JP2009022989A - WELDING MATERIAL FOR Ni BASED HIGH Cr ALLOY - Google Patents

WELDING MATERIAL FOR Ni BASED HIGH Cr ALLOY Download PDF

Info

Publication number
JP2009022989A
JP2009022989A JP2007189972A JP2007189972A JP2009022989A JP 2009022989 A JP2009022989 A JP 2009022989A JP 2007189972 A JP2007189972 A JP 2007189972A JP 2007189972 A JP2007189972 A JP 2007189972A JP 2009022989 A JP2009022989 A JP 2009022989A
Authority
JP
Japan
Prior art keywords
mass
welding
workability
less
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007189972A
Other languages
Japanese (ja)
Inventor
Toshiharu Maruyama
敏治 丸山
Hikaru Kono
ひかる 河野
Tsukasa Okazaki
司 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Taseto Co Ltd
Original Assignee
Kobe Steel Ltd
Taseto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Taseto Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2007189972A priority Critical patent/JP2009022989A/en
Publication of JP2009022989A publication Critical patent/JP2009022989A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding material for Ni based high Cr alloy having excellent resistance to weld cracking, in other words, excellent resistance to reheat cracking and excellent resistance to solidification cracking, and excellent welding workability and wire machinability. <P>SOLUTION: The welding material for Ni based high Cr alloy has the composition consisting of, by mass, for the total mass of a welding material, 28.0-31.5% Cr, 7.0-11.0% Fe, 2.0-6.0% Mn, 0.8-2.0% Nb, with the total of Mn and Nb being 2.8-7.5%, and the balance Ni with inevitable impurities, while the composition of the inevitable impurities being suppressed to be ≤0.04% C, ≤0.5% Si, ≤0.02% P, ≤0.004% S, ≤0.1% Al, ≤0.1% Ti, ≤0.01% O, and ≤0.02% N, and the total of Al and Ti being ≤0.11%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主に、強腐食環境で使用されるNi基高Cr合金の溶接用溶接材料に関する。   The present invention mainly relates to a welding material for welding a Ni-based high Cr alloy used in a highly corrosive environment.

現在、高温で作動する加圧水型原子炉等や硝酸製造用の再加熱炉等の強腐食環境で使用されている600合金は、ほぼ純水に近い一次冷却水環境で耐粒界応力腐食割れ性に劣ることは従来から知られていた。一方、耐粒界応力腐食割れ性の向上のために、600合金に替わり、近年新たに開発された690合金への材質変更が有効とされている。690合金の代表的な母材規格の合金組成を表1に示す。   At present, 600 alloys used in high-corrosion environments such as pressurized water reactors operating at high temperatures and reheating furnaces for nitric acid production are resistant to intergranular stress corrosion cracking in primary cooling water environments close to pure water. It has been known for a long time. On the other hand, in order to improve the intergranular stress corrosion cracking resistance, a material change to a 690 alloy newly developed in recent years is effective instead of the 600 alloy. Table 1 shows a typical base material alloy composition of 690 alloy.

Figure 2009022989
Figure 2009022989

この690合金を用いて構造物を製造する際には、溶接を伴うのが一般的である。この溶接後に、強度を保持し、且つ、耐溶接割れ性を確保するためには、溶接材料が必要となる。この溶接材料に関しては、アメリカ機械学会(The American Society of Mechanical Engineers :ASME)のASMEボイラ及び圧力容器規定(ASME Boiler and Pressure Vessel Code:ASME Code)が存在する。その化学成分を表2に示す。   When manufacturing a structure using this 690 alloy, it is common to involve welding. After this welding, a welding material is required in order to maintain the strength and ensure the weld crack resistance. Regarding this welding material, there is an ASME boiler and pressure vessel code (ASME Code) of the American Society of Mechanical Engineers (ASME). The chemical components are shown in Table 2.

Figure 2009022989
Figure 2009022989

表2に示す溶接材料の組成は、690合金母材の組成である表1と比較すれば明らかなように、溶接材料の主組成も690合金とほとんど同組成であるが、溶接材料の方(表2)は溶接割れを防ぐために、P及びCuの含有量に特に制限を加え、また、耐食性の低下を防ぐためにMo、Nb、Al、Ti及び、AlとTiの合計の含有量に制限を加えている。   The composition of the welding material shown in Table 2 is almost the same as that of the 690 alloy, as is apparent from comparison with Table 1 which is the composition of the 690 alloy base material. Table 2) limits the contents of P and Cu in order to prevent weld cracking, and limits the contents of Mo, Nb, Al, Ti, and the total content of Al and Ti to prevent a decrease in corrosion resistance. Added.

また、従来技術である特許文献1では、同様に耐溶接割れ性に優れた溶接材料を提供することを目的として、重量%で、C:0.04%以下、Si:0.01〜0.13%、Mn:5%以下、Cr:28〜31.5%、Nb:1.8%以下、Al:0.5〜1.1%、Ti:0.5〜1%、(但し、Al+Ti:1.6%以下)、Fe:7〜11%、V:0.5%以下を含有し、さらに不可避的不純物として、P:0.02%以下、S:0.015%以下、O:0.01%以下、N:0.002〜0.03%を含み、残部がNiからなる組成のNi基高Cr合金用溶接材料を開示している。
特開2003−311473号公報(段落0009)
Moreover, in patent document 1 which is a prior art, C: 0.04% or less and Si: 0.01-0.0.0% by weight for the purpose of providing the welding material excellent in weld crack resistance similarly. 13%, Mn: 5% or less, Cr: 28-31.5%, Nb: 1.8% or less, Al: 0.5-1.1%, Ti: 0.5-1%, (Al + Ti : 1.6% or less), Fe: 7 to 11%, V: 0.5% or less, P: 0.02% or less, S: 0.015% or less, O: A welding material for a Ni-based high Cr alloy having a composition containing 0.01% or less, N: 0.002 to 0.03% and the balance being Ni is disclosed.
JP 2003-31473 A (paragraph 0009)

しかしながら、従来から用いられている690合金やNi基高Cr合金用溶接材料(以下、ワイヤともいう)では、以下に示す問題があった。
690合金は、耐溶接割れ性に劣るオーステナイトの単一組織であるため、耐溶接割れ性の面で更なる性能の向上が求められていた。また、耐溶接割れ性を向上させたワイヤでも、ワイヤの製造時における熱間加工時の割れの発生で加工性が低下する、すなわち、熱間加工性に劣るものであれば、実用的に難しくなる。ここで、690合金は、特に熱間加工時に割れが発生することが多く、この熱間加工時の割れの発生により、歩留まりの低下を招いていた。そのため、ワイヤ加工性に劣るという問題があった。
なお、ワイヤの製造時における問題としては、熱間加工時の割れ以外に伸線中の断線などがある。これらをまとめて本願ではワイヤ加工性という。
However, conventional 690 alloy and Ni-based high Cr alloy welding materials (hereinafter also referred to as wires) have the following problems.
Since 690 alloy is a single structure of austenite inferior in weld crack resistance, further improvement in performance has been demanded in terms of weld crack resistance. Also, even if the wire has improved weld crack resistance, it is practically difficult if the workability deteriorates due to the occurrence of cracks during hot working during wire manufacture, that is, if the hot workability is poor. Become. Here, the 690 alloy often generates cracks particularly during hot working, and the generation of cracks during the hot working causes a decrease in yield. For this reason, there is a problem that the wire processability is inferior.
In addition, as a problem at the time of manufacture of a wire, there exists a disconnection in wire drawing other than the crack at the time of hot processing. These are collectively referred to as wire workability in this application.

特許文献1に記載の溶接材料に関しては、本発明研究過程において、この組成範囲の溶接材料を作成したところ、特に熱間圧延時に割れが発生する例が多く、歩留まりの低下を招く結果となった。このことから、特許文献1に記載の溶接材料は、ワイヤ加工性に劣るという問題があった。
さらに、ワイヤの成分組成によっては、溶接時に多量のスラグが発生する場合があり、このスラグの発生により、このスラグを取り除く手間がかかり、溶接作業が行いにくくなる、すなわち、溶接作業性が低下することがあった。また、溶接部が偏析により割れる凝固割れが発生する場合があった。
Regarding the welding material described in Patent Document 1, when a welding material having this composition range was created in the research process of the present invention, there were many cases in which cracking occurred particularly during hot rolling, resulting in a decrease in yield. . For this reason, the welding material described in Patent Document 1 has a problem that it is inferior in wire workability.
Furthermore, depending on the component composition of the wire, a large amount of slag may be generated at the time of welding, and the generation of this slag takes time and effort to remove this slag, which makes it difficult to perform the welding operation, that is, the welding workability is reduced. There was a thing. Moreover, the solidification crack which a welded part cracks by segregation may generate | occur | produce.

本発明は、前記技術的課題を解決するためになされたものであって、その目的は、耐溶接割れ性、すなわち、耐再熱割れ性及び耐凝固割れ性と、溶接作業性及びワイヤ加工性に優れたNi基高Cr合金用溶接材料を提供することにある。   The present invention has been made to solve the above technical problem, and its purpose is to provide weld crack resistance, that is, reheat crack resistance and solidification crack resistance, welding workability and wire workability. An object of the present invention is to provide a Ni-based high Cr alloy welding material excellent in the above-mentioned.

本発明者らは、鋭意検討した結果、Ni基高Cr合金にMn及びNbを所定量添加することで、耐再熱割れ性に優れたNi基高Cr合金用溶接材料が得られることを知見し、本発明に到達するに至った。更に、Al及びTiの含有量を制限することにより、ワイヤ加工性を損なわないようにし、Nbの含有量を制限することにより、耐凝固割れ性を損なわないようにした。
なお、ここでの再熱割れとは、多層溶接をした場合に、前の溶接ビードの部分に新たに溶接したビードの熱影響により割れの起こる割れ現象をいう。
As a result of intensive studies, the inventors have found that a welding material for a Ni-based high Cr alloy having excellent reheat cracking resistance can be obtained by adding a predetermined amount of Mn and Nb to a Ni-based high Cr alloy. The present invention has been reached. Further, by restricting the contents of Al and Ti, the wire workability was not impaired, and by restricting the content of Nb, the coagulation cracking resistance was not impaired.
Here, reheat cracking refers to a cracking phenomenon in which cracking occurs due to the thermal effect of a bead newly welded to a previous weld bead when multilayer welding is performed.

すなわち、前記課題を解決するため、本発明に係るNi基高Cr合金用溶接材料は、溶接材料全質量あたり、Cr:28.0〜31.5質量%、Fe:7.0〜11.0質量%、Mn:2.0〜6.0質量%、Nb:0.8〜2.0質量%を含有し、かつ、前記Mnと前記Nbの合計が2.8〜7.5質量%であり、残部がNi及び不可避的不純物からなり、前記不可避的不純物のうち、C:0.04質量%以下、Si:0.5質量%以下、P:0.02質量%以下、S:0.004質量%以下、Al:0.1質量%以下、Ti:0.1質量%以下、O:0.01質量%以下、N:0.02質量%以下に抑制し、かつ、前記Alと前記Tiの合計が、0.11質量%以下であることを特徴とする。   That is, in order to solve the above problems, the welding material for Ni-based high Cr alloy according to the present invention is Cr: 28.0 to 31.5 mass%, Fe: 7.0 to 11.0 per total mass of the welding material. Mass%, Mn: 2.0-6.0 mass%, Nb: 0.8-2.0 mass%, and the total of said Mn and said Nb is 2.8-7.5 mass% And the balance consists of Ni and unavoidable impurities. Among the unavoidable impurities, C: 0.04 mass% or less, Si: 0.5 mass% or less, P: 0.02 mass% or less, S: 0.0. 004% by mass or less, Al: 0.1% by mass or less, Ti: 0.1% by mass or less, O: 0.01% by mass or less, N: 0.02% by mass or less, and Al and the above The total Ti is 0.11% by mass or less.

このような構成によれば、Mn及びNbを所定量含有することにより、Ni基高Cr合金用溶接材料の耐再熱割れ性が向上する。また、Crを所定量添加することにより、耐応力腐食割れ性が向上し、Feを所定量含有することにより、スケールの発生が抑制される。さらに、不可避的不純物のうち、Al及びTiの含有量を制限することにより、ワイヤ加工性の低下が抑制され、所定元素の含有量を制限することにより、耐溶接割れ性や耐応力腐食割れ性等の低下が抑制される。   According to such a configuration, the reheat cracking resistance of the welding material for the Ni-based high Cr alloy is improved by containing a predetermined amount of Mn and Nb. Further, by adding a predetermined amount of Cr, the stress corrosion cracking resistance is improved, and by containing a predetermined amount of Fe, generation of scale is suppressed. Furthermore, among the inevitable impurities, by limiting the content of Al and Ti, the wire workability is prevented from being lowered, and by limiting the content of a predetermined element, resistance to weld cracking and stress corrosion cracking Etc. are suppressed.

また、本発明に係るNi基高Cr合金用溶接材料は、前記Mnが、4.0〜5.9質量%、前記Nbが、1.0〜1.8質量%であり、かつ、前記Mnと前記Nbの合計が、5.0〜7.5質量%であることを特徴とする。   In the welding material for Ni-based high Cr alloy according to the present invention, the Mn is 4.0 to 5.9% by mass, the Nb is 1.0 to 1.8% by mass, and the Mn And Nb is 5.0 to 7.5% by mass.

このような構成によれば、Mn、Nb及び、MnとNbの合計の含有量を、さらに所定範囲に制限することにより、Ni基高Cr合金用溶接材料の耐再熱割れ性が向上すると共に、溶接作業性やワイヤ加工性が、より低下しにくくなる。   According to such a configuration, the reheat cracking resistance of the Ni-based high Cr alloy welding material is improved by further limiting the total content of Mn, Nb and Mn and Nb to a predetermined range. , Welding workability and wire workability are more difficult to decrease.

本発明に係るNi基高Cr合金用溶接材料によれば、耐再熱割れ性を向上させることができる。また、熱間圧延時の割れの発生を抑制することができるため、ワイヤ加工性を向上させることができ、その結果、生産性を向上させることができる。さらに、溶接作業性の向上を図ることができる。   According to the welding material for Ni-based high Cr alloy according to the present invention, reheat cracking resistance can be improved. Moreover, since generation | occurrence | production of the crack at the time of hot rolling can be suppressed, wire workability can be improved and, as a result, productivity can be improved. Furthermore, it is possible to improve welding workability.

以下、本発明に係るNi基高Cr合金用溶接材料(以下、溶接材料という)について、詳細に説明する。
溶接材料は、Cr、Fe、Mn、Nbを所定量含有し、かつ、前記Mnと前記Nbの合計が所定量であり、残部がNi及び不可避的不純物からなるものである。そして、前記不可避的不純物のうち、C、Si、P、S、Al、Ti、O、Nを所定量以下に抑制し、かつ、前記Alと前記Tiの合計を所定量以下に規定したものである。
以下、溶接材料の成分の限定理由について説明する。なお、成分の含有量は、溶接材料全質量あたりの質量%である。
Hereinafter, the welding material for Ni-based high Cr alloy according to the present invention (hereinafter referred to as welding material) will be described in detail.
The welding material contains a predetermined amount of Cr, Fe, Mn, and Nb, the total amount of Mn and Nb is a predetermined amount, and the balance is made of Ni and inevitable impurities. Among the inevitable impurities, C, Si, P, S, Al, Ti, O, N are suppressed to a predetermined amount or less, and the sum of the Al and the Ti is specified to be a predetermined amount or less. is there.
Hereinafter, the reasons for limiting the components of the welding material will be described. In addition, content of a component is the mass% per welding material total mass.

<Cr:28.0〜31.5質量%>
Crは、耐応力腐食割れ性および耐孔食性等の耐食性向上のために必須の元素であるが、耐応力腐食割れ性の効果を十分ならしめるためには、28.0質量%以上の添加が必要である。一方、31.5質量%を超えると、溶接材料の製造時の熱間加工性が著しく低下する。従って、Cr含有量は、28.0〜31.5質量%とする。
<Cr: 28.0 to 31.5% by mass>
Cr is an essential element for improving the corrosion resistance such as stress corrosion cracking resistance and pitting corrosion resistance. is necessary. On the other hand, when it exceeds 31.5 mass%, the hot workability at the time of manufacture of a welding material will fall remarkably. Therefore, the Cr content is 28.0 to 31.5 mass%.

<Fe:7.0〜11.0質量%>
Feは690合金のような高Cr量の場合に生じるスケールの発生を防止又は抑制する。Feの含有量が7.0質量%未満では、スケールの発生が著しくなる。一方、11.0質量%を超えると、耐応力腐食割れ性が低下する。従って、Fe含有量は、7.0〜11.0質量%とする。
<Fe: 7.0 to 11.0% by mass>
Fe prevents or suppresses the generation of scale that occurs when the amount of Cr is high, such as 690 alloy. When the Fe content is less than 7.0% by mass, scale generation becomes significant. On the other hand, when it exceeds 11.0 mass%, stress corrosion cracking resistance will fall. Therefore, the Fe content is 7.0 to 11.0% by mass.

<Mn:2.0〜6.0質量%>
Mnは溶接時に脱酸作用及び脱硫作用をもたらす元素として有効であり、またSを固定し、耐再熱割れ性を向上させる効果がある。Mnの含有量が2.0質量%未満では、これらの十分な効果が得られない。一方、これらの効果を高めるためにはMn含有量を多くすることが好ましいが、6.0質量%を超えると、溶接時に発生するスラグにより湯流れを悪くし、溶接作業性が低下する。従って、Mn含有量は、2.0〜6.0質量%とする。好ましくは、4.0〜5.9質量%である。
<Mn: 2.0 to 6.0% by mass>
Mn is effective as an element that brings about a deoxidizing action and a desulfurizing action at the time of welding, and also has an effect of fixing S and improving reheat cracking resistance. If the Mn content is less than 2.0% by mass, these sufficient effects cannot be obtained. On the other hand, in order to enhance these effects, it is preferable to increase the Mn content. However, if it exceeds 6.0 mass%, the slag generated at the time of welding deteriorates the hot water flow, and the welding workability decreases. Therefore, the Mn content is set to 2.0 to 6.0 mass%. Preferably, it is 4.0-5.9 mass%.

<Nb:0.8〜2.0質量%>
Nbは、耐再熱割れ性を向上させるが、Nbの含有量が0.8質量%未満では、十分な効果が得られない。一方、2.0質量%を超えると耐凝固割れ性が劣化し、さらに溶接材料の製造時の熱間加工性が著しく低下する。従って、Nb含有量は、0.8〜2.0質量%とする。好ましくは、1.0〜1.8質量%である。
<Nb: 0.8-2.0 mass%>
Nb improves reheat cracking resistance, but if the Nb content is less than 0.8% by mass, sufficient effects cannot be obtained. On the other hand, if it exceeds 2.0% by mass, the resistance to solidification cracking deteriorates, and the hot workability during the production of the welding material is remarkably lowered. Therefore, Nb content shall be 0.8-2.0 mass%. Preferably, it is 1.0-1.8 mass%.

ここで、本発明においては、MnとNbの含有量の合計を所定範囲に規定する。
<MnとNbの合計:2.8〜7.5質量%>
Mn及びNbの添加は、耐再熱割れ性を向上させるが、MnとNbの合計の含有量が7.5質量%を超えると、溶接材料の製造時の熱間加工性が著しく低下し、また、スラグが発生しやすくなり、溶接作業性が低下する。従って、MnとNbの合計の含有量は、2.8〜7.5質量%とする。好ましくは、5.0〜7.5質量%、より好ましくは5.0〜7.0質量%である。
Here, in the present invention, the total content of Mn and Nb is defined within a predetermined range.
<Total of Mn and Nb: 2.8 to 7.5% by mass>
Addition of Mn and Nb improves the resistance to reheat cracking, but when the total content of Mn and Nb exceeds 7.5% by mass, the hot workability during the production of the welding material is significantly reduced. Moreover, slag is likely to be generated, and welding workability is reduced. Therefore, the total content of Mn and Nb is 2.8 to 7.5% by mass. Preferably, it is 5.0-7.5 mass%, More preferably, it is 5.0-7.0 mass%.

<残部:Ni及び不可避的不純物>
溶接材料は、前記成分を必須として含有し、残部がNi及び不可避的不純物からなるものである。
以下、不可避的不純物として含まれる元素であるC、Si、P、S、Al、Ti、O、N、及び、AlとTiの合計を所定量以下に抑制した理由について説明する。
<Balance: Ni and inevitable impurities>
The welding material contains the above components as essential components, and the balance is made of Ni and inevitable impurities.
Hereinafter, the reason why C, Si, P, S, Al, Ti, O, N, and the total of Al and Ti, which are elements included as inevitable impurities, are suppressed to a predetermined amount or less will be described.

<C:0.04質量%以下>
Cは固溶体強化元素であり、C含有量の増加と共に引張強度は増加するが、C含有量の増加は耐応力腐食割れ性を低下させる。従って、両特性を考慮して、C含有量は、0.04質量%以下とする。
<C: 0.04 mass% or less>
C is a solid solution strengthening element, and the tensile strength increases with an increase in the C content, but an increase in the C content decreases the stress corrosion cracking resistance. Therefore, considering both characteristics, the C content is set to 0.04% by mass or less.

<Si:0.5質量%以下>
Siは含有量が多くなると耐再熱割れ性が劣化するので、Si含有量は、0.5質量%以下とする。
<Si: 0.5% by mass or less>
Since the reheat cracking resistance deteriorates when the Si content increases, the Si content is set to 0.5 mass% or less.

<P:0.02質量%以下>
PはNiと低融点の共晶(Ni−NiP等)を作り、耐再熱割れ性を劣化させる元素である。従って、Pの含有量は少ないほどよいが、過度な制限は経済性の低下を招く。従って、P含有量は、0.02質量%以下とする。
<P: 0.02 mass% or less>
P is an element that forms a low-melting point eutectic (Ni—Ni 3 P or the like) with Ni and degrades reheat cracking resistance. Therefore, the smaller the content of P, the better. However, excessive limitation causes a decrease in economic efficiency. Therefore, the P content is 0.02% by mass or less.

<S:0.004質量%以下>
SはPと同じようにNiと低融点の共晶(Ni−Ni等)を作り、溶接材料の製造時の熱間加工性を著しく低下させる。従って、S含有量は、0.004質量%以下とする。
<S: 0.004 mass% or less>
S, like P, forms a low-melting point eutectic (Ni—Ni 3 S 2 or the like) with Ni, and remarkably deteriorates the hot workability during production of the welding material. Therefore, the S content is 0.004% by mass or less.

<Al:0.1質量%以下>
Alは過剰に含有するとワイヤ加工性を低下させるので、0.1質量%以下とする。
<Al: 0.1% by mass or less>
If Al is contained excessively, wire workability is lowered, so the content is made 0.1% by mass or less.

<Ti:0.1質量%以下>
TiはAlと同様に、過剰に含有するとワイヤ加工性を低下させるので、0.1質量%以下とする。
<Ti: 0.1% by mass or less>
Ti, like Al, reduces wire workability when contained in excess, so is 0.1% by mass or less.

ここで、本発明においては、AlとTiの含有量の合計を所定以下に規定する。
<AlとTiの合計:0.11質量%以下>
Al及びTiの過剰な含有はスラグを発生させ、溶接作業性を低下させると共に、ワイヤ加工性を著しく低下させる。従って、AlとTiの合計の含有量は、0.11質量%以下とする。好ましくは、0.10質量%以下である。
Here, in this invention, the sum total of content of Al and Ti is prescribed | regulated below to predetermined.
<Total of Al and Ti: 0.11% by mass or less>
Excessive inclusion of Al and Ti generates slag, reduces welding workability, and remarkably reduces wire workability. Therefore, the total content of Al and Ti is 0.11% by mass or less. Preferably, it is 0.10 mass% or less.

<O:0.01質量%以下>
Oは溶接材料の溶製中に大気から侵入する不可避的不純物であり、耐応力腐食割れ性を低下させる。従って、0.01質量%以下とする。
<O: 0.01% by mass or less>
O is an unavoidable impurity that enters from the atmosphere during the melting of the welding material, and reduces the stress corrosion cracking resistance. Accordingly, the content is 0.01% by mass or less.

<N:0.02質量%以下>
NはOと同様に、溶接材料の溶製中に大気から侵入する不可避的不純物であり、ブローホール等の欠陥の原因となる。従って、0.02質量%以下とする。
<N: 0.02 mass% or less>
N, like O, is an unavoidable impurity that enters from the atmosphere during melting of the welding material, and causes defects such as blow holes. Therefore, it is 0.02 mass% or less.

なお、不可避的不純物としては、前記したC、Si、P、S、Al、Ti、O、Nの他、例えば、Mo、Cuを含有することが考えられるが、Moについては、0.5質量%以下、Cuについては、0.3質量%以下含有されていたとしても、本発明の効果に本質的な影響を与えるものではない。   In addition to the above-mentioned C, Si, P, S, Al, Ti, O, and N, it is considered that unavoidable impurities include, for example, Mo and Cu. Even if Cu is contained in an amount of 0.3% by mass or less, Cu does not substantially affect the effect of the present invention.

次に、本発明に係る溶接材料について、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを比較して具体的に説明する。   Next, the welding material according to the present invention will be specifically described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.

[第1実施例]
先ず、表3に示す組成を有する溶接材料を作製し、次に、この溶接材料を用いて、以下に示す、耐再熱割れ性(耐溶接割れ性)、溶接作業性についての評価を行なった。また、溶接材料の作製時(製造時)に、ワイヤ加工性についての評価を行なった。
溶接材料の成分組成を表3に示す。なお、表3において、本発明の構成を満たさないものについては、数値に下線を引いて示す。また、AlとTiの合計量(Al+Ti)の値は、小数点以下3桁目を四捨五入した値である。
[First embodiment]
First, a welding material having the composition shown in Table 3 was prepared, and then, using this welding material, the following reheat cracking resistance (weld cracking resistance) and welding workability were evaluated. . In addition, the wire workability was evaluated when the welding material was produced (manufactured).
Table 3 shows the component composition of the welding material. In Table 3, those not satisfying the configuration of the present invention are indicated by underlining the numerical values. The value of the total amount of Al and Ti (Al + Ti) is a value obtained by rounding off the third decimal place.

Figure 2009022989
Figure 2009022989

<耐再熱割れ性>
耐再熱割れ性の評価については、JIS Z 3224に基づき、表曲げ試験により行なった。割れが生じなかったものを耐再熱割れ性が良好(○)、2.4mm以下の割れが2個以下であったものを耐再熱割れ性がやや不良(△)、割れが多数生じたものを耐再熱割れ性が不良(×)と判断した。
<Reheat cracking resistance>
The reheat cracking resistance was evaluated by a surface bending test based on JIS Z 3224. Good resistance to reheat cracking when cracks did not occur (◯). Some when cracks of 2.4 mm or less were 2 or less, resistance to reheat cracking was slightly poor (Δ), and many cracks occurred. The product was judged to have poor reheat cracking resistance (x).

<溶接作業性>
溶接作業性の評価については、作製した溶接材料を用いて実際に溶接作業を行なうことにより行なった。溶接の際、スラグの発生が少なく、溶接作業を通常通り行うことができたものを溶接作業性が良好(○)、溶接作業を行なうことはできたが、スラグの発生により、溶接作業がやや困難であったものを溶接作業性がやや不良(△)、スラグの発生が多く、溶接作業を行なうことができなかったものを溶接作業性が不良(×)と判断した。
<Welding workability>
The welding workability was evaluated by actually performing the welding work using the produced welding material. During welding, the generation of slag was small and the welding work was performed normally, but the welding workability was good (○), and the welding work could be performed. Those that were difficult were judged to have poor welding workability (△), and those that could not be welded due to a lot of slag generation were judged to be poor (x).

<ワイヤ加工性>
ワイヤ加工性の評価については、ワイヤ製造時の加工状況を確認することにより行なった。問題なく加工ができたものをワイヤ加工性が良好(◎)、熱間加工時の割れは少ないが、伸線中の断線が発生しやすかったものをワイヤ加工性がやや良好(○)、熱間加工時の割れが多発し、伸線中の断線も多かったものをワイヤ加工性が不良(×)と判断した。
これらの結果を表4に示す。
<Wire workability>
The wire workability was evaluated by confirming the processing status at the time of wire production. Good wire workability (◎) when processed without problems, few cracks during hot working, but good wire workability (○) when heat breakage is likely to occur. It was judged that the wire workability was poor (x) when many cracks occurred during the inter-working and there were many breaks during wire drawing.
These results are shown in Table 4.

Figure 2009022989
Figure 2009022989

表4に示すように、実施例1〜5は、成分組成が本発明の範囲を満足しているため、耐再熱割れ性、溶接作業性、ワイヤ加工性すべてにおいて良好であった。
なお、ワイヤ加工性における実施例4は、Nbが2.0質量%以下であるが、1.8質量%を超えたため、他の実施例に比べると、ワイヤ加工性にやや劣るものであった。
一方、比較例6〜19は、成分組成が本発明の範囲を満足していないため、以下の不具合を有していた。
As shown in Table 4, Examples 1 to 5 were satisfactory in all of reheat cracking resistance, welding workability, and wire workability because the component composition satisfied the scope of the present invention.
In Example 4 in wire workability, Nb was 2.0% by mass or less, but exceeded 1.8% by mass, and therefore was slightly inferior to wire processability as compared with other examples. .
On the other hand, Comparative Examples 6 to 19 had the following problems because the component composition did not satisfy the scope of the present invention.

比較例6は、Mn、Nb及び、MnとNbの合計量(Mn+Nb)が下限値を外れたため、溶接作業性及びワイヤ加工性は良好であったが、耐再熱割れ性に劣った。比較例7は、Mn及び、MnとNbの合計量が下限値を外れたため、溶接作業性及びワイヤ加工性は良好であったが、耐再熱割れ性に劣った。比較例8は、Mn及び、MnとNbの合計量が下限値を外れ、また、Nb及び、AlとTiの合計量(Al+Ti)が上限値を超えたため、耐再熱割れ性、溶接作業性及びワイヤ加工性に劣った。   In Comparative Example 6, Mn, Nb and the total amount of Mn and Nb (Mn + Nb) deviated from the lower limit values, so that welding workability and wire workability were good, but reheat cracking resistance was poor. In Comparative Example 7, since the total amount of Mn and Mn and Nb deviated from the lower limit value, the welding workability and the wire workability were good, but the reheat cracking resistance was poor. In Comparative Example 8, Mn, and the total amount of Mn and Nb deviated from the lower limit value, and the total amount of Nb, Al and Ti (Al + Ti) exceeded the upper limit value, so reheat cracking resistance, welding workability And it was inferior to wire workability.

比較例9は、Nb及び、MnとNbの合計量が下限値を外れ、AlとTiの合計量が上限値を超えたため、耐再熱割れ性、溶接作業性及びワイヤ加工性に劣った。比較例10は、Nb、Ti及び、AlとTiの合計量が上限値を超えたため、耐再熱割れ性は良好であったが、溶接作業性及びワイヤ加工性に劣った。比較例11は、S、Nb及び、MnとNbの合計量が上限値を超えたため、耐再熱割れ性は良好であったが、溶接作業性及びワイヤ加工性に劣った。   In Comparative Example 9, the total amount of Nb, Mn, and Nb deviated from the lower limit value, and the total amount of Al and Ti exceeded the upper limit value. Therefore, the reheat crack resistance, welding workability, and wire workability were inferior. In Comparative Example 10, since the total amount of Nb, Ti, and Al and Ti exceeded the upper limit value, the reheat cracking resistance was good, but the welding workability and wire workability were poor. In Comparative Example 11, since the total amount of S, Nb and Mn and Nb exceeded the upper limit value, the reheat cracking resistance was good, but the welding workability and wire workability were poor.

比較例12は、Nbが下限値を外れ、Mn及び、AlとTiの合計量が上限値を超えたため、耐再熱割れ性、溶接作業性及びワイヤ加工性に劣った。比較例13は、Mnが下限値を外れ、Nb、Ti及び、AlとTiの合計量が上限値を超えたため、耐再熱割れ性、溶接作業性及びワイヤ加工性に劣った。   In Comparative Example 12, Nb deviated from the lower limit value, and the total amount of Mn and Al and Ti exceeded the upper limit value. Therefore, the reheat crack resistance, welding workability, and wire workability were inferior. In Comparative Example 13, Mn deviated from the lower limit value, and the total amount of Nb, Ti, and Al and Ti exceeded the upper limit value.

比較例14及び比較例15は、Nbが下限値を外れたため、溶接作業性及びワイヤ加工性は良好であったが、耐再熱割れ性に劣った。比較例16は、Nb、Al及び、AlとTiの合計量が上限値を超えたため、耐再熱割れ性は良好であったが、溶接作業性及びワイヤ加工性に劣った。比較例17は、Ti、Al及び、AlとTiの合計量が上限値を超えたため、耐再熱割れ性は良好であったが、溶接作業性及びワイヤ加工性に劣った。   In Comparative Example 14 and Comparative Example 15, since Nb deviated from the lower limit, welding workability and wire workability were good, but the reheat cracking resistance was poor. In Comparative Example 16, since the total amount of Nb, Al, and Al and Ti exceeded the upper limit value, the reheat cracking resistance was good, but the welding workability and wire workability were poor. In Comparative Example 17, since the total amount of Ti, Al, and Al and Ti exceeded the upper limit value, the reheat cracking resistance was good, but the welding workability and wire workability were poor.

比較例18は、Ti及び、AlとTiの合計量が上限値を超えたため、耐再熱割れ性は良好であったが、溶接作業性及びワイヤ加工性に劣った。比較例19は、S、Ti、Al及び、AlとTiの合計量が上限値を超えたため、耐再熱割れ性は良好であったが、溶接作業性及びワイヤ加工性に劣った。   In Comparative Example 18, since the total amount of Ti and Al and Ti exceeded the upper limit value, the reheat cracking resistance was good, but the welding workability and wire workability were poor. In Comparative Example 19, since the total amount of S, Ti, Al, and Al and Ti exceeded the upper limit value, the reheat cracking resistance was good, but the welding workability and wire workability were poor.

次に、前記結果をもとに、Mn、Nb、Al及びTi含有量の適正値について、図面を参照して説明する。
図1は、第1実施例における合金中のMn及びNb含有量と耐再熱割れ性(耐溶接割れ性)の関係を示すグラフ図、図2は、第1実施例における合金中のMnとNbの合計量(Mn+Nb)及び、AlとTiの合計量(Al+Ti)と溶接作業性の関係を示すグラフ図、図3は、第1実施例における合金中のMnとNbの合計量(Mn+Nb)及び、AlとTiの合計量(Al+Ti)とワイヤ加工性の関係を示すグラフ図である。
Next, based on the above results, appropriate values of Mn, Nb, Al, and Ti contents will be described with reference to the drawings.
FIG. 1 is a graph showing the relationship between the Mn and Nb contents in the alloy in the first example and reheat cracking resistance (weld cracking resistance), and FIG. 2 shows the relationship between Mn in the alloy in the first example and FIG. 3 is a graph showing the relationship between the total amount of Nb (Mn + Nb) and the total amount of Al and Ti (Al + Ti) and welding workability. FIG. 3 shows the total amount of Mn and Nb in the alloy in the first embodiment (Mn + Nb). And it is a graph which shows the total amount (Al + Ti) of Al and Ti, and the relationship of wire workability.

図1に示すように、Mn及びNbの添加により耐再熱割れ性の向上が見られるが、Mn又はNbの含有量が少ないと、耐再熱割れ性の向上はみられない。   As shown in FIG. 1, the reheat cracking resistance is improved by the addition of Mn and Nb. However, when the content of Mn or Nb is small, the reheat cracking resistance is not improved.

また、図2及び図3に示すように、MnとNbの合計を適量添加した場合、Al及びTiの添加により、溶接作業性及びワイヤ加工性が損なわれる傾向にあった。また、AlとTiの合計、MnとNbの合計の過剰の添加では、スラグによる溶接作業性の低下、及びワイヤ加工性の低下がみられた。なお、図2、3ともに「MnとNbの合計:0.00質量%、AlとTiの合計:0.02質量%」(比較例6)及び「MnとNbの合計:1.97質量%、AlとTiの合計:0.03質量%」(比較例7)では、「○」となっているが、これは、「MnとNbの合計」及び「AlとTiの合計」の含有量が少ない分には、溶接作業性及びワイヤ加工性には影響しないためである。   Moreover, as shown in FIGS. 2 and 3, when an appropriate amount of Mn and Nb is added, welding workability and wire workability tend to be impaired by the addition of Al and Ti. In addition, when the total addition of Al and Ti and the total addition of Mn and Nb was excessive, deterioration in welding workability and wire workability due to slag were observed. 2 and 3, “total of Mn and Nb: 0.00 mass%, total of Al and Ti: 0.02 mass%” (Comparative Example 6) and “total of Mn and Nb: 1.97 mass%. , The total of Al and Ti: 0.03 mass% (Comparative Example 7) is “◯”, but this is the content of “total of Mn and Nb” and “total of Al and Ti”. This is because if the amount is small, welding workability and wire workability are not affected.

[第2実施例]
Nbの添加による耐凝固割れ性の影響を確認するため、表5に示す成分の溶接材料1〜4を作製し、バレストレイン試験による耐凝固割れ性の評価を行った。
溶接材料の成分組成を表5に示す。なお、表5において、本発明の構成を満たさないものについては、数値に下線を引いて示す。また、AlとTiの合計量(Al+Ti)の値は、小数点以下3桁目を四捨五入した値である。また、溶接条件を表6に示すと共に、図4(a)に溶接形状、(b)に試験片形状を示す。
[Second Embodiment]
In order to confirm the influence of the solidification cracking resistance due to the addition of Nb, the welding materials 1 to 4 having the components shown in Table 5 were prepared, and the solidification cracking resistance was evaluated by a ballast train test.
The component composition of the welding material is shown in Table 5. In Table 5, those not satisfying the configuration of the present invention are indicated by underlining the numerical values. The value of the total amount of Al and Ti (Al + Ti) is a value obtained by rounding off the third decimal place. Moreover, while showing welding conditions in Table 6, Fig.4 (a) shows a welding shape and (b) shows a test piece shape.

Figure 2009022989
Figure 2009022989

Figure 2009022989
Figure 2009022989

作製した溶接材料1〜4は、Nb含有量のみを変化させ、その他の元素についてはなるべく同レベルとなるように調整した。そして、バレストレイン試験によって試験片1に生じた溶接割れ長さの合計値(総割れ長さ)を求めた。
溶接材料1〜4のNb含有量と、総割れ長さとの相関を図5に示す。
図5に示すように、Nb含有量の増加に伴って、総割れ長さが大きくなり、Nb含有量が2.0質量%以下であれば、凝固割れの合計値が低いレベルで安定する傾向にあることがわかった。
The produced welding materials 1 to 4 were adjusted so that only the Nb content was changed and the other elements were at the same level as much as possible. And the total value (total crack length) of the weld crack length which arose in the test piece 1 by the ballast rain test was calculated | required.
FIG. 5 shows the correlation between the Nb content of the welding materials 1 to 4 and the total crack length.
As shown in FIG. 5, as the Nb content increases, the total crack length increases, and if the Nb content is 2.0% by mass or less, the total value of solidification cracks tends to be stable at a low level. I found out.

以上、本発明に係る溶接材料について最良の実施の形態及び実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されるものではない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することができることはいうまでもない。   As mentioned above, although the best embodiment and the Example were shown and demonstrated in detail about the welding material which concerns on this invention, the meaning of this invention is not limited to an above-described content. Needless to say, the contents of the present invention can be widely modified and changed based on the above description.

第1実施例における合金中のMn及びNb含有量と耐再熱割れ性(耐溶接割れ性)の関係を示すグラフ図である。It is a graph which shows the relationship of Mn and Nb content in the alloy in 1st Example, and reheat cracking resistance (weld cracking resistance). 第1実施例における合金中のMnとNbの合計量(Mn+Nb)及び、AlとTiの合計量(Al+Ti)と溶接作業性の関係を示すグラフ図である。It is a graph which shows the relationship between the total amount (Mn + Nb) of Mn and Nb in the alloy in 1st Example, the total amount of Al and Ti (Al + Ti), and welding workability | operativity. 第1実施例における合金中のMnとNbの合計量(Mn+Nb)及び、AlとTiの合計量(Al+Ti)とワイヤ加工性の関係を示すグラフ図である。It is a graph which shows the total amount (Mn + Nb) of Mn and Nb in the alloy in 1st Example, the relationship between the total amount of Al and Ti (Al + Ti), and wire workability. (a)は、バレストレイン試験における溶接形状を示す模式図、(b)は、バレストレイン試験における試験片形状を示す模式図である。(A) is a schematic diagram which shows the welding shape in a ballest rain test, (b) is a schematic diagram which shows the test piece shape in a ballest rain test. バレストレイン試験におけるNb含有量と、溶接割れ長さの合計値(総割れ長さ)との相関を示すグラフ図である。It is a graph which shows the correlation with Nb content in a ballast train test, and the total value (total crack length) of weld crack length.

符号の説明Explanation of symbols

1 試験板
R 曲げ半径
1 Test plate R Bending radius

Claims (2)

溶接材料全質量あたり、Cr:28.0〜31.5質量%、Fe:7.0〜11.0質量%、Mn:2.0〜6.0質量%、Nb:0.8〜2.0質量%を含有し、かつ、前記Mnと前記Nbの合計が2.8〜7.5質量%であり、残部がNi及び不可避的不純物からなり、
前記不可避的不純物のうち、C:0.04質量%以下、Si:0.5質量%以下、P:0.02質量%以下、S:0.004質量%以下、Al:0.1質量%以下、Ti:0.1質量%以下、O:0.01質量%以下、N:0.02質量%以下に抑制し、かつ、前記Alと前記Tiの合計が、0.11質量%以下であることを特徴とするNi基高Cr合金用溶接材料。
Based on the total mass of the welding material, Cr: 28.0 to 31.5 mass%, Fe: 7.0 to 11.0 mass%, Mn: 2.0 to 6.0 mass%, Nb: 0.8 to 2. 0% by mass, and the total of Mn and Nb is 2.8 to 7.5% by mass, and the balance is made of Ni and inevitable impurities.
Among the inevitable impurities, C: 0.04 mass% or less, Si: 0.5 mass% or less, P: 0.02 mass% or less, S: 0.004 mass% or less, Al: 0.1 mass% Hereinafter, Ti: 0.1% by mass or less, O: 0.01% by mass or less, N: 0.02% by mass or less, and the total of Al and Ti is 0.11% by mass or less. A welding material for a Ni-based high Cr alloy, characterized in that:
前記Mnが、4.0〜5.9質量%、前記Nbが、1.0〜1.8質量%であり、かつ、前記Mnと前記Nbの合計が、5.0〜7.5質量%であることを特徴とする請求項1に記載のNi基高Cr合金用溶接材料。   The Mn is 4.0 to 5.9% by mass, the Nb is 1.0 to 1.8% by mass, and the total of the Mn and the Nb is 5.0 to 7.5% by mass. The welding material for a Ni-based high Cr alloy according to claim 1, wherein:
JP2007189972A 2007-07-20 2007-07-20 WELDING MATERIAL FOR Ni BASED HIGH Cr ALLOY Pending JP2009022989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007189972A JP2009022989A (en) 2007-07-20 2007-07-20 WELDING MATERIAL FOR Ni BASED HIGH Cr ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007189972A JP2009022989A (en) 2007-07-20 2007-07-20 WELDING MATERIAL FOR Ni BASED HIGH Cr ALLOY

Publications (1)

Publication Number Publication Date
JP2009022989A true JP2009022989A (en) 2009-02-05

Family

ID=40395314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007189972A Pending JP2009022989A (en) 2007-07-20 2007-07-20 WELDING MATERIAL FOR Ni BASED HIGH Cr ALLOY

Country Status (1)

Country Link
JP (1) JP2009022989A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073646A1 (en) * 2010-12-02 2012-06-07 株式会社神戸製鋼所 Ni-based alloy welding metal, ni-based alloy-coated arc welding rod
CN102554505A (en) * 2012-01-11 2012-07-11 中国科学院金属研究所 Nickel-based bare wire resisting point defects and crack defects
KR101197990B1 (en) 2010-11-12 2012-11-05 가부시키가이샤 고베 세이코쇼 Ni BASE ALLOY SOLID WIRE FOR WELDING
JP2013237064A (en) * 2012-05-15 2013-11-28 Kobe Steel Ltd Ni-based alloy weld metal, strip electrode and welding method
JP2015112642A (en) * 2013-12-16 2015-06-22 三菱重工業株式会社 Pipe connection method, and pipe connection structure
CN105215572A (en) * 2015-09-22 2016-01-06 机械科学研究院哈尔滨焊接研究所 A kind of nuclear island primary device anti-crack defect nickel-based welding wire and preparation method
CN106541222A (en) * 2015-09-22 2017-03-29 中国科学院金属研究所 The nuclear power nickel-based welding wire of high-temp and high-strength flawless defect and its preparation and use
US10675720B2 (en) 2011-02-01 2020-06-09 Mitsubishi Heavy Industries, Ltd. High Cr Ni-based alloy welding wire, shielded metal arc welding rod, and weld metal formed by shielded metal arc welding

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197990B1 (en) 2010-11-12 2012-11-05 가부시키가이샤 고베 세이코쇼 Ni BASE ALLOY SOLID WIRE FOR WELDING
WO2012073646A1 (en) * 2010-12-02 2012-06-07 株式会社神戸製鋼所 Ni-based alloy welding metal, ni-based alloy-coated arc welding rod
JP2012115889A (en) * 2010-12-02 2012-06-21 Kobe Steel Ltd Ni-BASED ALLOY WELD METAL, Ni-BASED ALLOY COVERED ELECTRODE
CN102639285A (en) * 2010-12-02 2012-08-15 株式会社神户制钢所 Ni-based alloy welding metal, Ni-based alloy-coated arc welding rod
CN102639285B (en) * 2010-12-02 2016-10-12 株式会社神户制钢所 Ni base alloy welding metal, Ni base alloy coated electrode
US9969033B2 (en) 2010-12-02 2018-05-15 Kobe Steel, Ltd. Ni-base alloy weld metal and Ni-base alloy covered electrode
US10675720B2 (en) 2011-02-01 2020-06-09 Mitsubishi Heavy Industries, Ltd. High Cr Ni-based alloy welding wire, shielded metal arc welding rod, and weld metal formed by shielded metal arc welding
CN102554505A (en) * 2012-01-11 2012-07-11 中国科学院金属研究所 Nickel-based bare wire resisting point defects and crack defects
JP2013237064A (en) * 2012-05-15 2013-11-28 Kobe Steel Ltd Ni-based alloy weld metal, strip electrode and welding method
JP2015112642A (en) * 2013-12-16 2015-06-22 三菱重工業株式会社 Pipe connection method, and pipe connection structure
CN105215572A (en) * 2015-09-22 2016-01-06 机械科学研究院哈尔滨焊接研究所 A kind of nuclear island primary device anti-crack defect nickel-based welding wire and preparation method
CN106541222A (en) * 2015-09-22 2017-03-29 中国科学院金属研究所 The nuclear power nickel-based welding wire of high-temp and high-strength flawless defect and its preparation and use

Similar Documents

Publication Publication Date Title
KR101291419B1 (en) Ni-BASED HEAT-RESISTANT ALLOY
US10519533B2 (en) High Cr-based austenitic stainless steel
JP2009022989A (en) WELDING MATERIAL FOR Ni BASED HIGH Cr ALLOY
JP4672555B2 (en) Ni-base high Cr alloy filler metal and welding rod for coated arc welding
JP5389000B2 (en) Ni-base alloy weld metal, Ni-base alloy-coated arc welding rod
EP2671669B1 (en) Ni-BASED HIGH-CR ALLOY WIRE FOR WELDING, ROD FOR ARC-SHIELDED WELDING, AND METAL FOR ARC-SHIELDED WELDING
JP5670103B2 (en) High strength austenitic heat resistant steel
WO2011071054A1 (en) Austenitic heat-resistant alloy
JP2013036086A (en) Ni-BASED HEAT-RESISTANT ALLOY
JP4656251B1 (en) Ni-based alloy material
JP5403192B1 (en) Duplex stainless steel
JP5107172B2 (en) Ni-base alloy welding material
JP5838933B2 (en) Austenitic heat resistant steel
JP5846076B2 (en) Austenitic heat-resistant alloy
JP2005118875A (en) Welding wire of high ni-based alloy
JP6795038B2 (en) Austenitic heat-resistant alloy and welded joints using it
JP3382834B2 (en) Filler for Ni-base high Cr alloy
JP5955166B2 (en) Ferritic stainless steel welding wire with excellent weldability, high heat resistance and high corrosion resistance
JP5857894B2 (en) Austenitic heat-resistant alloy
JP6201731B2 (en) Austenitic heat-resistant casting alloy
JP6288397B1 (en) Austenitic stainless steel
JPS62224493A (en) Wire for welding 9cr-2mo steel
JP2002173720A (en) Ni BASED ALLOY EXCELLENT IN HOT WORKABILITY
KR20240064053A (en) Ferritic heatresistant steel
JP2011094237A (en) Ni BASED ALLOY HAVING EXCELLENT HOT WORKABILITY