JP2010236006A - Restoration heat-treatment method for metal member - Google Patents

Restoration heat-treatment method for metal member Download PDF

Info

Publication number
JP2010236006A
JP2010236006A JP2009084411A JP2009084411A JP2010236006A JP 2010236006 A JP2010236006 A JP 2010236006A JP 2009084411 A JP2009084411 A JP 2009084411A JP 2009084411 A JP2009084411 A JP 2009084411A JP 2010236006 A JP2010236006 A JP 2010236006A
Authority
JP
Japan
Prior art keywords
metal member
temperature
heat treatment
heating
affected zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009084411A
Other languages
Japanese (ja)
Inventor
Toshimi Kobayashi
十思美 小林
Akihiro Kanetani
章宏 金谷
Junichi Kusumoto
淳一 楠元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Nippon Steel Corp
Original Assignee
Kyushu Electric Power Co Inc
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Sumitomo Metal Industries Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP2009084411A priority Critical patent/JP2010236006A/en
Publication of JP2010236006A publication Critical patent/JP2010236006A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment method which can surely and sufficiently restore creep strength at a weld heat-affected zone of a metal member. <P>SOLUTION: This heat treatment method includes: heating the weld heat-affected zone of the metal member to the temperature T1 of an A<SB>3</SB>transformation temperature or higher, with a heating apparatus; holding the metal member at the temperature T1 for a predetermined time; subsequently lowering the temperature of the metal member to a predetermined temperature T3; then re-heating the metal member to the temperature T2 of lower than the A<SB>3</SB>transformation temperature; holding the metal member at the temperature T2 for a predetermined time; and cooling the metal member to room temperature. When heating the metal member to the temperature T1, a heating rate is set at 50°C/h or more but less than 800°C/h. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、火力発電プラント等において高温高圧下で使用された金属部材の溶接熱影響部のクリープ強度を再生熱処理により回復させる方法に関する。   The present invention relates to a method for recovering the creep strength of a welding heat-affected zone of a metal member used under high temperature and high pressure in a thermal power plant or the like by regenerative heat treatment.

火力発電プラント等において使用される設備(ボイラまたはタービン等)では、高温高圧(550℃〜600℃、250MPa)の気体が扱われる。このような環境で使用される設備においては、高温高圧の気体に長時間曝されることによって発生する金属部材(例えば、気体が流通する鋼管)の溶接熱影響部(HAZ:Heat Affected Zone)のクリープ損傷が特に問題となる。溶接部近傍は、溶接時の熱影響を受けて溶接熱影響部が生成され、高温高圧下で使用されるとクリープ損傷の影響を特に受けやすいからである。   In equipment (such as a boiler or a turbine) used in a thermal power plant or the like, high-temperature and high-pressure (550 ° C. to 600 ° C., 250 MPa) gas is handled. In equipment used in such an environment, the heat affected zone (HAZ) of a metal member (for example, a steel pipe through which gas flows) generated by prolonged exposure to high-temperature and high-pressure gas is used. Creep damage is a particular problem. This is because, in the vicinity of the welded portion, a weld heat affected zone is generated due to the heat effect during welding, and when used under high temperature and high pressure, it is particularly susceptible to creep damage.

そこで、従来より、クリープ損傷によって低下した金属部材の強度を回復させることを目的として種々の方法が提案されている。例えば、特許文献1には、金属部材をA変態点以上の温度で加熱保持することにより、金属部材の劣化部の強度を回復させる強度回復方法が記載されている。この方法によれば、劣化部のクリープ強度を回復させるために、劣化部が加熱速度約850℃/hでA変態点以上の温度まで加熱されている。 Therefore, various methods have been proposed in the past for the purpose of restoring the strength of the metal member that has been lowered due to creep damage. For example, Patent Document 1, by heating holding the metallic member at A 3 transformation point or above the temperature, intensity recovery method to recover the strength of the degradation of the metallic member is described. According to this method, in order to recover the creep strength of the deteriorated part, the deterioration portion is heated to a temperature of at least A 3 transformation point at a heating rate of about 850 ° C. / h.

特開2008−132511号公報JP 2008-132511 A

しかしながら、本発明者らは、種々の実験および考察により、A変態点以上の温度までの加熱速度が、劣化部のクリープ強度回復に大きな影響を与えることを見出した。 However, the present inventors have found that the various experiments and considerations, the heating rate to a temperature of at least A 3 transformation point has been found that a significant effect on creep strength recovery deteriorated part.

本発明の目的は、金属部材の溶接熱影響部のクリープ強度を確実かつ十分に回復させることができる熱処理方法を提供することである。   An object of the present invention is to provide a heat treatment method capable of reliably and sufficiently recovering the creep strength of a weld heat affected zone of a metal member.

本発明は、以下に示す発明を要旨とする。   The gist of the present invention is as follows.

本発明に係る熱処理方法は、高温高圧下で使用された金属部材の溶接熱影響部のクリープ強度を回復するための熱処理方法であって、前記金属部材の溶接熱影響部を50℃/h以上800℃/h未満の加熱速度でA変態点以上の温度まで加熱する工程を備えるものである。 A heat treatment method according to the present invention is a heat treatment method for recovering the creep strength of a welding heat-affected zone of a metal member used under high temperature and high pressure, wherein the welding heat-affected zone of the metal member is 50 ° C./h or more. at a heating rate of less than 800 ° C. / h are those comprising the step of heating to a temperature of at least a 3 transformation point.

この熱処理方法によれば、金属部材の溶接熱影響部がA変態点以上の温度まで加熱されるので、結晶粒を再結晶させることができる。再結晶は粒界、特に炭化物が存在している部分から核成長が生じるので、熱処理前の金属部材の溶接熱影響部の結晶粒界にクリープ強度劣化の原因の一つであるボイドが存在している場合でも、そのボイドを再結晶後の結晶粒内に取り込むことができる。 According to this heat treatment method, the weld heat affected zone of the metal member is heated to a temperature of at least A 3 transformation point, it is possible to recrystallize the grain. Since recrystallization causes nucleation from grain boundaries, particularly where carbides exist, voids that are one of the causes of creep strength degradation exist at the crystal grain boundaries in the weld heat affected zone of metal parts before heat treatment. Even in such a case, the void can be taken into the crystal grains after recrystallization.

また、熱処理前の金属部材の溶接熱影響部の結晶粒界に炭化物が存在している場合でも、その炭化物を固溶させることができるとともに、微細化することができる。これらの結果、ボイドまたは炭化物を起点とする金属部材の溶接熱影響部のクリープ強度劣化による亀裂発生および亀裂成長を防止することができる。また、この熱処理方法によれば、金属部材の溶接熱影響部が50℃/h以上800℃/h未満の加熱速度でA変態点以上の温度まで加熱されるので、従来の加熱速度約850℃/h以上でA変態点以上の温度まで加熱する熱処理に比べて生成される結晶粒の粒径を十分に大きくすることができる。そのため金属部材の溶接熱影響部のクリープ強度を十分に回復させることができる。 Moreover, even when carbide is present at the crystal grain boundary of the weld heat affected zone of the metal member before the heat treatment, the carbide can be dissolved and refined. As a result, it is possible to prevent the occurrence of cracks and crack growth due to the deterioration of the creep strength of the weld heat affected zone of the metal member starting from the void or carbide. Further, according to this heat treatment method, the weld heat affected zone of the metal member is heated to a temperature of at least A 3 transformation point at a heating rate of less than 50 ° C. / h or higher 800 ° C. / h, about conventional heating rate 850 ° C. / h or more a 3 transformation point or more the grain size of the crystal grains to be generated as compared to the thermal treatment heating to a temperature can be sufficiently increased. Therefore, the creep strength of the weld heat affected zone of the metal member can be sufficiently recovered.

熱処理方法は、A変態点以上の温度まで加熱する工程の後に300℃以下に冷却し、A変態点未満の温度まで再加熱する工程をさらに備えてもよい。この場合、焼き戻し処理により組織を均質化して金属部材の溶接熱影響部のクリープ強度の機械的性質をより改善することができる。 The heat treatment method may further include a step of cooling to 300 ° C. or lower after the step of heating to a temperature equal to or higher than the A 3 transformation point and reheating to a temperature lower than the A 3 transformation point. In this case, the mechanical properties of the creep strength of the weld heat affected zone of the metal member can be further improved by homogenizing the structure by tempering treatment.

本発明によれば、金属部材の溶接熱影響部のクリープ強度を確実かつ十分に回復させることができる。   According to the present invention, the creep strength of the weld heat affected zone of the metal member can be reliably and sufficiently recovered.

本実施の形態に係る再生熱処理方法の一例を示す図である。It is a figure which shows an example of the regeneration heat processing method which concerns on this Embodiment. 金属部材の断面図である。It is sectional drawing of a metal member. 高温高圧の環境下において長時間使用された金属部材のHAZの結晶粒を示す写真である。It is a photograph which shows the crystal grain of HAZ of the metal member used for a long time in the environment of high temperature and high pressure. 再生熱処理における熱履歴を示す図である。It is a figure which shows the heat history in the regenerative heat processing. 再生熱処理後のHAZの結晶粒を示す写真である。It is a photograph which shows the crystal grain of HAZ after regenerative heat processing. 実施例における再生熱処理の熱履歴を示す図である。It is a figure which shows the heat history of the regeneration heat processing in an Example. 実施例と比較例クリープ破断特性を示す図である。It is a figure which shows an Example and a comparative example creep rupture characteristic.

以下、本発明の実施の形態に係る熱処理方法について説明する。なお、以下においては、鋼管の溶接熱影響部のクリープ強度回復方法を例に挙げて、本発明に係る熱処理方法を説明する。   Hereinafter, a heat treatment method according to an embodiment of the present invention will be described. In the following, the heat treatment method according to the present invention will be described by taking the method for recovering the creep strength of the weld heat affected zone of the steel pipe as an example.

図1は、本実施の形態に係る熱処理方法の一例を示す図である。なお、図1には、高温高圧下で使用された鋼管11および鋼管12からなる金属部材10が示されている。鋼管11および鋼管12は、溶接金属13により接続されている。図1に示すように、本実施の形態に係る熱処理方法においては、金属部材10の外周面(溶接金属13を含む溶接熱影響部)を覆うように布状の電気抵抗ヒータ14(以下、ヒータ14と略記する。)が設けられる。この状態で、ヒータ14により金属部材10が加熱される。それにより、金属部材10の溶接熱影響部のクリープ強度回復が行われる。なお、ヒータ14は、例えば、ニクロム線により構成される。以下、本発明に係る熱処理方法について詳細に説明する。   FIG. 1 is a diagram illustrating an example of a heat treatment method according to the present embodiment. FIG. 1 shows a metal member 10 composed of a steel pipe 11 and a steel pipe 12 used under high temperature and high pressure. The steel pipe 11 and the steel pipe 12 are connected by a weld metal 13. As shown in FIG. 1, in the heat treatment method according to the present embodiment, a cloth-like electric resistance heater 14 (hereinafter referred to as a heater) is formed so as to cover the outer peripheral surface of the metal member 10 (welding heat affected zone including the weld metal 13). 14 is abbreviated as 14). In this state, the metal member 10 is heated by the heater 14. Thereby, the creep strength recovery of the weld heat affected zone of the metal member 10 is performed. In addition, the heater 14 is comprised by the nichrome wire, for example. Hereinafter, the heat treatment method according to the present invention will be described in detail.

図2は、金属部材10の溶接金属13およびその周辺部を示す断面図である。図2に示すように、鋼管11,12の溶接金属13の両端部近傍には、溶接熱影響部15,16(以下、HAZ15,16と略記する。)が形成されている。本発明者らは、このHAZ15,16に注目して種々の実験を行い、金属部材10の溶接熱影響部のクリープ強度回復方法について考察した。   FIG. 2 is a cross-sectional view showing the weld metal 13 of the metal member 10 and its peripheral portion. As shown in FIG. 2, weld heat affected zones 15 and 16 (hereinafter abbreviated as HAZ 15 and 16) are formed in the vicinity of both ends of the weld metal 13 of the steel pipes 11 and 12. The inventors conducted various experiments paying attention to the HAZ 15 and 16 and considered a method for recovering the creep strength of the weld heat affected zone of the metal member 10.

図3は、高温高圧の環境下において長時間使用された金属部材10のHAZ15,16の結晶粒を示す写真である。   FIG. 3 is a photograph showing crystal grains of the HAZ 15 and 16 of the metal member 10 used for a long time in a high temperature and high pressure environment.

図3に示すように、高温高圧の環境下において長時間使用された金属部材のHAZ(図2の符号15,16)においては、結晶粒21(図3においては、一部を実線で図示する。)の粒界に複数のボイド22が生成されるとともに、複数の炭化物23が析出している。本発明者らは、これらのボイド22および炭化物23が、結晶粒21の粒界における亀裂発生および亀裂成長の要因になっていると考えた。そして、本発明者らは、このボイド22および炭化物23を結晶粒内に閉じ込めることができれば、金属部材のクリープ損傷を防止でき、クリープ強度を回復できると考えた。   As shown in FIG. 3, in the HAZ (reference numerals 15 and 16 in FIG. 2) of a metal member used for a long time in a high temperature and high pressure environment, a crystal grain 21 (in FIG. 3, a part is shown by a solid line). .)), A plurality of voids 22 are generated and a plurality of carbides 23 are precipitated. The present inventors considered that these voids 22 and carbides 23 cause crack initiation and crack growth at the grain boundaries of the crystal grains 21. And the present inventors thought that if the void 22 and the carbide 23 can be confined in the crystal grains, the creep damage of the metal member can be prevented and the creep strength can be recovered.

そこで、本発明者らは、ボイド22および炭化物23を結晶粒内に閉じ込めるために、以下に示す方法で金属部材の再生熱処理を行い、結晶粒の再結晶を試みた。素材は2.25(wt%)Cr−1(wt%)Mo鋼で、570℃、210MPaの高温高圧化で約30万時間稼働した外径720mmφ、肉厚60mmのボイラ用高温配管の溶接部近傍から管の長さ方向に平行に切り出した種々の試験片を用いて行った。なおこの部材のA変態点は、約880℃である。 Therefore, the present inventors tried recrystallization of the crystal grains by performing regenerative heat treatment of the metal member by the method described below in order to confine the voids 22 and carbides 23 in the crystal grains. The material is 2.25 (wt%) Cr-1 (wt%) Mo steel welded part of high temperature piping for boilers with outer diameter of 720mmφ and wall thickness of 60mm, operated for about 300,000 hours at 570 ° C and 210MPa high temperature and high pressure Various test pieces cut out from the vicinity in parallel to the length direction of the tube were used. Note A 3 transformation point of the member is about 880 ° C..

図4は、その再生熱処理における熱履歴を示す図である。この再生熱処理においては、まず、金属部材のHAZ(図2の符号15,16)を含む試験片をA変態点以上の温度T1(例えば、920℃)まで加熱速度300℃/hで加熱した。これにより、結晶粒を再結晶させることができるとともに、析出した炭化物を固溶させることができる。次に、試験片を温度T1で約20分間保持した後、温度T3(例えば、300℃)まで空冷した。次に、試験片をA変態点未満の温度T2(例えば、740℃)まで再度加熱した後、その状態で60分間保持した。その後、試験片を常温まで空冷した。これにより内部応力を緩和し、組織を均一化することができる。 FIG. 4 is a diagram showing a thermal history in the regeneration heat treatment. In this restoration thermal treatment, first, a test piece including HAZ (code 15, 16 in FIG. 2) of the metal member A 3 transformation point or more temperature T1 (for example, 920 ° C.) was heated at a heating rate of 300 ° C. / h until . Thereby, while being able to recrystallize a crystal grain, the precipitated carbide | carbonized_material can be made into solid solution. Next, after holding the test piece at a temperature T1 for about 20 minutes, it was air-cooled to a temperature T3 (for example, 300 ° C.). Next, a test piece temperature below A 3 transformation point T2 (e.g., 740 ° C.) was heated again until, and held in that state for 60 minutes. Thereafter, the test piece was air-cooled to room temperature. Thereby, internal stress can be relieved and the structure can be made uniform.

図5は、上記の熱処理後のHAZ(図2の符号15,16)の結晶粒を示す写真である。なお、図5においては、熱処理前の結晶粒(図3の符号21)が点線で、熱処理後の新たな結晶粒31が実線で一部図示されている。   FIG. 5 is a photograph showing crystal grains of the HAZ (reference numerals 15 and 16 in FIG. 2) after the heat treatment. In FIG. 5, crystal grains before heat treatment (reference numeral 21 in FIG. 3) are partially shown by dotted lines, and new crystal grains 31 after heat treatment are partially shown by solid lines.

図5に示すように、上記の再生熱処理により結晶粒が再結晶し、新たな結晶粒31(図5においては、一部を実線で示す。)が生成する。ここで、炭化物23の近傍には、再結晶粒核を生成する元素である炭素(C)が多く存在しているので、新たな結晶粒31は、熱処理前の結晶粒21(図5においては、一部を破線で示す。)の粒界に存在していた炭化物23の近傍から成長する。それにより、図5に示すように、新たな結晶粒31内にボイド22を取り込むことができる。また、炭化物(図3の符号23)は上記の熱処理により一旦固溶し、微細化して新たな結晶粒31内に再析出している。   As shown in FIG. 5, the crystal grains are recrystallized by the above regenerative heat treatment, and new crystal grains 31 (a part of which is shown by a solid line in FIG. 5) are generated. Here, since carbon (C), which is an element that generates recrystallized grain nuclei, is present in the vicinity of the carbide 23, new crystal grains 31 are formed as crystal grains 21 before heat treatment (in FIG. 5). , A part of which is indicated by a broken line.) Grows from the vicinity of the carbide 23 existing at the grain boundary. Thereby, as shown in FIG. 5, the void 22 can be taken into the new crystal grain 31. Further, the carbide (reference numeral 23 in FIG. 3) is once dissolved by the above heat treatment, refined, and re-precipitated in the new crystal grains 31.

このように、再結晶後の新たな結晶粒31においては、ボイド22および炭化物23が粒界上に存在する頻度が低くなる。また、炭化物23が微細化している。それにより、新たな結晶粒31の粒界においてボイド22または炭化物23を起点として亀裂が発生することを防止することができる。その結果、金属部材10の溶接熱影響部のクリープ強度が回復する。   Thus, in the new crystal grain 31 after recrystallization, the frequency with which the void 22 and the carbide | carbonized_material 23 exist on a grain boundary becomes low. Moreover, the carbide | carbonized_material 23 is refined | miniaturized. Thereby, it is possible to prevent cracks from starting from the voids 22 or the carbides 23 at the grain boundaries of the new crystal grains 31. As a result, the creep strength of the weld heat affected zone of the metal member 10 is recovered.

しかしながら、本発明者らのさらなる検討により、A変態点以上の温度までの加熱速度が、劣化部のクリープ強度回復に大きな影響を与えることを見出した。具体的には、金属部材10の溶接熱影響部をA変態点以上の温度まで加熱する際の加熱速度が速い場合には、再結晶後の新たな結晶粒31の粒径が十分に大きくならず、また逆に加熱速度が遅い場合には、再結晶後の新たな結晶粒31の粒径が十分に大きいにも拘わらず、金属部材10の溶接熱影響部のクリープ強度の回復が十分にされないことが判明した。そのため本発明者らは、加熱速度50℃/h以上800℃/h未満で金属部材10の溶接熱影響部をA変態点まで加熱することにより、劣化部のクリープ強度の回復を十分に出来ることを提案する。 However, a further investigation by the present inventors, the heating rate to a temperature of at least A 3 transformation point has been found that a significant effect on creep strength recovery deteriorated part. Specifically, the weld heat affected zone of the metal member 10 when the heating rate when heating to a temperature of at least A 3 transformation point is high, the new grain size of the crystal grains 31 after recrystallization is sufficiently large On the contrary, when the heating rate is slow, the creep strength of the weld heat affected zone of the metal member 10 is sufficiently recovered even though the grain size of the new crystal grain 31 after recrystallization is sufficiently large. Turned out not to be. Therefore the present inventors have found that by heating the weld heat affected zone of the metal member 10 to the A 3 transformation point lower than a heating rate of 50 ° C. / h or higher 800 ° C. / h, can be sufficiently recovered creep strength degradation portion Propose that.

そこで、本実施の形態においては、金属部材10の溶接熱影響部をA変態点まで加熱する際の加熱速度を50℃/h以上800℃/h未満に設定し、図4で説明した熱処理を行う。これにより、金属部材10の溶接熱影響部のクリープ強度を十分に回復させることができる。なお、クリープ強度を回復させるためには、急速加熱(850℃/h以上)や拘束によるボイドの圧接は必要ない。急速加熱が必要でないため、引張熱応力のリスクを低減し、また金属部材10の極表層部だけでなく肉中深くまでクリープ強度を容易に回復させることができる。 Therefore, in this embodiment, the heating rate when heating the weld heat affected zone of the metal member 10 to the A 3 transformation point set to less than 50 ° C. / h or higher 800 ° C. / h, as described in FIG. 4 heat treatment I do. Thereby, the creep strength of the welding heat affected zone of the metal member 10 can be sufficiently recovered. In order to recover the creep strength, rapid heating (850 ° C./h or more) or void pressing by restraint is not necessary. Since rapid heating is not required, the risk of tensile thermal stress can be reduced, and the creep strength can be easily recovered not only to the extreme surface layer portion of the metal member 10 but also to the depth of the meat.

なお、図4において温度T1は、A変態点以上の温度であればよい。好ましくはA変態点+30℃〜A変態点+100℃であり、上限として1200℃程度である。また、図4の例では、金属部材10の溶接熱影響部を温度T1まで加熱した後に、金属部材10の溶接熱影響部を温度T2まで再加熱しているが、再加熱を行うことなく金属部材10の溶接熱影響部を常温まで冷却してもよい。 The temperature T1 in FIG. 4 may be a temperature of more than A 3 transformation point. Preferably A 3 transformation point + 30 ° C. to A 3 transformation point + 100 ° C., is 1200 ° C. about the upper limit. Moreover, in the example of FIG. 4, after heating the welding heat affected zone of the metal member 10 to the temperature T1, the weld heat affected zone of the metal member 10 is reheated to the temperature T2, but the metal is not reheated. The weld heat affected zone of the member 10 may be cooled to room temperature.

また、温度T2はA変態点未満の温度であればよい。また、金属部材10の溶接熱影響部の冷却速度は特に限定されず、金属部材10は空冷(例えば、冷却速度1000℃/h)されてもよく、徐冷(例えば、冷却速度150℃/h)されてもよい。また、A変態点以上の温度での保持時間は上記の例に限定されず、20分より長くてもよく、短くてもよい。また、金属部材10をA変態点以上の温度にするための加熱を複数回繰り返してもよい。また、熱処理には、上述した布状の電気抵抗ヒータ14(図1参照)のような抵抗式の加熱装置を用いてもよく、高周波誘導加熱装置を用いてもよい。 The temperature T2 may be a temperature lower than A 3 transformation point. Further, the cooling rate of the weld heat affected zone of the metal member 10 is not particularly limited, and the metal member 10 may be air-cooled (for example, cooling rate 1000 ° C./h) or gradually cooled (for example, cooling rate 150 ° C./h). ). Also, A 3 holding time at lower than the transformation point of the temperature is not limited to the above example, it may be longer than 20 minutes may be shorter. The heating may be repeated a plurality of times for the metal member 10 to a temperature higher than A 3 transformation point. Further, for the heat treatment, a resistance-type heating device such as the cloth-like electric resistance heater 14 (see FIG. 1) may be used, or a high-frequency induction heating device may be used.

以下、実施例に基づいて本発明の効果を説明する。本実施例においては、2.25(wt%)Cr−1(wt%)Mo鋼からなる試験片(素材)を用いた。なお、試験片は中央部分で溶接されており、溶接熱影響部が形成されている。   The effects of the present invention will be described below based on examples. In this example, a test piece (material) made of 2.25 (wt%) Cr-1 (wt%) Mo steel was used. In addition, the test piece is welded in the center part, and the welding heat affected zone is formed.

まず、上記の試験片(新材)を3本用意し、650℃、675℃および700℃の環境下において39.2MPaの単軸クリープ試験を実施し、破断時間を測定した。その結果、650℃の試験では試験片は2812.4hで破断し、675℃の試験では726.8hで破断し、700℃の試験では163.4hで破断した。   First, three test pieces (new materials) were prepared, and a uniaxial creep test of 39.2 MPa was performed in an environment of 650 ° C., 675 ° C., and 700 ° C., and the rupture time was measured. As a result, in the test at 650 ° C., the test piece broke at 2812.4 h, in the test at 675 ° C., it broke at 726.8 h, and in the test at 700 ° C., it broke at 163.4 h.

次に、同様の構成の試験片(新材)を3本用意し、650℃の環境下において39.2MPaの単軸クリープ試験を2161h実施し、試験を停止した。本実施例においては、その3本の試験片を実施例1、実施例2および比較例1の試験片とする。なお、実施例1,2および比較例1の試験片のクリープ試験実施時間(2161h)は、上述した650℃のクリープ試験における試験片の破断時間(2812.4h)の77%に相当する。   Next, three test pieces (new materials) having the same configuration were prepared, and a uniaxial creep test of 39.2 MPa was performed in an environment of 650 ° C. for 2161 h, and the test was stopped. In this example, the three test pieces are used as the test pieces of Example 1, Example 2, and Comparative Example 1. In addition, the creep test execution time (2161h) of the test pieces of Examples 1 and 2 and Comparative Example 1 corresponds to 77% of the breaking time (2812.4h) of the test piece in the 650 ° C. creep test described above.

上記のようにして作製した実施例1,2および比較例1の試験片に対して、高周波誘導加熱装置を用いて再生熱処理を施した。再生熱処理では、図6に示すように、時点t0−t1間において加熱装置の加熱温度を常温から920℃まで昇温させ、時点t1−t2間において加熱温度920℃で20分保持し、時点t2−t3間において試験片を常温まで冷却した。具体的には、実施例1,2および比較例1の試験片に対してそれぞれ下記の表1に示す条件で熱処理を行った。   The test pieces of Examples 1 and 2 and Comparative Example 1 produced as described above were subjected to regenerative heat treatment using a high frequency induction heating apparatus. In the regenerative heat treatment, as shown in FIG. 6, the heating temperature of the heating device is increased from room temperature to 920 ° C. between time points t0 and t1, and is maintained at the heating temperature of 920 ° C. for 20 minutes between time points t1 and t2. During −t3, the test piece was cooled to room temperature. Specifically, the test pieces of Examples 1 and 2 and Comparative Example 1 were heat-treated under the conditions shown in Table 1 below.

Figure 2010236006
Figure 2010236006

熱処理後、680℃、39.2MPaの単軸クリープ試験により破断時間の評価を行った。その結果を図7に示す。なお、図7において、縦軸は試験温度を示し、横軸は破断時間を示す。横軸は、対数目盛で示されている。また、図7には、上述した650℃、675℃および700℃の環境下における試験片(0%損傷材:新材)の単軸クリープ試験の結果もプロットされており、その3点のプロットに対して近似直線(二点鎖線)が引かれている。この近似直線は、試験片(新材)の任意の試験温度における予想破断時間を示している。   After the heat treatment, the rupture time was evaluated by a uniaxial creep test at 680 ° C. and 39.2 MPa. The result is shown in FIG. In FIG. 7, the vertical axis indicates the test temperature, and the horizontal axis indicates the breaking time. The horizontal axis is shown on a logarithmic scale. FIG. 7 also plots the results of the uniaxial creep test of the test piece (0% damaged material: new material) under the above-described environments of 650 ° C., 675 ° C., and 700 ° C. An approximate straight line (two-dot chain line) is drawn. This approximate straight line indicates the expected fracture time of the test piece (new material) at an arbitrary test temperature.

また、図7には、650℃、39.2MPaの単軸クリープ試験における27%損傷材、56%損傷材および77%損傷材の予想破断時間がプロットされている。なお、27%損傷材とは、650℃の環境下で39.2MPaの単軸クリープ試験を756h(新材の破断時間(2812.4h)の27%に相当する時間)実施した試験片である。同様に、56%損傷材および77%損傷材とは、それぞれ650℃の環境下で39.2MPaの単軸クリープ試験を1585h(新材の破断時間(2812.4h)の56%に相当する時間)および2161h(新材の破断時間の77%に相当する時間)実施した試験片である。また、27%損傷材、56%損傷材および77%損傷材の予想破断時間は、新材の破断時間(2812.4h)から各損傷材のクリープ試験実施時間(756h、1585h、2161h)を減算することにより算出した時間である。また、図7には、任意の試験温度における各損傷材の予想破断時間を示す直線が実線(27%損傷材)、破線(56%損傷材)および一点鎖線(77%損傷材)で引かれている。これらの直線は、図7に0%損傷材(新材)の任意の試験温度における予想破断時間を示す近似直線(二点鎖線)に平行な直線である。なお、実施例1,2および比較例1の試験片は77%損傷材である。   FIG. 7 plots the expected rupture times of 27% damaged material, 56% damaged material, and 77% damaged material in a uniaxial creep test at 650 ° C. and 39.2 MPa. The 27% damaged material is a test piece obtained by conducting a uniaxial creep test at 39.2 MPa in an environment of 650 ° C. for 756 hours (a time corresponding to 27% of the breaking time (2812.4 h) of the new material). . Similarly, a 56% damaged material and a 77% damaged material are each subjected to a uniaxial creep test of 39.2 MPa in an environment of 650 ° C. for 1585 h (time corresponding to 56% of the breaking time (2812.4 h) of the new material). ) And 2161h (a time corresponding to 77% of the fracture time of the new material). The expected rupture time of 27% damaged material, 56% damaged material and 77% damaged material is calculated by subtracting the creep test time (756h, 1585h, 2161h) of each damaged material from the rupture time of new material (2812.4h). It is the time calculated by doing. In FIG. 7, a straight line indicating an expected fracture time of each damaged material at an arbitrary test temperature is drawn with a solid line (27% damaged material), a broken line (56% damaged material), and a one-dot chain line (77% damaged material). ing. These straight lines are parallel to an approximate straight line (two-dot chain line) showing an expected fracture time at an arbitrary test temperature of a 0% damaged material (new material) in FIG. Note that the test pieces of Examples 1 and 2 and Comparative Example 1 are 77% damaged material.

図7に示すように、800℃/hの加熱速度で再生熱処理をした比較例1の試験片では、クリープ破断時間が178hであるのに対し、150℃/hの加熱速度で再生熱処理をした実施例1の試験片では、クリープ破断時間が348hと、より破断時間が長寿命側にシフトしており、クリープボイドの損傷が回復していることが解る。更に加熱速度を下げた60℃/hの加熱速度で再生熱処理した実施例2の試験片では、クリープ破断時間が259hと800℃/hの加熱速度で再生熱処理した比較例1の試験片より破断時間が長寿命になっているが、150℃/hの加熱速度で再生熱処理した実施例1の試験片ものより破断時間が短くなっている。   As shown in FIG. 7, the specimen of Comparative Example 1 subjected to regenerative heat treatment at a heating rate of 800 ° C./h was subjected to regenerative heat treatment at a heating rate of 150 ° C./h, whereas the creep rupture time was 178 h. In the test piece of Example 1, the creep rupture time is 348 h, and the rupture time is shifted to the longer life side, and it can be seen that the damage of the creep void is recovered. Further, the test piece of Example 2 subjected to regenerative heat treatment at a heating rate of 60 ° C./h with a lower heating rate was broken than the test piece of Comparative Example 1 subjected to regenerative heat treatment at a heating rate of 259 h and 800 ° C./h. Although the time is long, the rupture time is shorter than that of the test piece of Example 1 subjected to regenerative heat treatment at a heating rate of 150 ° C./h.

更に再生熱処理の加熱速度の影響を調査したところ、加熱速度が800℃/h未満の場合には、加熱速度が800℃/h以上の場合に比べてクリープボイド損傷の回復の効果が大きいことが判明した。また加熱速度の下限については、加熱速度150℃/hの場合のクリープボイド損傷の回復の程度に対する加熱速度60℃/hの場合のクリープボイド損傷の回復の程度の低下の割合、および実機加熱の作業効率を勘案して50℃/hを下限とした。なお、再生熱処理において150℃/hの加熱速度で920℃の保持時間の効果について下限2分から上限120分まで検討したが、クリープ破断時間について明確な差異は認められなかった。また再生熱処理における冷却速度の効果についても50℃/hから300℃/hについて検討したが、クリープ破断時間について明確な差異は認められなかった。   Further, when the influence of the heating rate of the regenerative heat treatment was investigated, when the heating rate was less than 800 ° C./h, the effect of recovering creep void damage was greater than when the heating rate was 800 ° C./h or more. found. Regarding the lower limit of the heating rate, the rate of decrease in the degree of recovery of creep void damage at the heating rate of 60 ° C./h relative to the degree of recovery of creep void damage at the heating rate of 150 ° C./h, and In consideration of work efficiency, 50 ° C./h was set as the lower limit. In the regenerative heat treatment, the effect of the holding time of 920 ° C. at a heating rate of 150 ° C./h was examined from the lower limit of 2 minutes to the upper limit of 120 minutes, but no clear difference was observed in the creep rupture time. Further, the effect of the cooling rate in the regenerative heat treatment was also examined from 50 ° C./h to 300 ° C./h, but no clear difference was observed in the creep rupture time.

なお、上記の実施例においては高周波誘導加熱装置を用いて再生熱処理を行ったが、実機の再生熱処理において、例えば加熱速度が300℃/h以下の場合には、布状の電気抵抗ヒータを用いて再生熱処理を行うことが好ましい。この場合、高周波誘導加熱装置を用いて再生熱処理を行う場合に比べて、HAZを含む広範囲を均熱的に加熱(制御)できる。   In the above embodiment, the regenerative heat treatment was performed using the high frequency induction heating apparatus. However, in the regenerative heat treatment of the actual machine, for example, when the heating rate is 300 ° C./h or less, a cloth-like electric resistance heater is used. It is preferable to perform regenerative heat treatment. In this case, compared with the case where regenerative heat treatment is performed using a high-frequency induction heating apparatus, a wide range including HAZ can be heated (controlled) in a uniform manner.

本発明は、種々の金属部材の溶接熱影響部のクリープ強度を回復させることができるので、特に、火力発電プラントなどにおいてクリープ損傷を受けた配管の強度を回復させるのに有効である。   The present invention can recover the creep strength of the welding heat-affected zone of various metal members, and is particularly effective in recovering the strength of a pipe damaged by creep in a thermal power plant or the like.

10 金属部材
11,12 鋼管
13 溶接部
14 電気抵抗ヒータ
15,16 HAZ
21,31 結晶粒
22 ボイド
23 炭化物
DESCRIPTION OF SYMBOLS 10 Metal member 11,12 Steel pipe 13 Welded part 14 Electric resistance heater 15,16 HAZ
21,31 Crystal grain 22 Void 23 Carbide

Claims (2)

高温高圧下で使用された金属部材の溶接熱影響部のクリープ強度を回復するための熱処理方法であって、前記金属部材の溶接熱影響部を50℃/h以上800℃/h未満の加熱速度でA変態点以上の温度まで加熱する工程を備えることを特徴とする熱処理方法。 A heat treatment method for recovering the creep strength of a weld heat affected zone of a metal member used under high temperature and high pressure, wherein the heating rate of the weld heat affected zone of the metal member is 50 ° C / h or more and less than 800 ° C / h. heat treatment method characterized in that it comprises the step of heating to a temperature of at least a 3 transformation point in. 前記加熱する工程の後に300℃以下に冷却し、A変態点未満の温度まで再加熱する工程をさらに備えることを特徴とする請求項1記載の熱処理方法。 The heat treatment method according to claim 1, wherein the cooling to 300 ° C. or less after heating to process, and further comprising the step of reheating to a temperature below A 3 transformation point.
JP2009084411A 2009-03-31 2009-03-31 Restoration heat-treatment method for metal member Pending JP2010236006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009084411A JP2010236006A (en) 2009-03-31 2009-03-31 Restoration heat-treatment method for metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009084411A JP2010236006A (en) 2009-03-31 2009-03-31 Restoration heat-treatment method for metal member

Publications (1)

Publication Number Publication Date
JP2010236006A true JP2010236006A (en) 2010-10-21

Family

ID=43090610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084411A Pending JP2010236006A (en) 2009-03-31 2009-03-31 Restoration heat-treatment method for metal member

Country Status (1)

Country Link
JP (1) JP2010236006A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555977A (en) * 2013-09-25 2016-05-04 中国电力株式会社 Restoration heat-treatment method for creep-damaged heat-resistant metal member
CN108732015A (en) * 2018-06-05 2018-11-02 四川大学 Reflection rock length load lasts the test method of creep behaviour
KR20210129553A (en) 2020-04-20 2021-10-28 (주)티티에스 Heat treatment apparatus for refairing display processing parts
KR20210129554A (en) 2020-04-20 2021-10-28 (주)티티에스 Method for refairing display processing parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943827A (en) * 1982-09-04 1984-03-12 Sumitomo Metal Ind Ltd Manufacture of high toughness electric welded steel pipe
JPS63278676A (en) * 1987-05-06 1988-11-16 Mitsubishi Heavy Ind Ltd Vertical welding method for cr-mo steel
JP2003253337A (en) * 2001-12-27 2003-09-10 Mitsubishi Heavy Ind Ltd Process and apparatus for regenerating creep deteriorated part
JP2005048271A (en) * 2003-07-31 2005-02-24 Jfe Steel Kk Method for welding high-carbon steel material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943827A (en) * 1982-09-04 1984-03-12 Sumitomo Metal Ind Ltd Manufacture of high toughness electric welded steel pipe
JPS63278676A (en) * 1987-05-06 1988-11-16 Mitsubishi Heavy Ind Ltd Vertical welding method for cr-mo steel
JP2003253337A (en) * 2001-12-27 2003-09-10 Mitsubishi Heavy Ind Ltd Process and apparatus for regenerating creep deteriorated part
JP2005048271A (en) * 2003-07-31 2005-02-24 Jfe Steel Kk Method for welding high-carbon steel material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013036081; 堀井行彦: '溶接構造物の品質確保(7)溶接後熱処理 溶接部品質に及ぼす施工因子' 実務展望 No.226、第38巻、第4号, 20050701, 第30頁〜第39頁 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555977A (en) * 2013-09-25 2016-05-04 中国电力株式会社 Restoration heat-treatment method for creep-damaged heat-resistant metal member
EP3050980A4 (en) * 2013-09-25 2016-09-14 Chugoku Electric Power Restoration heat-treatment method for creep-damaged heat-resistant metal member
CN108732015A (en) * 2018-06-05 2018-11-02 四川大学 Reflection rock length load lasts the test method of creep behaviour
KR20210129553A (en) 2020-04-20 2021-10-28 (주)티티에스 Heat treatment apparatus for refairing display processing parts
KR20210129554A (en) 2020-04-20 2021-10-28 (주)티티에스 Method for refairing display processing parts

Similar Documents

Publication Publication Date Title
KR101920514B1 (en) Thermo-mechanical processing of nickel-base alloys
US9670572B2 (en) Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys
CN109234573B (en) The nickel base superalloy of resistance to fused salt corrosion pitch chain heat treatment method
JP2016513183A (en) Pre-weld heat treatment for nickel-base superalloys
JP2009299120A (en) MANUFACTURING METHOD OF Ni-Cr-Fe TERNARY SYSTEM ALLOY MATERIAL
JP6390731B2 (en) Fatigue crack initiation life evaluation test method for welded heat affected zone, method for producing flat plate test piece, and flat plate test piece
JP2010236006A (en) Restoration heat-treatment method for metal member
EP1927668A2 (en) Restoration method for deteriorated part and restoration apparatus for deteriorated part
KR101493574B1 (en) Method of heat-treating metal pipes for nuclear power plant, batch-type vacuum heat-treatment furnace used therefor, and metal pipe for nuclear power plant treated using same
JP6492747B2 (en) Austenitic heat-resistant alloy tube manufacturing method and austenitic heat-resistant alloy tube manufactured by the manufacturing method
JP2015004130A5 (en)
JP6620924B2 (en) Method for producing Fe-Ni base superalloy
JP2017053006A (en) MANUFACTURING METHOD OF Ni-BASED HEAT RESISTANT ALLOY TUBE
Wangyao et al. Effect of 12 heat treatment conditions after HIP process on microstructural refurbishment in cast nickel-based superalloy, GTD-111
KR101201659B1 (en) Deteriorated portion reproducing method and deteriorated portion reproducing device
JP4176412B2 (en) Method and apparatus for regenerating creep degraded part
JP6199725B2 (en) Piping connection method and piping connection structure
JP6217891B1 (en) Repair method for cast steel members
KR101626913B1 (en) Method of thermo-mechanical treatment of heat-resistant alloy containing tungsten for enhancement of creep resistance and heat-resistant alloy the same
JP2015098047A (en) Thick and large-diameter pipe welded joint structure and welding procedure method
JP2011032499A (en) Heat-treatment method for regenerating part with deterioration in creep strength
KR101593309B1 (en) Method of heat treatment of heat resistant alloy containing tungsten for excellent creep property and heat resistant alloy the same
JP2006334607A (en) Forging method for hard-to-work material
JP2010196136A (en) Method for soaking diffusion treatment of steel
KR20150081375A (en) Method of heat treatment of heat-resistant alloy for excellent resistance to intergranular crack and heat-resistant alloy the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119