JP6199725B2 - Piping connection method and piping connection structure - Google Patents

Piping connection method and piping connection structure Download PDF

Info

Publication number
JP6199725B2
JP6199725B2 JP2013259204A JP2013259204A JP6199725B2 JP 6199725 B2 JP6199725 B2 JP 6199725B2 JP 2013259204 A JP2013259204 A JP 2013259204A JP 2013259204 A JP2013259204 A JP 2013259204A JP 6199725 B2 JP6199725 B2 JP 6199725B2
Authority
JP
Japan
Prior art keywords
pipe
resistance
src
heat treatment
scc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013259204A
Other languages
Japanese (ja)
Other versions
JP2015112642A (en
Inventor
貴信 星川
貴信 星川
真也 森岡
真也 森岡
哲司 片山
哲司 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013259204A priority Critical patent/JP6199725B2/en
Publication of JP2015112642A publication Critical patent/JP2015112642A/en
Application granted granted Critical
Publication of JP6199725B2 publication Critical patent/JP6199725B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、配管接続方法及び配管接続構造に関する。   The present invention relates to a pipe connection method and a pipe connection structure.

化学プラントなどでは、SUS321などのステンレス製小径配管を低合金鋼の大径配管のボス部(材質は、SUS321などのステンレス)に、据え付け溶接するといったことが行われている。
このような配管接続構造の実機を高温高圧ガス環境(例えば、温度520℃、25kg/cm)で使用すると、大径配管に溶接されている小径配管が、その熱影響部(HAZ)周辺で割れを生じることがある。
In chemical plants, stainless steel small-diameter pipes such as SUS321 are installed and welded to boss portions (material is stainless steel such as SUS321) of large-diameter pipes of low alloy steel.
When an actual machine having such a pipe connection structure is used in a high-temperature and high-pressure gas environment (for example, a temperature of 520 ° C. and 25 kg / cm 2 ), a small-diameter pipe welded to a large-diameter pipe will be around the heat-affected zone (HAZ). May cause cracking.

割れの原因としては以下の(1)、(2)のようなことが推測されている。
(1)「溶接入熱、及び運転温度による鋭敏化」と、「運転中に生成する腐食性物質(ポリチオン酸)による腐食」と、「溶接残留応力を初めとする負荷応力による劣化」とが重畳して応力腐食割れ(以下、SCCともいう。)を起こした。
(2)「溶接残留応力を初めとする負荷応力による劣化」及び「高温運転中の粒内微細炭化物析出に起因する延性低下」が重畳して再熱割れ(以下、SRCともいう。)を起こした。
The following (1) and (2) are presumed as causes of the crack.
(1) “Sensitivity by welding heat input and operating temperature”, “Corrosion caused by corrosive substances (polythionic acid) generated during operation” and “Deterioration due to load stress including welding residual stress” Stress corrosion cracking (hereinafter also referred to as SCC) occurred due to superposition.
(2) Reheat cracking (hereinafter also referred to as SRC) is caused by the superposition of “deterioration due to load stress including welding residual stress” and “decrease in ductility due to precipitation of intra-grain fine carbides during high-temperature operation”. It was.

前記(1)、(2)の対策として、小径配管の材質変更、又は溶接部の熱処理が想定される。
しかし、材質変更では大幅なコストアップを避けることができない。
As countermeasures for the above (1) and (2), it is assumed that the material of the small diameter pipe is changed or the heat treatment of the welded portion.
However, a significant cost increase cannot be avoided by changing the material.

また、配管の溶接は、製品実機に据え付け時に行っている。このため、大径管の寸法が大きいことから、熱処理炉を用いることはできない。
一方、マフラーなどを用いた局部熱処理では、以下の問題があった。
(1)低合金鋼製大径管が強度低下(熱影響を受けると要求強度を満足できなくなる。)を起こす。
(2)小径管は長尺ものであり、局部熱処理近傍で鋭敏化を起こす領域ができてしまう。すなわち、小径管の熱処理部近傍が450℃〜850℃域で保温され鋭敏化を起こしてしまう。
In addition, piping is welded at the time of installation on the actual product. For this reason, since the dimension of a large diameter pipe is large, a heat treatment furnace cannot be used.
On the other hand, local heat treatment using a muffler has the following problems.
(1) The large diameter pipe made of low alloy steel causes a decrease in strength (the required strength cannot be satisfied if it is affected by heat).
(2) The small-diameter pipe is long, and a region where sensitization occurs near the local heat treatment is formed. That is, the vicinity of the heat treatment part of the small-diameter tube is kept warm in the 450 ° C. to 850 ° C. region, thereby causing sensitization.

以上のように、大径配管に小径配管を溶接するにあたり、低コストで、SCC及びSRCを防止・回避することができないという問題があった。
なお、例えば特許文献1(特開昭54−18438)のような先行技術が知られている。しかし、これは、SCCのみを防止しようとする技術であり、このような問題を解決するものではなかった。
As described above, when welding a small-diameter pipe to a large-diameter pipe, there is a problem that SCC and SRC cannot be prevented or avoided at low cost.
A prior art such as Patent Document 1 (Japanese Patent Laid-Open No. 54-18438) is known. However, this is a technique that tries to prevent only SCC, and does not solve such a problem.

特開昭54−18438号公報Japanese Patent Laid-Open No. 54-18438

前記事情に対して、本発明は、大径配管に小径配管を溶接するにあたり、低コストで、SCC及びSRCを防止・回避することができるようにした配管接続方法及び配管接続構造を提供することを目的とする。   In view of the above circumstances, the present invention provides a pipe connection method and a pipe connection structure capable of preventing and avoiding SCC and SRC at low cost when welding a small diameter pipe to a large diameter pipe. With the goal.

前記課題を解決するため、本発明は、配管接続方法であって、大径配管に接続される小径配管に、耐SCC性及び耐SRC性を備えた短管材を予め溶接し、前記小径配管と前記短管材との溶接体の全体を熱処理し、その後に前記溶接体を大径配管に溶接することを特徴とする。   In order to solve the above-mentioned problem, the present invention is a pipe connection method, in which a short pipe material having SCC resistance and SRC resistance is welded in advance to a small diameter pipe connected to a large diameter pipe, and the small diameter pipe and The whole welded body with the short pipe material is heat-treated, and then the welded body is welded to a large-diameter pipe.

前記熱処理としては、耐SCC性を付与するために溶体化処理又は安定化処理を行い、耐SRC性を付与するために応力除去熱処理を行うことが好適である。
また、安定化処理を、応力除去熱処理と重複する温度範囲で実施することにより、耐SCC性を付与する熱処理と、耐SRC性を付与する熱処理を同時に実施することもできる。
As the heat treatment, it is preferable to perform a solution treatment or a stabilization treatment in order to impart SCC resistance, and a stress relief heat treatment to impart SRC resistance.
In addition, by performing the stabilization treatment in a temperature range overlapping with the stress relief heat treatment, the heat treatment imparting SCC resistance and the heat treatment imparting SRC resistance can be performed simultaneously.

本発明は、別の側面で、配管接続構造であって、耐SCC性及び耐SRC性を備えた短管材を予め溶接し、得られる溶接体の全体を熱処理した後、短管端部を大径配管に溶接することにより形成されたことを特徴とする。   Another aspect of the present invention is a pipe connection structure, in which a short pipe material having SCC resistance and SRC resistance is welded in advance, and the entire welded body is heat-treated, and then the end of the short pipe is enlarged. It is formed by welding to a diameter pipe.

本発明によれば、大径配管に小径配管を溶接するにあたり、低コストで、SCC及びSRCを防止・回避することができるようにした配管接続方法及び配管接続構造が提供される。   According to the present invention, there is provided a pipe connection method and a pipe connection structure capable of preventing and avoiding SCC and SRC at low cost when welding a small diameter pipe to a large diameter pipe.

図1は、本発明に係る配管接続方法の第1の実施の形態で小径配管と短管材とを溶接する状態を説明する概念図である。FIG. 1 is a conceptual diagram illustrating a state in which a small-diameter pipe and a short pipe material are welded in the first embodiment of the pipe connection method according to the present invention. 図2は、本発明に係る配管接続法の第1の実施の形態で、溶接体を加熱処理する状態を説明する概念図である。FIG. 2 is a conceptual diagram illustrating a state in which a welded body is heat-treated in the first embodiment of the pipe connection method according to the present invention. 図3は、本発明に係る配管接続法の第1の実施の形態で、小径配管を大径配管に接続する状態を説明する概念図である。FIG. 3 is a conceptual diagram illustrating a state in which a small-diameter pipe is connected to a large-diameter pipe in the first embodiment of the pipe connection method according to the present invention. 図4は、本発明に係る配管接続法の第1の実施の形態で、小径配管を大径配管に溶接した状態を説明する斜視図である。FIG. 4 is a perspective view for explaining a state where a small diameter pipe is welded to a large diameter pipe in the first embodiment of the pipe connection method according to the present invention.

以下、本発明に係る配管接続方法及び配管接続構造の実施の形態についてさらに詳細に説明する。   Hereinafter, embodiments of the pipe connection method and the pipe connection structure according to the present invention will be described in more detail.

第1の実施の形態
まず、本発明に係る配管接続方法の第1の実施の形態について、添付図面を参照して説明する。本第1の実施の形態に係る配管接続方法は、大径配管から、アンモニアを供給し、並列した複数の小径配管に分岐してアンモニアを小分けに供給する、といったヘッダ構造を想定している。もっとも、本発明に係る配管接続方法は、このような形態に係るものにその対象が限定されるものではない。
First Embodiment First, a first embodiment of a pipe connection method according to the present invention will be described with reference to the accompanying drawings. The pipe connection method according to the first embodiment assumes a header structure in which ammonia is supplied from a large-diameter pipe and branched into a plurality of parallel small-diameter pipes to supply ammonia in small portions. However, the pipe connection method according to the present invention is not limited to the one according to such a form.

図1に示すように、本第1の実施の形態に係る配管接続方法では、小径配管1に対し、大径配管のボス部(図示せず)との間に、短管材(バタリング材)2を介在させる。
小径配管1、大径配管を構成する材料としては、一般的には、ステンレス鋼であり、代表的には、SUS321を挙げることができる。
As shown in FIG. 1, in the pipe connection method according to the first embodiment, a short pipe material (buttering material) 2 is provided between a small diameter pipe 1 and a boss portion (not shown) of a large diameter pipe. Intervene.
The material constituting the small-diameter pipe 1 and the large-diameter pipe is generally stainless steel, and a typical example is SUS321.

短管材2を構成する材料としては、耐SCC性及び耐SRC性を備えたものが好適である。すなわち、溶接と使用環境によるSCC感受性及びSRC感受性の低い材料を選定する。このような短管材2を構成する材料としては、Cr含有量が25重量%以上(工業的に最大52重量%程度までを上限とする。)含まれるものが好適である。また、オーステナイト系ステンレス鋼の場合、粒内硬化を起こす成分(Nb、Tiであり、高いNi含有材はAl、Tiなど)を含有しない材料も好適である。具体的には、FM82、ENiCr−4(AWS規格)といった材料を挙げることができる。   As a material constituting the short tube material 2, a material having SCC resistance and SRC resistance is suitable. That is, a material having low SCC sensitivity and SRC sensitivity depending on the welding and use environment is selected. As a material constituting such a short tube material 2, a material containing a Cr content of 25% by weight or more (up to a maximum of about 52% by weight industrially) is preferable. In the case of austenitic stainless steel, materials that do not contain components that cause intragranular hardening (Nb and Ti, and high Ni-containing materials such as Al and Ti) are also suitable. Specific examples include materials such as FM82 and ENiCr-4 (AWS standard).

短管材2の軸方向長さは、実機据え付け溶接時に発生するHAZ(熱影響部)の幅よりも長くなるように設計する。HAZの長さは、一般的な溶接方法であれば、5mm以下である。短管材2の軸方向長さは、HAZを満足するものとし、HAZの2倍程度までが好適である。したがって、HAZの長さを満足しつつ10mm以下が一般的である。   The length in the axial direction of the short pipe material 2 is designed to be longer than the width of the HAZ (heat affected zone) generated during actual machine installation welding. If the length of HAZ is a general welding method, it will be 5 mm or less. The axial length of the short tube material 2 satisfies HAZ, and is preferably up to about twice that of HAZ. Therefore, 10 mm or less is common while satisfying the length of HAZ.

次いで、小径配管1に短管材2を溶接して構成される溶接体3の全体を熱処理炉4内で熱処理する。   Next, the entire welded body 3 formed by welding the short pipe 2 to the small diameter pipe 1 is heat treated in the heat treatment furnace 4.

前述したように、配管接続構造の損傷の要因は(i)応力腐食割れ(SCC)と(ii)SRC(再熱割れ)が考えられている。
これらに対して第1の実施の形態では、溶接体3に熱処理を実施し、損傷要因(i)、(ii)を解消することとしている。
As described above, (i) stress corrosion cracking (SCC) and (ii) SRC (reheat cracking) are considered as causes of damage to the pipe connection structure.
In contrast, in the first embodiment, the welded body 3 is heat-treated to eliminate the damage factors (i) and (ii).

SCC対策(耐SCC性を付与するための処理)
本第1の実施の形態では、SCC対策として、溶接体3に対して、溶体化(固溶化)処理、又は安定化処理を実施する。
SCC measures (processing to give SCC resistance)
In the first embodiment, as a countermeasure against SCC, a solution treatment (solid solution) process or a stabilization process is performed on the welded body 3.

溶体化処理を実施する場合には、1000℃以上1200℃未満の温度に溶接体3を加熱し、その後、常温(400℃以下)まで急冷させて過飽和固溶状態にすることによって行う。   When performing the solution treatment, the welded body 3 is heated to a temperature of 1000 ° C. or higher and lower than 1200 ° C., and then rapidly cooled to room temperature (400 ° C. or lower) to be in a supersaturated solid solution state.

このように、溶体化(固溶化)処理では、1000℃以上で加熱し、鋭敏化した組織をリセットする。
ただし、高温(1200℃以上)では、結晶粒粗大化や表面にスケールが発生し機械的性質と耐食性が低下する。一方、低温(980〜1000℃未満)でも、炭化物やσ相の消失が十分でなく機械的性質と耐食性が低下する。これらのことから、1000℃以上1200℃未満の温度に加熱することとしている。
Thus, in the solution treatment (solid solution treatment), heating is performed at 1000 ° C. or higher to reset the sensitized tissue.
However, at a high temperature (1200 ° C. or higher), the crystal grains become coarse and the scale is generated on the surface, so that the mechanical properties and the corrosion resistance are lowered. On the other hand, even at low temperatures (under 980 to 1000 ° C.), the disappearance of carbides and σ phases is not sufficient, and mechanical properties and corrosion resistance are reduced. For these reasons, heating to a temperature of 1000 ° C. or more and less than 1200 ° C.

安定化処理を実施してSCC対策を行う場合には、溶接体3を850℃以上930℃以下で保持し材料中のCrを十分に拡散させることで鋭敏化組織の耐食性低下の原因であるCr欠乏層を消滅し耐食性を回復させる。それと同時にこの温度範囲ではCr欠乏層を生じる原因であるCrとCの結合よりもTiやNbなどの供炭化物生成元素とCの結合を積極的に起こさせることができる。これらが結合してできた安定炭化物の固溶温度(1000℃未満)であれば、その後のCr欠乏層発生を抑制することができる。   In the case where the stabilization process is carried out and the SCC countermeasure is taken, the welded body 3 is held at 850 ° C. or higher and 930 ° C. or lower, and Cr in the material is sufficiently diffused to cause a decrease in the corrosion resistance of the sensitized structure. The deficient layer disappears and the corrosion resistance is restored. At the same time, in this temperature range, it is possible to positively cause a bond between the carbon-forming element such as Ti and Nb and C rather than the bond between Cr and C, which is the cause of the Cr-depleted layer. If it is the solid solution temperature (less than 1000 ° C.) of the stable carbide formed by combining these, the subsequent Cr deficient layer generation can be suppressed.

この安定化処理における保持時間は溶接部厚さ25mm以下で少なくとも2時間、25mmを越える場合、越えた25mmごとに+1時間/25mmの割合で保持時間を加算する。すなわち、26〜50mmでは少なくとも3時間、51mm〜75mmでは少なくとも4時間、76mm〜100mmでは少なくとも5時間といったように加算する。   The holding time in this stabilization process is at least 2 hours when the weld thickness is 25 mm or less, and when it exceeds 25 mm, the holding time is added at a rate of +1 hour / 25 mm for every 25 mm exceeding. That is, the addition is performed such that at least 26 hours from 50 to 50 mm, at least 4 hours from 51 mm to 75 mm, and at least 5 hours from 76 mm to 100 mm.

SRCに対する対策(耐SRC性を付与するための処理)
SRC(残留応力)に対しては,応力除去熱処理を実施する。
応力除去熱処理は、残留応力除去及び前記の安定炭化物(析出物)を粗大化させることにより粒内硬化を防ぐ。SRCの発生しやすい温度域は、500℃〜850℃程度と想定されている。
Measures against SRC (processing to give SRC resistance)
For SRC (residual stress), stress relief heat treatment is performed.
The stress relief heat treatment prevents residual stress and coarsens the stable carbide (precipitate) to prevent intragranular hardening. The temperature range where SRC is likely to occur is assumed to be about 500 ° C to 850 ° C.

残留応力除去の観点からは、溶接体3を850℃以上930℃以下に保持する必要があり、析出物粗大化の観点からは、溶接体3を900℃以上930℃以下に保持する必要がある。そこで、SRC対策として、この応力除去熱処理を実施する際には、溶接体3を900℃以上930℃以下に保持することが好適である。   From the viewpoint of removing residual stress, it is necessary to maintain the welded body 3 at 850 ° C. or higher and 930 ° C. or lower, and from the viewpoint of coarsening of precipitates, it is necessary to maintain the welded body 3 at 900 ° C. or higher and 930 ° C. or lower. . Therefore, as a countermeasure against SRC, it is preferable to maintain the welded body 3 at 900 ° C. or higher and 930 ° C. or lower when performing this stress relief heat treatment.

SRC対策のため、応力除去熱処理を行う際の保持時間としては、溶接部厚さ25mm以下で少なくとも1.5時間、25mmを越える場合、越えた25mmごとに+1時間/25mmの割合で保持時間を加算する。すなわち、26〜50mmでは少なくとも3.5時間、51mm〜75mmでは少なくとも4.5時間、76mm〜100mmでは少なくとも5.5時間といったように加算する。   For SRC countermeasures, the holding time when performing the stress relief heat treatment is at least 1.5 hours when the weld thickness is 25 mm or less, and when it exceeds 25 mm, the holding time is set at a rate of +1 hour / 25 mm for every 25 mm exceeding. to add. That is, at 26 to 50 mm, at least 3.5 hours, 51 mm to 75 mm, at least 4.5 hours, and 76 mm to 100 mm, at least 5.5 hours.

最後に、小径配管1の据え付け現地にて、溶接体3の短管材2によって構成されるバタリング部の管端5と、大径配管6のボス部7とを溶接し、実機据え付けが完了する。
このようにして、溶接を完了した状態で、本発明に係る配管接続構造の一実施の形態が完成する。
この形態を斜視図として示したのが図4である。図4には、小径配管1と短管材2との溶接部8及び大径配管6のボス部7と短管材2との溶接部9も示されている。
Finally, the pipe end 5 of the buttering part constituted by the short pipe material 2 of the welded body 3 and the boss part 7 of the large-diameter pipe 6 are welded at the installation site of the small-diameter pipe 1, and the actual machine installation is completed.
Thus, one embodiment of the pipe connection structure according to the present invention is completed in a state where welding is completed.
FIG. 4 shows this form as a perspective view. FIG. 4 also shows a welded portion 8 between the small diameter pipe 1 and the short pipe material 2 and a welded portion 9 between the boss part 7 of the large diameter pipe 6 and the short pipe material 2.

以上のようにして、本第1の実施の形態によれば、小径配管の強度低下を招くことはない。また、局部熱処理では不可能だった小径配管全体の鋭敏化組織の改善を行うことができる。すなわち、SCC感受性及びSRC感受性の低い短管材(バタリング材)を用いることにより、SCC及びSRCの発生を防止できる配管接続構造(実機製品)を供給することができる。   As described above, according to the first embodiment, the strength of the small-diameter pipe is not reduced. In addition, it is possible to improve the sensitized structure of the entire small-diameter pipe, which was impossible with local heat treatment. That is, by using a short pipe material (battering material) having low SCC sensitivity and SRC sensitivity, a pipe connection structure (actual product) that can prevent the occurrence of SCC and SRC can be supplied.

本第1の実施の形態に係る配管接続方法は、小径配管1の全体に亘る変更ではなく、大径配管7のボス部6の溶接部8近傍のみの材質変更であり、低コストでSCC、SRCに対する対策が可能となる。   The pipe connection method according to the first embodiment is not a change over the entire small-diameter pipe 1, but a material change only in the vicinity of the welded portion 8 of the boss 6 of the large-diameter pipe 7, and the SCC, Measures against SRC are possible.

また、小径配管1を大径配管7との実機に据え付けにあたり、現地での熱処理を伴わずしてSCC・SRCを防止することができる。   Further, when installing the small-diameter pipe 1 in the actual machine with the large-diameter pipe 7, it is possible to prevent SCC / SRC without any on-site heat treatment.

第2の実施の形態
次に、本発明に係る配管接続方法について、第2の実施の形態を説明する。
前記第1の実施の形態では、熱処理において、前記損傷要因(i)のSCC対策として、小径配管のHAZの鋭敏化組織をリセットしている。さらに、損傷要因(ii)のSRC対策として応力除去と析出物粗大化による軟化を行う必要がある。SCCと、SRCとを解消するための熱処理温度は前述の通りである。
Second Embodiment Next, a second embodiment of the pipe connection method according to the present invention will be described.
In the first embodiment, in the heat treatment, the HAZ sensitization structure of the small-diameter pipe is reset as an SCC countermeasure for the damage factor (i). Furthermore, it is necessary to perform stress removal and softening by coarsening of precipitates as an SRC countermeasure for the damage factor (ii). The heat treatment temperature for eliminating SCC and SRC is as described above.

本第2の実施の形態では、前記損傷要因(i)及び(ii)を解消するために、溶接体3に熱処理を実施するに際し、SCC対策として第1の実施の形態の安定化処理を行う。ただし、安定化処理を850℃以上ではなく、900℃以上930℃以下で行う。この温度範囲で、保持時間を以下のようにして実施する。   In the second embodiment, when the heat treatment is performed on the welded body 3 in order to eliminate the damage factors (i) and (ii), the stabilization process of the first embodiment is performed as an SCC countermeasure. . However, the stabilization treatment is performed at 900 ° C. or higher and 930 ° C. or lower, not 850 ° C. or higher. Within this temperature range, the holding time is carried out as follows.

溶接部厚さ25mm以下で少なくとも2時間、25mmを越える場合、越えた25mmごとに+1時間/25mmの割合で保持時間を加算する。すなわち、26〜50mmでは少なくとも3時間、51mm〜75mmでは少なくとも4時間、76mm〜100mmでは少なくとも5時間といったように加算する。   When the weld thickness is 25 mm or less and exceeds 25 mm for at least 2 hours, the holding time is added at a rate of +1 hour / 25 mm for every 25 mm exceeding. That is, the addition is performed such that at least 26 hours from 50 to 50 mm, at least 4 hours from 51 mm to 75 mm, and at least 5 hours from 76 mm to 100 mm.

この保持時間で実施すれば、第1の実施の形態で、SRC対策として実施する応力除去熱処理をも同時に実施したことになる。しかも、溶体化処理よりも低温で実施することができる。
すなわち、本第2の実施の形態であれば、熱処理温度の低温化及び熱処理時間短縮による低コスト化を期待することができる。
If it is carried out with this holding time, the stress removal heat treatment carried out as the SRC countermeasure in the first embodiment is also carried out at the same time. And it can implement at low temperature rather than solution treatment.
That is, according to the second embodiment, it is possible to expect cost reduction by lowering the heat treatment temperature and shortening the heat treatment time.

Claims (6)

大径配管に接続される小径配管に、耐SCC性及び耐SRC性を備えた短管材を予め溶接し、前記小径配管と前記短管材との溶接体の全体を熱処理し、その後に前記溶接体を大径配管に溶接することを特徴とする配管接続方法。   A short pipe material having SCC resistance and SRC resistance is pre-welded to a small diameter pipe connected to a large diameter pipe, the entire welded body of the small diameter pipe and the short pipe material is heat-treated, and then the welded body A pipe connection method characterized by welding a pipe to a large-diameter pipe. 前記熱処理として、耐SCC性を付与するために溶体化処理又は安定化処理を行い、耐SRC性を付与するために応力除去熱処理を行うことを特徴とする請求項1の配管接続方法。   2. The pipe connection method according to claim 1, wherein as the heat treatment, a solution treatment or a stabilization treatment is performed to impart SCC resistance, and a stress relief heat treatment is performed to impart SRC resistance. 前記耐SCC性を付与するための安定化処理を、前記耐SRC性を付与するための応力除去熱処理と重複する温度範囲で実施することを特徴とする請求項1の配管接続方法。   The pipe connection method according to claim 1, wherein the stabilization process for imparting the SCC resistance is performed in a temperature range overlapping with the stress relief heat treatment for imparting the SRC resistance. 耐SCC性及び耐SRC性を備えた短管材を予め溶接し、得られる溶接体の全体を熱処理した後、短管端部を大径配管に溶接することにより形成されたことを特徴とする配管接続構造。   A pipe formed by previously welding a short pipe material having SCC resistance and SRC resistance, heat treating the entire welded body, and then welding the end of the short pipe to a large-diameter pipe. Connection structure. 前記熱処理として、耐SCC性を付与するために溶体化処理又は安定化処理が行なわれ、耐SRC性を付与するために応力除去熱処理が行なわれたことを特徴とする請求項1の配管接続構造。   2. The pipe connection structure according to claim 1, wherein as the heat treatment, a solution treatment or a stabilization treatment is performed to impart SCC resistance, and a stress relief heat treatment is performed to impart SRC resistance. . 前記耐SCC性を付与するための安定化処理が、前記耐SRC性を付与するための応力除去熱処理と重複する温度範囲で実施されたことを特徴とする請求項1の配管接続方法。   The pipe connection method according to claim 1, wherein the stabilization treatment for imparting the SCC resistance is performed in a temperature range overlapping with the stress relief heat treatment for imparting the SRC resistance.
JP2013259204A 2013-12-16 2013-12-16 Piping connection method and piping connection structure Expired - Fee Related JP6199725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013259204A JP6199725B2 (en) 2013-12-16 2013-12-16 Piping connection method and piping connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013259204A JP6199725B2 (en) 2013-12-16 2013-12-16 Piping connection method and piping connection structure

Publications (2)

Publication Number Publication Date
JP2015112642A JP2015112642A (en) 2015-06-22
JP6199725B2 true JP6199725B2 (en) 2017-09-20

Family

ID=53526943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013259204A Expired - Fee Related JP6199725B2 (en) 2013-12-16 2013-12-16 Piping connection method and piping connection structure

Country Status (1)

Country Link
JP (1) JP6199725B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6806445B2 (en) * 2016-01-18 2021-01-06 三菱重工業株式会社 Piping support structure and its formation method
CN109210273A (en) * 2017-06-30 2019-01-15 中国二十冶集团有限公司 The nonstandard tunnel synchronization rapid constructing method of more stepped heating furnace bodies
CN109108435A (en) * 2018-10-15 2019-01-01 中船澄西船舶修造有限公司 A kind of stainless steel light wall pipe cold metal transfer welding procedure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100928A (en) * 1979-01-24 1980-08-01 Hitachi Ltd Heat treatment for austenite stainless steel
JPH05339674A (en) * 1992-06-08 1993-12-21 Kobe Steel Ltd Low carbon 0.5% mo steel sheet excellent in weld crack resistance
JPH07214373A (en) * 1994-01-31 1995-08-15 Babcock Hitachi Kk Welding structure of steel tube plate and steel tube and welding structure of steel tube drawback and steel tube
JPH1194172A (en) * 1997-09-25 1999-04-09 Ishikawajima Harima Heavy Ind Co Ltd Small bore pipe nozzle stub
JP2009022989A (en) * 2007-07-20 2009-02-05 Kobe Steel Ltd WELDING MATERIAL FOR Ni BASED HIGH Cr ALLOY

Also Published As

Publication number Publication date
JP2015112642A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
Abe Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 C and above
JP6390723B2 (en) Method for producing austenitic heat-resistant alloy welded joint
JP6199725B2 (en) Piping connection method and piping connection structure
US8419868B2 (en) Process and method to increase the hardness of Fe-Cr-C weld overlay alloy
Sirohi et al. Role of heat-treatment and filler on structure-property relationship of dissimilar welded joint of P22 and F69 steel
JP4995131B2 (en) Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone
Barnard Austenitic steel grades for boilers in ultra-supercritical power plants
Bhiogade Ultra supercritical thermal power plant material advancements: a review
Kim et al. Effects of heat treatment on mechanical properties and sensitization behavior of materials in dissimilar metal weld
JP2008266785A (en) Heat-resistant ferritic steel material superior in creep characteristics at weld heat-affected zone, and heat-resistant structure
Nimko Influence of welding parameters on decarburization in heat affected zone of dissimilar weldments after post weld heat treatment
JP2013144837A (en) Method of post-welding heat treatment for high-strength low-alloy steel
Kim et al. Effect of serrated grain boundary on stress corrosion cracking of Alloy 600
JP6118714B2 (en) Welded joint structure of thick-walled large-diameter pipe and its welding method
JP2008291360A (en) Ferritic heat resistant steel having excellent creep property in welded heat-affected zone, and heat resistant structure
Paddea et al. T23 and T24–new generation low alloyed steels
CN101532075A (en) Method of increasing resistance to stress corrosion cracking of austenitic stainless steels
Yamada et al. Microstructural change of a 9Cr steel longitudinal welded tube under internal pressure creep loading
Shoemaker et al. Fabricating nickel alloys to avoid stress relaxation cracking
JP2001003120A (en) Method for welding heat resistant steel and after-heat treatment thereof
Razaq et al. Failure analysis of oil refinery heater treater’s fractured fire tube
JP2008063602A (en) Corrosion resistant austenitic alloy and its production method
Colwell et al. Alloy 800H: Material and Fabrication Challenges Associated With the Mitigation of Stress Relaxation Cracking
JP4303159B2 (en) Stainless steel pipe welding method and joint structure
Çam et al. Progress in low transformation temperature (LTT) filler wires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170824

R150 Certificate of patent or registration of utility model

Ref document number: 6199725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees