JP2010229707A - Permeable pavement structure - Google Patents

Permeable pavement structure Download PDF

Info

Publication number
JP2010229707A
JP2010229707A JP2009078191A JP2009078191A JP2010229707A JP 2010229707 A JP2010229707 A JP 2010229707A JP 2009078191 A JP2009078191 A JP 2009078191A JP 2009078191 A JP2009078191 A JP 2009078191A JP 2010229707 A JP2010229707 A JP 2010229707A
Authority
JP
Japan
Prior art keywords
water
layer
roadbed
pavement
pavement structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009078191A
Other languages
Japanese (ja)
Other versions
JP5491756B2 (en
Inventor
Takeshi Sumikawa
澄川  健
Koshiro Irie
功四郎 入江
Kazutoshi Hino
和俊 樋野
Masahiro Kunikawa
昌宏 國川
Hirotoshi Aoki
博敏 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Landscape
Chugoku Electric Power Co Inc
Nippon Road Co Ltd
Landscape Co Ltd
Energia Eco Materia KK
Original Assignee
Landscape
Chugoku Electric Power Co Inc
Nippon Road Co Ltd
Landscape Co Ltd
Energia Eco Materia KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landscape, Chugoku Electric Power Co Inc, Nippon Road Co Ltd, Landscape Co Ltd, Energia Eco Materia KK filed Critical Landscape
Priority to JP2009078191A priority Critical patent/JP5491756B2/en
Publication of JP2010229707A publication Critical patent/JP2010229707A/en
Application granted granted Critical
Publication of JP5491756B2 publication Critical patent/JP5491756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permeable pavement structure which makes a construction period short, does not cause a problem of dust generation, has inexpensively water permeability as well as water retentivity, and can suppress a rise in the temperature of a paved surface over a long period of time as a result. <P>SOLUTION: This permeable pavement structure 1 formed on a subgrade layer 2 is characterized in that a filter layer 3, a water-retentive subgrade layer 4 composed of a water-retentive subgrade material obtained by mixing a coal-ash granulated material 21 as a supplementary material into a subgrade material 22, and a surface layer 5 with the water permeability are sequentially superposed on one another. The mixing ratio of the supplementary material 21 to the subgrade material 22 is set to, supplementary material:subgrade material=10:90 to 50:50 (weight ratio). The coal-ash granulated material 21 is obtained by granulating coal ash or a mixture containing at least the coal ash and cement. Preferably, fly ash is used as the coal ash. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、保水性を備えた透水性舗装構造体に関する。   The present invention relates to a water-permeable pavement structure having water retention.

近年、都市温暖化が問題となっている。この都市温暖化の主な要因として、
(1)都市部では郊外よりも大量のエネルギーが消費されており、そのため人工排熱が著しく増大している点、
(2)都市部では、地表面の大半をコンクリートやアスファルトなどの熱容量の大きな施設が占め、日中に吸収した熱を夜間にゆっくり放出するため、夜間に都市部の気温を上昇させている点(蓄熱効果)、および
(3)都市化により地表面がコンクリートなどの建造物で覆われるに伴い、地下への雨水などの浸透する地表面積が減少し、このため地表面からの水分の蒸発による潜熱の放散が抑制され、郊外に比べて地表面温度が上昇する点(蒸発の抑制)、
が挙げられている。
In recent years, urban warming has become a problem. As a main factor of this urban warming,
(1) A large amount of energy is consumed in urban areas than in the suburbs, and artificial exhaust heat has increased significantly.
(2) In urban areas, facilities with large heat capacity such as concrete and asphalt occupy most of the ground surface, and because the heat absorbed during the day is released slowly at night, the temperature in urban areas is raised at night. (Heat storage effect), and (3) As the ground surface is covered with concrete and other structures due to urbanization, the surface area of the groundwater, such as rainwater, penetrates into the ground, which is due to the evaporation of moisture from the ground surface. The point where the dissipation of latent heat is suppressed and the surface temperature rises compared to the suburbs (suppression of evaporation),
Is listed.

これらの各要因に対しては、現在、多くの対策技術が実用化されているところであるが、特に要因(3)の対策として、都市部からの蒸発潜熱の発散を促進するために、積極的に都市部に緑地や親水空間などを設置して透水性面を増加させることが進められている。   For each of these factors, many countermeasure technologies are currently being put into practical use. In particular, as a countermeasure for factor (3), in order to promote the diffusion of latent heat of evaporation from urban areas, it is proactive. In addition, it has been promoted to increase water permeability by installing green spaces and hydrophilic spaces in urban areas.

透水性面を増加させる技術の1つとして、近年、透水性舗装に関する技術が種々提案されている。一般に、道路の舗装は、路床層の上に、路盤層および表層を順次積層した構造を有するが、この透水性舗装は、粒状の路盤層の上に空隙率の多孔質なアスファルト混合物もしくはセメントコンクリートからなる表層を舗設し、表層と路床との相互間での透水性を向上させたものである。このような構造とすることで、透水性舗装では、降雨時には雨水は舗装面から路床まで浸透するとともに舗装構造内に一時的に水は貯蔵され、晴天時には舗装構造内やさらに下層の地下水が舗装面近傍まで上昇して蒸発することで気化熱を奪い、舗装面の温度上昇を緩和することができる。   In recent years, various techniques related to water-permeable pavement have been proposed as one technique for increasing the water-permeable surface. Generally, a road pavement has a structure in which a roadbed layer and a surface layer are sequentially laminated on a roadbed layer. This water-permeable pavement has a porous porous asphalt mixture or cement on a granular roadbed layer. A surface layer made of concrete is paved to improve the water permeability between the surface layer and the roadbed. With this structure, in the case of permeable pavement, rainwater penetrates from the pavement surface to the roadbed during rain and temporarily stores water in the pavement structure. By evaporating up to the vicinity of the pavement surface and evaporating, the heat of vaporization can be taken away and the temperature increase of the pavement surface can be mitigated.

しかし、この透水性舗装では、通常の非透水性舗装や排水性舗装と比べて降雨後1日程度までは舗装面の温度上昇を低く抑えることができるが、その後の温度上昇は非透水性舗装などと同様となり、舗装面の温度上昇の抑制効果がなくなるという問題があった。   However, in this permeable pavement, the temperature rise of the pavement surface can be kept low until about one day after the rain compared with normal non-permeable pavement and drainage pavement, but the subsequent temperature rise is not permeable pavement. As a result, there was a problem that the effect of suppressing the temperature rise of the pavement surface was lost.

この透水性舗装の問題点を解消するために、この舗装構造に保水性を兼備させた保水性舗装構造(保水型透水性舗装)が、最近提案されている。この保水性舗装は、表層および路盤層の空隙を比較的小さくし、間隙保水を可能としたものであり、透水性舗装構造よりも内部の保水量を増加させたものである。   In order to solve the problem of this water-permeable pavement, a water-retaining pavement structure (water-retaining water-permeable pavement) in which this pavement structure also has water retention has been recently proposed. This water-retaining pavement has a relatively small gap between the surface layer and the roadbed layer to enable gap water retention, and has an increased amount of water retention inside than the water-permeable pavement structure.

このような保水性舗装構造として、例えば不透水性に形成された路床の上に、土とセメント系固化材と団粒化材と石炭灰との混合物を打設して形成された路盤と保水性舗装層とからなる構造が提案されている(特許文献1参照)。しかし、この舗装構造は、路床を不透水性とするための工事が必要であり、そのため費用および工期がかかり、またこのようにして不透水性に形成された路床上に、前記混合物を敷き均し転圧する際の発塵の問題がある。
特開2006−37571号公報
As such a water-retaining pavement structure, for example, a roadbed formed by placing a mixture of soil, cement-based solidified material, aggregated material, and coal ash on a roadbed that is impermeable. A structure composed of a water-retaining pavement layer has been proposed (see Patent Document 1). However, this pavement structure requires construction for making the roadbed impermeable, which is expensive and time consuming, and the mixture is laid on the roadbed thus formed impermeable. There is a problem of dust generation during uniform rolling.
JP 2006-37571 A

本発明は、上記事情に鑑み、短期間の工期で、発塵の問題も生じず、安価に透水性とともに保水性を備え、その結果舗装面の温度上昇を長期間にわたり抑えることができる透水性舗装構造体を提供することを目的とする。   In view of the above circumstances, the present invention has a short period of construction, does not cause dusting problems, and is provided with water permeability and water retention at low cost, and as a result, the water permeability that can suppress the temperature rise of the pavement surface over a long period of time. An object is to provide a pavement structure.

上記目的は、本発明によれば、路床層上に築造される舗装構造体であって、フィルター層と、路盤材に補足材として石炭灰造粒物を混合した保水性路盤材からなる保水性路盤層と、透水性を備えた表層とが順次積層されてなることを特徴とする透水性舗装構造体によって達成される。   According to the present invention, the above object is a pavement structure built on a road bed layer, comprising a filter layer and a water retention roadbed material obtained by mixing coal ash granulated material as a supplement to the roadbed material. This is achieved by a water-permeable pavement structure in which a permeable roadbed layer and a surface layer having water permeability are sequentially laminated.

本発明によれば、透水性舗装構造体の一部を構成する路盤層に、石炭灰造粒物を補足材として混合することとしたので、路盤層の間隙保水だけでなく、石炭灰造粒物自体の保水性を有効に活用できるようになり、その結果、従来の透水性舗装よりも昼間における舗装面の温度上昇を長期間抑制することができる。また、路盤材に補足材として石炭灰造粒物を混合することから、短い工期で安価に舗装でき、しかも発塵の問題も生じずに舗装構造を得ることができる。   According to the present invention, since the coal ash granulated material is mixed as a supplement to the road bed layer constituting a part of the permeable pavement structure, not only the pore water retention of the road bed layer but also the coal ash granulation. As a result, the water retention of the object itself can be effectively utilized, and as a result, the temperature rise of the pavement surface in the daytime can be suppressed for a longer period than the conventional water-permeable pavement. In addition, since coal ash granulated material is mixed as a supplement to the roadbed material, it can be paved inexpensively in a short construction period, and a pavement structure can be obtained without causing the problem of dust generation.

本発明の実施形態である透水性舗装構造体の一例を示す図である。It is a figure which shows an example of the water-permeable pavement structure which is embodiment of this invention. 補足材としての石炭灰造粒物、路盤材およびこれらの混合物の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the coal ash granulated material as a supplementary material, a roadbed material, and these mixtures. 舗装体の温度測定結果を示すグラフである。It is a graph which shows the temperature measurement result of a pavement. 舗装表面および当該舗装表面近傍における温度測定結果を示すグラフである。It is a graph which shows the temperature measurement result in the pavement surface and the said pavement surface vicinity.

以下、添付図面に基づいて本発明の透水性舗装構造体についてより詳細に説明する。図1は、本発明の実施形態である透水性舗装構造体の垂直断面図を示している。この図に示すように、本発明の透水性舗装構造体1は、路床層(地盤)2の上に順次積層されたフィルター層3、路盤層4および透水性を備えた表層5からなる。なお、路床層2は、在来の地盤を公知の工法(路床工)を用いるなどして築造することができる。この路床工の具体例としては、切土工法、盛土工法、安定処理工法または置換工法などが挙げられ、本発明においてはこれらのどの路床工によっても路床層2を形成できる。ここで、切土工法は、在来地盤を整正または所定の深さまで切り下げて路床とする工法であり、盛土工法は、良質土を在来地盤の上に盛り上げて路床を築造する工法である。また、安定処理工法は、原位置で路床土とセメントや石灰などの安定材とを混合して路床の支持力を改善する工法である。通常、安定材としては、路床土が砂質土の場合、セメントが使用され、粘性土の場合、石灰が使用されるが、セメント系または石灰系の固化材を使用することもできる。また、置換工法は、切土部分で軟弱な路床土がある場合などに、路床の一部または全部を掘削して良質土で置き換える工法である。これらの工法は、単独でまたは2種以上を組み合わせて施工できる。例えば、切土工法後に、舗装区域のCBRを向上させるために、安定処理工法を組み合わせることができる。   Hereinafter, the water-permeable pavement structure of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1: has shown the vertical sectional view of the water-permeable pavement structure which is embodiment of this invention. As shown in this figure, the water-permeable pavement structure 1 of the present invention comprises a filter layer 3, a roadbed layer 4 and a surface layer 5 having water permeability that are sequentially laminated on a roadbed layer (ground) 2. The roadbed layer 2 can be constructed by using a known ground method (roadbed work) or the like. Specific examples of the roadbed include a cut method, a banking method, a stable treatment method, a replacement method, and the like. In the present invention, the roadbed layer 2 can be formed by any of these roadbed methods. Here, the cut method is a method that uses the conventional ground as a roadbed by leveling or cutting down to a predetermined depth, and the embankment method is a method that builds up the roadbed by raising good quality soil on the conventional ground. It is. The stable treatment method is a method of improving the bearing capacity of the roadbed by mixing the roadbed soil and a stabilizing material such as cement or lime in situ. Usually, as the stabilizer, cement is used when the roadbed soil is sandy soil, and lime is used when the subgrade soil is viscous soil, but a cement-based or lime-based solidified material can also be used. The replacement method is a method of excavating part or all of the road bed and replacing it with high quality soil when there is a soft road bed soil at the cut portion. These construction methods can be applied alone or in combination of two or more. For example, after the cut method, a stabilization method can be combined to improve the CBR of the paved area.

路床層2の上に形成されるフィルター層3は、降雨時などに透水性の表層5、路盤層4を通過した雨水を路床層2に浸透させるとともに、路床層2の浸透水分による軟弱化や舗装構造の破壊を防止するために設けられるものである。このフィルター層3は、通常、砂などの細骨材を所定の厚さに敷き均すことによって構成される。この細骨材は、ごみ、泥、有機物などを含まないものが好ましい。特に細骨材として砂を用いる場合には、天然砂、砕砂、砕石ダストのいずれも使用でき、その粒度はこれらを規定するJIS規格のそれぞれにおける規定値を満たせばよいが、好ましくは75μmふるい通過量が6%以下の粒度のものを使用するのがよい。フィルター層の仕上がり層厚は、公園、駐車場などの舗装体の場合、通常、30〜100mm、好ましくは40〜80mm、さらに好ましくは40〜60mmとされる。また、歩道の舗装体の場合には、50〜100mmとされる。この層厚は、路床層の軟弱化などを防止できる程度に設定すればよく、過剰に厚くする必要はないが、前記範囲未満では、前記軟弱化を有効に防止できない。   The filter layer 3 formed on the road bed layer 2 allows the rainwater that has passed through the water-permeable surface layer 5 and the road bed layer 4 to permeate into the road bed layer 2 at the time of raining, etc. It is provided to prevent softening and destruction of the pavement structure. The filter layer 3 is usually formed by spreading fine aggregate such as sand to a predetermined thickness. The fine aggregate is preferably free of dust, mud, organic matter and the like. In particular, when sand is used as the fine aggregate, any of natural sand, crushed sand, and crushed stone dust can be used, and the particle size should satisfy the specified values in each of the JIS standards that define these, but preferably pass through a 75 μm sieve. It is preferable to use a particle having an amount of 6% or less. The finished layer thickness of the filter layer is usually 30 to 100 mm, preferably 40 to 80 mm, and more preferably 40 to 60 mm in the case of paving bodies such as parks and parking lots. In the case of a sidewalk pavement, the length is set to 50 to 100 mm. The layer thickness may be set to such an extent that the roadbed layer can be prevented from being weakened, and does not need to be excessively thick. However, if the thickness is less than the above range, the softening cannot be effectively prevented.

フィルター層3の上に保水性路盤層4が形成される。この保水性路盤層4は、表層5から伝達された交通荷重をさらに分散して路床層2へ伝達するとともに、その層厚方向に通過する水分を保持するために設けられる層である。本発明の舗装構造体1においては、この路盤層4は、路盤材42に補足材として石炭灰造粒物41を混合した保水性路盤材から構成される。   A water retaining roadbed layer 4 is formed on the filter layer 3. The water retaining roadbed layer 4 is a layer provided to further disperse the traffic load transmitted from the surface layer 5 and transmit the traffic load to the roadbed layer 2 and to retain moisture passing in the layer thickness direction. In the pavement structure 1 of the present invention, the roadbed layer 4 is composed of a water-retaining roadbed material in which coal ash granulated material 41 is mixed as a supplementary material with the roadbed material 42.

石炭灰造粒物41は、石炭灰を主成分として造粒される。石炭灰としては、微粉炭焚きボイラー、油焚きボイラー、流動層ボイラー、加圧流動層ボイラーなどの各種ボイラー設備から発生するフライアッシュやクリンカーアッシュなどを使用できる。クリンカーアッシュはそれ自体多孔質であり保水性を備えるが、粉砕工程などを必要とするため、相対的には安価に造粒を行えるフライアッシュを用いるのが好ましい。例えば、加圧流動層ボイラーからのフライアッシュを使用する場合、このフライアッシュは自硬性を備え、硬化することで十分な強度特性が得られるため、これ単独で造粒でき、その他の石炭灰を使用する場合には、所定の強度特性を得るために、前記他の成分を所定の混合比の範囲内で混合して造粒することができる。   The coal ash granule 41 is granulated with coal ash as a main component. As the coal ash, fly ash and clinker ash generated from various boiler facilities such as a pulverized coal fired boiler, an oil fired boiler, a fluidized bed boiler, and a pressurized fluidized bed boiler can be used. Clinker ash is porous in itself and has water retention, but since a pulverization step is required, it is preferable to use fly ash that can be granulated relatively inexpensively. For example, when using fly ash from a pressurized fluidized bed boiler, this fly ash is self-hardening, and since sufficient strength characteristics can be obtained by curing, it can be granulated alone and other coal ash When used, in order to obtain a predetermined strength characteristic, the other components can be mixed and granulated within a range of a predetermined mixing ratio.

前記他の粉体成分として、各種の結合材や添加材などを用いることができる。前記結合材としては、セメント、石膏または石灰などの水硬性結合材の他、製鋼スラグなどの各種スラグが挙げられ、さらに公知の有機質結合材などを含めることもできる。これらの結合材は、1種を単独で、または2種以上を組み合わせて使用できる。   As the other powder component, various binders and additives can be used. Examples of the binder include hydraulic binders such as cement, gypsum, and lime, as well as various slags such as steelmaking slag, and can also include known organic binders. These binders can be used alone or in combination of two or more.

また、添加材としては、それ自体吸水性、吸湿性、保水性を備える材料のほか、前記粉体材料の結合力を高める有機質バインダー材などを使用できる。前者としては、例えば、ゼオライト、ベントナイト、カオリナイト、モンモリロナイトなどの粘土鉱物のほか、公知の固体状の有機質吸水材料などが挙げられる。後者のバインダー材は、固体状であると液体状であることを問わない。これらの添加材は、1種を単独で、または2種以上を組み合わせて使用できる。   Further, as the additive, in addition to a material that itself has water absorption, moisture absorption, and water retention, an organic binder material that enhances the binding force of the powder material can be used. Examples of the former include clay minerals such as zeolite, bentonite, kaolinite, and montmorillonite, as well as known solid organic water-absorbing materials. The latter binder material does not matter if it is solid and liquid. These additives can be used singly or in combination of two or more.

石炭灰に結合材、または結合材および添加材を混合する場合、これらの混合比は、得られる造粒物の養生条件や強度特性(主には圧壊強度)などを考慮して適宜設定できるが、通常、粉体混合物の全量を100重量%として、結合材0〜20重量%、添加材0〜5重量%の範囲(残りが石炭灰)とされる。   When a binder, or a binder and an additive are mixed with coal ash, the mixing ratio can be appropriately set in consideration of the curing conditions and strength characteristics (mainly crushing strength) of the resulting granulated product. Usually, the total amount of the powder mixture is 100% by weight, and the range is 0 to 20% by weight of the binder and 0 to 5% by weight of the additive (the remainder is coal ash).

前記粉体混合物は、加水混練された後に造粒される。混練水量は、前記粉体成分の付着水分や造粒物の目標強度などを考慮して、前記粉体成分100重量部に対して、外割りにて10〜40重量部、好ましくは12〜30重量部の範囲内で適宜設定できる。混練は、モルタルミキサなど公知の混練機を用いて行うことができる。前記の液状の有機質バインダー材を用いる場合、この混練水に予め所定量を添加しておくことができる。   The powder mixture is granulated after being hydro-kneaded. The amount of kneading water is 10 to 40 parts by weight, preferably 12 to 30 parts by weight, with respect to 100 parts by weight of the powder component, taking into consideration the moisture adhering to the powder component and the target strength of the granulated product It can be set as appropriate within the range of parts by weight. Kneading can be performed using a known kneader such as a mortar mixer. When the liquid organic binder material is used, a predetermined amount can be added in advance to the kneaded water.

造粒は、例えば回転皿型造粒機(転動造粒)、ロールプレス機(圧縮造粒)などの公知の造粒装置を用いて行うことができる。例えば、前者の造粒機の場合、その回転皿を回転させながら前記の粉体混合物を投入するとともに、混練水を噴霧などの方法により添加することで混練と造粒とを同時に行うことができる。得られた造粒物は、その後、自然養生、あるいは30〜70℃の温度条件下で養生される。養生期間は、得られる造粒物が所定の強度特性を備えるように適宜設定できる。   The granulation can be performed using a known granulator such as a rotating dish granulator (rolling granulation) or a roll press (compression granulation). For example, in the case of the former granulator, the powder mixture is charged while rotating the rotating dish, and kneading and granulation can be performed simultaneously by adding kneading water by a method such as spraying. . The obtained granulated product is then cured under natural curing or under a temperature condition of 30 to 70 ° C. The curing period can be appropriately set so that the obtained granulated product has a predetermined strength characteristic.

このようにして得られる石炭灰造粒物の性状は、通常、外観形状が略球状からアーモンド状を呈し、圧壊強度1〜10MN/m、平均粒度10〜20mm、最大粒径40mm以下とされ、吸水率約20〜30%程度、10日間気中放置後の保水率20%以上とされる。このように石炭灰を主成分とすることで、天然砕石などと比較して相対的に軽量で、保水性および吸水性に優れる造粒物を得ることができる。 The properties of the coal ash granule obtained in this way are usually formed from an almost spherical shape to an almond shape, with a crushing strength of 1 to 10 MN / m 2 , an average particle size of 10 to 20 mm, and a maximum particle size of 40 mm or less. The water absorption rate is about 20-30%, and the water retention rate after standing in the air for 10 days is 20% or more. By using coal ash as the main component in this way, a granulated product that is relatively light compared to natural crushed stone and is excellent in water retention and water absorption can be obtained.

路盤材42としては、天然砕石、鉄鋼スラグ、またはアスファルト、コンクリート再生骨材(以下、RC材という。)などが好適に使用できる。これらは、いずれか1種を単独で、または2種以上を組み合わせて使用できる。特にこれらの中では、近年再生骨材の有効利用の機運の高まりから、RC材の使用が主流になりつつあり、また、RC材が通常、4〜8重量%の吸水率を示し、天然砕石に比してある程度舗装面の温度上昇を抑制する効果が期待できるので、RC材を単独で用いるか、またはこれを主材とし、他の天然砕石などを配合して用いるのが好ましい。   As the roadbed material 42, natural crushed stone, steel slag, asphalt, concrete recycled aggregate (hereinafter referred to as RC material), or the like can be suitably used. Any of these may be used alone or in combinations of two or more. In particular, among these, the use of RC materials is becoming mainstream due to the recent increase in the effective use of recycled aggregates, and RC materials usually show a water absorption rate of 4 to 8% by weight. Since the effect of suppressing the temperature rise of the pavement surface to some extent can be expected as compared with the above, it is preferable to use the RC material alone or to use this as a main material and other natural crushed stones.

本発明においては、この路盤材42に前記石炭灰造粒物41を補足材として混合し、保水性路盤材を調製する。両者の混合比は適宜設定できるが、修正CBR30%以上という歩道路盤材料の規格を満たす必要がある点および形成される保水性路盤層の吸水性および保水性の観点からは、補足材:路盤材=10:90〜50:50、好ましくは10:90〜30:70の範囲内(いずれも重量比)に設定するのが好ましい。補足材の混合比を前記範囲未満としたのでは、保水性が不十分となり舗装面の温度上昇を効果的に抑制することができない。また、前記範囲より大きくした場合には、修正CBR試験を行ない修正CBR値が規格値を満足するか否かを確認する作業が必要になってくる。   In the present invention, the roadbed material 42 is mixed with the coal ash granulated material 41 as a supplementary material to prepare a water retaining roadbed material. The mixing ratio of the two can be set as appropriate. However, from the viewpoint of the water-absorbing and water-holding properties of the formed water-retaining roadbed layer, it is necessary to satisfy the standard of the walking road board material of corrected CBR of 30% or more. = 10: 90 to 50:50, preferably 10:90 to 30:70 (all are in a weight ratio). If the mixing ratio of the supplementary material is less than the above range, the water retention is insufficient and the temperature increase of the pavement surface cannot be effectively suppressed. Further, when the value is larger than the above range, it is necessary to perform a modified CBR test and confirm whether or not the modified CBR value satisfies the standard value.

前記フィルター層3上に前記保水性路盤材が搬入され、所定の仕上がり厚さとなるように均一に敷き均される。敷き均しには、通常、アスファルトフィニッシャ、ブルドーザ、モーターグレーダなどが用いられ、敷き均し作業は連続して行われる。その後、敷き均された保水性路盤層4の表面は、通常、4〜20t程度のタイヤローラ、ロードローラなどによって所定の締め固め度が得られるまでさらに転圧され、平坦に仕上げられる。この転圧によって、保水性路盤材中の石炭灰造粒物は破砕され、当該破砕産物が路盤材相互間の空隙中に充填され、より密な、また必要であれば一定の密度を有する充填構造を形成することができる。こうして形成される保水性路盤層の仕上がり層厚は、通常100〜200cm,好ましくは50〜150cmとされる。   The water-retaining roadbed material is carried onto the filter layer 3 and spread uniformly so as to have a predetermined finished thickness. For leveling, asphalt finisher, bulldozer, motor grader, etc. are usually used, and leveling work is performed continuously. Thereafter, the surface of the water-retaining roadbed layer 4 that has been spread and leveled is usually further rolled and flattened by a tire roller, road roller, or the like of about 4 to 20 t until a predetermined degree of compaction is obtained. This rolling compaction crushes the coal ash granulated material in the water-retaining roadbed material, and the crushed product is filled in the gaps between the roadbed materials, which is denser and, if necessary, filled with a certain density. A structure can be formed. The finished layer thickness of the water-retaining roadbed layer thus formed is usually 100 to 200 cm, preferably 50 to 150 cm.

この保水性路盤層4の上に透水性を有する表層5が形成される。この表層5は、透水性を備えるとともに、交通荷重を分散して下層に伝達し、表面の磨耗、亀裂に対して抵抗性を備え、平坦ですべりにくく、交通手段による良好な走行が可能な路面を提供するものである。本発明においては、このような機能を備えていれば、例えば各種アスファルト混合物や透水性セメントコンクリートなどの表層材料を使用できるが、なかでも開粒度アスファルト混合物が好適に使用される。この開粒度アスファルト混合物は、通常、粗骨材、細骨材、フィラー、アスファルトからなる加熱アスファルト混合物で、合成粒度における2.36mmふるい通過分が15〜30重量%の範囲のものをいう。アスファルト混合物に配合される粗骨材は5mm篩上が85重量%以上となる骨材であり、細骨材は10mmふるいを全量通過し、5mmふるいを85重量%以上通過する骨材であるが、粗骨材51の最大粒径は、20mm以下、好ましくは13mm以下とするのが良い。また、フィラーは通常、75μmふるいを通過する鉱物質粉末(例えば石灰岩や火成岩などの石粉)であり、アスファルトの見かけの粘度を高めるためなどに配合されるものである。   A surface layer 5 having water permeability is formed on the water retaining roadbed layer 4. This surface layer 5 has water permeability, disperses the traffic load and transmits it to the lower layer, has resistance to surface wear and cracks, is flat and difficult to slip, and can be driven well by means of transportation. Is to provide. In this invention, if it has such a function, surface layer materials, such as various asphalt mixtures and water-permeable cement concrete, can be used, for example, Among them, an open-graded asphalt mixture is used suitably. This open-graded asphalt mixture is usually a heated asphalt mixture made of coarse aggregate, fine aggregate, filler, and asphalt, and has a 2.36 mm sieve passage in the synthetic particle size in the range of 15 to 30% by weight. The coarse aggregate blended in the asphalt mixture is an aggregate that is 85% by weight or more on a 5 mm sieve, and the fine aggregate is an aggregate that passes through the entire 10 mm sieve and passes through the 5 mm sieve by 85% by weight or more. The maximum particle size of the coarse aggregate 51 is 20 mm or less, preferably 13 mm or less. The filler is usually a mineral powder (for example, stone powder such as limestone or igneous rock) that passes through a 75 μm sieve, and is added to increase the apparent viscosity of asphalt.

開粒度アスファルト混合物を使用して施工する場合、これが保水性路盤層4の上にアスファルトフィニッシャなどを用いて敷き均された後、締め固めが行われる。この締め固め作業は、通常の施工法に従い、所定の重量のロードローラ、タイヤローラまたは振動ローラなどを用いて複数回転圧することによって行われる。タイヤローラなどの重量は、施工状況などに応じて適宜設定できる。透水性セメントコンクリートの場合も同様に施工することができる。また、透水性を有する表層を表層部分とその下側に位置する基層部分との2層に分けて構築することもできる。この場合、基層および表層の各部分にはそれぞれ前記した同種または異種の透水性を有する表層材料を用い、それぞれ前記の敷き均しや締め固めの方法によって敷設することができる。   In the case of construction using an open-graded asphalt mixture, this is spread on the water-retaining roadbed layer 4 using an asphalt finisher and then compacted. This compacting operation is performed by a plurality of rotational pressures using a load roller, tire roller, vibration roller, or the like having a predetermined weight in accordance with a normal construction method. The weight of the tire roller or the like can be set as appropriate according to the construction situation. In the case of water-permeable cement concrete, it can be similarly constructed. In addition, the surface layer having water permeability can be constructed by being divided into two layers of a surface layer portion and a base layer portion located below the surface layer portion. In this case, the surface layer material having the same or different water permeability as described above can be used for each part of the base layer and the surface layer, and can be laid by the above-described method of leveling and compacting.

また、前記の透水性を有するアスファルト混合物やセメントコンクリートなどによって形成された表層材には、さらに透水性を備えた、例えば舗装平板やインターロッキングブロックなどの板状またはブロック状の表層材(舗装材)を敷設することができる。このような舗装材として、例えば特開平7−315951号公報記載の硬質骨材、石炭灰、低耐火度窯業原料および水を混合して造粒して得られる複合粒子を所定形状に成形、焼成したものや特開2004−52244号公報記載の熱可塑性樹脂、熱硬化性樹脂、石炭灰を混合、溶融固化したものを粉砕した人工砕石をセメントでブロック状に固めたものなども好適に使用できる。また、透水性平板やインターロッキングブロックを用いる場合には、通常の方法に従い保水性路盤層4上に砂を敷き均してクッション層を設け、その上にこれらを敷き詰めるようにする。   Further, the surface layer material formed of the water-permeable asphalt mixture or cement concrete is further provided with water permeability, for example, a plate-like or block-like surface layer material (pavement material such as a pavement flat plate or an interlocking block). ) Can be laid. As such a pavement material, for example, composite particles obtained by mixing and granulating hard aggregate, coal ash, low refractory ceramic materials and water described in JP-A-7-315951 are formed into a predetermined shape and fired. And those obtained by mixing a thermoplastic resin, a thermosetting resin, and coal ash as described in JP-A-2004-52244, a mixture of melted and solidified crushed artificial crushed stones into a block shape with cement, and the like can be suitably used. . Moreover, when using a water-permeable flat plate or an interlocking block, according to a normal method, sand is spread on the water-retaining roadbed layer 4 to provide a cushion layer, and these are spread on it.

前記の開粒度アスファルト混合物などや板状またはブロック状の表層材は、保水性を備えていてもよい。また、これらの表層材が内部に備える空隙に保水性を有する材料をスラリー状にするなどして充填させることで、保水性を兼備するようにしてもよい。   The open particle size asphalt mixture or the like or a plate-like or block-like surface layer material may have water retention. Moreover, you may make it also have water retention property by making the material which has water retention property into the space | gap with which these surface layer materials are equipped by making it into a slurry form.

本発明の透水性舗装構造体では、降雨時には雨水が時間経過に伴い路床層に浸透していき、路盤層では石炭灰造粒物に保水され、また晴天時には舗装面の温度上昇に伴い、路盤層や路床層、さらにはその下層の地盤中の地下水が表層に向けて上昇し、そこで蒸発して舗装面の温度上昇を抑制できるだけでなく、浸透水分が保水性路盤層を通過する際に石炭灰造粒物中に吸水され、保水される。その結果、従来の透水性舗装構造では降雨日の後に晴天が2〜5日程度続くと、舗装構造が乾燥し、舗装面温度の上昇を抑制できないが、本発明の舗装構造では、石炭灰造粒物がその保有する水分を長期にわたって放出するため、降雨日の後、約1週間から10日間の長期間舗装面の温度上昇を抑えることができる。   In the water-permeable pavement structure of the present invention, rainwater permeates into the road bed layer over time at the time of rain, water is retained in the coal ash granule in the road bed layer, and with the temperature rise of the pavement surface at fine weather, The groundwater in the roadbed layer, the roadbed layer, and the ground below it rises toward the surface layer, where it evaporates to suppress the temperature rise of the pavement surface, and also when permeated water passes through the water-retaining roadbed layer The water is absorbed and retained in the coal ash granulation. As a result, in the conventional permeable pavement structure, if the clear weather continues for about 2 to 5 days after the rainy day, the pavement structure dries and the increase in pavement surface temperature cannot be suppressed. Since the granule releases its retained moisture over a long period of time, it is possible to suppress the temperature rise of the pavement surface for a long period of about 1 week to 10 days after the rainy day.

本発明の透水性舗装構造体は、車道、歩道、広場、一般駐車場などの舗装に適用できる。これらの舗装に用いることで、夏季に舗装面の温度上昇を効果的に抑制することが可能となる。なお、車道については、本発明の透水性舗装構造体は、その強度の経時変化を考慮して、いわゆる幹線道路などよりも相対的に計画交通量の小さい車道の舗装に適用するのが好ましい。   The water-permeable pavement structure of the present invention can be applied to pavements such as roadways, sidewalks, open spaces, and general parking lots. By using for these pavements, it becomes possible to suppress effectively the temperature rise of a pavement surface in summer. In addition, about the roadway, it is preferable to apply the water-permeable pavement structure of this invention to the pavement of a roadway with a plan traffic volume relatively smaller than what is called a main road etc. in consideration of the temporal change of the intensity | strength.

[使用材料]
(1)路盤材(RC材) RC−30(最大粒径30mm以下、コンクリート殻)
(2)補足材 石炭灰造粒物(商品名「Hiビーズ」、株式会社エネルギア・エコ・マテリア社製)
(3)表層材 透水性アスファルト混合物―13(骨材の最大粒径13mm)
[Materials used]
(1) Roadbed material (RC material) RC-30 (maximum particle size 30mm or less, concrete shell)
(2) Supplementary material Coal ash granulation (trade name “Hi beads”, manufactured by Energia Eco Materia Co., Ltd.)
(3) Surface layer material Permeable asphalt mixture-13 (maximum particle size of aggregate 13mm)

[石炭灰造粒物の調製]
試験には、微粉炭焚きボイラーから発生するフライアッシュ87重量%と、セメント13重量%とからなる粉体混合物(全量100重量%)をパン型造粒装置を用いて加水しながら造粒を行い(混練水量は、粉体混合物に対して重量比で23%)、4週間気中養生させたものを使用した。得られた石炭灰造粒物の性状を表1に示す。
[Preparation of coal ash granules]
In the test, granulation is carried out while adding a powder mixture (100% by weight in total) consisting of 87% by weight of fly ash generated from a pulverized coal-fired boiler and 13% by weight of cement using a pan-type granulator. (The amount of kneading water was 23% by weight with respect to the powder mixture), and the one cured in air for 4 weeks was used. Table 1 shows the properties of the obtained coal ash granulate.

Figure 2010229707
Figure 2010229707

[保水性路盤材の調製]
RC材と石炭灰造粒物とを、RC材:石炭灰造粒物(補足材)=80:20となるように混合し、保水性路盤材を調製した。この保水性路盤材について、以下の物性試験を行った。
(1)篩い分け試験(JIS A1102準拠)
(2)突き固めによる土の締め固め試験(JIS A1210準拠)
(3)修正CBR試験(JIS A1211準拠)
[Preparation of water-retaining roadbed material]
RC material and coal ash granulated material were mixed so that RC material: coal ash granulated material (supplementary material) = 80: 20, and a water retention roadbed material was prepared. The following physical property test was performed on this water-retaining roadbed material.
(1) Screening test (conforms to JIS A1102)
(2) Soil compaction test by tamping (conforms to JIS A1210)
(3) Modified CBR test (JIS A1211 compliant)

この物性試験結果を表2に示す。表2では、RC材(RC−30)についての規格値が規定されているものについては、その値を併記している。   The physical property test results are shown in Table 2. In Table 2, when the standard value about RC material (RC-30) is prescribed | regulated, the value is written together.

Figure 2010229707
Figure 2010229707

[舗装構造体の施工]
道路沿いに設けられた歩道の修繕工事の一環として、修繕工事区域の一部に所定の面積(各々、180m)の2つの工区を設定し、そのうちの1つの工区(以下、工区1という。)において本発明の舗装構造体を施工した。まず、表面を平坦にした路床層の上に砂を敷き均し、転圧によって仕上がり層厚50mmのフィルター層を形成した。その上に、前記の保水性路盤材を搬入し、ブルドーザによって敷き均した後に2軸タンデムローラを用いて表面の転圧(荷重4t)を行い、保水性路盤層を形成した(仕上がり層厚保100mm)。さらに、その路盤層の上に開粒度アスファルト混合物を搬入、敷き均した後に、2軸タンデムローラを用いて転圧して透水性表層を形成し(仕上がり層厚40mm)、本発明の透水性舗装構造体を得た(実施例1)。
[Construction of pavement structure]
As part of the repair work for the sidewalks along the road, two work areas of a predetermined area (each 180 m 2 ) are set in a part of the repair work area, and one of these work areas (hereinafter referred to as work area 1). The pavement structure of the present invention was constructed. First, sand was spread on a road bed layer having a flat surface, and a filter layer having a finished layer thickness of 50 mm was formed by rolling. On top of that, the above-mentioned water-retaining roadbed material was carried in, spread by a bulldozer, and then subjected to surface rolling (load 4t) using a biaxial tandem roller to form a water-retaining roadbed layer (finished layer thickness retention 100 mm) ). Furthermore, after carrying an open-graded asphalt mixture onto the roadbed layer, leveling, and rolling using a biaxial tandem roller to form a water-permeable surface layer (finished layer thickness 40 mm), the water-permeable pavement structure of the present invention A body was obtained (Example 1).

残りの工区(以下、工区2という。)における舗装工事では、路盤材としてRC−30のみを用いた以外は、前記と同様の材料および方法で舗装構造体を得た(比較例1)。   In the pavement work in the remaining work zone (hereinafter referred to as “work zone 2”), a pavement structure was obtained using the same materials and methods as described above except that only RC-30 was used as the roadbed material (Comparative Example 1).

[舗装体温度の測定]
工区1における本発明の舗装構造体(実施例1)および工区2における舗装構造体(比較例1)のそれぞれに各1箇所、舗装構造体の表層と路盤層との界面の温度を測定するように取り付けた。舗装構造体への温度センサーの設置は、表層をコアカッターで切り抜いて穴を開け、その中に温度センサーを設置し、同じ表層材で埋め戻す作業によって行った。それとともに、この周辺の外気温度を測定するために、地表面より1mの高さに温度センサーを設置した。
[Measurement of pavement temperature]
The pavement structure (Example 1) of the present invention in the construction zone 1 and the pavement structure (comparative example 1) in the construction zone 2 are each measured at one location, the temperature at the interface between the surface layer of the pavement structure and the roadbed layer. Attached to. The temperature sensor was installed in the pavement structure by cutting out the surface layer with a core cutter to make a hole, installing the temperature sensor in it, and backfilling with the same surface material. At the same time, a temperature sensor was installed at a height of 1 m above the ground surface in order to measure the ambient temperature around this area.

夏季の7月19日から29日の10日間、舗装体の温度および外気温度を測定した。この期間は、7月10日から11日にかけて降雨(日降雨量47mm)があった後に晴天の日が連続した期間である。測定結果を表2および図3に示す。表2の各データは、図3のプロットから求めたものである。   The temperature of the pavement and the outside air temperature were measured for 10 days from July 19th to 29th in the summer. This period is a period in which clear days continued after July 10th to 11th rain (daily rainfall 47 mm). The measurement results are shown in Table 2 and FIG. Each data in Table 2 is obtained from the plot of FIG.

Figure 2010229707
Figure 2010229707

表3のデータから、実施例1では、舗装体温度の最大値が57℃、平均値が39.8℃であった。それに対して、比較例1では、舗装体温度の最大値は58.8℃、平均値が40.7℃であり、本発明の透水性舗装構造体を用いることで、最大値において1.8℃、平均値において0.9℃の温度上昇の抑制が認められた。   From the data of Table 3, in Example 1, the maximum value of the pavement temperature was 57 ° C., and the average value was 39.8 ° C. On the other hand, in Comparative Example 1, the maximum value of the pavement temperature is 58.8 ° C., and the average value is 40.7 ° C., and the maximum value is 1.8 by using the water-permeable pavement structure of the present invention. Suppression of a temperature rise of 0.9 ° C. was observed at an average value of ° C.

また、この期間中のどの時間帯においても、実施例1の舗装体温度は、比較例1におけるそれよりも低く、本発明の透水性舗装構造体を用いることで、長期にわたり舗装体の温度上昇を抑制できることが示された。   Moreover, the pavement temperature of Example 1 is lower than that of Comparative Example 1 in any time zone during this period, and by using the water-permeable pavement structure of the present invention, the temperature of the pavement rises over a long period of time. It was shown that can be suppressed.

[舗装表面および舗装表面近傍における温度の測定]
工区1における本発明の舗装構造体(実施例1)および工区2における舗装構造体(比較例1)の舗装(表層)表面温度、および当該舗装表面近傍の温度として舗装表面上10cmの高さにおける温度を測定できるように、公知の方法により非接触式の放射温度計を設置した。その後、放射温度計設置場所周辺に散水を行い、その日から1週間舗装表面温度および舗装表面近傍の温度を連続測定した。その結果を表4および図4に示す。なお、これらの図表において、「最高気温」は、工区1および工区2の属する地域における測定値である。
[Measurement of temperature at and near the pavement surface]
The pavement (surface layer) surface temperature of the pavement structure of the present invention (Example 1) in the work zone 1 and the pavement structure (Comparative Example 1) in the work zone 2 and the temperature near the pavement surface at a height of 10 cm above the pavement surface. A non-contact type radiation thermometer was installed by a known method so that the temperature could be measured. Thereafter, water was sprayed around the place where the radiation thermometer was installed, and the pavement surface temperature and the temperature near the pavement surface were continuously measured for one week from that day. The results are shown in Table 4 and FIG. In these charts, the “maximum temperature” is a measured value in the area to which the work area 1 and the work area 2 belong.

Figure 2010229707
Figure 2010229707

表4および図4に示す結果から、実施例1の舗装構造体は、比較例1の舗装構造体よりも散水後の1日目の表面温度が6℃低い結果となり、さらに4日後に略同等となっており、測定期間中を通じて前者の方が後者よりも表面温度を抑えることができることが示された。また、舗装表面上10cmの高さでの温度は、実施例1の舗装構造体の方が比較例1のそれよりも低い結果となっている。   From the results shown in Table 4 and FIG. 4, the pavement structure of Example 1 has a lower surface temperature on the first day after watering by 6 ° C. than the pavement structure of Comparative Example 1, and is substantially equivalent after four days. Thus, it was shown that the former can suppress the surface temperature more than the latter during the measurement period. Further, the temperature at a height of 10 cm on the pavement surface is lower in the pavement structure of Example 1 than in Comparative Example 1.

以上説明したように、本発明の舗装構造体は、従来の透水性舗装よりも昼間における舗装体内部および舗装表面の温度上昇を長期間抑制することができることは明らかである。また、路盤材に補足材として石炭灰造粒物を混合することから、短い工期で安価に舗装でき、しかも発塵の問題も生じずに舗装構造を得ることができる。   As described above, it is clear that the pavement structure of the present invention can suppress the temperature rise of the pavement inside and the pavement surface in the daytime for a longer period than the conventional water-permeable pavement. In addition, since coal ash granulated material is mixed as a supplement to the roadbed material, it can be paved inexpensively in a short construction period, and a pavement structure can be obtained without causing the problem of dust generation.

1 透水性舗装構造体
2 路床層
3 フィルター層
4 保水性路盤層
41 補足材(石炭灰造粒物)
42 路盤材
5 表層
51 骨材
DESCRIPTION OF SYMBOLS 1 Water-permeable pavement structure 2 Road bed layer 3 Filter layer 4 Water retention roadbed layer 41 Supplementary material (coal ash granulated material)
42 Roadbed material 5 Surface layer 51 Aggregate

Claims (4)

路床層上に築造される舗装構造体であって、フィルター層と、路盤材に補足材として石炭灰造粒物を混合した保水性路盤材からなる保水性路盤層と、透水性を備えた表層とが順次積層されてなることを特徴とする透水性舗装構造体。   A pavement structure built on a roadbed layer, comprising a filter layer, a water-retaining roadbed layer composed of a water-retaining roadbed material mixed with coal ash granulated material as a supplement to the roadbed material, and water permeability A water-permeable pavement structure characterized by being sequentially laminated with a surface layer. 前記補足材の前記路盤材に対する混合比は、補足材:路盤材=10:90〜50:50(重量比)である請求項1に記載の透水性舗装構造体。   The water-permeable pavement structure according to claim 1, wherein a mixing ratio of the supplementary material to the roadbed material is supplementary material: roadbed material = 10: 90 to 50:50 (weight ratio). 前記石炭灰造粒物は、石炭灰、または石炭灰とセメントとを少なくとも含む混合物を造粒したものである請求項1または請求項2に記載の透水性舗装構造体。   The permeable pavement structure according to claim 1 or 2, wherein the coal ash granulated material is obtained by granulating coal ash or a mixture containing at least coal ash and cement. 前記石炭灰は、フライアッシュである請求項1〜3のいずれか1項に記載の透水性舗装構造体。   The water-permeable pavement structure according to any one of claims 1 to 3, wherein the coal ash is fly ash.
JP2009078191A 2009-03-27 2009-03-27 Permeable pavement structure Active JP5491756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078191A JP5491756B2 (en) 2009-03-27 2009-03-27 Permeable pavement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078191A JP5491756B2 (en) 2009-03-27 2009-03-27 Permeable pavement structure

Publications (2)

Publication Number Publication Date
JP2010229707A true JP2010229707A (en) 2010-10-14
JP5491756B2 JP5491756B2 (en) 2014-05-14

Family

ID=43045781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078191A Active JP5491756B2 (en) 2009-03-27 2009-03-27 Permeable pavement structure

Country Status (1)

Country Link
JP (1) JP5491756B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162916A (en) * 2011-02-07 2012-08-30 Chugoku Electric Power Co Inc:The Method of reducing loads of indoor air conditioning equipment at building top floor part
JP2015045226A (en) * 2014-12-08 2015-03-12 株式会社環境緑化保全コンサルタント Pavement structure using coal ash and construction method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262502A (en) * 2000-03-22 2001-09-26 Taiyu Kensetsu Co Ltd Permeable pavement structure and method of constructing the structure
JP2001347252A (en) * 2000-06-08 2001-12-18 Nippon Steel Corp Granulated.harneded material of coal ash blended with roadbed filter as supplementary material, producing method for the same and roadbed material blended with the same
JP2002273394A (en) * 2001-03-23 2002-09-24 Civil Engineering Research Institute Of Hokkaido Method for producing civil engineering material
JP2008255664A (en) * 2007-04-04 2008-10-23 Entec Kk Water retentive roadbed structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262502A (en) * 2000-03-22 2001-09-26 Taiyu Kensetsu Co Ltd Permeable pavement structure and method of constructing the structure
JP2001347252A (en) * 2000-06-08 2001-12-18 Nippon Steel Corp Granulated.harneded material of coal ash blended with roadbed filter as supplementary material, producing method for the same and roadbed material blended with the same
JP2002273394A (en) * 2001-03-23 2002-09-24 Civil Engineering Research Institute Of Hokkaido Method for producing civil engineering material
JP2008255664A (en) * 2007-04-04 2008-10-23 Entec Kk Water retentive roadbed structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162916A (en) * 2011-02-07 2012-08-30 Chugoku Electric Power Co Inc:The Method of reducing loads of indoor air conditioning equipment at building top floor part
JP2015045226A (en) * 2014-12-08 2015-03-12 株式会社環境緑化保全コンサルタント Pavement structure using coal ash and construction method thereof

Also Published As

Publication number Publication date
JP5491756B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP2008019557A (en) Pavement structure
KR20190006233A (en) Construction method of water-permeable pavement with excellent properties of stability, economy and conduct ability for pavement and road
KR20130008149A (en) The piling method of earth for road pavement
JP2007284974A (en) Soil block
JP4746654B2 (en) Surface layer body and surface layer construction method
JP2004346580A (en) Pavement structure and construction method therefor
KR100557300B1 (en) Soil rock layer&#39;s composition, constructing method thereof and road construction method thereby
JP5491756B2 (en) Permeable pavement structure
JP4769139B2 (en) Asphalt pavement and asphalt pavement structure with the function to suppress the rise in road surface temperature
KR100888883B1 (en) Paving structure and method with block
JP4785817B2 (en) Pavement structure
JP4861390B2 (en) Water retention block
JP3050793B2 (en) Pavement material and pavement block using the same
KR101014184B1 (en) Ground pavement method without expansion joint
CN205839512U (en) A kind of water conservation temperature reduction asphalt pavement structure being applicable to heavy traffic
JP4599233B2 (en) Substructure of water retention pavement
JP7191445B2 (en) interlocking block paving
CN110776280A (en) Roadbed material and preparation method thereof
CN205874871U (en) High carrier block stone road surface structure suitable for heavily traffic
KR100526169B1 (en) a packing stuff for a road surface
KR100783013B1 (en) A road packing materials
JP2002146707A (en) Leveling substratum for concrete block pavement, paving construction and paving construction method
JP2003313809A (en) Water-retentive filler for water-permeable asphalt pavement and water-permeable asphalt pavement filled with it
JP3715225B2 (en) Paving material, paving body and paving method
KR20040072332A (en) permeable concrete for paving road

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120305

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130906

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140228

R150 Certificate of patent or registration of utility model

Ref document number: 5491756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250