは、それぞれ独立に、硫黄原子、酸素原子、セレン原子、−N(R)−で表される基、又は−CR=CR−で表される基を表す。R、R及びRは、それぞれ独立に、水素原子又は置換基を表す。Xが複数個ある場合、それらは同一であっても異なっていてもよい。Xが複数個ある場合、それらは同一であっても異なっていてもよい。 X 1 , X 2 and X 3 each independently represents a sulfur atom, an oxygen atom, a selenium atom, a group represented by —N (R 7 ) —, or a group represented by —CR 8 ═CR 9 —. Represent. R 7 , R 8 and R 9 each independently represents a hydrogen atom or a substituent. When there are a plurality of X 1 , they may be the same or different. When there are a plurality of X 3 , they may be the same or different.

、R及びRで表される置換基としては、例えば、メチル基、エチル基、ブチル基、ヘキシル基、オクチル基、ドデシル基などのアルキル基、及びフェニル基、ナフチル基などのアリール基が挙げられる。
、X及びXは、硫黄原子が好ましい。
Examples of the substituent represented by R 7 , R 8 and R 9 include alkyl groups such as methyl group, ethyl group, butyl group, hexyl group, octyl group and dodecyl group, and aryl groups such as phenyl group and naphthyl group. Groups.
X 1 , X 2 and X 3 are preferably sulfur atoms.

前記式(1)で表される構成単位としては、下記式(1−1)で表される構成単位が好ましい。   As the structural unit represented by the formula (1), a structural unit represented by the following formula (1-1) is preferable.

Figure 2015220331
Figure 2015220331

電子供与性高分子化合物及び電子受容性高分子化合物のうちの少なくとも一方が前記式(1)で表される構成単位を含む高分子化合物である場合、前記式(1)で表される構成単位が、この高分子化合物が有する全ての種類の構成単位の中で、最も多く含まれることが好ましい。   When at least one of the electron-donating polymer compound and the electron-accepting polymer compound is a polymer compound containing the structural unit represented by the formula (1), the structural unit represented by the formula (1) However, it is preferable that the polymer compound is contained in the largest amount among all kinds of structural units of the polymer compound.

光電変換素子の光電変換効率を高める観点から、前記式(1)で表される構成単位を含む高分子化合物が有する式(1)で表される構成単位の数の高分子化合物が有する全構成単位の合計数に対する割合は、50%以上であることが好ましく、52%以上であることがより好ましく、55%以上であることがさらに好ましい。   From the viewpoint of increasing the photoelectric conversion efficiency of the photoelectric conversion element, the entire structure of the polymer compound having the number of structural units represented by the formula (1) included in the polymer compound including the structural unit represented by the formula (1). The ratio to the total number of units is preferably 50% or more, more preferably 52% or more, and further preferably 55% or more.

また、前記式(1)で表される構成単位の数の高分子化合物中の全構成単位の合計数に対する割合は、100%未満であることが好ましく、98%以下であることがより好ましく、70%以下であることがさらに好ましい。   The ratio of the number of structural units represented by the formula (1) to the total number of all structural units in the polymer compound is preferably less than 100%, more preferably 98% or less, More preferably, it is 70% or less.

電子供与性高分子化合物及び電子受容性高分子化合物のうちの少なくとも一方は、前記式(1)で表される構成単位に加え、他の構成単位を含むことが好ましい。   At least one of the electron-donating polymer compound and the electron-accepting polymer compound preferably contains another structural unit in addition to the structural unit represented by the formula (1).

他の構成単位としては、例えば、下記式(2)で表される構成単位が挙げられる。前記式(1)で表される構成単位及び下記式(2)で表される構成単位を含む高分子化合物は、電子供与性高分子化合物及び電子受容性高分子化合物のうちの少なくとも一方であることが好ましく、電子受容性高分子化合物であることがより好ましい。   As another structural unit, the structural unit represented by following formula (2) is mentioned, for example. The polymer compound containing the structural unit represented by the formula (1) and the structural unit represented by the following formula (2) is at least one of an electron-donating polymer compound and an electron-accepting polymer compound. It is preferable that it is an electron-accepting polymer compound.

Figure 2015220331
Figure 2015220331

式(2)中、環A及び環Bは、それぞれ独立に、芳香環を表す。R10及びR11は、それぞれ独立に、水素原子又は置換基を表す。R10及びR11が連結し、R10及びR11が結合している炭素原子とともに環状構造が形成されてもよい。 In formula (2), ring A and ring B each independently represent an aromatic ring. R 10 and R 11 each independently represents a hydrogen atom or a substituent. A ring structure may be formed together with the carbon atom to which R 10 and R 11 are linked and R 10 and R 11 are bonded.

10及びR11で表される置換基としては、例えば、メチル基、エチル基、ブチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基などのアルキル基、及びフェニル基、ナフチル基などのアリール基が挙げられる。R10及びR11で表される置換基の炭素原子数は、12以上であることが好ましい。R10及びR11は、アルキル基、及びアリール基等の炭化水素基であることが好ましく、アルキル基であることがより好ましい。 Examples of the substituent represented by R 10 and R 11 include methyl, ethyl, butyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, and the like. Group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group and other alkyl groups, and phenyl group, naphthyl group and other aryl groups. The number of carbon atoms of the substituent represented by R 10 and R 11 is preferably 12 or more. R 10 and R 11 are preferably an alkyl group and a hydrocarbon group such as an aryl group, and more preferably an alkyl group.

環A及び環Bとしては、例えば、ベンゼン環、ナフタレン環などの芳香族炭素環、チオフェンなどの芳香族複素環が挙げられる。環A及び環Bは、5〜10員環であることが好ましく、ベンゼン環及びナフタレン環であることがより好ましい。   Examples of the ring A and the ring B include aromatic carbocycles such as a benzene ring and a naphthalene ring, and aromatic heterocycles such as thiophene. Ring A and ring B are preferably 5- to 10-membered rings, and more preferably benzene rings and naphthalene rings.

前記式(2)で表される構成単位としては、下記式(2−1)で表される構成単位が好ましい。   As the structural unit represented by the formula (2), a structural unit represented by the following formula (2-1) is preferable.

Figure 2015220331
Figure 2015220331

式(2−1)中、R10及びR11は、前記式(2)と同じ意味を表す。 In formula (2-1), R 10 and R 11 represent the same meaning as in formula (2).

電子供与性高分子化合物及び電子受容性高分子化合物のうちの少なくとも一方が、前記式(1)で表される構成単位及び式(2)で表される構成単位を含む場合、該高分子化合物が有する全ての種類の構成単位の中で、式(1)で表される構成単位の数が最も多く、次いで、式(2)で表される構成単位の数が多いことが好ましい。式(1)で表される構成単位及び式(2)で表される構成単位を含む高分子化合物は、式(1)で表される構成単位と式(2)で表される構成単位のみからなることが好ましい。   When at least one of the electron-donating polymer compound and the electron-accepting polymer compound includes the structural unit represented by the formula (1) and the structural unit represented by the formula (2), the polymer compound It is preferable that the number of structural units represented by the formula (1) is the largest among all types of structural units possessed by and then the number of structural units represented by the formula (2) is large. The high molecular compound containing the structural unit represented by Formula (1) and the structural unit represented by Formula (2) is only the structural unit represented by Formula (1) and the structural unit represented by Formula (2). Preferably it consists of.

活性層には、種々の機能を発現させるために、電子供与性高分子化合物及び電子受容性高分子化合物以外に、必要に応じて他の成分を含有させてもよい。他の成分としては、例えば、紫外線吸収剤、酸化防止剤、吸収した光により電荷を発生させる機能を増感するための増感剤、及び、紫外線に対する安定性を増すための光安定剤が挙げられる。   In order to express various functions, the active layer may contain other components in addition to the electron donating polymer compound and the electron accepting polymer compound as necessary. Examples of other components include an ultraviolet absorber, an antioxidant, a sensitizer for sensitizing the function of generating charges by absorbed light, and a light stabilizer for increasing the stability to ultraviolet rays. It is done.

他の成分の配合量は、電子供与性化合物及び電子受容性化合物の合計量100重量部に対し、それぞれ5重量部以下であることが好ましく、特に、0.01〜3重量部の割合の配合量で配合することが効果的である。   The blending amount of the other components is preferably 5 parts by weight or less with respect to 100 parts by weight of the total amount of the electron-donating compound and the electron-accepting compound, and particularly 0.01 to 3 parts by weight. It is effective to mix in an amount.

また、活性層は、機械的特性を高めるため、電子供与性化合物及び電子受容性化合物以外の高分子化合物を高分子バインダーとして含んでいてもよい。高分子バインダーとしては、電子輸送性又は正孔輸送性を阻害しない高分子化合物が好ましく、また可視光の吸収が少ない高分子化合物が好ましい。高分子バインダーとしては、例えば、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p−フェニレンビニレン)及びその誘導体、ポリ(2,5−チエニレンビニレン)及びその誘導体、ポリカーポネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、及びポリシロキサンが挙げられる。   The active layer may contain a polymer compound other than an electron donating compound and an electron accepting compound as a polymer binder in order to improve mechanical properties. As the polymer binder, a polymer compound that does not inhibit the electron transport property or hole transport property is preferable, and a polymer compound that absorbs less visible light is preferable. Examples of the polymer binder include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, and poly (2,5-thienylene vinylene) and derivatives thereof. , Polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.

<高分子化合物の合成方法>
本発明に用いられる電子供与性高分子化合物及び電子受容性高分子化合物の合成方法としては、特に制限されるものではないが、高分子化合物の合成の容易さからは、Suzukiカップリング反応やStilleカップリング反応を用いる合成方法が好ましい。
<Method of synthesizing polymer compound>
The method for synthesizing the electron-donating polymer compound and the electron-accepting polymer compound used in the present invention is not particularly limited, but from the viewpoint of the ease of synthesizing the polymer compound, a Suzuki coupling reaction or Stille is used. A synthetic method using a coupling reaction is preferred.

Suzukiカップリング反応を用いる方法としては、例えば、下記式(100)で表される1種類以上の化合物と、下記式(200)で表される1種類以上の化合物とをパラジウム触媒及び塩基の存在下で反応させる工程を有する製造方法が挙げられる。
−E−Q (100)
式(100)中、E1は、アリーレン基又は2価の複素環基を表す。Q1及びQ2は、それぞれ独立に、ジヒドロキシボリル基[−B(OH)]又はホウ酸エステル残基を表す。
−E−T (200)
式(200)中、Eは、式(1)で表される基を表す。T及びTは、それぞれ独立に、ハロゲン原子、又はスルホン酸残基を表す。
As a method using the Suzuki coupling reaction, for example, one or more compounds represented by the following formula (100) and one or more compounds represented by the following formula (200) are present in the presence of a palladium catalyst and a base. The manufacturing method which has the process made to react below is mentioned.
Q 1 -E 1 -Q 2 (100)
In formula (100), E 1 represents an arylene group or a divalent heterocyclic group. Q 1 and Q 2 each independently represents a dihydroxyboryl group [—B (OH) 2 ] or a borate ester residue.
T 1 -E 2 -T 2 (200)
In Formula (200), E 2 represents a group represented by Formula (1). T 1 and T 2 each independently represent a halogen atom or a sulfonic acid residue.

は、前記式(2)で表される基であることが好ましい。Eは、Eと同一の基であっても異なる基であってもよいが、異なる基であることが好ましい。 E 1 is preferably a group represented by the formula (2). E 2 may be the same group as E 1 or a different group, but is preferably a different group.

ホウ酸エステル残基とは、ホウ酸ジエステルから水酸基を除去した基を意味し、ジアルキルエステル残基、ジアリールエステル残基、ジ(アリールアルキル)エステル残基などが挙げられる。ホウ酸エステル残基としては、下記式で表される基が例示される。   The boric acid ester residue means a group obtained by removing a hydroxyl group from a boric acid diester, and examples thereof include a dialkyl ester residue, a diaryl ester residue, and a di (arylalkyl) ester residue. Examples of the boric acid ester residue include groups represented by the following formula.

Figure 2015220331
Figure 2015220331

前記式中、Meはメチル基を表し、Etはエチル基を表す。   In the formula, Me represents a methyl group, and Et represents an ethyl group.

前記式(200)中、T及びTで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。高分子化合物の合成の容易さからは、臭素原子、及びヨウ素原子が好ましく、臭素原子であることがより好ましい。 In the formula (200), examples of the halogen atom represented by T 1 and T 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. In view of the ease of synthesis of the polymer compound, a bromine atom and an iodine atom are preferable, and a bromine atom is more preferable.

式(200)中、T及びTで表されるスルホン酸残基とは、スルホン酸(−SOH)から酸性水素を除いた原子団を意味し、具体例としては、アルキルスルホネート基(例えば、メタンスルホネート基、エタンスルホネート基)、アリールスルホネート基(例えば、ベンゼンスルホネート基、p−トルエンスルホネート基)、アリールアルキルスルホネート基(例えば、ベンジルスルホネート基)及びトリフルオロメタンスルホネート基が挙げられる。 In formula (200), the sulfonic acid residue represented by T 1 and T 2 means an atomic group obtained by removing acidic hydrogen from sulfonic acid (—SO 3 H), and specific examples include an alkyl sulfonate group. (For example, methanesulfonate group, ethanesulfonate group), arylsulfonate group (for example, benzenesulfonate group, p-toluenesulfonate group), arylalkylsulfonate group (for example, benzylsulfonate group) and trifluoromethanesulfonate group.

具体的には、Suzukiカップリング反応を行う方法としては、任意の溶媒中において、触媒としてパラジウム触媒を用い、塩基の存在下で反応させる方法等が挙げられる。   Specifically, the method for carrying out the Suzuki coupling reaction includes a method in which a palladium catalyst is used as a catalyst in an arbitrary solvent and the reaction is performed in the presence of a base.

Suzukiカップリング反応に使用するパラジウム触媒としては、例えば、Pd(0)触媒、Pd(II)触媒が挙げられ、具体的には、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウムが挙げられ、反応(重合)操作の容易さ、反応(重合)速度の観点からは、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウムが好ましい。   Examples of the palladium catalyst used in the Suzuki coupling reaction include a Pd (0) catalyst and a Pd (II) catalyst. Specifically, palladium [tetrakis (triphenylphosphine)], palladium acetates, dichlorobis ( Triphenylphosphine) palladium, palladium acetate, tris (dibenzylideneacetone) dipalladium, and bis (dibenzylideneacetone) palladium. From the viewpoint of ease of reaction (polymerization) operation and reaction (polymerization) rate, dichlorobis ( Triphenylphosphine) palladium, palladium acetate, and tris (dibenzylideneacetone) dipalladium are preferred.

パラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、前記式(100)で表される化合物1モルに対して、通常、0.0001モル〜0.5モル、好ましくは0.0003モル〜0.1モルである。   The addition amount of the palladium catalyst is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 mol to 0.5 mol with respect to 1 mol of the compound represented by the formula (100). , Preferably 0.0003 mol to 0.1 mol.

Suzukiカップリング反応に使用するパラジウム触媒としてパラジウムアセテート類を用いる場合は、例えば、トリフェニルホスフィン、トリ(o−トリル)ホスフィン、トリ(o−メトキシフェニル)ホスフィン等のリン化合物を配位子として添加することができる。この場合、配位子の添加量は、パラジウム触媒1モルに対して、通常、0.5モル〜100モルであり、好ましくは0.9モル〜20モル、さらに好ましくは1モル〜10モルである。   When palladium acetate is used as a palladium catalyst used in the Suzuki coupling reaction, for example, a phosphorus compound such as triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine is added as a ligand. can do. In this case, the addition amount of the ligand is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol, relative to 1 mol of the palladium catalyst. is there.

Suzukiカップリング反応に使用する塩基としては、無機塩基、有機塩基、無機塩等が挙げられる。無機塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、水酸化バリウムが挙げられる。有機塩基としては、例えば、トリエチルアミン、トリブチルアミンが挙げられる。無機塩としては、例えば、フッ化セシウムが挙げられる。   Examples of the base used for the Suzuki coupling reaction include inorganic bases, organic bases, inorganic salts and the like. Examples of the inorganic base include potassium carbonate, sodium carbonate, and barium hydroxide. Examples of the organic base include triethylamine and tributylamine. An example of the inorganic salt is cesium fluoride.

塩基の添加量は、前記式(100)で表される化合物1モルに対して、通常、0.5モル〜100モル、好ましくは0.9モル〜20モル、さらに好ましくは1モル〜10モルである。   The addition amount of the base is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol, relative to 1 mol of the compound represented by the formula (100). It is.

Suzukiカップリング反応は、通常、溶媒中で行われる。用いられる溶媒の例としては、N,N−ジメチルホルムアミド、トルエン、ジメトキシエタン、テトラヒドロフランが挙げられる。本発明に用いられる高分子化合物の溶解性の観点からは、トルエン、テトラヒドロフランが好ましい。また、塩基は、水溶液として加え、2相系で反応させてもよい。塩基として無機塩を用いる場合は、無機塩の溶解性の観点から、通常、水溶液として加えて反応させる。
なお、塩基を水溶液として加え、2相系で反応させる場合は、必要に応じて、第4級アンモニウム塩などの相間移動触媒を加えてもよい。
The Suzuki coupling reaction is usually performed in a solvent. Examples of the solvent used include N, N-dimethylformamide, toluene, dimethoxyethane, and tetrahydrofuran. From the viewpoint of solubility of the polymer compound used in the present invention, toluene and tetrahydrofuran are preferred. Further, the base may be added as an aqueous solution and reacted in a two-phase system. When an inorganic salt is used as the base, it is usually added as an aqueous solution and reacted from the viewpoint of solubility of the inorganic salt.
In addition, when adding a base as aqueous solution and making it react with a two-phase system, you may add phase transfer catalysts, such as a quaternary ammonium salt, as needed.

Suzukiカップリング反応を行う温度は、前記溶媒にもよるが、通常、50℃〜160℃程度であり、高分子化合物の高分子量化の観点からは、60℃〜120℃が好ましい。また、溶媒の沸点近くまで昇温し、還流させてもよい。反応時間は、目的の重合度に達したときを終了時とすればよいが、通常、0.1時間〜200時間程度である。1時間〜30時間程度が効率的で好ましい。   Although the temperature at which the Suzuki coupling reaction is performed depends on the solvent, it is usually about 50 ° C. to 160 ° C., and 60 ° C. to 120 ° C. is preferable from the viewpoint of increasing the molecular weight of the polymer compound. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed. The reaction time may be the end when the target degree of polymerization is reached, but is usually about 0.1 to 200 hours. About 1 hour to 30 hours is efficient and preferable.

前記反応は、アルゴンガス、窒素ガス等を含む不活性雰囲気下で、Pd(0)触媒が失活しない反応系で行う。
ここで不活性雰囲気とは、酸素及び水の含有量が一定の値以下である気体に満たされた場のことをいう。
The reaction is performed in a reaction system in which the Pd (0) catalyst is not deactivated under an inert atmosphere containing argon gas, nitrogen gas, or the like.
Here, the inert atmosphere refers to a place filled with a gas whose oxygen and water contents are below a certain value.

不活性雰囲気における酸素の濃度は10ppm以下であることが好ましく、水の濃度が0.1ppm以下であることが好ましい。   The concentration of oxygen in the inert atmosphere is preferably 10 ppm or less, and the concentration of water is preferably 0.1 ppm or less.

不活性雰囲気を構成するために用いられ得る気体の例としては、アルゴンガス、窒素ガスなどが挙げられる。   Examples of gases that can be used to construct an inert atmosphere include argon gas, nitrogen gas, and the like.

前記反応は、例えば、アルゴンガスや窒素ガス等で、十分脱気された系で行う。具体的には、前記反応は重合容器(反応系)内の気体を窒素ガスで十分置換し、脱気した後、この重合容器に、前記式(100)で表される化合物、前記式(200)で表される化合物、ジクロロビス(トリフェニルホスフィン)パラジウム(II)を仕込み、さらに、重合容器内の気体を窒素ガスで十分置換し、脱気した後、あらかじめ窒素ガスでバブリングすることにより、脱気した溶媒、例えば、トルエンを加えた後、この溶液に、あらかじめ窒素ガスでバブリングすることにより脱気した塩基、例えば、炭酸ナトリウム水溶液を滴下した後、加熱、昇温し、例えば、還流温度で8時間、不活性雰囲気を保持しながら行うことができる。   The reaction is performed in a system sufficiently deaerated with, for example, argon gas or nitrogen gas. Specifically, in the reaction, after the gas in the polymerization vessel (reaction system) is sufficiently substituted with nitrogen gas and degassed, the polymerization vessel is charged with the compound represented by the formula (100), the formula (200). The compound represented by), dichlorobis (triphenylphosphine) palladium (II), and the gas in the polymerization vessel is sufficiently replaced with nitrogen gas and degassed, and then degassed by bubbling with nitrogen gas in advance. After adding a solvent, for example, toluene, to this solution, a base degassed by bubbling with nitrogen gas in advance, for example, an aqueous sodium carbonate solution was added dropwise, and then heated and heated, for example, at a reflux temperature. It can be carried out while maintaining an inert atmosphere for 8 hours.

電子供与性高分子化合物及び電子受容性高分子化合物の末端基は、重合活性基がそのまま残っていると、光電変換素子の作製に用いたときに得られる光電変換素子の特性や寿命を低下させてしまう可能性があるので、安定な基で保護されていてもよい。この安定な基は、主鎖の共役構造と連続した共役結合を有している基であることが好ましい。   The terminal groups of the electron-donating polymer compound and the electron-accepting polymer compound, when the polymerization active group remains as it is, reduces the characteristics and lifetime of the photoelectric conversion element obtained when used for the production of the photoelectric conversion element. May be protected with a stable group. This stable group is preferably a group having a conjugated bond continuous with the conjugated structure of the main chain.

<活性層の形成方法>
本発明の光電変換素子の製造方法は、第1の電極と、第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有する光電変換素子の製造方法であって、電子供与性高分子化合物及び電子受容性高分子化合物のうちの少なくとも一方が、アリーレン基、及び2価の複素環基からなる群から選ばれる1種以上の構成単位のみからなる高分子化合物であり、ポリスチレン換算の重量平均分子量が20000以上70000以下である電子供与性高分子化合物及びポリスチレン換算の重量平均分子量が70000以上である電子受容性高分子化合物を含む溶液を不活性雰囲気下で塗布して活性層を形成する工程を含む。
<Method for forming active layer>
The method for producing a photoelectric conversion element according to the present invention is a process for producing a photoelectric conversion element having a first electrode and a second electrode, and having an active layer between the first electrode and the second electrode. In this method, at least one of the electron donating polymer compound and the electron accepting polymer compound comprises only one or more structural units selected from the group consisting of an arylene group and a divalent heterocyclic group. An inert atmosphere comprising a polymer compound, which includes an electron-donating polymer compound having a polystyrene-equivalent weight average molecular weight of 20000 to 70000 and an electron-accepting polymer compound having a polystyrene-equivalent weight average molecular weight of 70000 or more. A step of forming an active layer by applying undercoat.

本発明の光電変換素子の製造方法においては、活性層を形成する工程が、溶液を不活性雰囲気下で塗布した後に、さらに不活性雰囲気下で加熱処理することにより活性層を形成する工程であることが好ましい。   In the method for producing a photoelectric conversion element of the present invention, the step of forming the active layer is a step of forming the active layer by further applying heat treatment in an inert atmosphere after applying the solution in an inert atmosphere. It is preferable.

活性層を形成する工程は、電子供与性高分子化合物及び電子受容性高分子化合物を含む溶液を用いて行われる。   The step of forming the active layer is performed using a solution containing an electron donating polymer compound and an electron accepting polymer compound.

光電変換素子の特性を向上させる観点から、活性層を形成するための電子供与性高分子化合物及び電子受容性高分子化合物を含む溶液を用いる塗布工程は不活性雰囲気下で実施される。製造コストを下げる観点からは、不活性雰囲気とするためには窒素ガスを用いることが好ましい。   From the viewpoint of improving the characteristics of the photoelectric conversion element, the coating step using a solution containing an electron donating polymer compound and an electron accepting polymer compound for forming an active layer is performed in an inert atmosphere. From the viewpoint of reducing the manufacturing cost, it is preferable to use nitrogen gas in order to obtain an inert atmosphere.

塗布のための溶液に用いられる溶媒は、電子供与性高分子化合物及び電子受容性高分子化合物を溶解させるものであれば特に制限はない。該溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素溶媒、及び、テトラヒドロフラン、テトラヒドロピラン等のエーテル溶媒が挙げられる。電子供与性高分子化合物及び電子受容性高分子化合物は、通常、前記溶媒にそれぞれ0.1重量%以上溶解させることができる。   The solvent used in the solution for coating is not particularly limited as long as it dissolves the electron donating polymer compound and the electron accepting polymer compound. Examples of the solvent include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, Examples include halogenated hydrocarbon solvents such as chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, and trichlorobenzene, and ether solvents such as tetrahydrofuran and tetrahydropyran. . The electron donating polymer compound and the electron accepting polymer compound can usually be dissolved in the solvent in an amount of 0.1% by weight or more.

溶液の塗布には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、及びディスペンサー印刷法が好ましい。   For solution application, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing method Application methods such as flexographic printing method, offset printing method, inkjet printing method, dispenser printing method, nozzle coating method, capillary coating method, spin coating method, flexographic printing method, gravure printing method, inkjet printing method, And the dispenser printing method is preferred.

活性層中の電子供与性高分子化合物と電子受容性高分子化合物との混合状態をより良くしたり、電子供与性高分子化合物及び電子受容性高分子化合物の結晶性を向上させる観点から、溶液を不活性雰囲気下で塗布した後に形成された膜(塗布膜)を、さらに不活性雰囲気下で加熱処理することが好ましい。電子供与性高分子化合物と電子受容性高分子化合物との混合状態をより良くしたり、電子供与性高分子化合物及び電子受容性高分子化合物の結晶性を向上させる観点から、加熱処理の温度は120℃以上であることが好ましく、140℃以上であることがより好ましい。   From the viewpoint of improving the mixing state of the electron-donating polymer compound and the electron-accepting polymer compound in the active layer and improving the crystallinity of the electron-donating polymer compound and the electron-accepting polymer compound, It is preferable to heat-treat the film (coating film) formed after coating in an inert atmosphere under an inert atmosphere. From the viewpoint of improving the mixed state of the electron-donating polymer compound and the electron-accepting polymer compound or improving the crystallinity of the electron-donating polymer compound and the electron-accepting polymer compound, the temperature of the heat treatment is The temperature is preferably 120 ° C. or higher, and more preferably 140 ° C. or higher.

<光電変換素子の用途>
本発明の光電変換素子は、透明又は半透明の電極側から太陽光等の光を入射させることにより、電極間の活性層で光起電力を発生させ、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数個集積することにより太陽電池モジュールとして用いることもできる。
<Application of photoelectric conversion element>
The photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by generating photovoltaic power in an active layer between electrodes by making light such as sunlight enter from a transparent or translucent electrode side. . It can also be used as a solar cell module by accumulating a plurality of organic thin film solar cells.

また、電極間に電圧を印加した状態、あるいは無印加の状態で、透明又は半透明の電極側から光を入射させることにより、光電流が流れるので、光電変換素子又は光電変換素子を複数個集積した太陽電池モジュールを有機光センサーとして動作させることができる。有機光センサーを複数集積することによりイメージセンサーとして用いることもできる。   In addition, since a photocurrent flows when light is incident from the transparent or translucent electrode side with voltage applied between the electrodes or without application, a plurality of photoelectric conversion elements or photoelectric conversion elements are integrated. The solar cell module can be operated as an organic light sensor. It can also be used as an image sensor by integrating a plurality of organic light sensors.

<太陽電池モジュール>
有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造とすることも可能である。具体的には、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。本発明の光電変換素子を用いる有機薄膜太陽電池も使用目的や使用場所および環境により、適宜これらの太陽電池モジュール構造を選択できる。
<Solar cell module>
The organic thin film solar cell can basically have the same module structure as a conventional solar cell module. The solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side. Specifically, a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known. The organic thin film solar cell using the photoelectric conversion element of the present invention can also be appropriately selected from these solar cell module structures depending on the purpose of use, the place of use and the environment.

代表的なスーパーストレートタイプあるいはサブストレートタイプの太陽電池モジュールは、片側または両側が透明で反射防止処理を施された支持基板の間に一定間隔にセルが配置され、隣り合うセル同士が金属リードまたはフレキシブル配線等によって接続され、外縁部に集電電極が配置されており、発生した電力を外部に取り出される構造となっている。基板とセルの間には、セルの保護や集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルムまたは充填樹脂の形で用いてもよい。また、外部からの衝撃が少ないところなど表面を硬い素材で覆う必要のない場所において使用する場合には、表面保護層を透明プラスチックフィルムで構成し、または上記充填樹脂を硬化させることによって保護機能を付与し、片側の支持基板をなくすことが可能である。支持基板の周囲は、内部の密封および太陽電池モジュールの剛性を確保するため金属製のフレームでサンドイッチ状に固定し、支持基板とフレームとの間は封止材料で密封シールする。また、セル自体や支持基板、充填材料および封止材料に可撓性の素材を用いれば、曲面を有する太陽電池モジュールを構成することもできる。   In a typical super straight type or substrate type solar cell module, cells are arranged at regular intervals between support substrates that are transparent on one or both sides and treated with antireflection, and adjacent cells are metal leads or flexible wiring. The current collecting electrodes are arranged on the outer edge portion, and the generated power is taken out to the outside. Various types of plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency. Also, when used in places where there is no need to cover the surface with a hard material, such as where there is little impact from the outside, the surface protective layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin. It is possible to eliminate the supporting substrate on one side. The periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure the internal sealing and the rigidity of the solar cell module, and the support substrate and the frame are hermetically sealed with a sealing material. In addition, if a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell module having a curved surface can be configured.

ポリマーフィルム等のフレキシブル支持体を用いた太陽電池の場合、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより電池本体を作製できる。また、Solar Energy Materials and Solar Cells, 48,p383−391に記載の「SCAF」とよばれる太陽電池モジュール構造とすることもできる。   In the case of a solar cell using a flexible support such as a polymer film, cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material. Thus, the battery body can be produced. Moreover, it can also be set as the solar cell module structure called "SCAF" as described in Solar Energy Materials and Solar Cells, 48, p383-391.

以下、本発明をさらに詳細に説明するために実施例を示すが、本発明は実施例に限定されるものではない。   Hereinafter, examples will be shown to describe the present invention in more detail, but the present invention is not limited to the examples.

(合成例1)高分子化合物A1の合成
下記の単量体(1)と下記の単量体(2)とを用いて、高分子化合物A1を合成した。
(Synthesis Example 1) Synthesis of Polymer Compound A1 Polymer compound A1 was synthesized using the following monomer (1) and the following monomer (2).

Figure 2015220331
Figure 2015220331

内部の気体をアルゴンガスで置換した容量200mLのフラスコに、単量体(1)を1.181g(2.00mmol)、単量体(2)を0.9164g(2.00mmol)、Aliquat336(アルドリッチ社製)を460mg、トルエンを40mL、トリス(o−メトキシフェニル)ホスフィンを26.4mg加えて懸濁液とした。得られた懸濁液をアルゴンガスで30分間バブリングした。バブリング後、酢酸パラジウム(II)を5.2mg加え、100℃のオイルバスにフラスコを浸した。その後、10mLの16.7重量%の炭酸ナトリウム水溶液を15分間かけて滴下した。滴下後、100℃で3.5時間攪拌し、その後、ホウ酸フェニル270mgを1mLのTHFに溶解させた溶液を加えてさらに9時間100℃で攪拌した。攪拌後、フラスコを25℃まで冷却し、トルエンを25mL加えた。得られた溶液を50mLの水で2回洗浄し、3重量%の酢酸水溶液50mLで2回洗浄し、さらに50mLの水で2回洗浄した。得られた有機層をメタノール1000mLに注いでポリマーを析出させた。   Into a 200 mL flask in which the internal gas was replaced with argon gas, 1.181 g (2.00 mmol) of monomer (1), 0.9164 g (2.00 mmol) of monomer (2), Aliquat 336 (Aldrich) 460 mg, toluene (40 mL), and tris (o-methoxyphenyl) phosphine (26.4 mg) were added to form a suspension. The resulting suspension was bubbled with argon gas for 30 minutes. After bubbling, 5.2 mg of palladium (II) acetate was added, and the flask was immersed in an oil bath at 100 ° C. Thereafter, 10 mL of a 16.7% by weight aqueous sodium carbonate solution was added dropwise over 15 minutes. After the dropwise addition, the mixture was stirred at 100 ° C. for 3.5 hours, and then a solution prepared by dissolving 270 mg of phenyl borate in 1 mL of THF was added and further stirred at 100 ° C. for 9 hours. After stirring, the flask was cooled to 25 ° C., and 25 mL of toluene was added. The resulting solution was washed twice with 50 mL of water, washed twice with 50 mL of a 3 wt% aqueous acetic acid solution, and further washed twice with 50 mL of water. The obtained organic layer was poured into 1000 mL of methanol to precipitate a polymer.

析出したポリマーをろ過して回収し、1.43gのポリマーを得た。得られたポリマーを100mLのクロロホルムに溶解し、100gのアルミナを充填したカラムを通過させることにより精製した。得られたクロロホルム溶液をメタノールに注いで析出させ、ろ過、乾燥して精製ポリマーを得た。得られた精製ポリマーを高分子化合物A1という。高温条件(140℃)下で測定した重量平均分子量は、ポリスチレン換算の重量平均分子量が78000であり、ポリスチレン換算の数平均分子量が28000であった。   The precipitated polymer was collected by filtration to obtain 1.43 g of polymer. The polymer obtained was dissolved in 100 mL of chloroform and purified by passing through a column packed with 100 g of alumina. The obtained chloroform solution was poured into methanol for precipitation, filtered and dried to obtain a purified polymer. The obtained purified polymer is referred to as polymer compound A1. The weight average molecular weight measured under high temperature conditions (140 ° C.) was a polystyrene equivalent weight average molecular weight of 78,000, and a polystyrene equivalent number average molecular weight of 28,000.

Figure 2015220331
Figure 2015220331

前記単量体(1)及び単量体(2)を用いる上記合成例1と同様の反応経路により、前記高分子化合物A1と同じ構成単位からなり、高分子化合物A1とは分子量が異なる高分子化合物A2及び高分子化合物A3をそれぞれ得た。140℃で測定した高分子化合物A2のポリスチレン換算の重量平均分子量は43300であり、ポリスチレン換算の数平均分子量は19400であった。140℃で測定した高分子化合物A3のポリスチレン換算の重量平均分子量は26900であり、ポリスチレン換算の数平均分子量は8000であった。   A polymer comprising the same structural unit as the polymer compound A1 and having a molecular weight different from that of the polymer compound A1 by the same reaction route as in Synthesis Example 1 using the monomer (1) and the monomer (2). Compound A2 and polymer compound A3 were obtained. The polymer compound A2 measured at 140 ° C. had a polystyrene equivalent weight average molecular weight of 43,300 and a polystyrene equivalent number average molecular weight of 19,400. The polystyrene equivalent weight average molecular weight of the polymer compound A3 measured at 140 ° C. was 26900, and the polystyrene equivalent number average molecular weight was 8,000.

(実施例1)光電変換素子の作製及び評価
スパッタ法により150nmの厚さでITO膜を付けたガラス基板を、トルエン、アセトン、エタノールをこの順に用いて各15分間超音波洗浄した後、UV−O洗浄機(Nippon Laser & Electronics Lab、NL−UV253S)を用いて、紫外線の照射により発生したオゾンにより30分間洗浄する、表面処理を行った。
Example 1 Production and Evaluation of Photoelectric Conversion Element A glass substrate with an ITO film having a thickness of 150 nm formed by sputtering was ultrasonically cleaned for 15 minutes each using toluene, acetone and ethanol in this order, and then UV- Using an O 3 cleaning machine (Nippon Laser & Electronics Lab, NL-UV253S), surface treatment was performed by cleaning with ozone generated by irradiation of ultraviolet rays for 30 minutes.

表面処理を行ったITO基板上にポリ(3,4ーエチレンジオキシチオフェン):ポリ(4−スチレンスルホン酸塩)(PEDOT:PSS、H.C.Stark、PH−500)をスピンコート法(400rpm、10s、3000rpm、99s)により塗布して薄膜を得た。得られた薄膜を大気中にて140℃で10分間熱処理した。   A poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) (PEDOT: PSS, HC Stark, PH-500) is spin-coated on a surface-treated ITO substrate ( 400 rpm, 10 s, 3000 rpm, 99 s) to obtain a thin film. The obtained thin film was heat-treated at 140 ° C. for 10 minutes in the air.

次に、下記式で表される電子供与性高分子化合物であるポリ(3−ヘキシルチオフェン)(高分子化合物B、Aldrich製、Mw=42300、Mw/Mn=1.9、RR=90%)及び電子受容性高分子化合物A1を、高分子化合物Bの重量に対する電子受容性高分子化合物A1の重量の比が1となるように量り取った。高分子化合物B及び電子受容性高分子化合物A1の全体の濃度が12mg/mLとなるようにグローブボックス中、窒素ガスを用いる不活性雰囲気下でクロロホルム(ナカライテスク、スペクトル用特性試薬)を加え、60℃で3時間攪拌してクロロホルム溶液を調製した。得られたクロロホルム溶液を、グローブボックス中、窒素ガスを用いる不活性雰囲気下でPEDOT:PSSの薄膜上にスピンコート法(3000rpm、60s)により塗布して膜を形成した。形成された膜の厚さは約66nmであった。該膜が形成された構造体をグローブボックス中、不活性雰囲気下、140℃で10分間熱処理して活性層を形成した。その後、真空蒸着機により、厚さ10nmのCa層を活性層上に蒸着し、次いで、厚さ70nmのAl層を蒸着することにより、光電変換素子を作製した。得られた光電変換素子の厚さ方向から見た平面的な形状は直径3.0mmの円形であった。   Next, poly (3-hexylthiophene) which is an electron donating polymer compound represented by the following formula (polymer compound B, manufactured by Aldrich, Mw = 42300, Mw / Mn = 1.9, RR = 90%) The electron-accepting polymer compound A1 was weighed so that the ratio of the weight of the electron-accepting polymer compound A1 to the weight of the polymer compound B was 1. Chloroform (Nacalai Tesque, spectral characteristic reagent) was added under an inert atmosphere using nitrogen gas in the glove box so that the total concentration of the polymer compound B and the electron-accepting polymer compound A1 was 12 mg / mL. The mixture was stirred at 60 ° C. for 3 hours to prepare a chloroform solution. The obtained chloroform solution was applied by spin coating (3000 rpm, 60 s) on a thin film of PEDOT: PSS in an inert atmosphere using nitrogen gas in a glove box to form a film. The thickness of the formed film was about 66 nm. The structure on which the film was formed was heat-treated at 140 ° C. for 10 minutes in an inert atmosphere in a glove box to form an active layer. Then, the photoelectric conversion element was produced by vapor-depositing Ca layer with a thickness of 10 nm on an active layer with a vacuum evaporation machine, and vapor-depositing Al layer with a thickness of 70 nm then. The planar shape seen from the thickness direction of the obtained photoelectric conversion element was a circle having a diameter of 3.0 mm.

得られた光電変換素子にソーラーシミュレーター(イーグルエンジニアリング社製、Xe500ES−AM1.5G)を用いて太陽光(AM1.5G、100mWcmー2)相当の光を照射し、発生した電流を測定して短絡電流密度(JSC)、開放電圧(VOC)、曲線因子(FF)及び光電変換効率(η)を求めた。JSCは5.687mAcm−2であり、VOCは1.282Vであり、FFは0.6305であり、ηは4.597%であった。 The obtained photoelectric conversion element is irradiated with light equivalent to sunlight (AM1.5G, 100 mWcm -2 ) using a solar simulator (Eagle Engineering, Xe500ES-AM1.5G), and the generated current is measured and short-circuited. The current density (J SC ), open circuit voltage (V OC ), fill factor (FF), and photoelectric conversion efficiency (η) were determined. J SC is 5.687mAcm -2, V OC is 1.282V, FF is .6305, eta was 4.597%.

Figure 2015220331
Figure 2015220331

(比較例1)光電変換素子の作製及び評価
高分子化合物A1の代わりに高分子化合物A2(重量平均分子量43300)を用いた以外は、実施例1と同様にして光電変換素子を作製し、評価した。JSCは2.64mAcm−2であり、VOCは1.26Vであり、FFは0.559であり、ηは1.86%であった。
Comparative Example 1 Production and Evaluation of Photoelectric Conversion Element A photoelectric conversion element was produced and evaluated in the same manner as in Example 1 except that polymer compound A2 (weight average molecular weight 43300) was used instead of polymer compound A1. did. J SC is 2.64mAcm -2, V OC is 1.26V, FF is 0.559, eta was 1.86%.

(比較例2)光電変換素子の作製及び評価
高分子化合物A1の代わりに高分子化合物A3(重量平均分子量26900)を用いた以外は、実施例1と同様にして光電変換素子を作製し、評価した。JSCは3.976mAcm−2であり、VOCは1.286Vであり、FFは0.588であり、ηは3.006%であった。
Comparative Example 2 Production and Evaluation of Photoelectric Conversion Element A photoelectric conversion element was produced and evaluated in the same manner as in Example 1 except that polymer compound A3 (weight average molecular weight 26900) was used instead of polymer compound A1. did. J SC is 3.976mAcm -2, V OC is 1.286V, FF is 0.588, eta was 3.006%.

以上のように、本発明にかかる光電変換素子によれば、活性層が、不活性雰囲気下で溶液を塗布することにより形成されるので、例えば酸素等による活性層の電気的な特性の低下を抑制することができ、光電変換効率を向上させることができる。また、光電変換効率の向上には、電子供与性高分子化合物及び電子受容性高分子化合物の重量平均分子量を既に説明した所定範囲とすることによりミクロ相分離構造がより好ましい構造となっていることが寄与しているものと考えられる。   As described above, according to the photoelectric conversion element of the present invention, since the active layer is formed by applying a solution in an inert atmosphere, the electrical characteristics of the active layer are reduced due to, for example, oxygen. It can suppress and can improve photoelectric conversion efficiency. In order to improve the photoelectric conversion efficiency, the microphase separation structure should be a more preferable structure by setting the weight average molecular weight of the electron-donating polymer compound and the electron-accepting polymer compound within the predetermined range described above. Is considered to have contributed.

本発明にかかる光電変換素子は、太陽電池、光センサーなどの光電デバイスへの適用に有用であり、特に、太陽電池として好適に用いることができる。   The photoelectric conversion element concerning this invention is useful for application to photoelectric devices, such as a solar cell and an optical sensor, and can be used especially suitably as a solar cell.

Claims (9)

第1の電極と、第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有する光電変換素子であって、
前記活性層が電子供与性高分子化合物と電子受容性高分子化合物とを含む溶液を不活性雰囲気下で塗布して形成され、前記電子供与性高分子化合物及び前記電子受容性高分子化合物のうちの少なくとも一方が、置換基を有していてもよいアリーレン基、及び置換基を有していてもよい2価の複素環基からなる群から選ばれる1種以上の構成単位のみからなる高分子化合物であり、前記電子供与性高分子化合物のポリスチレン換算の重量平均分子量が20000以上70000以下であり、かつ前記電子受容性高分子化合物のポリスチレン換算の重量平均分子量が70000以上である、光電変換素子。
A photoelectric conversion element having a first electrode and a second electrode, and having an active layer between the first electrode and the second electrode,
The active layer is formed by applying a solution containing an electron-donating polymer compound and an electron-accepting polymer compound under an inert atmosphere, and the active layer includes the electron-donating polymer compound and the electron-accepting polymer compound. A polymer comprising at least one structural unit selected from the group consisting of an arylene group which may have a substituent and a divalent heterocyclic group which may have a substituent. A photoelectric conversion element, which is a compound, wherein the electron-donating polymer compound has a polystyrene-equivalent weight average molecular weight of 20,000 or more and 70000 or less, and the electron-accepting polymer compound has a polystyrene-equivalent weight average molecular weight of 70000 or more. .
前記電子供与性高分子化合物及び前記電子受容性高分子化合物の両方が、アリーレン基、及び2価の複素環基からなる群から選ばれる1種以上の構成単位のみからなる高分子化合物である、請求項1に記載の光電変換素子。   Both the electron-donating polymer compound and the electron-accepting polymer compound are polymer compounds composed of only one or more structural units selected from the group consisting of an arylene group and a divalent heterocyclic group. The photoelectric conversion element according to claim 1. 前記電子供与性高分子化合物及び前記電子受容性高分子化合物のうちの少なくとも一方が、チオフェン骨格を含む構成単位を含む高分子化合物である請求項1又は2に記載の光電変換素子。   3. The photoelectric conversion device according to claim 1, wherein at least one of the electron donating polymer compound and the electron accepting polymer compound is a polymer compound containing a structural unit containing a thiophene skeleton. 前記電子供与性高分子化合物及び前記電子受容性高分子化合物のうちの少なくとも一方が、下記式(1)で表される構成単位を含む高分子化合物である、請求項1〜3のいずれか1項に記載の光電変換素子。
Figure 2015220331
(式(1)中、R、R、R、R、R及びRは、それぞれ独立に、水素原子又は置換基を表す。R、R、R、R、R及びRのうちの2個が連結し、連結しているR、R、R、R、R及びRのうちの2個がそれぞれ結合している炭素原子とともに環状構造を形成していてもよい。X、X及びXは、それぞれ独立に、硫黄原子、酸素原子、セレン原子、−N(R)−で表される基、又は−CR=CR−で表される基を表す。R、R及びRは、それぞれ独立に、水素原子又は置換基を表す。n及びmは、それぞれ独立に、0〜5の整数を表す。Rが複数個ある場合、それらは同一であっても異なっていてもよい。Rが複数個ある場合、それらは同一であっても異なっていてもよい。Rが複数個ある場合、それらは同一であっても異なっていてもよい。Rが複数個ある場合、それらは同一であっても異なっていてもよい。Xが複数個ある場合、それらは同一であっても異なっていてもよい。Xが複数個ある場合、それらは同一であっても異なっていてもよい。)
4. The polymer compound according to claim 1, wherein at least one of the electron-donating polymer compound and the electron-accepting polymer compound is a polymer compound containing a structural unit represented by the following formula (1). The photoelectric conversion element of a term.
Figure 2015220331
(In the formula (1), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently represents a hydrogen atom or a substituent. R 1 , R 2 , R 3 , R 4 , 2 is connected one of R 5 and R 6, ring together with the carbon atom to which two of R 1, R 2, R 3 , R 4, R 5 and R 6 which are connected are coupled respectively X 1 , X 2 and X 3 each independently represent a sulfur atom, an oxygen atom, a selenium atom, a group represented by —N (R 7 ) —, or —CR 8 ═ CR 9 - represents a group represented by .R 7, R 8 and R 9 each independently, .n and m represents a hydrogen atom or a substituent, each independently, represent an integer of 0 to 5. When there are a plurality of R 1 s , they may be the same or different, and when there are a plurality of R 2 s , they are the same. When there are a plurality of R 5 s , they may be the same or different, and when there are a plurality of R 6 s , they may be the same or different. When there are a plurality of X 1 s , they may be the same or different.When there are a plurality of X 3 s , they may be the same or different.)
前記式(1)で表される構成単位を含む高分子化合物において、前記式(1)で表される構成単位が、該高分子化合物が有する全ての種類の構成単位の中で、前記式(1)で表される構成単位が最も多く含まれる、請求項4に記載の光電変換素子。   In the polymer compound containing the structural unit represented by the formula (1), the structural unit represented by the formula (1) is the structural unit represented by the formula (1) among all types of structural units of the polymer compound. The photoelectric conversion element according to claim 4, wherein most of the structural unit represented by 1) is contained. 請求項1〜5のいずれか1項に記載の光電変換素子を含む太陽電池モジュール。   The solar cell module containing the photoelectric conversion element of any one of Claims 1-5. 請求項1〜5のいずれか1項に記載の光電変換素子、又は請求項6に記載の太陽電池モジュールを含むイメージセンサー。   The image sensor containing the photoelectric conversion element of any one of Claims 1-5, or the solar cell module of Claim 6. 第1の電極と、第2の電極とを有し、該第1の電極と該第2の電極との間に活性層を有する光電変換素子の製造方法であって、
電子供与性高分子化合物及び電子受容性高分子化合物のうちの少なくとも一方が、アリーレン基、及び2価の複素環基からなる群から選ばれる1種以上の構成単位のみからなる高分子化合物であり、ポリスチレン換算の重量平均分子量が20000以上70000以下である電子供与性高分子化合物及びポリスチレン換算の重量平均分子量が70000以上である電子受容性高分子化合物を含む溶液を不活性雰囲気下で塗布して活性層を形成する工程を含む、請求項1〜7のいずれか1項に記載の光電変換素子の製造方法。
A method of manufacturing a photoelectric conversion element having a first electrode and a second electrode, and having an active layer between the first electrode and the second electrode,
At least one of the electron donating polymer compound and the electron accepting polymer compound is a polymer compound comprising only one or more structural units selected from the group consisting of an arylene group and a divalent heterocyclic group. And applying a solution containing an electron-donating polymer compound having a polystyrene-equivalent weight average molecular weight of 20000 or more and 70000 or less and an electron-accepting polymer compound having a polystyrene-equivalent weight average molecular weight of 70000 or more in an inert atmosphere. The manufacturing method of the photoelectric conversion element of any one of Claims 1-7 including the process of forming an active layer.
前記活性層を形成する工程が、前記溶液を不活性雰囲気下で塗布した後に、さらに不活性雰囲気下で加熱処理することにより活性層を形成する工程である、請求項8に記載の光電変換素子の製造方法。   The photoelectric conversion element according to claim 8, wherein the step of forming the active layer is a step of forming the active layer by applying heat treatment under an inert atmosphere after applying the solution under an inert atmosphere. Manufacturing method.
JP2014102662A 2014-05-16 2014-05-16 Photoelectric conversion element Pending JP2015220331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014102662A JP2015220331A (en) 2014-05-16 2014-05-16 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014102662A JP2015220331A (en) 2014-05-16 2014-05-16 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2015220331A true JP2015220331A (en) 2015-12-07

Family

ID=54779480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014102662A Pending JP2015220331A (en) 2014-05-16 2014-05-16 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2015220331A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051979A1 (en) * 2016-09-14 2018-03-22 国立大学法人大阪大学 Polymer compound and organic semiconductor material containing same
WO2021200317A1 (en) * 2020-03-31 2021-10-07 住友化学株式会社 Photodetector element
WO2021200316A1 (en) * 2020-03-31 2021-10-07 住友化学株式会社 Photodetector element, sensor and biometric device including same, composition, and ink
WO2021200315A1 (en) * 2020-03-31 2021-10-07 住友化学株式会社 Photodetector element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013246A (en) * 2007-07-03 2009-01-22 Sumitomo Chemical Co Ltd Polymer and organic photo-electric conversion element using the same
JP2009073808A (en) * 2007-08-30 2009-04-09 Sumitomo Chemical Co Ltd Polymer compound and organic photo-electric conversion element produced by using the same
JP2011100869A (en) * 2009-11-06 2011-05-19 Mitsubishi Chemicals Corp Photoelectric conversion element and solar battery using the element
JP2011168747A (en) * 2010-02-22 2011-09-01 Kyoto Univ Conjugated polymer, and organic thin film solar cell using the same
JP2012519964A (en) * 2009-03-05 2012-08-30 コナルカ テクノロジーズ インコーポレイテッド Photocell having a plurality of electron donors
WO2013118796A1 (en) * 2012-02-07 2013-08-15 積水化学工業株式会社 Organic thin film solar cell
WO2013142841A1 (en) * 2012-03-22 2013-09-26 Polyera Corporation Polymeric blends and related optoelectronic devices
JP2013207252A (en) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2014007309A (en) * 2012-06-26 2014-01-16 Hitachi High-Technologies Corp Deposition apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013246A (en) * 2007-07-03 2009-01-22 Sumitomo Chemical Co Ltd Polymer and organic photo-electric conversion element using the same
JP2009073808A (en) * 2007-08-30 2009-04-09 Sumitomo Chemical Co Ltd Polymer compound and organic photo-electric conversion element produced by using the same
JP2012519964A (en) * 2009-03-05 2012-08-30 コナルカ テクノロジーズ インコーポレイテッド Photocell having a plurality of electron donors
JP2011100869A (en) * 2009-11-06 2011-05-19 Mitsubishi Chemicals Corp Photoelectric conversion element and solar battery using the element
JP2011168747A (en) * 2010-02-22 2011-09-01 Kyoto Univ Conjugated polymer, and organic thin film solar cell using the same
WO2013118796A1 (en) * 2012-02-07 2013-08-15 積水化学工業株式会社 Organic thin film solar cell
WO2013142841A1 (en) * 2012-03-22 2013-09-26 Polyera Corporation Polymeric blends and related optoelectronic devices
JP2013207252A (en) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2014007309A (en) * 2012-06-26 2014-01-16 Hitachi High-Technologies Corp Deposition apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051979A1 (en) * 2016-09-14 2018-03-22 国立大学法人大阪大学 Polymer compound and organic semiconductor material containing same
JPWO2018051979A1 (en) * 2016-09-14 2019-06-24 国立大学法人大阪大学 Polymer compound, and organic semiconductor material containing the same
WO2021200317A1 (en) * 2020-03-31 2021-10-07 住友化学株式会社 Photodetector element
WO2021200316A1 (en) * 2020-03-31 2021-10-07 住友化学株式会社 Photodetector element, sensor and biometric device including same, composition, and ink
WO2021200315A1 (en) * 2020-03-31 2021-10-07 住友化学株式会社 Photodetector element
JP2021163848A (en) * 2020-03-31 2021-10-11 住友化学株式会社 Photodetection element
JP2021163869A (en) * 2020-03-31 2021-10-11 住友化学株式会社 Photodetection element
JP2021163844A (en) * 2020-03-31 2021-10-11 住友化学株式会社 Light detection element, sensor and biometric authentication device including the light detection element, composition, and ink
JP7321962B2 (en) 2020-03-31 2023-08-07 住友化学株式会社 Photodetector

Similar Documents

Publication Publication Date Title
JP2014512100A (en) Electro-optic device active material and electro-optic device
JP6280208B2 (en) Polymer and solar cell using the same
CA2844439C (en) Process for the preparation of polymers containing benzohetero[1,3]diazole units
Medlej et al. Effect of spacer insertion in a commonly used dithienosilole/benzothiadiazole-based low band gap copolymer for polymer solar cells
Fan et al. Fluorination as an effective tool to increase the photovoltaic performance of indacenodithiophene-alt-quinoxaline based wide-bandgap copolymers
US20110127515A1 (en) Photoelectric conversion element
JP2015220331A (en) Photoelectric conversion element
JP2008106239A (en) Organic photoelectric conversion element and polymer useful for producing the same
JP2012186462A (en) Manufacturing method of organic photoelectric conversion element
JP5639783B2 (en) Photoelectric conversion element
JP5476660B2 (en) Organic photoelectric conversion device and polymer useful for production thereof
JP2013207252A (en) Photoelectric conversion element
JP2012151468A (en) Photoelectric conversion element and composition for use therein
JP5844368B2 (en) Conjugated polymer composition and photoelectric conversion element using the same
JP2011246594A (en) Polymer compound, and photoelectric conversion element using the same
WO2013047293A1 (en) Photoelectric conversion element
KR101197038B1 (en) Organic solar cell including organic active layer containing thienylenevinylene compound and method of fabricating the same
JP6180099B2 (en) Photoelectric conversion element
JP5957564B1 (en) Polymer and solar cell using the same
JP2012021150A (en) Method for producing high-molecular compound
KR20200045318A (en) Novel polymer and organic electronic device containing the same
JP2013207259A (en) Photoelectric conversion element
Kim et al. Novel 4, 7-dithien-2-yl-2, 1, 3-benzothiadiazole-based Conjugated Copolymers with Cyano group in Vinylene Unit for Photovoltaic Applications
JP2014051583A (en) Conjugated block copolymer and photoelectric conversion element using the same
정의혁 Design and Synthesis of Isoindigo-Based Conjugated Polymers for High Performance Polymer Solar Cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180410